This invention relates generally to an electro-medical device for electrical stimulation of one or more anatomical target sites to treat a plurality of biological conditions. More particularly, this invention relates to an electro-medical device that is programmable for improved operational life with reference to a plurality of desired treatment stimulations or protocols.
Electrical stimulation has been suggested for use in the treatment of biological conditions of patient's, such as, obesity and GERD. The treatment typically involves placing stimulator electrodes, of an electro-medical device, at or near an anatomical site in the patient by endoscopic, surgical or radiological procedures. The operational life of such electro-medical devices is contingent upon the service life of the battery or energy source powering the device. The service life of the energy source is in turn affected by the electrical stimulation regimen and therefore a plurality of parameters governing the regimen.
Therefore, there is a need for an electro-medical device that can be programmed for desired or improved operational life benefits in relation to the electrical stimulation or therapy regimen parameters.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope.
The present specification discloses a device for electrical stimulation of one or more anatomical target sites in a patient and for use in the treatment of a plurality of biological conditions of the patient, said device comprising: a pulse generator providing electrical stimulation to said one or more anatomical target sites, wherein said electrical stimulation comprises a stimulation current; a power source for powering said pulse generator; at least one stimulator electrode connected to said pulse generator for stimulating said one or more anatomical target sites; and, a microprocessor programmed to vary a plurality of therapy protocol parameters governing the electrical stimulation to thereby modify operational life parameters of the power source, wherein the therapy protocol parameters and the operational life of the power source are associated according to the following relations:
wherein effTH is a function of an output stimulation circuit current divided by an input stimulation circuit current; wherein ISOH is equal to an amount of current required to run the device and not including the stimulation current; wherein LBAT is a function of power source service life; wherein CAPBAT is a function of power source capacity; wherein effUSE is a function of a usable efficiency of power source; wherein IBAT is a function of power source current; wherein ITH is a function of a level of current exiting the device from an output terminal; wherein VTH is a function of a level of voltage at an output terminal of the device; wherein VOH is a function of an overhead output voltage; wherein VBAT is a function of a power source voltage; wherein PRF is a function of a pulse repetition frequency; wherein PW is a function of a pulse width; wherein DCTH is a function of a duty cycle; wherein ISLP is a function of sleep current; and wherein ITM is a function of average telemetry current.
Optionally, the power source is a battery. The battery may be rechargeable or non-rechargeable. The operational life parameters of the battery may comprise battery capacity, usable efficiency of battery due to end of life efficiency, and battery current.
Optionally, the power source is a capacitor.
The therapy protocol parameters, for an electrical stimulation pulse train, may comprise: number of pulses, shape of pulses, interval between pulse train repetitions, duration of a pulse, timing and amplitude of pulses, amperage to be provided to said one or more anatomical target sites, potential to be provided to said one or more anatomical target sites, and duty cycles.
Optionally, the device further comprises at least one sensor for monitoring at least one physiological parameter of said patient. The microprocessor may modify said therapy protocol parameters based upon physiological information sensed by said at least one sensor.
The present specification also discloses a device for electrical stimulation of one or more anatomical target sites in a patient and for use in the treatment of a plurality of biological conditions of the patient, said device comprising: a pulse generator providing electrical stimulation to said one or more anatomical target sites; a power source for powering said pulse generator; at least one stimulator electrode connected to said pulse generator for stimulating said one or more anatomical target sites; a microprocessor programmed to vary a plurality of therapy protocol parameters governing the electrical stimulation to thereby modify operational life parameters of the power source, wherein the therapy protocol parameters and the operational life of the power source are associated according to the following relations:
and,
at least one sensor connected to said microprocessor for sensing at least one physiological parameter of said patient; wherein effTH is a function of an output stimulation circuit current divided by an input stimulation circuit current; wherein ISOH is equal to an amount of current required to run the device and not including the stimulation current; wherein LBAT is a function of power source service life; wherein CAPBAT is a function of power source capacity; wherein effUSE is a function of a usable efficiency of power source; wherein IBAT is a function of power source current; wherein ITH is a function of a level of current exiting the device from an output terminal; wherein VTH is a function of a level of voltage at an output terminal of the device; wherein VOH is a function of an overhead output voltage; wherein VBAT is a function of a power source voltage; wherein PRF is a function of a pulse repetition frequency; wherein PW is a function of a pulse width; wherein DCTH is a function of a duty cycle; wherein ISLP is a function of sleep current; and wherein ITM is a function of average telemetry current.
Optionally, the power source is a battery. The battery may be rechargeable or non-rechargeable. The operational life parameters of the battery may comprise battery capacity, usable efficiency of battery due to end of life efficiency, and battery current.
Optionally, the power source is a capacitor.
The therapy protocol parameters, for an electrical stimulation pulse train, may comprise: number of pulses, shape of pulses, interval between pulse train repetitions, duration of a pulse, timing and amplitude of pulses, amperage to be provided to said one or more anatomical target sites, potential to be provided to said one or more anatomical target sites, and duty cycles.
The present specification also discloses a system for electrical stimulation of one or more anatomical target sites in a patient and for use in the treatment of a plurality of biological conditions of the patient, said system comprising: a pulse generator providing electrical stimulation to said one or more anatomical target sites; a power source for powering said pulse generator; at least one stimulator electrode connected to said pulse generator for stimulating said one or more anatomical target sites; and, a microprocessor programmed to vary a plurality of therapy protocol parameters governing the electrical stimulation to thereby modify operational life parameters of the power source, wherein the therapy protocol parameters and the operational life of the power source are associated according to the following relations:
wherein effTH is a function of an output stimulation circuit current divided by an input stimulation circuit current; wherein ISOH is equal to an amount of current required to run the device and not including the stimulation current; wherein LBAT is a function of power source service life; wherein CAPBAT is a function of power source capacity; wherein effUSE is a function of a usable efficiency of power source; wherein IBAT is a function of power source current; wherein ITH is a function of a level of current exiting the device from an output terminal; wherein VTH is a function of a level of voltage at an output terminal of the device; wherein VOH is a function of an overhead output voltage; wherein VBAT is a function of a power source voltage; wherein PRF is a function of a pulse repetition frequency; wherein PW is a function of a pulse width; wherein DCTH is a function of a duty cycle; wherein ISLP is a function of sleep current; and wherein ITM is a function of average telemetry current.
