Implantable devices for accelerated healing

Information

  • Patent Grant
  • 7591841
  • Patent Number
    7,591,841
  • Date Filed
    Friday, December 16, 2005
    19 years ago
  • Date Issued
    Tuesday, September 22, 2009
    15 years ago
Abstract
Implantable devices (e.g., stent) having a protein patterning or bioactive patterning for accelerated healing and method of forming and using the same are provided.
Description
BACKGROUND

1. Field of the Invention


This invention is directed to protein patterning on implantable devices, such as drug delivery vascular stents, for accelerated healing.


2. Description of the State of the Art


Percutaneous coronary intervention (PCI) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the lumen wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.


A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, a stent is implanted in the lumen to maintain the vascular patency.


The introduction of drug delivery stents has reduced the incidence of in-stent restenosis (ISR) after PCI (see, e.g., Serruys, P. W., et al., J.Am.Coll.Cardiol. 39:393-399 (2002)), which has represented the Achilles heel of interventional cardiology for more than one decade. However, ISR still poses a significant problem given the large volume of coronary interventions and expanding indications. The pathophysiology of ISR constitutes a complex interaction between cellular and acellular elements of the vessel wall and the blood. The loss of endothelial integrity after PCI constitutes a major factor for the development of ISR (see, e.g., Kipshidze, N., et al., J.Am.Coil.Cardiol. 44:733-739 (2004)).


The embodiments of the present invention address these concerns as well as others that are apparent by one having ordinary skill in the art.


SUMMARY

Provided herein is an implantable device that includes a protein patterning or a bioactive patterning that contains a protein and an agent selected from an adhesion molecule including an RGD motif, a chemo-attractant of an endothelial cell, a NO releasing or generating material or agent, an agent that promotes endothelialization, or combinations thereof. The protein patterning or bioactive patterning can further include a bioactive agent. Some exemplary bioactive agents include, but are not limited to, paclitaxel, docetaxel, estradiol, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), clobetasol, corticosteroids, prodrugs thereof, co-drugs thereof, or combinations thereof.


The device having features described herein can be implanted in a patient to treat, prevent, ameliorate, or reduce a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or heart valve dysfunction such as heart valve re-gurgitation. In some embodiments, the device can be implanted in a patient for pro-healing of the disorder.







DETAILED DESCRIPTION

Provided herein is an implantable device that includes a protein patterning or a bioactive patterning that contains a protein and an agent that can be an adhesion molecule including an RGD motif, a chemo-attractant of an endothelial cell, a NO releasing or generating material or agent, an agent that promotes endothelialization, or combinations thereof. The protein patterning or bioactive patterning can further include a bioactive agent.


Some exemplary bioactive agents include, but are not limited to, paclitaxel, docetaxel, estradiol, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, corticosteroids, prodrugs thereof, co-drugs thereof, or combinations thereof.


In some embodiments, the adhesion molecule can be an RGD peptide, a cRGD peptide, RGD mimetics, peptides or proteins containing the RGD sequence, structural or functional equivalents thereof, or combinations thereof. The RGD or RGD mimetics described herein includes any peptides or peptide mimetics result from the modification of the cyclic Arg-Gly-Asp peptide. The modification can be on the pendant groups and/or on the backbone of the peptide. Peptide synthesis, including the synthesis of peptide mimetics, is well documented and can be readily achieved via, for example, combinatorial chemistry.


The device having features described herein can be implanted in a patient to treat, prevent, ameliorate, or reduce a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or heart valve dysfunction such as heart valve regurgitation. In some embodiments, the device can be implanted in a patient for pro-healing of the disorder. As used herein, the term pro-healing refers to promoting the healing of a disorder.


Protein Patterning

In some embodiments, the implantable device provided herein includes a protein patterning. The protein patterning includes a protein that can be, for example, fibronectin, laminin 5, elastin, silk elastin, collagen or a peptide.


In some embodiments, the protein patterning can be negative imprints of cell adhesion molecules on the surface. The adhesion molecule can be, e.g., RGD, cRGD, RGD mimetics, peptides or proteins containing the RGD sequence, structural or functional equivalents thereof, or combinations thereof. The surface can be a metallic surface, a polymeric surface, or a coating surface. In some embodiments, the protein patterning can include a chemo-attractant for endothelial cells other than RGD.


