The present invention relates generally to implantable medical devices (IMDs) and, more particularly, to hermetic interconnects associated with IMDs.
Implantable medical devices (IMDs) detect and deliver therapy for a variety of medical conditions in patients. IMDs include implantable pulse generators (IPGs) or implantable cardioverter-defibrillators (ICDs) that deliver electrical stimuli to tissue of a patient. ICDs typically comprise, inter alia, a control module, a capacitor, and a battery that are housed in a hermetically sealed container. When therapy is required by a patient, the control module signals the battery to charge the capacitor, which in turn discharges electrical stimuli through at least one lead extending from the ICD to tissue of a patient.
The lead is connected to the ICD through a feedthrough. Feedthroughs typically include a wire, an insulator member, and a ferrule. The wire extends through the insulator member. The insulator member is then seated in the ferrule. It is desirable to increase the performance of ICDs by improving feedthroughs.
The following description of an embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, the same reference numbers are used in the drawings to identify similar elements.
The present invention is directed to a hermetic interconnect for an implantable medical device (IMD). In one embodiment, the hermetic interconnect includes conductive material introduced to a via in a single layer. The conductive material includes a first end and a second end. A first bonding pad is coupled to the first end and a second bonding pad is coupled to the second end of the conductive material. The single layer and the conductive material undergo a co-firing process. The co-firing process includes low-temperature co-fired ceramic (LTCC) and/or high temperature co-fire ceramic (HTCC).
A lower effective resistance (Reff) is achieved with a co-fired hermetic interconnect. Reff is defined as follows:
Reff=ρbultL/A
where ρbulk is the bulk resistivity of a pure metal, L is the physical length of the conductor and A is the cross-sectional area of the conductor. Reff for the co-fired metallization is about ten to about one hundred times lower than the Reff for a pure metal. Reduced length and/or the use of multiple conductor pathway allows Reff to be reduced. For example, while a conventional feedthrough pin conductor may be 50-100 mil, co-fired hermetic interconnects (i.e. feedthroughs) may be as small as 20-30 mil. In addition, multiple co-fire feedthrough vias may be electrically connected in parallel to significantly reduce the effective resistance.
Hermetic interconnects can be used in numerous devices. Exemplary devices include IMDs (e.g. implantable cardioverter-defibrillators etc.), electrochemical cells (i.e. batteries and capacitors), and sensors. Sensors can be implanted in a patient's body. Alternatively, the sensor may be applied externally to a patient's body as part of a larger system such as in body networks. Hermetic interconnects can also be used by an in-body sensor to an in-body sensor.
One or more conductive interlayers (or conductive elements) 112 is disposed in between or adjacent opposing via structures. In the depicted embodiment, interlayers 112 have about the same dimension as the corresponding via structure, although different dimensions can be utilized. Interlayer 112 can be formed of the same conductive material as the conductive material disposed in via structures 106-110. In another embodiment, interlayer 112 can be formed of different conductive material than the conductive material disposed in via structures 106-110.
Via structures 106-110 in conjunction with interlayers 112 form a conductive serpentine pathway through hermetic interconnect 100. A serpentine or staggered via geometry increases resistance to fluid ingress compared to a substantially linear geometry. To further enhance the resistance of hermetic interconnect 100 to ingress of fluid, one or more of the interlayer 112 structures can abut one or more adjacent vias or optionally fully or partially overlap an end portion of a via. Moreover, interlayer 112 can have a similar or different surface area in contact with a portion of a via depending on whether a particular region of hermetic interconnect 100 needs to increase electrical communication and/or resist fluid intrusion.
After assembly, hermetic interconnect 100 is sintered or co-fired at an elevated temperature in a chamber of a heater such as a belt furnace. Belt furnaces are commercially available from Centorr located in Nashua, N.H. LTCC temperature ranges from about 650 degrees Celsius (° C.) to about 1300° C. HTCC temperature ranges from about 1100° C. to about 1700° C. At least one or both of the LTCC and HTCC processes are applied to hermetic interconnect 100. During the co-firing process, hermetic interconnect 100 resides in the chamber less than day. After hermetic interconnect 100 has sufficiently cooled, hermetic interconnect 100 is inserted into a ferrule (not shown).
A pair of bonding pads 114 that provide electrical communication to vias 108, 110 are positioned at the exterior of hermetic interconnect 200. In addition to providing a potentially larger bonding surface for connection of remote circuitry, pads 114 increase the resistance of hermetic interconnect 200 to ingress of fluids, such as body fluids. Hermetic interconnect 200 is then inserted into a cavity of a ferrule 118 which in turn is sealingly disposed around an upper periphery of the ferrule 118 within a port of a relatively thin layer of material 120. Material 120 comprises a portion of an enclosure for an IMD, a sensor, an electrochemical cell or other article or component which requires electrical communication. Material 120 can comprise titanium, titanium alloys, tantalum, stainless steel, or other conductive material.
Hermetic interconnect 200 is coupled to a ferrule 118 via a coupling member 116. In one embodiment, coupling member 116 comprises a braze material or equivalent resilient bonding material. Braze material includes a gold (Au) braze or other suitable brazing material. A thin film metal wetting layer is optionally applied to the surface of hermetic interconnect 200 prior to application of the brazing material. Application of thin film wetting layer is described in greater detail in, for example, U.S. Pat. No. 4,678,868 issued to Kraska et al. and U.S. Pat. No. 6,031,710 issued to Wolf et al., the disclosures of which are incorporated by reference in relevant parts.
In another embodiment, coupling member 116 is a diffusion bond formed through a diffusion bonding process that is applied after inserting hermetic interconnect 200 in ferrule 118. Diffusion bonded joints are pliable, strong, and reliable despite exposure to extreme temperatures. Even where joined materials include mis-matched thermal expansion coefficients, diffusion bonded joints maintain their reliability. Additionally, diffusion bonds implement a solid-phase process achieved via atomic migration devoid of macro-deformation of the components being joined.