Optionally, the power source is a battery. The battery may be rechargeable or non-rechargeable.
Optionally, the power source is a capacitor.
Optionally, the system further comprises at least one sensor for monitoring at least one physiological parameter of said patient. The microprocessor may modify said therapy protocol parameters based upon physiological information sensed by said at least one sensor.
The aforementioned and other embodiments of the present invention shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The present invention is directed towards a plurality of operational or therapy protocol parameters with battery parameters for improved or enhanced operational life of a programmable implantable electro-medical device for the treatment of a plurality of biological conditions. The electro-medical device, including macrostimulators or microstimulators, typically employs stimulator electrodes which can be implanted with minimal invasiveness at or near a treatment or stimulation site.
The electro-medical device can be used to treat a plurality of biological conditions and achieve a plurality of different therapeutic objectives: treatment of GERD (gastroesophageal reflux disease); treatment of diurnal GERD; treatment of nocturnal GERD; reducing the frequency of transient lower esophageal relaxation (tLESR) events; reducing acid exposure during tLESR events; normalizing a patient's LES (lower esophageal sphincter) function; treatment of hypotensive LES; increasing resting or baseline LES pressure; treating a patient to normalize esophageal pH; treating a patient to normalize esophageal pH when in the supine position; treating a patient to prevent damage to the patient's lower esophageal sphincter caused by acid reflux; treatment of supine position induced GERD; treatment of activity-induced GERD; prevention of supine position induced GERD; prevention of activity-induced GERD; treating a patient to mitigate damage to the patient's lower esophageal sphincter caused by acid reflux; treating a patient to stop progression of damage to the patient's lower esophageal sphincter caused by acid reflux; treating a patient to minimize transient relaxations of the patient's lower esophageal sphincter; modifying or increasing LES pressure; modifying or increasing esophageal body pressure; modifying or improving esophageal body function; modifying or improving esophageal sensation induced by the refluxate; modifying or improving the volume of refluxate; modifying or improving the clearance of the refluxate; reducing incidents of heartburn; modifying or improving esophageal acid exposure; increasing lower esophageal tone; detecting when a patient swallows; detecting when a patient is eating; treating a gastrointestinal condition of a patient; treating a patient to minimize the patient's consumption of certain solids or liquids; reducing patient symptoms associated with GERD wherein such reduction is measured by an improvement in a patient quality of life survey and wherein an improvement is calculated by having a patient provide a first set of responses to the quality of life survey prior to treatment and having a patient provide a second set of responses to the quality of life survey after the treatment and comparing the first set of responses to the second set of responses; treating a patient for any of the above-listed therapeutic objectives with the additional requirement of avoiding tissue habituation, tissue fatigue, tissue injury or damage, or certain adverse reactions, including, but not limited to, chest pain, difficulty in swallowing, pain associated with swallowing, heartburn, injury to surrounding tissue, or arrhythmias.
The electro-medical device may be implanted within a plurality of anatomical target sites or regions to achieve one or more of the therapeutic objectives described above. Treatment/target sites, or implantation sites, include: the lower esophageal sphincter; proximate the LES or in the vicinity of the LES, wherein proximate or in the vicinity of the LES is defined as +/−3 cm from the LES; the esophageal body; the upper esophageal sphincter (UES); within, proximate to, or in the vicinity of the gastro-esophageal junction; the esophagus, including esophageal body, LES, and UES; proximate the esophagus or in the vicinity of the esophagus, wherein proximate or in the vicinity of the esophagus is defined as +/−3 cm from the esophagus; at or within the stomach; in direct contact with or +/−3 cm from the gastric wall, including the anterior antrum, posterior antrum, anterior corpus, posterior corpus, lesser curvature, greater curvature, anterior fundus, and posterior fundus; in direct contact with or +/−3 cm from the nerves supplying the LES or gastro-esophageal junction; in direct contact with or +/−3 cm from the nerves supplying the esophageal body; in direct contact with or +/−3 cm from the nerves supplying the UES; or in direct contact with or +/−3 cm from the nerves supplying the esophagus, including the esophageal body, LES, and UES.
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
In one embodiment, the electro-medical device may be a conventional pulse generator, a miniature pulse generator, or a microstimulator.
In one embodiment, any electro-medical device, including a macrostimulator or microstimulator, can be programmed to achieve improved or enhanced operational life of the device while implementing a plurality of desired operational or therapy protocols. It should be appreciated that the relationship/association of operational or therapy protocol parameters with battery parameters, in accordance with an aspect of the present invention, are implemented in an electro-medical device, such as a macrostimulator or microstimulator, having a plurality of electrodes, or at least one electrode, including, but not limited to, unipolar or bipolar electrodes, an energy source, such as a battery, and a microprocessor which stores a plurality of programmatic instructions wherein the instructions, when executed by the device, execute the stimulation therapies while achieving optimized and/or improved operational life of the device.
It should be appreciated that the relationships/associations of operational or therapy protocol parameters with battery parameters described herein, for desired or improved operational life of the battery or electro-medical device, can be used with a plurality of different electro-medical devices, including those electrical stimulation devices disclosed in U.S. patent application Ser. Nos. 13/975,162, 13/661,483, 13/041,063, 13/041,114, 13/447,168, 12/359,317, and 13/463,803, U.S. Pat. Nos. 6,901,295, 6,591,137, 6,774,153, 6,826,428, 7,738,961, 8,447,403, 8,447,404, 8,538,534, and 8,160,709, and PCT Application Numbers PCT/US11/27243 and PCTUS13/56520, all of which are herein incorporated by reference.
The power source 115 can be either a direct current source or an alternating current source. The number of stimulator electrodes 105 is determined by a number of factors, including the size of the electrodes, their power and the size of the desired placement area.
In one embodiment, the pulse generator 110 is controlled by a microprocessor 120 for applying the electrical stimulus for periods of variable duration and variable power/frequency, so as to produce a plurality of treatment stimulations/therapies. In another embodiment, the device does not include a microprocessor.
