Drug and cell delivery in both immune competent and immune incompetent organisms is a problem in medical research and practice today. Recent studies use polymeric devices and hydrogels as a delivery vehicle. Some examples include polytetrafluoroethylene (e.g., expanded PTFE) with a backing of unwoven polyester mesh, silicone, hydrogels, alginate, cellulose sulfate, collagen, gelatin, agarose, chitosan and the like. Current delivery vehicles and devices are challenged by biofouling, biocompatibility issues, and a lengthy diffusion time of substances out of the vehicle. The thickness of current state devices can limit efficacy, due in part to limited diffusion of nutrients into the devices and/or impeded transfer of substances into and out of the device. Low permeability, at least in part, due to thickness and mechanical stability in view of physical stress and osmotic stress can also be problematic. Moreover, replicating the cellular walls, selective channels, and the semi-permeance that biological membranes provide has long proven to be a challenge for synthetic membranes or semi-permeable walls, especially when integrating those membranes in vitro or in vivo. In addition, current membranes insufficiently achieve immunoisolation, especially in the context of xenographic, allogenic, and autogenic transplants.
In view of the foregoing, improved techniques for transportation, delivery, separation, and forming selective barriers of substances under a variety of conditions, including in a biological environment, would be of considerable benefit in the art.
Some embodiments comprise enclosures comprising a compartment and a wall separating the compartment from an environment external to the compartment, wherein the wall comprises: a perforated graphene-based material layer and a substrate layer, and wherein the enclosure is not cytotoxic when implanted into a subject. In some embodiments, the substrate layer is affixed directly to perforated graphene-based material. In some embodiments, the substrate layer is affixed indirectly to the perforated graphene-based material. In some embodiments, the substrate layer comprises track-etched polyimide. In some embodiments, the substrate layer comprises a fibrous layer comprising a plurality of polymer filaments. In some embodiments, the compartment is in fluid communication with the external environment. In some embodiments, at least a portion of the wall is from about 5 nm to about 1 μm thick. Some embodiments further comprise at least one substance encapsulated within the compartment. Some embodiments comprise two or more substances are encapsulated within the compartment. In some embodiments, the substance comprises one or more cells, and the perforated graphene has pores with a size sufficient to retain the cell within the compartment and to exclude immune cells and immune complexes in the environment external to the compartment from entering the compartment. In some embodiments, the cells are yeast or bacterial cells. In some embodiments, the cells are mammalian cells.
In some embodiments, the compartment does not contain sub-compartments. In some embodiments, the compartment comprises two or more sub-compartments. In some embodiments, one or more sub-compartments are separated from an environment external to the sub-compartment. In some embodiments, the one or more sub-compartments are separated from the environment external to the sub-compartment by a wall comprising a perforated graphene-based material.
Some embodiments comprise perforated graphene comprising pores with a size sufficient to allow a pharmaceutical to pass between the compartment and the external environment. In some embodiments, the perforated graphene-based material has pores with a size of from about 1 nm to about 10 nm. Pore sizes in a wall of one sub-compartment can be the same as or different from pore sizes in a wall of a different sub-compartment. In some embodiments, the graphene-based material is graphene. Pore sizes in the perforated graphene can be tailored to selectively exclude various substances based, e.g., on size. See, for instance
Some embodiments comprise a substrate layer positioned on a compartment-facing side of the wall, on an exterior surface of the wall, or on both the compartment-facing side and exterior surface of the wall. In some embodiments, the substrate layer is disposed on the compartment-facing side of the graphene-based material, the external side of the graphene-based material, or both. In some embodiments, the substrate layer has a thickness of about 1 mm or less.
In some embodiments, the substrate layer comprises a plurality of pores. In some embodiments, the substrate layer has a porosity gradient throughout its thickness. In some embodiments, the substrate layer is hydrophobic or hydrophilic. In some embodiments, the fibrous substrate comprises a material selected from the group consisting of polysulfones, polyurethane, polymethylmethacrylate (PMMA), polyglycolid acid (PGA), polylactic acid (PLA), polyethylene glycol (PEG), polylactic-co-glycolic acid (PLGA), polyamides, polyimides, polypropylene, polyethersulfones (PES), polyvinylidine fluoride (PVDF), cellulose acetate, polyethylene, polypropylene, polycarbonate, polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polyether ether ketone (PEEK), block co-polymers of any of these, and combinations and/or mixtures thereof.
In some embodiments, the substrate layer comprises an additive selected from the group consisting of pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, antigens or an antibody-binding fragment thereof, minerals, nutrients, and combinations thereof.
In some embodiments, the enclosures comprise an intermediate layer positioned between the perforated graphene-based material layer and the substrate layer.
Some embodiments comprise methods of releasing a substance comprising exposing an enclosure comprising a wall with a perforated graphene-based material layer and a substrate layer to an environment, to thereby release into the environment at least one substance from a compartment in the enclosure, wherein the enclosure is not cytotoxic to the environment. In some embodiments, the environment is a biological environment. In some embodiments, the substance is a pharmaceutical. In some embodiments, the compartment contains cells which are not released from the enclosure. In some embodiments, the cells produce the substance released from the enclosure.
Some embodiments comprise exposing an enclosure comprising a perforated graphene-based material to an environment, to thereby release at least one first substance into the environment and to allow passage of a second substance from the environment into the enclosure, wherein the perforated graphene based material is not cytotoxic to the environment. In some embodiments, the first substance is cells and the second substance is a nutrient or oxygen. In some embodiments, a substance that enters the enclosure can return to the environment.
Some embodiments comprise a composite structure comprising: perforated graphene-based material and a substrate layer comprising a plurality of polymer filaments affixed directly or indirectly to at least one surface of the perforated graphene-based material, wherein the composite structure is substantially planar, and wherein the composite structure is not cytotoxic when implanted into a subject. In some embodiments, the composite structure further comprises a second substrate layer affixed directly or indirectly to a surface of the perforated graphene-based material opposite the first substrate layer. In some embodiments, the first and/or second substrate layer comprises an additive selected from the group consisting of pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, antigens or an antibody-binding fragment thereof, minerals, nutrients and combinations thereof. In some embodiments, the composite structure is flexible.
Some embodiments comprise enclosures comprising a compartment and a wall separating the compartment from an environment external to the compartment, wherein the wall comprises: a perforated graphene-based material layer and a means for enhancing integration of the enclosure into tissue and/or vascularization to the enclosure, wherein the enclosure is not cytotoxic when implanted into a subject.
Some embodiments comprise methods of preparing an enclosure comprising a compartment and a wall separating the compartment from an environment external to the compartment, wherein the wall comprises: a perforated graphene-based material layer and a substrate layer comprising a plurality of polymer filaments.
Some embodiments comprise methods of improving biocompatibility of an enclosure comprising a perforated graphene-based material, wherein the method comprising affixing a substrate layer comprising a plurality of polymer filaments to the outside of the enclosure.
Some embodiments comprise methods of preparing an enclosure that is not cytotoxic when implanted into a subject, wherein the enclosure comprises a compartment and a wall separating the compartment from an environment external to the compartment, wherein the wall comprises a perforated graphene-based material layer. Some embodiments comprise methods of preparing an enclosure that is not cytotoxic when implanted into a subject, wherein the enclosure comprises a compartment and a wall separating the compartment from an environment external to the compartment, wherein the wall comprises a perforated graphene-based material layer and a substrate layer. In some embodiments, the substrate layer comprises track-etched polyimide. In some embodiments, the substrate layer comprises a fibrous layer comprising a plurality of polymer filaments.
Some embodiments comprise methods of improving biocompatibility of an enclosure comprising a perforated graphene-based material, wherein the method comprising affixing a substrate layer to the outside of the enclosure, wherein the enclosure is not cytotoxic when implanted into a subject.
Some embodiments comprise methods of treating diabetes comprising implanting into a subject an enclosure comprising a perforated graphene-based material layer and a substrate layer comprising a plurality of polymer filaments, wherein the enclosure is not cytotoxic to the subject.