Prior to undergoing a diffusion bonding process, layers 101-105 should exhibit surface roughness values of less than about 0.4 microns and be cleaned (e.g., in acetone or the like) prior to bonding. The diffusion bonding process variables range from several hours at moderate temperatures (0.6 Tm) to minutes at higher temperatures (0.8 Tm), with applied pressure (e.g., 3 MNm2 and 400° C.). Ceramics allow alloys to be diffusion bonded to themselves and/or to other materials (e.g. metals, etc.).
Diffusion bonding typically occurs in a uniaxial press heated using discrete elements or induction units. Microwave heating may be used to produce excellent diffusion bonds in a matter of minutes, albeit for relatively small components on the order of several inches (e.g., implantable medical devices). It is also possible to produce ceramic-metal diffusion bonds; and, as for ceramic-ceramic diffusion bonding, a combination of time, temperature and pressure are generally required as the metal deforms at the macro level to the ceramic.
When the required temperature has been achieved, a DC voltage of about 100V is applied and the metallic component is held to a positive polarity. The nonmetallic component contains mobile ions (e.g., sodium (Na+)). This process has been successfully applied to glass and ceramics (e.g. beta-alumina). Optionally, diffusion aids or secondary phase materials are present (e.g. glassy phases at grain boundaries).
Numerous articles describe details of the diffusion bonding process that can be applied to the hermetic interconnects. Exemplary articles include N. L. Loh, Y. L. Wu and K. A. Khor, Shear bond strength of nickel/alumina interfaces diffusion bonded by HIP, 37 Journal of Materials Processing Technology, 711-721 (1993); K. Burger and M. Rohle, Material Transport Mechanisms During The Diffusion Bonding Of Niobium To Al2O3, 29 Ultramicroscopy 88-97 (1989); M. A. Ashworth, M. H. Jacobs, S. Davies, Basic Mechanisms and Interface Reactions in HIP Diffusion Bonding, 21 Materials and Design 351-358 (2000); A. M. Kliauga, D. Travessa, M. Ferrante, Al2O3/Ti interlayer/AISI 304 Diffusion Bonded Joint Microstructural Characterization of the Two Interfaces, 46 Materials Characterization 65-74 (2001), the disclosures of which are incorporated by reference in relevant parts.
Hermetic interconnect 400 depicted in
Interlayer 124 can be formed with an aperture or apertures (not shown) that correspond to one or more capture pads 114 or surface portions of one or more via structures 108,110 disposed on an exterior portion of hermetic interconnect 500. An aperture (not shown) disposed in interlayer 124 prevents electrical contact between interlayer 124 and capture pad 114.
Conductive material 214A-E is interconnected through conductive elements 216A-D. In one embodiment, conductive elements 216A-D comprise the same conductive material. In another embodiment, two of conductive elements 216A-D comprise the same conductive material. In yet another embodiment, three conductive elements 216A-D comprise the same conductive material. In still yet another embodiment, four conductive elements 216A-D comprise the same conductive material. In another embodiment, conductive elements 216A-D each comprise different conductive material.
Conductive interlayer 112 connects conductive elements 1112A and 1112B. Conductive interlayer 112 comprises any suitable conductive material. Conductive material includes conductive metal(s) and/or conductive alloy(s). Conductive interlayer 112 may comprise the same material as conductive elements 1112A and 1112B. In another embodiment, conductive interlayer 112 may comprise the same material of at least one of conductive elements 1112A and 1112B. In still yet another embodiment, conductive interlayer 112 comprises different material from both of conductive elements 1112A and 1112B. Bonding pads 114 are then coupled to a first and a second end 1116 and 1118 of conductive elements 1112A and 1112B, respectively.
Skilled artisans understand that various dimensions may be used in fabrication of the hermetic interconnects depicted in
Although various embodiments of the invention have been described and illustrated with reference to specific embodiments thereof, it is not intended that the invention be limited to such illustrative embodiments. For example, it should be apparent that conductive material in each via may be the same or different from conductive material in another via. Additionally, interlayer 112 may comprise the same or different conductive material as that which is in the vias. Moreover, numerous layers can be used to form a hermetic interconnect. For example, a hermetic interconnect may comprise four layers.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application is related to, and claims the benefit of, U.S. patent application Ser. No. 11/227342 (Attorney Docket No. P21242.00) filed on Sep. 15, 2005 and entitled, “IMPLANTABLE CO-FIRED ELECTRICAL FEEDTHROUGHS ”, which is incorporated herein by reference in its entirety. This application is a continuation-in-part of application serial number. This application is also related to U.S. patent application Ser. No. 11/227,375 (Attorney Docket No. P-21241.00) filed on Sep. 15, 2005 and entitled, “MINIATURIZED CO-FIRED ELECTRICAL INTERCONNECTS FOR IMPLANTABLE MEDICAL DEVICES,” U.S. patent application Ser. No. 11/227,523 (Attorney Docket No. P-21241.01) filed on Sep. 15, 2005 and entitled, “MULTI-PATH, MONO-POLAR CO-FIRED HERMETIC ELECTRICAL FEEDTHROUGHS AND METHODS OF FABRICATION THEREFOR”, and U.S. patent application Ser. No. 11/227,341 (Attorney Docket No. P-22315.00) filed on Sep. 15, 2005 and entitled, “IMPLANTABLE CO-FIRED ELECTRICAL INTERCONNECT SYSTEMS AND DEVICES AND METHODS OF FABRICATION THEREFOR”, each of which is hereby incorporated by reference herein.