Additionally or optionally sensing electrodes 125 may be electrically connected by wires 126 to the microprocessor 120. Alternatively, the sensing electrodes 125 may be in wireless communication with the microprocessor 120. The sensing electrodes 125 may be selected to sense one or more physiological parameters with reference to a plurality of anatomical target sites, regions or areas. For example, during a treatment regimen for obesity and/or GERD, while applying electrical stimulation to the upper esophageal sphincter (UES) the sensing electrodes 125 may be placed in the esophagus to sense physical parameters such as esophageal peristalsis, pH, pressure, temperature and impedance. Upon sensing appropriate changes in esophageal peristalsis, pH, pressure, temperature and/or impedance, the electrical stimulation in the upper esophageal sphincter may be initiated so as to contract the upper esophageal sphincter and impede passage of food from the oropharynx into the esophagus, thereby increasing the time of mastication, reducing the food intake and, preferably, increasing stimulation of the satiety centre. In one embodiment, the device 100 does not include sensing electrodes and comprises simply a stimulating arrangement.
The stimulator electrodes 105 may be placed by endoscopic, surgical or radiological procedures.
The stimulus may be triggered by a transmitter (not shown) external to a patient's body, similar to a remote transmitter for a cardiac pacemaker.
In one embodiment, the device 100 is designed as a ‘micro’ device with all the major components—the stimulator electrodes 105, the sensor electrodes 125, the microcontroller 120, the pulse generator 110 and the power source 115 integrated into a single unit, for easy deployment at any desired location in a patient's body. The microdevice contains an outer shell made of a biocompatible, hermetically sealed material such as glass, ceramic, metal, or polymers. For this purpose, any material may be selected that keeps moisture out yet allows radiofrequency/electromagnetic or magnetic energy to pass through. The outer shell may also be constructed of an acid corrosion resistant material such as a suitable inert polymer. Examples of such materials include: those from the polyolefin family such as HDPE (high density polyethylene), LLDPE (linear low density polyethylene), and UHMWPE (ultra high molecular weight polyethylene); fluoropolymer materials like PTFETM (poly tetrafluoroethylene), FEPTM (fluorinated ethylene propylene) and others; polymethylpentene, and polysulfones; and, some elastomers such as thermoplastic polyurethanes and C-Flex type block copolymers that are stable in acidic environments. Additionally, the outer shell may be constructed of an acid corrosion resistant metal such as platinum, gold, tantalum, titanium, or suitable alloys thereof.
The microdevice may be coated with an antimicrobial agent such as an antibiotic or antifungal agent to prevent infection at the time of implantation. Additionally, the microdevice may be coated with an immunosuppressent such as a steroid, cyclosporine, tacrolimus, azathioprine, mycophenolate mofetil, muromonab CD-3, or antithymocyte globulin to prevent rejection.
In one embodiment, the device 100 has a local energy source 115, such as a battery, that has one or more of the following characteristics: the energy source 115 is rechargeable and has a recharge frequency of once per day for 15 minutes, once per week for approximately 60 minutes, once per month, or once per year; comprises lithium ion battery technology; comprises solid state battery technology; comprises lithium polymer battery technology; comprises super capacitor technology; is not rechargeable; and, is not rechargeable and/or has an implant life of at least one year. In one embodiment, a power management unit is used to convert output voltage from the power supply 115 to the specified level of operating voltage of the microprocessor 120 (and its peripherals).
In one embodiment, the energy source 115 comprises an external power source coupled to the device 100 via a suitable means, such as RF link. In another embodiment, the energy source 115 comprises a self-contained power source utilizing any suitable means of generation or storage of energy. Examples of such a power source include a primary battery, a replenishable or rechargeable battery such as a lithium ion battery, an electrolytic capacitor, and a super- or ultra-capacitor, etc. In case the self-contained energy source is replenishable or rechargeable, any suitable means of replenishing or recharging the power source may be used, such as an RF link, an optical link, a thermal link, or any other energy-coupling link.
In accordance with an aspect of the present specification, the electro-medical device 100 provides enhanced/improved operational life benefits through optimized operational or therapy protocol parameters. To enable improved or desired operational life benefits of the device 100, the present specification associates the operational or therapy protocol parameters of the device 100 to a plurality of battery or power source parameters, such as battery service life, capacity, or current, in accordance with the following equations:
Where:
Where:
A therapy which requires a lower amount of energy increases service life of the battery 115 and therefore the long-term functionality of the electro-medical device 100. Accordingly, the microprocessor 120 can be programmed using the Equations A and B such that the device 100 produces electrical pulses of varying shape, duration and frequency so as to produce the desired stimulation or therapeutic effect while enabling optimization and/or improvement of the operational life of the device 100 (or the battery 115). In one embodiment, for example, using Equations A and B, the microprocessor 120 can be programmed to continuously provide a pulse train of 3 mA, 200 μsec pulses at a rate of 20 Hz (i.e. no duty cycle) with a minimum operational battery life of 5 years. Thus, as would be appreciated by persons of ordinary skill in the art, the operational battery life and therefore of the device can be varied and approximately set to a desired level by varying the operational or therapy protocol parameters.
The output of the device 100, as controlled by the microcontroller 120, can be programmed to vary a plurality of operational or therapy protocol parameters, such as: the number of pulses in a pulse train; the shape of pulses in a pulse train; the interval between pulse train repetitions; the duration of each pulse; the timing and amplitude of pulses in trains; the desired amount of amperage to be provided to an anatomical target site; and, the desired amount of potential to be provided to an anatomical target site, depending upon the load and the current produced.
In addition, the electrical stimulus can be provided continuously or intermittently. For example, one time or more per hour may be suitable in some circumstances.
In various embodiments, the electrical stimulus in the stimulator electrodes 105 may have any shape necessary to produce the desired result, including a square, rectangular, sinusoidal or saw-tooth shape.