Some embodiments comprise methods of reducing cytotoxicity of a device comprising encapsulating the device with a composite structure comprising (a) a perforated graphene-based material layer and (b) a fibrous layer comprising a plurality of polymer filaments affixed directly or indirectly to at least one surface of the perforated graphene-based material, wherein the device has a reduced cytotoxicity as compared to a comparable device not encapsulated by the composite structure.
Some embodiments comprise coated therapeutic devices comprising: (i) a therapeutic device and (ii) a coating on the therapeutic device, wherein the coating comprises a composite structure comprising (a) a perforated graphene-based material layer and (b) a fibrous layer comprising a plurality of polymer filaments affixed directly or indirectly to at least one surface of the perforated graphene-based material. In some embodiments, the coated therapeutic device of has a lower toxicity than a comparable therapeutic device that is not coated with the composite structure.
Some embodiments comprise coated therapeutic devices comprising: (a) a therapeutic device and (b) a coating on the therapeutic device, wherein the coating comprises a perforated graphene-based material layer. In some embodiments, the coated therapeutic device has a lower toxicity than a comparable therapeutic device that is not coated with the composite structure.
Some embodiments include biologically relevant devices that provide a suitable substrate to enable deposition, lamination or transfer of a semi-permeable material to promote an integrated vasculature for sustained growth and survival of cells inside a semipermeable enclosure. In some embodiments, a semi-permeable 2D material (e.g. perforated graphene) is affixed to one or more fibrous layers. This composite structure provides for tissue integration or ingrowth, enhances transport or passage, and/or minimizes the impact on the passage of semi-permeance to metabolites, immune factors, cells and the like. The proximity of the vasculature and the encapsulated substance allows for the facile passage of permeable metabolites between the blood and the contents of the enclosure.
Enclosures formed from perforated graphene or other perforated two-dimensional materials are disclosed in U.S. application Ser. No. 14/656,190, which is hereby incorporated by reference in its entirety. The enclosures can house various substances therein allowing movement of selected substances to and from the interior of the enclosure, retaining other selected substances therein and preventing entry of yet other selected substances into the enclosure. The enclosure can be employed to release one or more selected substances into an environment external to the enclosure, to allow entry into the enclosure of one or more selected substances from an environment external to the enclosure, to inhibit and preferably prevent entry of one or more selected substances from the external environment into the enclosure, to retain (inhibit or preferably prevent exit of) one or more selected substances within the enclosure or a combination of these applications. The hole or aperture size or range of sizes in a perforated material of the enclosure can be selected based on the specific application of the enclosure. The term enclosure refers to a space for receiving one or more substances, where the enclosure is formed, at least in part, by a perforated two-dimensional material, such as a graphene-based material, where, in some embodiments, one or more substances in the enclosure can exit the enclosure by passage through the perforated two-dimensional material. Similarly, in some embodiments, one or more substances from the external environment can enter the enclosure by passage through the perforated two-dimensional material. In some embodiments the external environment is a biological environment, which may be an in vivo biological environment or an in vitro biological environment. In some embodiments, the size and/or properties of perforations for each sub-compartment can be the same as and or different from the size and/or properties of perforations in a different sub-compartment.
In some embodiments, an enclosure comprises one or more than one sub-compartments each sub-compartment comprising perforated two-dimensional material such that at least a portion of the walls or sides forming the sub-compartment are perforated two-dimensional material. Fluid communication is achieved by selective passage of one or more substances in and/or out of the enclosure or sub-compartment. Thus, compartments and sub-compartments separated from an external environment can be in fluid communication with the external environment. The fluid can be liquid or gas and includes fluids having entrained gases. Substances can be dissolved or suspended or otherwise carried in a fluid. The fluid can be aqueous. A sub-compartment can be in direct fluid communication with adjacent sub-compartments and/or the external environment (where adjacent sub-compartments share at least one wall or side). In some embodiments one or more sub-compartments can be in direct fluid communication with adjacent sub-compartments, but not in direct fluid communication with the external environment. At least one sub-compartment in an enclosure is in direct fluid communication with an external environment. An enclosure can have various configurations of sub-compartments. A sub-compartment can have any shape. A sub-compartment may, for example, be spherical, cylindrical or rectilinear. In some embodiments, sub-compartments can be nested. In some embodiments, the enclosure can have a central sub-compartment which shares a wall or side with a plurality of surrounding sub-compartments. In some embodiments, sub-compartments can be linearly aligned within the enclosure. In some embodiments, an enclosure contains two sub-compartments. In some embodiments, an enclosure contains three, four, five or six sub-compartments. In some embodiments, a sub-compartment can be fully contained within another sub-compartment, wherein the inner sub-compartment is in direct fluid communication with the outer sub-compartment and the outer-sub-compartment is in direct fluid communication with the external environment. In this embodiment, the inner sub-compartment is in indirect rather than direct fluid communication with the external environment. In some embodiments where an enclosure contains a plurality of sub-compartments or is divided into a plurality of sub-compartments, at least one sub-compartment is in direct fluid communication with the external environment and remaining sub-compartments are in direct fluid communication with adjacent sub-compartments, but may not all be in direct fluid communication with the external environment. In some embodiments where an enclosure contains a plurality of sub-compartments, all sub-compartments can be in direct fluid communication with the external environment.
An enclosure encapsulates at least one substance. In some embodiments, an enclosure can contain two or more different substances. Different substances can be in the same or in different sub-compartments. In some embodiments, not all of the different substances in the enclosure are released to an environment external to the enclosure. In some embodiments, all of the different substances in the enclosure are released to an external environment. In some embodiments, the rate of release of different substances from the enclosure into an external environment is the same. In some embodiments, the rates of release of different substances from the enclosure into an external environment are different. In some embodiments, the relative amounts of different substances released from the enclosure can be the same or different. The rate of release of substances from the enclosure can be controlled by choice of hole size, hole geometry, hole functionalization or combinations of these.
Methods for transporting and delivering substances in a biological environment are also described herein. In some embodiments, the methods can include introducing an enclosure formed from graphene or other two-dimensional material into a biological environment, and releasing at least a portion of a substance in the enclosure to the biological environment. In some embodiments, methods can include introducing an enclosure formed from graphene or other two-dimensional material into a biological environment, and allowing migration of a substance from the biological environment into the enclosure.
In some embodiments, an enclosure comprises perforated two-dimensional material forming at least one wall of the enclosure, wherein the enclosure is separated from an environment external to the enclosure, and a substrate layer disposed on the two-dimensional material. In some embodiments, the enclosure comprises two or more sub-compartments. In some embodiments, an enclosure or sub-compartment is “substantially sealed” from an environment external to the enclosure or sub-compartment when passage of substances into or out of the enclosure or sub-compartment occurs almost exclusively (i.e., at least 95%) through defects, holes or apertures in the plane of a perforated two-dimensional material. In particular, edges of the perforated two-dimensional material are “substantially sealed” when passage of substances into or out of the enclosure or sub-compartment occurs almost exclusively (i.e., at least 95%) through defects, holes or apertures in the plane of a perforated two-dimensional material. Degree of sealing can be calculated, for instance, based on an integrity test using a control enclosure produced with or without perforations.
At least one substance can be encapsulated within the enclosure, such that the at least one substance is released to an environment external to the enclosure by passage through holes in the perforated two-dimensional material. In some embodiments, at least once substance within the enclosure (e.g., cells) produces a second substance (e.g., insulin) that can be released to an environment external to the enclosure by passage through holes in the perforated two-dimensional material. In some embodiments, two or more different substances are encapsulated within the enclosure. In some embodiments, the substance within the enclosure that is released to an environment external to the enclosure through holes in the two-dimensional material can be a pharmaceutical. In some embodiments, the substance within the enclosure is cells and the size of the holes in the two-dimensional material is selected to retain the cells within the enclosure and to possibly exclude immune cells and immune complexes from entering the enclosure from the environment external to the enclosure. In some embodiments, the substance within the enclosure is cells and the size of the holes in the two-dimensional material is selected to retain the cells within the enclosure while immune cells and immune complexes from the environment external to the enclosure can enter the enclosure. For example, the cells can be stem cells, yeast cells, bacterial cells, or mammalian cells.