In some embodiments, the protein patterning can include a pro-healing material or matrix such as nitric oxide (NO) donors, hyaluronic acid or fragments thereof, glycosaminoglycan or fragments thereof, endothelial progenitor cell (EPC) capturing antibody, or combinations thereof.


In some embodiments, the protein patterning can include a bioactive agent that promotes endothelialization (as known as pro-endothelialization), such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), placenta derived growth factor (PIGF), or combinations thereof. The growth factors can be blended with other components of the protein patterning or negative imprint or in some embodiments, can be conjugated to the surface by ionic interaction, hydrogen bonding and/or chemical bonding (with or without a spacer) to localize their effect.


The protein patterning can be carried out by methods known in the art of gene chips and other biochips (see, e.g., U.S. application Publication No. 20050100951). For example, protein patterning can be formed by lithography and rubber-stamping methods, nano-droplet deposition by contact transfer, surface patterning by AFM material transfer, reactive microcontact printing by, for example, functionalizing the surface of a device followed by microstamping of the reactive biological ligands, self-assembling of the proteins, ink jet technologies as described in U.S. application Ser. No. 09/835,429, etc. In some embodiments, patterning can be done by patterning underlying substrate surface or coating surface, e.g., by providing localized functional areas for attachment of protein layer(s), or by locally modifying surface hydrophobicity/hydrophilicity. Functional areas generally contain functional groups attached on the surface. Such functional groups include, e.g., carboxyl groups, hydroxyl groups, thiol groups, amino groups, aldehyde groups, and other groups commonly used for attaching a protein to a polymeric or non-polymeric surface. In some embodiments, the surface can be modified to have different hydrophobicity/hydrophilicity.


The protein patterning can be tuned and controlled by a variety of factors. Such factors include, for example, the composition of the protein layer adsorbed on the surface, physicochemical structure of the adsorbed protein layer, such as denatured state, natural state, tertiary state, epitope unfolding state, etc., patterned surface characteristics (e.g., ratio of surface subjected to patterning, surface area subjected to patterning, and density of patterning per unit area), relative shape and regional distribution of the pattern on the surface of the device, texture parameters such as porosity or roughness factor, and/or depth profile of the protein pattern.


Bioactive Patterning

In some embodiments, the implantable device described herein includes a bioactive patterning. The bioactive patterning contains a plurality of pores on the surface of the device and/or the coating of the device. The pores can have a size ranging from, e.g., about 1 μm to about 2000 μm, about 10 μm to about 1000 μm, about 10 μm to about 500 μm, about 10 to about 200 μm, about 10 μm to about 100 μm, about 10 μm to about 100 μm, about 30 μm to about 100 μm, or about 30 μm to about 50 μm.


The porosity can vary in size and shape in part of or through out the device. One of ordinary skill in the art can readily create a pattern of porosity according to the design of the device. For example, in some embodiments, pores may be localized near surface or transverse stent struts or both, depending on location within the stent. The pores located on the edges and/or surface of the struts may enhance the rate of cell engulfment while the pore volume of the strut may enhance the permeation rate of EC (endothelial cell) and smooth muscle cell (SMC) in a controlled manner.


In some embodiments, the areas of porous device and/or coating can be selectively or completely loaded with a protein and an agent, depending upon the design of the device.


In some embodiments, the protein can be, for example, fibronectin, laminin 5, elastin, silk elastin, collagen or a peptide. The agent can be an adhesion molecule including an RGD motif, a chemo-attractant of an endothelial cell, a NO releasing or generating material or agent, an agent that promotes endothelialization, or combinations thereof.


In some embodiments, the pores of the device can be loaded with an adhesion molecule that includes an RGD motif. In some embodiments, the adhesion molecule can be, e.g., RGD, cRGD, RGD mimetics, peptides or proteins containing the RGD sequence, structural or functional equivalents thereof, or combinations thereof.