In one embodiment, the device 100 can be allowed to engage in automated “on/off” duty cycles that can range, for example, from 1 millisecond to 24 hours. During the “on” period, stimulation is applied for a long enough period to enable recruitment of adequate nerves and/or muscle fibers to achieve a desired pressure, function or effect. The desired “on” period is patient specific and is preferably calculated based on the time required to change a pressure or function of an anatomical target site, such as the LES, from a baseline pressure or function to a desired therapeutic pressure or function plus additional time to maintain the therapeutic pressure (maintenance time) or function. For example, the maintenance time ranges from 1 second to 12 hours. The “off” period is preferably set in order to prevent development of tolerance or muscle fatigue, to improve device functionality, and to optimize energy consumption from the energy source/battery. The desired “off” period ranges, for example, from 1 second to 24 hours. The desired “off” period is patient specific and calculated based on the time required to change a pressure or function of an anatomical target site, such as the LES, from the desired therapeutic pressure or function to a baseline pressure or function plus optional additional time to maintain the baseline pressure (relaxation time) or function. For example, the relaxation time ranges from 1 second to 12 hours.
As an example, the operational or therapy protocol parameters, which are effectuated through an electrical pulse, may comprise any of the variable ranges detailed in the table 200 of
In one embodiment, a maximum power source capacity for the device is set (CAPBAT). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, LBAT, effUSE, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the maximum power source capacity value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum power source capacity for the device is set (CAPBAT). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, LBAT, effUSE, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum power source capacity value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum amount of current required to run the device and not including the stimulation current is set (ISOH). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, CAPBAT, LBAT, effUSE, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum amount of current required to run the device, and not including the stimulation current, value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum useable efficiency of power source is set (effUSE). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, CAPBAT, LBAT, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum useable efficiency of power source value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of current exiting the device from an output terminal is set (ITH). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, CAPBAT, LBAT, effUSE, IBAT, VTH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of current exiting the device from an output terminal value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of voltage at an output terminal of the device is set (VTH). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, CAPBAT, LBAT, effUSE, IBAT, ITH, VOH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of voltage at an output terminal of the device value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of an overhead output voltage is set (VOH). Additionally, a minority, and preferably only one, of the remaining parameters (effTM, ISOH, CAPBAT, LBAT, effUSE, IBAT, ITH, VTH, VBAT, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of an overhead output voltage value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of battery or power source voltage is set (VBAT). Additionally, a minority, and preferably only one, of the remaining parameters (effTM, ISOH, CAPBAT, LBAT, effUSE, IBAT, ITH, VTH, VOH, PRF, PW, DCTH, ISLP, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of battery or power source voltage value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of sleep current is set (ISLP). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, CAPBAT, LBAT, effUSE, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, and ITM) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of sleep current value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
In one embodiment, a desired, minimum, or maximum level of average telemetry current is set (ITM). Additionally, a minority, and preferably only one, of the remaining parameters (effTH, ISOH, CAPBAT, LBAT, effUSE, IBAT, ITH, VTH, VOH, VBAT, PRF, PW, DCTH, and ISLP) is subject to optimization or modification, with the remainder being a fixed value. Using the desired, minimum, or maximum level of average telemetry current value and the other fixed values, the minority, or preferably one, of the parameters subject to optimization of modification is then determined using Equations A and B.
The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