In some embodiments, the size of the holes in the two-dimensional material ranges from 1-50 nm, 1-40 nm, 1-30 nm, 1-25 nm, 1-17 nm, 1-15 nm, 1-12 nm, 1-10 nm, 3-50 nm, 3-30 nm, 3-20 nm, 3-10 nm, or 3-5 nm. In some embodiments, the size of the holes is about 1 nm, about 3 nm about 5 nm, about 10 nm, about 15 nm, about 20 nm, about 30 nm, or about 50 nm. In some embodiments, the two-dimensional material is graphene or a graphene-based material.
In some embodiments, the polymer filaments are disposed on an inside of the enclosure, an outside of the enclosure or both an inside and an outside of the enclosure. In some embodiments, the substrate layer has a thickness of 1 mm or less, about 100 μm or less, about 10 μm or less, about 1 μm or less, or about 10 nm or less. In some embodiments, the substrate layer has a thickness of about 1 nm to about 100 nm, about 2 nm to about 5 nm, about 5 nm to about 10 nm, or about 20 nm to about 50 nm. In some embodiments, polymer filaments are applied to the two-dimensional material by a wet electrospinning process or a dry electrospinning process, where the fibers dry before hitting the two-dimensional material, such that a plurality of pores is introduced in the fibrous layer as the fibrous layer is deposited. The fibrous layer may or may not have a porosity gradient throughout its thickness. In some embodiments, the substrate layer comprises a material selected from the group consisting of polysulfones, polyurethane, polymethylmethacrylate (PMMA), polyglycolid acid (PGA), polylactic acid (PLA), polyethylene glycol (PEG), polylactic-co-glycolic acid (PLGA), polyamides (such as nylon-6,6, supramid and nylamid), polyimides, polypropylene, polyethersulfones (PES), polyvinylidine fluoride (PVDF), cellulose acetate, polyethylene, polypropylene, polycarbonate, polytetrafluoroethylene (PTFE) (such as Teflon), polyvinylchloride (PVC), polyether ether ketone (PEEK) and mixtures and block co-polymers thereof. In some embodiments, the materials used to make the substrate layer are hydrophobic and/or hydrophilic. In some embodiments, materials used to make the substrate layer are highly pure, contain no solvents, and/or are of a medical grade.
In some embodiments, the substrate layer comprises an additive selected from the group consisting of pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, antigens or an antibody-binding fragment thereof, minerals, nutrients and combinations thereof. In some embodiments, the additive can have a concentration gradient within the substrate layer (e.g., along a Z-direction, where the two-dimensional material defines the X-Y plane). For example, a concentration of the additive can be greater or lesser proximal to the two-dimensional material than distal to the two-dimensional material. Such a gradient can be achieved, for example, by altering a concentration of one or more additive compounds during an electrospinning process. In some embodiments, the gradient can be achieved by soaking the substrate layer in a bath, e.g., where the fluid only rises to a certain level of the substrate (i.e., it does not cover the entire substrate).
In some embodiments, the enclosure further comprises an intermediate layer disposed between the two-dimensional material layer and the substrate layer.
Some embodiments comprise a method comprising: introducing an enclosure comprising perforated two-dimensional material and a fibrous layer comprising a plurality of polymer filaments disposed on the two-dimensional material to an environment, the enclosure containing at least one substance; and releasing at least a portion of the at least one substance through the holes of the two-dimensional material to the environment external to the enclosure. In some embodiments, the environment is a biological environment. In some embodiments, the at least one substance, a portion of which is released, is a drug. In some embodiments, the enclosure contains cells which are not released from the enclosure and the at least one substance, a portion of which is released, is a substance generated by the cells in the enclosure. Any enclosure herein can be employed in this method.
In some embodiments, the method comprises: introducing an enclosure comprising perforated two-dimensional material to a environment, the enclosure containing at least one first substance; and allowing migration of a second substance from the environment into the enclosure. Any enclosure herein can be employed in this method.
In some embodiments, the first substance is cells and the second substance is a nutrient or oxygen.
In some embodiments, upon reaction or complexation of the first substance within the enclosure with the second substance that enters the enclosure, the second substance is substantially trapped inside the enclosure and inhibited from returning to the environment external to the enclosure. For example, a chemical complex of the first and second substance can be larger than the average pore size of the two-dimensional material such that less than 10%, less than 5%, less than 2% or less than 1% of the second substance returns to the environment external to the enclosure.
In some embodiments, the method comprises: introducing an enclosure comprising perforated two-dimensional material to an environment, the enclosure containing at least one substance; and releasing at least a portion of the at least one substance through the holes of the two-dimensional material to the environment external to the enclosure. Any enclosure herein can be employed in this method.
In some embodiments, the method comprises: introducing an enclosure comprising perforated two-dimensional material to an environment, the enclosure containing at least one first substance; and allowing migration of a second substance from the environment into the enclosure. In some embodiments, the first substance is cells, the second substance is nutrients and another second substance is oxygen. Any enclosure herein can be employed in this method.
In some embodiments, a composite structure comprises perforated two-dimensional material; and a first fibrous layer comprising a plurality of polymer filaments affixed to a surface of the two-dimensional material; wherein the composite structure is substantially planar. In some embodiments, the perforated two-dimensional material has a second fibrous layer affixed to a surface of the two-dimensional material opposite the first fibrous layer. In some embodiments, the first and/or second fibrous layer comprises an additive selected from the group consisting of pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, minerals, nutrients and combinations thereof. In some embodiments, the substantially planar composite structure is flexible.
Some embodiments relate to the selective passage of substances through an enclosure that encourages nearby vascularization (i.e., angiogenesis) and/or tissue ingrowth in a biological environment. Some embodiments include methods and devices for selectively separating or isolating substances in a biological environment, e.g., using a composite structure that comprises a two-dimensional material. Some embodiments include an enclosure comprising a compartment and a wall separating the compartment from an environment external to the compartment. In some embodiments, the wall comprises a two-dimensional material layer and a substrate layer. Two-dimensional materials, such as graphene-based materials, are discussed below.
Enclosures can be in any shape. Thus, the cross-section of an enclosure can be, for example, circular, ovular, rectangular, square, or irregular-shaped. The size of the enclosure also is not limited, and can be small enough to circulate in the bloodstream (e.g., on the order of nanometers or larger) or large enough for implantation (e.g. on the order of inches or smaller). In some embodiments, the enclosure is from 100 nm to 6 inches long in its longest dimension, such as from about 100 nm to about 500 nm, about 500 nm to about 1 μm, about 1 μm to about 500 μm, about 500 μm to about 1 mm, about 1 mm to about 500 mm, about 500 mm to about 1 cm, about 1 cm to about 10 cm, or about 1 cm to about 6 inches long. In some embodiments, the enclosure is longer than 6 inches in its longest dimension, such as about 10 inches or about 15 inches long.
The thickness of the wall depends, in part, on the two-dimensional material layer and/or substrate layers used in the wall. Thus, in some embodiments a wall, or a portion thereof, comprising both a two-dimensional material layer and a substrate layer is at least 5 nm thick, such as from about 5 nm to about 1 μm thick, from about 5 nm to about 250 nm thick, from about 5 to about 50 nm thick, from about 5 to about 20 nm thick, or from about 20 to about 50 nm thick. In some embodiments, the thickness of the wall is about 5 nm, about 6 nm, about 7 nm, about 8 nm, about 9 nm, about 10 nm, about 11 nm, about 12 nm, about 13 nm, about 14 nm, about 15 nm, about 16 nm, about 17 nm, about 18 nm, about 19 nm, about 20 nm thick, about 25 nm thick, about 30 nm thick, about 35 nm thick, about 40 nm thick, about 45 nm thick, about 50 nm thick, about 100 nm thick, about 150 nm thick, about 200 nm thick, about 250 nm thick, about 300 nm thick, about 400 nm thick, about 500 nm thick, about 600 nm thick, about 700 nm thick, about 800, nm thick, about 900 nm thick, or about 1 μm thick. In some embodiments, the thickness of the wall is up to about 1 μm thick or up to about 1 mm thick. In some embodiments, the thickness of the wall is tailored to allow bidirectional passage of oxygen and nutrients into and out of the enclosure. In some embodiments, the thickness of the wall is tailored to allow entry of oxygen and nutrients into the enclosure at sufficient concentrations to maintain viability of cells within the enclosure.