The porosity on the device or in the coating can be achieved by techniques known in the art, for example, blow molding, porogen leaching, or locally melting polymer with heated needle, etc. for a device formed of a polymeric material (e.g., poly(lactic acid) (PLA), polypropylene (PP), poly(L-lactide-co-trimethylene carbonate), or poly(desamino tyrosyl-tyrosine ethyl ester carbonate) (poly(DTE carbonate)) and mechanical, e-beam or laser drilling for devices formed of a polymeric material or a non-metallic material such as a metallic stent, with or without a polymeric coating. In-some embodiments, the porosity of the implantable device can be created by making the device from a composite of electro-spun fibers.


In some embodiments, the porosity can be created by photochemical etching, polymer droplet deposition (e.g., from melted polymer spray), or partial and patterned enzymatic degradation. In some other embodiments, the porosity can be created by spray coating with a solution including a porogen such as an inorganic or organic salt (e.g., sodium chloride), lactose, dextrose or other water soluble species, active drug (e.g., everolimus) and a biocompatible polymer and then leaching the porogen from the surface layer. By this leaching methodology, one can create a porous surface layer without compromising the mechanical integrity of the device.


In some embodiments, the bioactive pattering can include a chemo-attractant for endothelial cells other than RGD.


Chemo-Attractants Other Than RGD

As used herein, the chemo-attractant includes any synthetic or natural molecules capable of attracting endothelial cells. The attractant generally have a degree of selectivity towards endothelial cells. The chemo-attractant includes any synthetic or natural molecules capable of binding to adhesion receptors differentially expressed on the endothelial cells. One such adhesion receptor can be integrin. Some exemplary chemo-attractants include, but are not limited to, small integrin binding molecules and small molecules binding to other adhesion receptors differentially expressed on the endothelial cells.


In some embodiments, the chemo-attractant can be any molecules capable of binding to ICAM (intercellular adhesion molecule) molecules and/or VCAM (vascular cell adhesion molecule) molecules, which are present in the endothelial cells. In some embodiments, such chemo-attractant can be, for example, receptors binding to ICAM or VCAM on endothelial cells. Such include receptors include, but are not limited to, Decoy receptor 3 (DcR3), which is a tumor necrosis factor (TNF) that preferentially binds to ICAM and VCAM, β2 integrin LFA-1 (LFA-1Af) (expressed on lymphocytes) which has conformational changes in extracellular domains enabling higher affinity binding to the ligand ICAM-1, and combinations thereof.


In some embodiments, the chemo-attractant can be used in an encapsulated form, e.g., encapsulation in liposome or another material such as a biodegradable polymer. The encapsulated chemo-attractant can be used in connection with a catheter and then be released therefrom.


Biocompatible Polymers

In some embodiments, the protein patterning or bioactive patterning can include one or more biocompatible polymers. The device, such as the stent, can be coated with these polymers or the device itself can be made from these polymers. The biocompatible polymer can be biodegradable (both bioerodable or bioabsorbable) or nondegradable and can be hydrophilic or hydrophobic.


Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), poly(n-butyl methacrylate), poly(sec-butyl methacrylate), poly(isobutyl methacrylate), poly(tert-butyl methacrylate), poly(n-propyl methacrylate), poly(isopropyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as poly(ethylene glycol) (PEG), copoly(ether-esters) (e.g. poly(ethylene oxide/poly(lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as chitosan, alginate, fibrin, fibrinogen, cellulose, starch, dextran, dextrin, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, chitosan, alginate, or combinations thereof. In some embodiments, the copolymer described herein can exclude any one of the aforementioned polymers.


As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.


Linkers

In some embodiments, the RGD, RGD mimetics, the chemo-attractant, the NO releasing or generating agent, or the agent that promotes endothelialization described herein can be attached to the protein or a polymer matrix in the protein patterning or bioactive patterning described herein via a labile linker or via physical interactions such as interpenetrating networking. The labile linker can be a linker sensitive to stimuli. For example, the linker can be a hydrolytically degradable linker or an enzymetically degradable linker.


Hydrolytically degradable linkers degrade under physiological condition in the presence of water. A hydrolytically degradable linker links the chemo-attractant and the polymer via the linker's reactive groups. For example, in some embodiments, the linker can be an amino acid grouping that includes amino, thiol, and/or carboxylic groups. Some exemplary strategies for forming hydrolytically degradable linkers include:


(1) ε-Amino group of lysine (which can be integrated into a polymer) and α-amino group of a protein. The amine can be on the polymer backbone (with or without a spacer (PEG, alkyl chain)). This yields an amide, thiourea, alkylamine or urethane linkage.