The present application relies on U.S. Patent Provisional No. 62/080,793, filed on Nov. 17, 2014, for priority and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3909883 | Fegen | Oct 1975 | A |
3910281 | Kletschka | Oct 1975 | A |
4393883 | Smyth | Jul 1983 | A |
4414986 | Dickhudt | Nov 1983 | A |
4612934 | Borkan | Sep 1986 | A |
4735205 | Chachques | Apr 1988 | A |
5117827 | Stuebe | Jun 1992 | A |
5188104 | Wernicke | Feb 1993 | A |
5193539 | Schulman | Mar 1993 | A |
5197491 | Anderson | Mar 1993 | A |
5231988 | Wernicke | Aug 1993 | A |
5263480 | Wernicke | Nov 1993 | A |
5292344 | Douglas | Mar 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5423872 | Cigaina | Jun 1995 | A |
5531778 | Maschino | Jul 1996 | A |
5540730 | Terry, Jr. | Jul 1996 | A |
5556425 | Hewson | Sep 1996 | A |
5606242 | Hull | Feb 1997 | A |
5633573 | van Phuoc | May 1997 | A |
5649902 | Yoon | Jul 1997 | A |
5674205 | Pasricha | Oct 1997 | A |
5690691 | Chen | Nov 1997 | A |
5697375 | Hickey | Dec 1997 | A |
5709224 | Behl | Jan 1998 | A |
5716385 | Mittal | Feb 1998 | A |
5716392 | Bourgeois | Feb 1998 | A |
5810810 | Tay | Sep 1998 | A |
5836994 | Bourgeois | Nov 1998 | A |
5861014 | Familoni | Jan 1999 | A |
5861044 | Crenshaw | Jan 1999 | A |
5882340 | Yoon | Mar 1999 | A |
5893883 | Torgerson | Apr 1999 | A |
5935126 | Riza | Aug 1999 | A |
5995872 | Bourgeois | Nov 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6026326 | Bardy | Feb 2000 | A |
6041258 | Cigaina | Mar 2000 | A |
6051017 | Loeb | Apr 2000 | A |
6091992 | Bourgeois | Jul 2000 | A |
6097984 | Douglas | Aug 2000 | A |
6216039 | Bourgeois | Apr 2001 | B1 |
6221039 | Durgin | Apr 2001 | B1 |
6243607 | Mintchev | Jun 2001 | B1 |
6254598 | Edwards | Jul 2001 | B1 |
6285897 | Kilcoyne | Sep 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6360130 | Duysens | Mar 2002 | B1 |
6381495 | Jenkins | Apr 2002 | B1 |
6449511 | Mintchev | Sep 2002 | B1 |
6510332 | Greenstein | Jan 2003 | B1 |
6542776 | Gordon | Apr 2003 | B1 |
6571127 | Ben-Haim | May 2003 | B1 |
6587719 | Barrett | Jul 2003 | B1 |
6591137 | Fischell | Jul 2003 | B1 |
6611715 | Boveja | Aug 2003 | B1 |
6612983 | Marchal | Sep 2003 | B1 |
6615084 | Cigaina | Sep 2003 | B1 |
6678561 | Forsell | Jan 2004 | B2 |
6684104 | Gordon | Jan 2004 | B2 |
6749607 | Edwards | Jun 2004 | B2 |
6754536 | Swoyer | Jun 2004 | B2 |
6760626 | Boveja | Jul 2004 | B1 |
6820019 | Kelly | Nov 2004 | B1 |
6826428 | Chen | Nov 2004 | B1 |
6832114 | Whitehurst | Dec 2004 | B1 |
6853862 | Marchal | Feb 2005 | B1 |
6876885 | Swoyer | Apr 2005 | B2 |
6879859 | Boveja | Apr 2005 | B1 |
6879861 | Benz | Apr 2005 | B2 |
6901295 | Sharma | May 2005 | B2 |
6915165 | Forsell | Jul 2005 | B2 |
6947792 | Ben-Haim | Sep 2005 | B2 |
6952613 | Swoyer | Oct 2005 | B2 |
7006871 | Darvish | Feb 2006 | B1 |
7016735 | Imran | Mar 2006 | B2 |
7054689 | Whitehurst | May 2006 | B1 |
7054690 | Imran | May 2006 | B2 |
7076305 | Imran | Jul 2006 | B2 |
7076306 | Marchal | Jul 2006 | B2 |
7087053 | Vanney | Aug 2006 | B2 |
7114502 | Schulman | Oct 2006 | B2 |
7120498 | Imran | Oct 2006 | B2 |
7146216 | Bumm | Dec 2006 | B2 |
7167750 | Knudson | Jan 2007 | B2 |
7177693 | Starkebaum | Feb 2007 | B2 |
7200443 | Faul | Apr 2007 | B2 |
7203551 | Houben | Apr 2007 | B2 |
7263405 | Boveja | Aug 2007 | B2 |
7299091 | Barrett | Nov 2007 | B2 |
7310557 | Maschino | Dec 2007 | B2 |
7340306 | Barrett | Mar 2008 | B2 |
7343201 | Mintchev | Mar 2008 | B2 |
7363084 | Kurokawa | Apr 2008 | B2 |
7444183 | Knudson | Oct 2008 | B2 |
7477994 | Sunshine | Jan 2009 | B2 |
7519431 | Goetz | Apr 2009 | B2 |
7519433 | Foley | Apr 2009 | B2 |
7558629 | Keimel | Jul 2009 | B2 |
7593777 | Gerber | Sep 2009 | B2 |
7599736 | DiLorenzo | Oct 2009 | B2 |
7620454 | Dinsmoor | Nov 2009 | B2 |
7664551 | Cigaina | Feb 2010 | B2 |
7676270 | Imran | Mar 2010 | B2 |
7702394 | Imran | Apr 2010 | B2 |
7702395 | Towe | Apr 2010 | B2 |
7711437 | Bornzin | May 2010 | B1 |
7720539 | Mintchev | May 2010 | B2 |
7729771 | Knudson | Jun 2010 | B2 |
7734355 | Cohen | Jun 2010 | B2 |
7738961 | Sharma | Jun 2010 | B2 |
7742818 | Dinsmoor | Jun 2010 | B2 |
7794425 | Gobel | Sep 2010 | B2 |
7809442 | Bolea | Oct 2010 | B2 |
7813809 | Strother | Oct 2010 | B2 |
7835796 | Maschino | Nov 2010 | B2 |
7848802 | Goetz | Dec 2010 | B2 |
7899540 | Maschino | Mar 2011 | B2 |
7914468 | Shalon | Mar 2011 | B2 |
7941221 | Foley | May 2011 | B2 |
7957807 | Starkebaum | Jun 2011 | B2 |
7962214 | Byerman | Jun 2011 | B2 |
7983755 | Starkebaum | Jul 2011 | B2 |
8135470 | Keimel | Mar 2012 | B2 |
8155758 | Roline | Apr 2012 | B2 |
8160709 | Soffer | Apr 2012 | B2 |
8185206 | Starkebaum | May 2012 | B2 |
8282561 | Towe | Oct 2012 | B2 |
8380321 | Goetz | Feb 2013 | B2 |
8406868 | Buschman | Mar 2013 | B2 |
8423134 | Buschman | Apr 2013 | B2 |
8447403 | Sharma | May 2013 | B2 |
8447404 | Sharma | May 2013 | B2 |
8452407 | Whitehurst | May 2013 | B2 |
8467874 | Chen | Jun 2013 | B2 |
8467884 | Chen | Jun 2013 | B2 |
8521292 | Wei | Aug 2013 | B2 |
8538532 | Starkebaum | Sep 2013 | B2 |