In some embodiments, the substrate layer has a thickness of about 1 mm or less, about 1 μm or less, or about 100 nm or less. In some embodiments, a thickness of the substrate layer can range from about 100 nm to about 100 μm, or about 1 μm to about 50 μm, or about 10 μm to about 20 μm, or about 15 μm to about 25 μm. In some embodiments, the substrate layer has a thickness about 10 μm or greater, or about 15 μm or greater. In some embodiments, the substrate layer has a thickness of less than 1 μm. In some embodiments, the substrate layer has a thickness of about 10 nm to about 100 nm, or about 20 nm to about 50 nm.
In some embodiments, the enclosure can be supported by one or more support structures. In some embodiments, the support structure can itself have a porous structure wherein the pores are larger than those of the two-dimensional material. In some embodiments, the support structure is formed as a frame at a perimeter of a two-dimensional material. In some embodiments, the support structure is positioned in part interior to a perimeter of a two-dimensional material. In some embodiments, the substrate layer can convey a desired degree of structural support (e.g., to prevent tearing and/or buckling) to the two-dimensional material layer.
In some embodiments, a substrate layer is positioned on one or both sides or surfaces of the two-dimensional material. Thus, in some embodiments the substrate is positioned on the outside of the enclosure and in some cases is exposed to the external environment (see, e.g.,
In some embodiments, the substrate layer can increase vascularization near the enclosure, thus prompting the formation of blood vessels and/or tissue ingrowth in close proximity to the enclosure. In some embodiments, the increased vascularization contributes to decreasing the effective distance between the blood stream and substances being eluted from the enclosure. In some embodiments, the increased vascularization contributes to viability of substances, such as cells, enclosed within the enclosure.
The substrate layer can be porous and/or nonporous. In some embodiments, the substrate layer contains porous and nonporous sections. In some embodiments the substrate layer comprises a porous or permeable fibrous layer. Porous substrates include, for example, one or more of ceramics and thin film polymers. Exemplary ceramics include nanoporous silica (silicon dioxide), silicon, SiN, and combinations thereof. In some embodiments, the substrate layer comprises track-etched polymers, expanded polymers, patterned polymers, woven polymers, and/or non-woven polymers. In some embodiments, the substrate layer comprises a plurality of polymer filaments. In some embodiments, the polymer filaments can comprise a thermopolymer, thermoplastic polymer, or melt polymer, e.g., that can be molded or set in an optional annealing step. In some embodiments, the polymer filaments are hydrophobic. In some embodiments, the polymer filaments are hydrophilic. In some embodiments, the substrate layer comprises a polymer selected from the group consisting of polysulfones, polyurethane, polymethylmethacrylate (PMMA), polyglycolid acid (PGA), polylactic acid (PLA), polyethylene glycol (PEG), polylactic-co-glycolic acid (PLGA), polyamides (such as nylon-6,6, supramid and nylamid), polyimides, polypropylene, polyethersulfones (PES), polyvinylidine fluoride (PVDF), cellulose acetate, polyethylene, polypropylene, polycarbonate, polytetrafluoroethylene (PTFE) (such as Teflon), polyvinylchloride (PVC), polyether ether ketone (PEEK), mixtures and block co-polymers of any of these, and combinations and/or mixtures thereof. In some embodiments, the polymers are biocompatible, bioinert and/or medical grade materials. By way of example,
In some embodiments, the substrate layer comprises a biodegradable polymer. In some embodiments, a substrate layer forms a shell around the enclosure (e.g., it completely engulfs the enclosure). In some embodiments, the substrate layer shell, or a portion thereof, can be dissolved or degraded, e.g., in vitro. In some embodiments, the shell can be loaded with additives, including additives that protect substances inside the enclosure from air or prevent the need for a stabilizing agent.
Suitable techniques for depositing or forming a porous or permeable polymer on the two-dimensional material include casting or depositing a polymer solution onto the two-dimensional material or intermediate layer using a method such as spin-coating, spray coating, curtain coating, doctor-blading, immersion coating, electrospinning, or other similar techniques. Electrospinning techniques are described, e.g., in US 2009/0020921 and/or U.S. application Ser. No. 14/609,325, both of which are hereby incorporated by reference in their entirety.
In some embodiments, the process for forming a substrate layer includes an electrospinning process in which a plurality of polymer filaments are laid down to form a porous mat, e.g., on the two-dimensional material layer. In some embodiments, the mat has pores or voids located between deposited filaments of the fibrous layer.
The porosity of the fibrous layer can include effective void space values (e.g. measured via imagery) up to about 95% (i.e., the layer is 95% open), about 90%, about 80%, or about 60%, with a broad range of void space sizes. In some embodiments, a single spinneret can be moved to lay down a mat of the fibrous layer. In some embodiments, multiple spinnerets can be used for this purpose. In some embodiments, the spun fibers in an electrospun fibrous layer can have a fiber diameter ranging from about 1 nm to about 100 μm, or about 10 nm to about 1 μm, or about 10 nm to about 500 nm, or about 100 nm to about 200 nm, or about 50 nm to about 120 nm, or about 1 μm to about 5 μm, or about 1 μm to about 6 μm, or about 5 μm to about 10 μm. In some embodiments, the fiber diameter is directly correlated with a depth (Z-axis) of a pore abutting the two-dimensional material (disposed in the X-Y plane), and large diameter fibers can lead to large unsupported spans of material.
In some embodiments, the substrate layer can have pores (e.g., void spaces) with an effective pore size of from about 1 nm to about 100 μm, or about 10 nm to about 1 μm, or about 10 nm to about 500 nm, or about 100 nm to about 200 nm, or about 50 nm to about 120 nm, or about 1 μm to about 5 μm, or about 1 μm to about 6 μm, or about 5 μm to about 10 μm. Pore diameters in the substrate layer can be measured, for example, via porometry methods (e.g., capillary flow porometry) or extrapolated via imagery.
In some embodiments, the substrate layer can have an average pore size gradient throughout its thickness. “Pore size gradient” describes a layer with a plurality of pores, where the average diameter of the pores increases or decreases based on the proximity of the pore to the two-dimensional material. For example, a fibrous layer can have an average pore size gradient that decreases nearer the surface of a graphene-based material. In some embodiments, an average pore size of the fibrous layer is smaller nearer the surface of the graphene-based material than at an opposite surface of the fibrous layer. For example, the fibrous layer can have effective pore diameters of less than about 200 nm close to the intermediate layer or the two-dimensional material layer which can increase to greater than 100 μm at the maximum distance away from the intermediate layer or two-dimensional material layer.
In some embodiments, the fibrous layer can have a “porosity gradient” throughout its thickness, which can be measured for instance using imagery. “Porosity gradient” describes a change, along a dimension of the fibrous layer, in the porosity or total pore volume as a function of distance from the two-dimensional material layer. For example, throughout the thickness of the porous fibrous layer, the porosity can change in a regular or irregular manner. A porosity gradient can decrease from one face of the fibrous layer to the other. For example, the lowest porosity in the fibrous layer can be located spatially closest to the two-dimensional material, and the highest porosity can be located farther away (e.g., spatially closer to an external environment). A porosity gradient of this type can be achieved by electrospinning fibers onto a two-dimensional material such that a fiber mat is denser near the surface of the two-dimensional material and less dense further from the surface of the two-dimensional material. In some embodiments, a substrate layer can have a relatively low porosity close to the two-dimensional material, a higher porosity at a mid-point of the fibrous layer thickness (which can, for example, contain a supporting mesh for reinforcement or other particles), and return to a relatively low porosity at an external surface distal to the two-dimensional material.