(2) Thiol group or a free cysteine, which forms a thioether linkage.


(3) Thiol group on a cysteine, which can be conjugated with vinylsulfone (R—SO2—CH═CH2).


(4) Carboxylic acid groups on the aspartic and glutamic acid.


Some examples of hydrolytically degradable linkages include amide linkages that can be generated by reacting an amine group with succinate esters such as N-hydroxysuccinimide (NHS), thiol linkages such as disulfide (R-L1-S—S-L2-R′) where the length of the linker L1 and L2 control the hydrolization, or ester bonds formed by coupling the peptide's carboxylic terminus with a hydroxyl on the polymer backbone (with or without a spacer (PEG, alkyl chain)). Esterification can be carried out using established methods in the art (e.g., carbodiimide chemistry in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)).


Enzymatically degradable linkers/linkages are degraded by an enzyme, often to target a specific area of the body or organ. For example, a specific dipeptide sequence can be incorporated into the linker, which can be cleaved by an enzyme. Some examples of enzymetically degradable linkers or linkages include, but are not limited to, self-immolative p-aminobenzyloxycarbonyl (PABC) spacer between the dipeptide and the polymer, dipeptides such as phenylaniline-lysine and valine-cysteine, or PEG/dipeptide linkages such as alanyl-valine, alanyl-proline and glycyl-proline.


Some other linker/linkages can be found at “Biodegradable Polymers for Protein and Peptide Drug Delivery” Bioconjugate Chem. 1995, 6:332-351; M. P. Lutolf and J. A. Hubbell, Biomacromolecules 2003, 4:713-722; and U.S. patent application Ser. No. 10/871,658. Some additional representative linking chemistry is described in U.S. patent application Ser. No. 10/871,658, now issued as U.S. Pat. No. 7,563,780.


Bioactive Agents

In some embodiments, the protein patterning or bioactive patterning described herein can optionally include one or more bioactive agents. These bioactive agents can be any agent which is a therapeutic, prophylactic, or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents, agents that promote the healing of the endothelium other than NO releasing or generating agents (generators), or agents that promote the attachment, migration and proliferation of endothelial cells (CNP) while quenching smooth muscle cell proliferation. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include ABT-578, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, corticosteroids or combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances also include metabolites thereof and/or prodrugs of the metabolites. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.


The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the ingredient administered resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.


Biobeneficial Material

In some embodiments, the protein patterning or bioactive patterning described herein can optionally include a biobeneficial material. The combination can be mixed, blended, or patterned in separate layers. The biobeneficial material useful in the coatings described herein can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.


Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly (ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, chitosan, alginate, silicones, PolyActive™, and combinations thereof. In some embodiments, the coating can exclude any one of the aforementioned polymers.


The term PolyActive™ refers to a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEGT/PBT). PolyActive™ is intended to include AB, ABA, BAB copolymers having such segments of PEG and PBT (e.g., poly(ethylene glycol)-block-poly(butyleneterephthalate)-block poly(ethylene glycol) (PEG-PBT-PEG).


In a preferred embodiment, the biobeneficial material can be a polyether such as poly (ethylene glycol) (PEG) or polyalkylene oxide.


EXAMPLES OF IMPLANTABLE DEVICE

As used herein, an implantable device can be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prosthesis (e.g., artificial heart valves) or vascular graft, cerebrospinal fluid shunts, pacemaker electrodes, catheters, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.), devices facilitating anastomosis such as anastomotic connectors. The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. The device itself, such as a stent, can also be made from the described inventive polymers or polymer blends.


Method of Use

In accordance with embodiments of the invention, a protein patterning or bioactive patterning can be formed on an implantable device or prosthesis, e.g., a stent. For a device including one or more active agents, the agent will retain on the device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation.


Preferably, the device is a stent. The stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.