8538534 | Soffer | Sep 2013 | B2 |
8543210 | Sharma | Sep 2013 | B2 |
8556952 | Shadduck | Oct 2013 | B2 |
8594811 | Chen | Nov 2013 | B2 |
8712529 | Sharma | Apr 2014 | B2 |
8712530 | Sharma | Apr 2014 | B2 |
8718771 | Gandhi | May 2014 | B2 |
8761903 | Chen | Jun 2014 | B2 |
8792986 | Cigaina | Jul 2014 | B2 |
8831737 | Wesselink | Sep 2014 | B2 |
8892217 | Camps | Nov 2014 | B2 |
9020597 | Sharma | Apr 2015 | B2 |
9061147 | Sharma | Jun 2015 | B2 |
20010041831 | Starkweather | Nov 2001 | A1 |
20020103522 | Swoyer | Aug 2002 | A1 |
20020138075 | Edwards | Sep 2002 | A1 |
20020161414 | Flesler | Oct 2002 | A1 |
20020165589 | Imran | Nov 2002 | A1 |
20030014086 | Sharma | Jan 2003 | A1 |
20030028226 | Thompson | Feb 2003 | A1 |
20030055463 | Gordon | Mar 2003 | A1 |
20030078633 | Firlik | Apr 2003 | A1 |
20030120321 | Bumm | Jun 2003 | A1 |
20030144708 | Starkebaum | Jul 2003 | A1 |
20030195600 | Tronnes | Oct 2003 | A1 |
20040012088 | Fukasawa | Jan 2004 | A1 |
20040015201 | Greenstein | Jan 2004 | A1 |
20040024428 | Barrett | Feb 2004 | A1 |
20040039427 | Barrett | Feb 2004 | A1 |
20040044376 | Flesler | Mar 2004 | A1 |
20040059393 | Policker | Mar 2004 | A1 |
20040073453 | Nenov | Apr 2004 | A1 |
20040088033 | Smits | May 2004 | A1 |
20040116977 | Finch | Jun 2004 | A1 |
20040138586 | Ganz | Jul 2004 | A1 |
20040147976 | Gordon | Jul 2004 | A1 |
20040167583 | Knudson | Aug 2004 | A1 |
20040172088 | Knudson | Sep 2004 | A1 |
20040186544 | King | Sep 2004 | A1 |
20040193229 | Starkebaum | Sep 2004 | A1 |
20040243182 | Cohen | Dec 2004 | A1 |
20050027328 | Greenstein | Feb 2005 | A1 |
20050049655 | Boveja | Mar 2005 | A1 |
20050065571 | Imran | Mar 2005 | A1 |
20050070974 | Knudson | Mar 2005 | A1 |
20050075678 | Faul | Apr 2005 | A1 |
20050090873 | Imran | Apr 2005 | A1 |
20050131486 | Boveja | Jun 2005 | A1 |
20050137480 | Alt | Jun 2005 | A1 |
20050137643 | Mintchev | Jun 2005 | A1 |
20050137644 | Boveja | Jun 2005 | A1 |
20050143787 | Boveja | Jun 2005 | A1 |
20050149141 | Starkebaum | Jul 2005 | A1 |
20050149142 | Starkebaum | Jul 2005 | A1 |
20050149146 | Boveja | Jul 2005 | A1 |
20050222637 | Chen | Oct 2005 | A1 |
20050222638 | Foley | Oct 2005 | A1 |
20050245788 | Gerber | Nov 2005 | A1 |
20050251219 | Evans | Nov 2005 | A1 |
20060004304 | Parks | Jan 2006 | A1 |
20060015162 | Edward | Jan 2006 | A1 |
20060036293 | Whitehurst | Feb 2006 | A1 |
20060064037 | Shalon | Mar 2006 | A1 |
20060074459 | Flesler | Apr 2006 | A1 |
20060095077 | Tronnes | May 2006 | A1 |
20060106442 | Richardson | May 2006 | A1 |
20060116736 | DiLorenzo | Jun 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060200217 | Wessman | Sep 2006 | A1 |
20060206160 | Cigaina | Sep 2006 | A1 |
20060218011 | Walker | Sep 2006 | A1 |
20060247717 | Starkebaum | Nov 2006 | A1 |
20060247718 | Starkebaum | Nov 2006 | A1 |
20060247722 | Maschino | Nov 2006 | A1 |
20060265021 | Herbert | Nov 2006 | A1 |
20070016274 | Boveja | Jan 2007 | A1 |
20070049793 | Ignagni | Mar 2007 | A1 |
20070060955 | Strother | Mar 2007 | A1 |
20070060968 | Strother | Mar 2007 | A1 |
20070060979 | Strother | Mar 2007 | A1 |
20070066995 | Strother | Mar 2007 | A1 |
20070067000 | Strother | Mar 2007 | A1 |
20070100388 | Gerber | May 2007 | A1 |
20070106337 | Errico | May 2007 | A1 |
20070106338 | Errico | May 2007 | A1 |
20070114971 | Uesaka | May 2007 | A1 |
20070142699 | Jandrall | Jun 2007 | A1 |
20070142831 | Shadduck | Jun 2007 | A1 |
20070142884 | Jandrall | Jun 2007 | A1 |
20070156182 | Castel | Jul 2007 | A1 |
20070162084 | Chen | Jul 2007 | A1 |
20070162085 | DiLorenzo | Jul 2007 | A1 |
20070179542 | Prakash | Aug 2007 | A1 |
20070238942 | Baylor | Oct 2007 | A1 |
20070239248 | Hastings | Oct 2007 | A1 |
20070244375 | Jenkins | Oct 2007 | A1 |
20070255118 | Miesel | Nov 2007 | A1 |
20070255335 | Herbert | Nov 2007 | A1 |
20070255336 | Herbert | Nov 2007 | A1 |
20070255352 | Roline | Nov 2007 | A1 |
20070265662 | Ufford | Nov 2007 | A1 |
20070265666 | Roberts | Nov 2007 | A1 |
20070265668 | Reinke | Nov 2007 | A1 |
20070265671 | Roberts | Nov 2007 | A1 |
20070265674 | Olson | Nov 2007 | A1 |
20070282410 | Cross | Dec 2007 | A1 |
20070293910 | Strother | Dec 2007 | A1 |
20080021512 | Knudson | Jan 2008 | A1 |
20080039904 | Bulkes | Feb 2008 | A1 |
20080046062 | Camps | Feb 2008 | A1 |
20080058836 | Moll | Mar 2008 | A1 |
20080058891 | Ben-Haim | Mar 2008 | A1 |
20080086179 | Sharma | Apr 2008 | A1 |
20080132968 | Starkebaum | Jun 2008 | A1 |
20080147137 | Cohen | Jun 2008 | A1 |
20080154191 | Gobel | Jun 2008 | A1 |
20080183238 | Chen | Jul 2008 | A1 |
20080195171 | Sharma | Aug 2008 | A1 |
20080208355 | Stack | Aug 2008 | A1 |
20090012421 | Bek | Jan 2009 | A1 |
20090018617 | Skelton | Jan 2009 | A1 |
20090018619 | Skelton | Jan 2009 | A1 |
20090020406 | Nirmalakhandan | Jan 2009 | A1 |
20090030475 | Brynelsen | Jan 2009 | A1 |
20090069803 | Starkebaum | Mar 2009 | A1 |
20090076498 | Saadat | Mar 2009 | A1 |
20090088817 | Starkebaum | Apr 2009 | A1 |
20090131993 | Rousso | May 2009 | A1 |
20090132001 | Soffer | May 2009 | A1 |
20090187223 | Gross | Jul 2009 | A1 |