In some embodiments, the substrate layer can have a “permeability gradient” throughout its thickness. “Permeability gradient,” as used herein, describes a change, along a dimension of the fibrous layer, in the “permeability” or rate of flow of a liquid or gas through a porous material. For example, throughout the thickness of the fibrous layer, the permeability can change in a regular or irregular manner. A permeability gradient can decrease from one face of the fibrous layer to the other. For example, the lowest permeability in the fibrous layer can be located spatially closest to the graphene or graphene-based film or other two-dimensional material, and the highest permeability can be located farther away. Those of skill in the art will understand that permeability of a layer can increase or decrease without pore diameter or porosity changing, e.g., in response to chemical functionalization, applied pressure, voltage, or other factors.
In some embodiments, both the two-dimensional material layer and the substrate layer include a plurality of pores therein. In some embodiments, both the two-dimensional material and the substrate layer contain pores, and the pores in the two-dimensional material layer are smaller, on average, than the pores in the substrate layer. In some embodiments, the median pore size in the two dimensional material layer is smaller than the median pore size in the substrate layer. For example, in some embodiments, the substrate layer can contain pores with an average and/or median diameter of about 1 μm or larger and the two-dimensional material layer can contain pores with an average and/or median diameter of about 10 nm or smaller. Accordingly, in some embodiments, the average and/or median diameter of pores in the two-dimensional material layer is at least about 10-fold smaller than the average and/or median diameter of pores in the substrate layer. In some embodiments, the average and/or median diameter of pores in the two-dimensional material layer is at least about 100-fold smaller than are the average and/or media diameter of pores in the substrate layer.
Some embodiments comprise an enclosure with low or no toxicity, such as cytotoxicity. In some embodiments, the enclosure is not cytotoxic when implanted into a subject. In some embodiments, the enclosure is not cytotoxic to cells, skin, blood, bodily fluids, or muscle. In some embodiments, the enclosure is not cytotoxic when injected into a subject. In some embodiments, the enclosure is not cytotoxic when ingested by a subject. In some embodiments, the enclosure is not cytotoxic when used in vitro.
Some embodiments comprise a two-dimensional material (e.g., a graphene based material), such as a porous two-dimensional material, with low or no toxicity, such as cytotoxicity. In some embodiments, the two-dimensional material is not cytotoxic to cells, skin, blood, bodily fluids, or muscle. In some embodiments, the two-dimensional material is not cytotoxic when implanted into a subject. In some embodiments, the two-dimensional material is not cytotoxic when injected into a subject. In some embodiments, the two-dimensional material is not cytotoxic when ingested by a subject. In some embodiments, the two-dimensional material is not cytotoxic when used in vitro. In some embodiments, a two-dimensional material can be affixed to or disposed on a second material (e.g., a substrate) without substantially affecting the cytotoxicity of the second material. In some embodiments, affixing the two-dimensional material to (or disposing it on) the second material can reduce cytotoxicity of the second material.
Some embodiments comprise a composite structure with low or no toxicity, such as cytotoxicity. In some embodiments, the composite structure is not cytotoxic to cells, skin, blood, bodily fluids, or muscle. In some embodiments, the composite structure is not cytotoxic when implanted into a subject. In some embodiments, the composite structure is not cytotoxic when injected into a subject. In some embodiments, the composite structure is not cytotoxic when ingested by a subject. In some composite structure is not cytotoxic when used in vitro.
Cytotoxicity can be measured, for instance, using cell viability assays or implantation testing. In some embodiments, greater than about 70% of cells exposed to the enclosure and/or composite structure remain viable at least 24 hours after exposure. In some embodiments, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99% of cells exposed to the enclosure and/or composite structure remain viable at least 24 hours after exposure.
In some embodiments, the device, enclosure and/or composite material has a bioreactivity rating of about 8.9 or less, such as from about 3.0 to about 8.9, or about 0.0 to about 2.9. In some embodiments, the device, enclosure and/or composite material has a bioreactivity rating of about 0.0, about 0.5, about 0.7, about 1.0, about 1.5, about 2.0, about 2.2, about 2.5, or about 2.9.
In some embodiments, tissue surrounding an implanted enclosure and/or composite structure do not exhibit substantial signs of cytotoxicity. Thus, in some embodiments, the enclosure and/or composite structure causes no, mild, or moderate signs of inflammation, encapsulation, hemorrhage, necrosis, discoloration, polymorphonuclear cells, lymphocytes, plasma cells, macrophages, giant cells, necrosis, neovascularization, fibrosis, fatty infiltrate, or combinations thereof in tissues exposed to the enclosure and/or composite structure. In some embodiments, macroscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals no signs of inflammation, encapsulation, hemorrhage, necrosis, discoloration, or combinations thereof. In some embodiments, macroscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals mild or moderate signs of inflammation, encapsulation, hemorrhage, necrosis, discoloration, or combinations thereof.
In some embodiments, microscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals no signs an inflammatory response, such as signs of polymorphonuclear cells, lymphocytes, plasma cells, macrophages, giant cells, necrosis, or combinations thereof. In some embodiments, microscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals minimal or mild signs an inflammatory response, such as signs of polymorphonuclear cells, lymphocytes, plasma cells, macrophages, giant cells, necrosis, or combinations thereof. In some embodiments, microscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals no signs a healing response, such as neovascularization, fibrosis, fatty infiltrate, or combinations thereof. In some embodiments, microscopic evaluation of tissue exposed to the enclosure and/or composite structure reveals minimal or mild signs a healing response, such as neovascularization, fibrosis, fatty infiltrate, or combinations thereof.
In some embodiments, extent of cytotoxicity is classified based on macroscopic or microscopic evaluation, and classification can be relative to cytotoxicity of a control enclosure and/or structure. Thus, in some embodiments no, mild, or moderate signs of inflammation, encapsulation, hemorrhage, necrosis, discoloration, polymorphonuclear cells, lymphocytes, plasma cells, macrophages, giant cells, necrosis, neovascularization, fibrosis, fatty infiltrate, or combinations thereof are as compared to a control (e.g., in some embodiments, the enclosure and/or composite structure has no signs of inflammation if observed inflammation is less than is observed using a control).
Some embodiments comprise methods of releasing a substance into an environment from an enclosure with low or no toxicity (e.g., cytotoxicity) to the environment. Some embodiments comprise treating a condition or disease, such as diabetes, by an enclosure with low or no cytotoxicity into the subject. Some embodiments comprise using the non-cytotoxic or low-cytotoxic enclosure in methods of immunoisolation (i.e., protecting substances from an immune reaction), timed drug release (e.g., sustained or delayed release), hemodialysis, or hemofiltration.
Some embodiments comprise encapsulating a device with a composite structure comprising (a) a perforated graphene-based material layer and (b) a substrate layer affixed directly or indirectly to at least one surface of the perforated graphene-based material. In some embodiments, the encapsulated device has a reduced cytotoxicity as compared to a comparable device without a perforated graphene-based material layer.
Some embodiments comprise methods of coating a therapeutic device with the composite structure. In some embodiments, the composite structure is applied to the exterior of the therapeutic device. Some embodiments comprise the coated therapeutic device. In some embodiments, the coated therapeutic device has a lower toxicity (e.g., cytotoxicity) than a comparable therapeutic device that is not coated with the composite structure.
In some embodiments, the substrate layer can provide a scaffold for tissue growth, cell growth and/or vascularization. In some embodiments, the substrate layer or wall comprises additives, such as pharmaceuticals, cells, growth factors (e.g., VEGF), signaling molecules, cytokines, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, minerals, nutrients or combinations thereof. In some embodiments, additives such as pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, antigens (e.g., IgG-binding antigens) or an antibody-binding fragment thereof, minerals, nutrients or combinations thereof are positioned on the inside of the disclosure. In some embodiments, the substrate layer or wall comprises materials toxic to bacteria or cells (without being bound by theory, it is believed that incorporating toxic materials into the wall will prevent passage of potentially dangerous or detrimental cells across the wall).