For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. An implantable device comprising a protein patterning on said device, wherein the protein patterning comprises: (a) a protein selected from the group consisting of fibronectin, laminin 5, elastin, silk elastin, collagen and combinations thereof, and(b) an agent selected from the group consisting of an adhesion molecule that includes a RGD motif, a chemoattractant of an endothelial cell, a NO releasing or generating agent, an agent that promotes endothelialization, or combinations thereof;and wherein the protein of (a) and the agent of (b) are chemically bonded to one another via a spacer.
  • 2. The implantable device of claim 1, wherein the adhesion molecule is selected from the group consisting of an RGD peptide, a cRGD peptide, RGD mimetics, peptides or proteins containing the RGD sequence, and combinations thereof.
  • 3. The implantable device of claim 1, wherein the protein is in a state selected from the group consisting of denatured state, natural state, tertiary state, and epitope unfolding state.
  • 4. The implantable device of claim 1, further comprising a material or compound selected from the group consisting of hyaluronic acid, glycosaminoglycan, endothelial progenitor cell capturing antibody, and combinations thereof.
  • 5. The implantable device of claim 1, wherein the agent that promotes endothelialization is a growth factor selected from the group consisting of VEGF, PDGF, FGF, PlGF, and combinations thereof.
  • 6. The implantable device of claim 5, wherein the growth factor is chemically conjugated to the surface of the implantable device or a coating on the device.
  • 7. The implantable device of claim 1, further comprising a biocompatible polymer.
  • 8. The implantable device of claim 1, wherein the protein patterning is formed on a surface selected from the group consisting of a local functionalized area comprising functional groups, a local hydrophilic area, a locally hydrophobic area, and a combination thereof.
  • 9. The implantable device of claim 1, wherein the spacer is poly(ethylene glycol) (PEG).
  • 10. The implantable device of claim 1, further comprising a bioactive agent selected from the group consisting of paclitaxel, docetaxel, estradiol, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy) ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy) ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), corticosteroids, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, and a combination thereof.
  • 11. The implantable device of claim 1, wherein the protein patterning is in the form of negative imprints.
  • 12. The implantable device of claim 1, which is a stent.
  • 13. The implantable device of claim 1, which is an absorbable stent.
  • 14. The implantable device of claim 1, which is a heart valve prosthesis or vascular graft.
US Referenced Citations (328)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5728152 Mirsch et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5857998 Barry Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6475779 Mathiowitz et al. Nov 2002 B2
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6613432 Zamora et al. Sep 2003 B2
6616765 Hossainy et al. Sep 2003 B1
6620617 Mathiowitz et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6641611 Jayaraman Nov 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6689350 Uhrich Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6730064 Ragheb et al. May 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6746773 Llanos et al. Jun 2004 B2
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6776796 Falotico et al. Aug 2004 B2
6780424 Claude Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6824559 Michal Nov 2004 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6878160 Gilligan et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887485 Fitzhugh et al. May 2005 B2
6890546 Mollison et al. May 2005 B2
6890583 Chudzik et al. May 2005 B2
6899731 Li et al. May 2005 B2
7008667 Chudzik et al. Mar 2006 B2
20010007083 Roorda Jul 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020160036 Geistlich et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040170685 Carpenter et al. Sep 2004 A1
20040170752 Luthra et al. Sep 2004 A1
20050037052 Udipi et al. Feb 2005 A1
20050038134 Loomis et al. Feb 2005 A1
20050038497 Neuendorf et al. Feb 2005 A1
20050043786 Chu et al. Feb 2005 A1
20050049693 Walker Mar 2005 A1
20050049694 Neary Mar 2005 A1
20050054774 Kangas Mar 2005 A1
20050055044 Kangas Mar 2005 A1
20050055078 Campbell Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050065501 Wallace Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050065593 Chu et al. Mar 2005 A1
20050074406 Couvillon, Jr. et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050075714 Cheng et al. Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
20050084515 Udipi et al. Apr 2005 A1
20050100951 Pircher May 2005 A1
20050106210 Ding et al. May 2005 A1
20050113903 Rosenthal et al. May 2005 A1
20070003589 Astafieva et al. Jan 2007 A1
20070050007 Kondyurin et al. Mar 2007 A1
20070100323 Ludwig et al. May 2007 A1
Foreign Referenced Citations (73)
Number Date Country
42 24 401 Jan 1994 DE
0 301 856 Feb 1989 EP
0 396 429 Nov 1990 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 088 564 Apr 2001 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234307 May 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03065881 Aug 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 04000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
Related Publications (1)
Number Date Country
20080160061 A1 Jul 2008 US