20090204063 | Policker | Aug 2009 | A1 |
20090264951 | Sharma | Oct 2009 | A1 |
20090281553 | Kalloo | Nov 2009 | A1 |
20100004648 | Edwards | Jan 2010 | A1 |
20100049026 | Gerber | Feb 2010 | A1 |
20100057085 | Holcomb | Mar 2010 | A1 |
20100069789 | Hirota | Mar 2010 | A1 |
20100076345 | Soffer | Mar 2010 | A1 |
20100170812 | Odierno | Jul 2010 | A1 |
20100198039 | Towe | Aug 2010 | A1 |
20100268495 | Armstrong | Oct 2010 | A1 |
20100324432 | Bjoerling | Dec 2010 | A1 |
20110004266 | Sharma | Jan 2011 | A1 |
20110046653 | Addington | Feb 2011 | A1 |
20110071589 | Starkebaum | Mar 2011 | A1 |
20110213437 | Armstrong | Sep 2011 | A9 |
20110224665 | Crosby | Sep 2011 | A1 |
20110295335 | Sharma | Dec 2011 | A1 |
20110295336 | Sharma | Dec 2011 | A1 |
20110307027 | Sharma | Dec 2011 | A1 |
20110307028 | Sharma | Dec 2011 | A1 |
20120232610 | Soffer | Sep 2012 | A1 |
20120259389 | Starkebaum | Oct 2012 | A1 |
20120265103 | Policker | Oct 2012 | A1 |
20120277619 | Starkebaum | Nov 2012 | A1 |
20130030503 | Yaniv | Jan 2013 | A1 |
20130035740 | Sharma | Feb 2013 | A1 |
20130072928 | Schaer | Mar 2013 | A1 |
20130090551 | Sharma | Apr 2013 | A1 |
20130178912 | Sharma | Jul 2013 | A1 |
20130218229 | Sharma | Aug 2013 | A1 |
20130231660 | Edwards | Sep 2013 | A1 |
20130238048 | Almendinger | Sep 2013 | A1 |
20140012348 | Starkebaum | Jan 2014 | A1 |
20140018657 | Sharma | Jan 2014 | A1 |
20140088664 | Sharma | Mar 2014 | A1 |
20140088666 | Goetz | Mar 2014 | A1 |
20140135886 | Cook | May 2014 | A1 |
20140222106 | Sharma | Aug 2014 | A1 |
20140228911 | Sharma | Aug 2014 | A1 |
20140243593 | Goode | Aug 2014 | A1 |
20150045786 | Edwards | Feb 2015 | A1 |
20150119952 | Sharma | Apr 2015 | A1 |
20160001071 | Sharma | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
1476339 | Feb 2004 | CN |
1494451 | May 2004 | CN |
102725021 | Oct 2012 | CN |
1004330 | May 2000 | EP |
9853878 | Dec 1998 | WO |
9903532 | Jan 1999 | WO |
9930776 | Jun 1999 | WO |
0061223 | Oct 2000 | WO |
0061223 | Oct 2000 | WO |
0061224 | Oct 2000 | WO |
0061224 | Oct 2000 | WO |
0243467 | Jun 2002 | WO |
0243467 | Jun 2002 | WO |
02089655 | Nov 2002 | WO |
2005051486 | Sep 2005 | WO |
2007137026 | Nov 2007 | WO |
2009009276 | Jan 2009 | WO |
2009114008 | Sep 2009 | WO |
2010027963 | Mar 2010 | WO |
2010135634 | Nov 2010 | WO |
2012151449 | Nov 2012 | WO |
2014032030 | Feb 2014 | WO |
2015034867 | Mar 2015 | WO |
2015077425 | May 2015 | WO |
2015077435 | May 2015 | WO |
Entry |
---|
Second Office Action for Chinese Patent Application No. 201280028867.7, dated Mar. 21, 2016. |
Shellock, Frank G. ‘RF Bion Microstimulator’ MRISafety.com, http://www.mrisafety.com/SafetyInfov.asp?SafetyInfoID=254, Shellock R & D Services, Inc. and Frank G. Shellock, Ph.D., 4 pages, 2014. |
Stein et al., ‘Three-dimensional Imaging of the Lower Esophageal Sphincter in Gastroesophageal Reflux Disease,’ Annual Meeting of the American Surgical Association, Apr. 11-13, 1991, 374-383. |
Summary of Neurostimulation Systems Features, Advanced Neuromodulation Systems (ANS) home page, accessed on May 31, 2007 at http://web.archive.org/web/20040211224857/www.ans-medical.com/patients/WhichSystemIsBest/SumOfNeurostimulation.html. |
Supplementary European Search Report for EP20120779639, Virender K. Sharma, Nov. 13, 2014. |
Tam, Wce et al. “Delivery of radiofrequency energy to the lower esophageal sphincter and gastric cardia inhibits transient oesophageal sphincter relaxations and gastro-oesophageal reflux in patients with reflux disease”. Gut, 52(4), 479-785 (2003). |
Xing et al, ‘Gastric Electrical Stimulation (GES) with Parameters for Morbid Obesity Elevates Lower Esophageal Sphincter (LES) Pressure in Conscious Dogs’; Obesity Surgery; 15; 2005; pp. 1321-1327. |
Xing et al, ‘Gastric Electrical Stimulation Significantly Increases Canine Lower Esophageal Sphincter Pressure’; Digestive Diseases and Sciences; vol. 50, No. 8 (Aug. 2005), pp. 1481-1487. |
Xing et al., ‘Gastric Electrical Stimulation Significantly Increases Canine Lower Esophageal Pressure’ Gastroenterology 122: May Issue, A579, 2003. Presented as a poster at Digestive Disease Week in Orlando, FL on Monday, May 19, 2003. |
Office Action dated Jun. 8, 2016 for U.S. Appl. No. 14/475,736. |
Office Action dated Mar. 15, 2016 for U.S. Appl. No. 14/695,267. |
Office Action dated Mar. 17, 2016 for U.S. Appl. No. 14/500,856. |
Office Action dated May 20, 2016 for U.S. Appl. No. 13/975,162. |
Office Action dated May 4, 2016 for U.S. Appl. No. 14/548,793. |
Notice of Allowance dated Jul. 19, 2016 for U.S. Appl. No. 14/191,085. |
Supplementary European Search Report for EP13831668, completed on Apr. 15, 2016. |
Office Action dated Aug. 24, 2016 for U.S. Appl. No. 14/753,402. |
Notice of Allowance mailed Sep. 27, 2016 for U.S. Appl. No. 14/500,856. |
Office Action dated Oct. 3, 2016 for U.S. Appl. No. 14/548,793. |
Second Office Action for Chines Patent Application No. 201380054290.1, Oct. 26, 2016. |
Extended European Search Report for EPO Application No. 16174071.7, Oct. 19, 2016. |