In some embodiments, additives beneficially promote cell or tissue viability or growth, reduce or prevent infection, improve vascularization to or near the enclosure, improve biocompatibility, reduce biofouling, and/or reduce the risk of adverse reactions. In some embodiments, additives can modulate properties, such as hydrophobicity or hydrophilicity, of the substrate layer. In some embodiments, additives can be used to modulate elution of a substance from a compartment in the enclosure. For instance, additives can confer shell-like properties to a substrate layer, such that degradation or removal of the additives allows substances in the compartment to escape the enclosure (and, by extension, substances from the external environment to enter to enclosure).
Some embodiments comprise a composited structure that include a two-dimensional material layer and a substrate layer. In some embodiments, a composite structure includes a support material (see, e.g.,
In some embodiments, the intermediate layer promotes adhesion between the two-dimensional material layer and the substrate layer. Thus, in some embodiments, the enclosure comprises an intermediate layer disposed between the two-dimensional material layer and the substrate layer. In some embodiments, the enclosure comprises an intermediate layer positioned between two substrate layers on the same side of the two-dimensional material layer.
In some embodiments, the intermediate layer comprises carbon nanotubes, lacey carbon, nanoparticles, lithographically patterned low-dimensional materials, silicon and silicon nitride micromachined material, a fine mesh, such as a transmission electron microscopy grid, or combinations of these.
In some embodiments, an enclosure or composite structure includes a fibrous layer affixed to multiple sheets of graphene or graphene-based material. In some embodiments, the sheets of graphene or graphene-based materials are stacked upon one another with one of the sheets affixed directly or indirectly to the fibrous layer.
In some embodiments, the enclosure comprises a single compartment that does not contain sub-compartments. In some embodiments, the single compartment is in fluid communication with an external environment separated from the compartment, e.g., by a wall. In some embodiments, the enclosure has a plurality of sub-compartments. In some embodiments, the sub-compartments are in fluid communication with an environment outside the sub-compartment. In some embodiments, each sub-compartment comprises a wall that allows passage of one or more substances into and/or out of the sub-compartment. In some embodiments, the wall or a portion thereof comprises a perforated two-dimensional material, a polymer, a hydrogel, or some other means of allowing passage of one or more substance into and/or out of the sub-compartment. In some embodiments, an enclosure is subdivided into two sub-compartments separated from each other at least in part by perforated two-dimensional material, such that the two sub-compartments are in direct fluid communication with each other through holes in the two-dimensional material. In some embodiments, the enclosure is subdivided into two sub-compartments each comprising two-dimensional material which sub-compartments are in direct fluid communication with each other through holes in the two-dimensional material and only one of the sub-compartments is in direct fluid communication with an environment external to the enclosure. In some embodiments, the enclosure is subdivided into two sub-compartments each comprising two-dimensional material which sub-compartments are in direct fluid communication with each other through holes in the two-dimensional material and both of the sub-compartments are also in direct fluid communication with an environment external to the enclosure.
In some embodiments, the enclosure has an inner sub-compartment and an outer sub-compartment each comprising a perforated two-dimensional material, wherein the inner sub-compartment is entirely enclosed within the outer sub-compartment, the inner and outer compartments are in direct fluid communication with each other through holes in the two-dimensional material and the inner sub-compartment is not in direct fluid communication with an environment external to the enclosure.
In some embodiments, where an enclosure has a plurality of sub-compartments each comprising a two-dimensional material, the sub-compartments are nested one within the other, each of which sub-compartments is in direct fluid communication through holes in two-dimensional material with the sub-compartment(s) to which it is adjacent, the outermost sub-compartment in direct fluid communication with an environment external to the enclosure, the remaining plurality of sub-compartments not in direct fluid communication with an environment external to the enclosure.
In some embodiments, a sub-compartment can have any shape or size. In some embodiments, 2 or 3 sub-compartments are present. Several examples of enclosure sub-compartments are illustrated in
In
In
In some embodiments, the presence of two or more sub-compartments containing the same substance(s) provides redundancy in function so that an enclosure can remain at least partially operable so long as at least one sub-compartment is not compromised.
The multiple physical embodiments for the enclosures and their uses can allow for various levels of interaction and scaled complexity of problems to be solved. For example, a single enclosure can provide drug elution for a given time period, or there can be multiple sizes of perforations to restrict or allow movement of distinct substances, each having a particular size.
Added complexity of the embodiments described herein with multiple sub-compartments can allow for interaction between compounds to catalyze or activate a secondary response (i.e., a “sense-response” paradigm). For example, if there are two sections of an enclosure that function independently, exemplary compound A can undergo a constant diffusion into the body, or either after a given time or in the presence of a stimulus from the body. In some embodiments, exemplary compound A can activate exemplary compound B, or inactivate functionalization that otherwise blocks exemplary compound B from escaping. In some embodiments, binding interactions to produce the foregoing effects can be reversible or irreversible. In some embodiments, exemplary compound A can interact with chemical cascades produced outside the enclosure, and a metabolite subsequent to the interaction can release exemplary compound B (e.g., by inactivating functionalization). Further examples utilizing effects that take place in a similar manner include using source cells (e.g., non-host; allogenic; xenogenic; autogenic; cadeaveric; stem cells, such as fully or partially differentiated stem cells) contained in an enclosure, within which secretions from the cell can produce a “sense-response” paradigm. In some embodiments, the presence of graphene in the “sense-response” paradigm does not hinder diffusion, thus allowing a fast time response as compared to enclosures that to not contain graphene.
In some embodiments, growth factors or hormones can be loaded in the enclosure to encourage vascularization (see
In some embodiments, the relative thinness of graphene can enable bi-directional passage across a wall (or portion thereof) of the enclosure in close proximity to blood vessels, particularly capillary blood vessels, and other cells. In some embodiments, using a graphene-based enclosure can provide differentiation over other solutions accomplishing the same effect because the graphene does not appreciably limit permeability; instead, the diffusion of molecules through the graphene apertures can limit the movement of a substance across the wall.
In some embodiments, the perforations allow for zeroth order diffusion through the wall. In some embodiments, osmotic pumps can be used to transport substances across the wall. In some embodiments, natural delta pressures in the body influence passage of substances across the wall. In some embodiments, convective pressure influences passage of substances across the wall. In some embodiments, it is possible to achieve high throughput flux through the wall of the enclosure.
Some embodiments include methods for using graphene-based materials and/or other two-dimensional materials to transport, transfer, deliver, and/or allow passage of substances in or to a biological environment. Some embodiments comprise delivering substances to an environment external to the enclosure (e.g., a biological environment). In some embodiments, the substance positioned on the inside of the enclosure comprises one or more of atoms, molecules, viruses, bacteria, cells, particles and aggregates thereof. For example, the substance can include biological molecules, such as proteins, peptides, (e.g., insulin), nucleic acids, DNA, and/or RNA; pharmaceuticals; drugs; medicaments; therapeutics, including biologics and small molecule drugs; and combinations thereof.
If cells are placed within the enclosure, at least a portion of the enclosure can be permeable to oxygen and nutrients sufficient for cell growth and maintenance, to waste produced by the cell (e.g., CO2), and/or to metabolites produced by the cell (e.g., insulin). In some embodiments, at least a portion of the enclosure is permeable to signaling molecules, such as glucose. In some embodiments, at least a portion of the enclosure is permeable to growth factors produced by cells, such as VEGF.
In some embodiments, the enclosure is not permeable to cells (such as immune cells), viruses, bacteria, antibodies, and/or complements of the immune system. Thus, in some embodiments, cells from the external environment cannot enter the enclosure and cells in the enclosure are retained. In some embodiments, the enclosure is permeable to desirable products, such as growth factors or hormones produced by the cells (see, e.g.,
In some embodiments, substances (e.g., cells) can be introduced into the enclosure prior to formation of the seal. In some embodiments, one or more ports can be provided for introducing substances into the enclosure. For example, a loading port can be provided within the sealed perimeter of the enclosure, and the loading port can be permanently or semi-permanently sealed after introduction of one or more substances through the loading port. Those in the art will appreciate that sterilization methods appropriate for the application envisioned can be employed during or after the preparation of the enclosure.
In some embodiments, an enclosure comprises perforated two-dimensional material encapsulating a substance, such that the substance is released to an environment external to the enclosure by passage through the holes in the perforated two-dimensional material. In some embodiments, the enclosure encapsulates two or more different substances. In some embodiments, not all of the different substances are released to an environment external to the enclosure. In some embodiments, all of the different substances are released into an environment external to the enclosure. In some embodiments, different substances are released into an environment external to the enclosure at different rates. In some embodiments, different substances are released into an environment external to the enclosure at the same rates.
In some embodiments of any enclosure herein at least a portion of the holes in the two-dimensional material of the enclosure are functionalized.
In some embodiments at least a portion of the two-dimensional material is conductive and a voltage can be applied to at least a portion of the conductive two-dimensional material. The voltage can be an AC or DC voltage. The voltage can be applied from a source external to the enclosure. In some embodiments, an enclosure device further comprises connectors and leads for application of a voltage from an external source to the two-dimensional material.
Additionally, the conductive properties of graphene-based or other two-dimensional materials can allow for electrification to take place from an external source. In exemplary embodiments, an AC or DC voltage can be applied to conductive two-dimensional materials (e.g., in a device such as an enclosure device). The conductivity properties of graphene can provide additional gating to charged molecules or substances. Electrification can occur permanently or only a portion of the time to affect gating. Directional gating of charged molecules can be directed not only through the pores (or restrict travel through pores), but also to the surface of the graphene to adsorb or bind and encourage growth, promote formation of a protective layer, or provide the basis or mechanism for other biochemical effects (e.g., on the body).
In some embodiments, at least once wall, or portion thereof, of the enclosure allows for electrostatic control of charged species, for instance in nanofluidic or microfluidic systems. In some embodiments, the wall allows for control of charged species by varying the applied voltage, for instance in nanofluidic or microfluidic systems. In some embodiments, the wall can be tuned to manipulate ion passage at low and/or high ion concentrations. In some embodiments, the wall is an ion-selective membrane. In some embodiments, the wall comprises one or more voltage-gated ion channels, such as voltage-gated pores. In some embodiments, the wall mimics biological voltage-gated ion channels. In some embodiments, the wall is a solid-state membrane. In some embodiments, nanochannel or nanopore transistors can be used to manipulate ion passage.
In some embodiments, the wall can be tuned using low or high applied voltages. In some embodiments, the wall allows high ionic flux. In some embodiments, the wall allows low ion flux. In some embodiments, pores in the wall modulates current of ions at low gate voltages and/or display high selectivity. In some embodiments, ion flux across the wall can be turned on or off at low applied voltages, such as ≦500 mV. In some embodiments, ion flux across the wall can be turned on or off at biologically relevant ion concentrations, such as up to 1 M. In some embodiments, the applied voltage can modulate on species selectivity, e.g., cation or anion selectivity.
In some embodiments, nanopores can be electrostatically controlled at low voltages and biologically relevant ion concentrations. In some embodiments, walls are used in separation and sensing technologies. In some embodiments, walls are used in water filtration, water desalination, water purification, osmosis, energy storage, microfluidic devices, nanofluidic devices, and/or therapeutic methods. In some embodiments, walls are used in immune-isolation (i.e., protecting substances from an immune reaction), timed drug release (e.g., sustained or delayed release), hemodialysis, and hemofiltration. Some embodiments relate to methods for separating ions or other substances; methods for sensing ions; methods for storing energy; methods for filtering water; and/or methods of treating a disease or condition (e.g., diabetes). Some embodiments relate to methods of ultrafiltration, nanofiltration and/or microfiltration. Some embodiments comprise using gating to control release of substances. Some embodiments comprise using gating to allow for different substances to be released at different times. Some embodiments comprise allowing different substances to pass through the wall at different times, thus modulating when and how substances mix and interact with other substances in a specific order.
Some embodiments comprise a method comprising introducing an enclosure comprising perforated two-dimensional material into an environment, the enclosure containing at least one substance; and releasing at least a portion of the at least one substance through the holes of the two-dimensional material to the environment external to the enclosure. In some embodiments, the enclosure contains cells which are not released from the enclosure and the at least one substance, a portion of which is released, is a substance generated by the cells in the enclosure.
Some embodiments comprise a method comprising introducing an enclosure comprising perforated two-dimensional material to an environment, the enclosure containing at least one first substance; and allowing migration of other substances from the environment into the enclosure. In some embodiments, the first substance is cells, and other substances include nutrients and/or oxygen.
In some embodiments, a composite structure comprises perforated two-dimensional material and a first fibrous layer comprising a plurality of polymer filaments affixed to a surface of the two-dimensional material; wherein the composite structure is substantially planar. In some embodiments, the perforated two-dimensional material has a second fibrous layer affixed to a surface of the two-dimensional material opposite the first fibrous layer. In some embodiments, the average pore size of the first fibrous layer is different from the average pore size of the second fibrous layer. In some embodiments, the first and/or second fibrous layer comprises an additive selected from the group consisting of pharmaceuticals, cells, growth factors, clotting factors, blood thinners, immunosuppressants, antimicrobial agents, hormones, antibodies, minerals, nutrients and combinations thereof. In some embodiments, the substantially planar composite structure is flexible. In some embodiments, the substantially planar composite structure is rigid. In some embodiments, multiple composite structures are combined to form a pouch-like enclosure. Such planar composite structures can be useful, for example, as appliques for wound healing. The composite structures can also be used, for example, as a component of an adhesive bandage.
Both permanent and temporary binding of substances to the enclosure are possible. In some embodiments, enclosures represent a disruptive technology for state of the art vehicle and other devices, such that these vehicles and devices to be used in new ways. For example, cell line developments, therapeutic releasing agents, and sensing paradigms (e.g., MRSw's, NMR-based magnetic relaxation switches, see; Koh et al. (2008) Ang. Chem. Int'l Ed. Engl., 47(22) 4119-4121) can be used. Moreover, some embodiments mitigate biofouling and bioreactivity, convey superior permeability and less delay in response, and provide mechanical stability.
In some embodiments, enclosures can be used in non-therapeutic applications, such as in dosing probiotics in dairy products.
In some embodiments, two-dimensional materials are atomically thin, with thickness ranging from single-layer sub-nanometer thickness to a few nanometers. Two-dimensional materials include metal chalogenides (e.g., transition metal dichalogenides), transition metal oxides, hexagonal boron nitride, graphene, silicene and germanene (see: Xu et al. (2013) “Graphene-like Two-Dimensional Materials) Chemical Reviews 113:3766-3798).
In some embodiments, the two-dimensional material comprises a graphene-based material.
Graphene represents a form of carbon in which the carbon atoms reside within a single atomically thin sheet or a few layered sheets (e.g., about 20 or less) of fused six-membered rings forming an extended sp2-hybridized carbon planar lattice. Graphene-based materials include, but are not limited to, single layer graphene, multilayer graphene or interconnected single or multilayer graphene domains and combinations thereof. In some embodiments, graphene-based materials also include materials which have been formed by stacking single or multilayer graphene sheets. In some embodiments, multilayer graphene includes 2 to 20 layers, 2 to 10 layers or 2 to 5 layers. In some embodiments, layers of multilayered graphene are stacked, but are less ordered in the z direction (perpendicular to the basal plane) than a thin graphite crystal.