International Search Report for PCT/US2015/061108, May 26, 2016. |
Christensen et al., ‘Physiologic Specialization at Esophagogastric Junction in Three Species’, American Journal of Physiology, vol. 225, No. 6, Dec. 1973, 1265-1270. |
Cigaina, Valerio; Long-term Follow-Up of Gastric Stimulation for Obesity: The Mestre 8-Year Experience; Obesity Surgery; 14; 2004; S14-22. |
Clarke et al,. ‘An Endoscopic Implantable Device Stimulates the LES On-Demand by Remote Control in a Canine Model’, Gastrointestinal Endoscopy, vol. 63, No. 5; 2006, AB103, 759. |
Clarke et al., ‘An endoscopically implantable device stimulates the lower esophageal sphincter on demand by remote control: a study using a canine model’, Endoscopy 2007; 39: 72-76. |
Ellis, et al., ‘The Prevention of Experimentally Induced Reflux by Electrical Stimulation of the Distal Esophagus’, American Journal of Surgery, vol. 115, Apr. 1968, 482-487. |
EPO Search Report EP09704463, Jan. 10, 2011, Virender K. Sharma. |
European Search Opinion for EP20120779639, Virender K. Sharma, Nov. 25, 2014. |
Examination Report for Australian Patent Application No. 2012242533, Oct. 5, 2015. |
Examination Report for Australian Patent Application No. 2012250686, Nov. 4, 2015. |
Examination Report for New Zealand Patent Application No. 616944, Jun. 17, 2014. |
Examination Report for New Zealand Patent Application No. 616944, Nov. 2, 2015. |
Extended European Search Report for EPO Application No. 12771852.6, Aug. 28, 2014. |
First Office Action for Application No. CN 01819456, dated Nov. 18, 2014. |
First Office Action for Chinese Patent Application No. 201380054290.1, Apr. 1, 2016. |
Gonzalez et al., ‘Different Responsiveness of Excitatory and Inhibitory Enteric Motor Neurons in the Human Esophagus to Electrical Field Stimulation and to Nicotine’ , Am J Physiol Gastrointest Liver Physiol, 287:G299-G306, 2004. |
International Search Report for PCT/US12/053576, Dec. 24, 2012. |
International Search Report for PCT/US2007/068907, Aug. 7, 2008. |
International Search Report for PCT/US2008/053780, Jun. 8, 2009. |
International Search Report for PCT/US2008/056479, Aug. 20, 2008. |
International Search Report for PCT/US2011/027243, Jul. 8, 2011. |
International Search Report for PCT/US2012/033695, Aug. 7, 2012. |
International Search Report for PCT/US2012/036408, Aug. 17, 2012. |
International Search Report for PCT/US2013/056520, Apr. 4, 2014. |
International Search Report for PCT/US2014/053793, Mar. 27, 2015. |
International Search Report for PCT/US2014/066565, Mar. 12, 2015. |
International Search Report for PCT/US2014/066578, Mar. 19, 2015. |
Jameison, GG et al. “Laparoscopic Nissen Fundoplication”. Annals of Surgery, vol. 220. No. 2, p. 139 (1994). |
Kahrilas et al., ‘Impact of Fundoplication on Bolus Transit Across Esophagogastric Junction’, American Physiological Society, 1998, 1386-1393. |
Kamath et al., ‘Neurocardiac and Cerebral Responses Evoked by Esophageal Vago-Afferent Stimulation in Humans: Effects of Varying Intensities’, Cardiovascular Research, 40 (1998) 591-599. |
Kantsevoy et al., ‘An Endoscopically Implantable On-Demand Stimulator Is Successful in Increasing Lower Esophageal Sphincter Pressure in a Porcine Model’, Gastrointestinal Endoscopy, vol. 61, No. 5: 2005, AB79, 222. |
Lund et al., ‘Electrical Stimulation of Esophageal Smooth Muscle and Effects of Antagonists’, American Journal of Physiology, vol. 217, No. 5, Nov. 1969, 1369-1374. |
Notice of Allowance dated Apr. 3, 2014 for U.S. Appl. No. 13/447,168. |
Notice of Allowance dated Dec. 24, 2014 for U.S. Appl. No. 13/463,803. |
Notice of Allowance dated Feb. 20, 2015 for U.S. Appl. No. 14/201,645. |
Notice of Allowance dated Jan. 20, 2015 for U.S. Appl. No. 13/602,184. |
Notice of Allowance dated Jan. 20, 2016 for U.S. Appl. No. 14/201,766. |
Notice of Allowance dated Jul. 21, 2014 for U.S. Appl. No. 13/447,168. |
Notice of Allowance dated Mar. 17, 2014 for U.S. Appl. No. 13/447,168. |
Office Action dated Apr. 11, 2014 for U.S. Appl. No. 13/602,184. |
Office Action dated Feb. 1, 2016 for U.S. Appl. No. 14/475,736. |
Office Action dated Feb. 20, 2015 for U.S. Appl. No. 14/175,927. |
Office Action dated Jul. 8, 2014 for U.S. Appl. No. 13/463,803. |
Office Action dated Jun. 19, 2015 for U.S. Appl. No. 13/975,162. |
Office Action dated Jun. 25, 2015 for U.S. Appl. No. 14/201,766. |
Office Action dated Mar. 10, 2016 for U.S. Appl. No. 14/191,085. |
Office Action dated Oct. 2, 2015 for U.S. Appl. No. 14/500,856. |
Office Action dated Oct. 7, 2015 for U.S. Appl. No. 13/975,162. |
Office Action for Chinese Patent Application No. 201280028867.7, May 4, 2015. |
Sallam et al, ‘Feasibility of gastric electrical stimulation by percutaneous endoscopic transgastric electrodes’, Gastrointestinal Endoscopy; vol. 68, No. 4; 2008, 754-759. |
Sanmiguel et al, ‘Effect of electrical stimulation of the LES on LES pressure in a canine model’, Am J Physiol Gastrointest Live Physiol; 295: 389-394; 2008. |
Number | Date | Country | |
---|---|---|---|
20160136419 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62080793 | Nov 2014 | US |