In some embodiments, a sheet of graphene-based material may be a sheet of single or multilayer graphene or a sheet comprising a plurality of interconnected single or multilayer graphene domains, which may be observed in any known manner such as using for example small angle electron diffraction, transmission electron microscopy, etc. In some embodiments, the multilayer graphene domains have 2 to 5 layers or 2 to 10 layers. As used herein, a domain refers to a region of a material where atoms are substantially uniformly ordered into a crystal lattice. A domain is uniform within its boundaries, but may be different from a neighboring region. For example, a single crystalline material has a single domain of ordered atoms. In some embodiments, at least some of the graphene domains are nanocrystals, having domain size from 1 to 100 nm or 10-100 nm. In some embodiments, at least some of the graphene domains have a domain size greater than from 100 nm to 1 cm, or from 100 nm to 1 micron, or from 200 nm to 800 nm, or from 300 nm to 500 nm. In some embodiments, a domain of multilayer graphene may overlap a neighboring domain. Grain boundaries formed by crystallographic defects at edges of each domain may differentiate between neighboring crystal lattices. In some embodiments, a first crystal lattice may be rotated relative to a second crystal lattice, by rotation about an axis perpendicular to the plane of a sheet, such that the two lattices differ in crystal lattice orientation.
In some embodiments, the sheet of graphene-based material is a sheet of single or multilayer graphene or a combination thereof. In some other embodiments, the sheet of graphene-based material is a sheet comprising a plurality of interconnected single or multilayer graphene domains. In some embodiments, the interconnected domains are covalently bonded together to form the sheet. When the domains in a sheet differ in crystal lattice orientation, the sheet is polycrystalline.
In some embodiments, the thickness of the sheet of graphene-based material is from 0.3 to 10 nm, 0.34 to 10 nm, from 0.34 to 5 nm, or from 0.34 to 3 nm. In some embodiments, the thickness includes both single layer graphene and the non-graphenic carbon.
In some embodiments, a sheet of graphene-based material comprises intrinsic or native defects. Intrinsic or native defects may result from preparation of the graphene-based material in contrast to perforations which are selectively introduced into a sheet of graphene-based material or a sheet of graphene. Such intrinsic or native defects may include, but are not limited to, lattice anomalies, pores, tears, cracks or wrinkles. Lattice anomalies can include, but are not limited to, carbon rings with other than 6 members (e.g. 5, 7 or 9 membered rings), vacancies, interstitial defects (including incorporation of non-carbon atoms in the lattice), and grain boundaries. Perforations are distinct from openings in the graphene lattice due to intrinsic or native defects or grain boundaries, but testing and characterization of the final membrane such as mean pore size and the like encompasses all openings regardless of origin since they are all present.
In some embodiments, graphene is the dominant material in a graphene-based material. For example, a graphene-based material may comprise at least 20% graphene, at least 30% graphene, or at least 40% graphene, or at least 50% graphene, or at least 60% graphene, or at least 70% graphene, or at least 80% graphene, or at least 90% graphene, or at least 95% graphene. In some embodiments, a graphene-based material comprises a range of graphene selected from 30% to 95%, or from 40% to 80% from 50% to 70%, from 60% to 95% or from 75% to 100%. The amount of graphene in the graphene-based material is quantified as an atomic percentage utilizing known methods including scanning transmission electron microscope examination, or alternatively if STEM or TEM is ineffective another similar measurement technique.
In some embodiments, a sheet of graphene-based material further comprises non-graphenic carbon-based material located on at least one surface of the sheet of graphene-based material. In some embodiments, the sheet is exemplified by two base surfaces (e.g. top and bottom faces of the sheet, opposing faces) and side faces (e.g. the side faces of the sheet). In some further embodiments, the “bottom” face of the sheet is that face which contacted the substrate during growth of the sheet and the “free” face of the sheet opposite the “bottom” face. In some embodiments, non-graphenic carbon-based material may be located on one or both base surfaces of the sheet (e.g. the substrate side of the sheet and/or the free surface of the sheet). In some further embodiments, the sheet of graphene-based material includes a small amount of one or more other materials on the surface, such as, but not limited to, one or more dust particles or similar contaminants.
In some embodiments, the amount of non-graphenic carbon-based material is less than the amount of graphene. In some further embodiments, the amount of non-graphenic carbon material is three to five times the amount of graphene; this is measured in terms of mass. In some additional embodiments, the non-graphenic carbon material is characterized by a percentage by mass of said graphene-based material selected from the range of 0% to 80%. In some embodiments, the surface coverage of the sheet of non-graphenic carbon-based material is greater than zero and less than 80%, from 5% to 80%, from 10% to 80%, from 5% to 50% or from 10% to 50%. This surface coverage may be measured with transmission electron microscopy, which gives a projection. In some embodiments, the amount of graphene in the graphene-based material is from 60% to 95% or from 75% to 100%. The amount of graphene in the graphene-based material is measured as an atomic percentage utilizing known methods preferentially using transmission electron microscope examination, or alternatively if STEM is ineffective using an atomic force microscope.
In some embodiments, the non-graphenic carbon-based material does not possess long range order and is classified as amorphous. In some embodiments, the non-graphenic carbon-based material further comprises elements other than carbon and/or hydrocarbons. In some embodiments, non-carbon elements which may be incorporated in the non-graphenic carbon include hydrogen, oxygen, silicon, copper, and iron. In some further embodiments, the non-graphenic carbon-based material comprises hydrocarbons. In some embodiments, carbon is the dominant material in non-graphenic carbon-based material. For example, a non-graphenic carbon-based material in some embodiments comprises at least 30% carbon, or at least 40% carbon, or at least 50% carbon, or at least 60% carbon, or at least 70% carbon, or at least 80% carbon, or at least 90% carbon, or at least 95% carbon. In some embodiments, a non-graphenic carbon-based material comprises a range of carbon selected from 30% to 95%, or from 40% to 80%, or from 50% to 70%. The amount of carbon in the non-graphenic carbon-based material is measured as an atomic percentage utilizing known methods preferentially using transmission electron microscope examination, or alternatively if STEM is ineffective using atomic force microscope.
Perforation techniques suitable for use in perforating the graphene-based materials may include described herein ion-based perforation methods and UV-oxygen based methods.
Ion-based perforation methods include methods in which the graphene-based material is irradiated with a directional source of ions. In some further embodiments, the ion source is collimated. In some embodiments, the ion source is a broad beam or flood source. A broad field or flood ion source can provide an ion flux which is significantly reduced compared to a focused ion beam. The ion source inducing perforation of the graphene or other two-dimensional material is considered to provide a broad ion field, also commonly referred to as an ion flood source. In some embodiments, the ion flood source does not include focusing lenses. In some embodiments, the ion source is operated at less than atmospheric pressure, such as at 10−3 to 10−5 torr or 10−4 to 10−6 torr. In some embodiments, the environment also contains background amounts (e.g. on the order of 10−5 torr) of oxygen (O2), nitrogen (N2) or carbon dioxide (CO2). In some embodiments, the ion beam may be perpendicular to the surface of the layer(s) of the material (incidence angle of 0 degrees) or the incidence angle may be from 0 to 45 degrees, 0 to 20 degrees, 0 to 15 degrees or 0 to 10 degrees. In some further embodiments, exposure to ions does not include exposure to plasma.
In some embodiments, UV-oxygen based perforation methods include methods in which the graphene-based material is simultaneously exposed to ultraviolet (UV) light and an oxygen containing gas Ozone may be generated by exposure of an oxygen containing gas such as oxygen or air to the UV light. Ozone may also be supplied by an ozone generator device. In some embodiments, the UV-oxygen based perforation method further includes exposure of the graphene-based material to atomic oxygen. Suitable wavelengths of UV light include, but are not limited to wavelengths below 300 nm or from 150 nm to 300 nm. In some embodiments, the intensity from 10 to 100 mW/cm2 at 6 mm distance or 100 to 1000 mW/cm2 at 6 mm distance. For example, suitable light is emitted by mercury discharge lamps (e.g. about 185 nm and 254 nm). In some embodiments, UV/oxygen cleaning is performed at room temperature or at a temperature greater than room temperature. In some further embodiments, UV/oxygen cleaning is performed at atmospheric pressure (e.g. 1 atm) or under vacuum.
Perforations are sized as described herein to provide desired selective permeability of a species (atom, molecule, protein, virus, cell, etc.) for a given application. Selective permeability relates to the propensity of a porous material or a perforated two-dimensional material to allow passage (or transport) of one or more species more readily or faster than other species. Selective permeability allows separation of species which exhibit different passage or transport rates. In two-dimensional materials selective permeability correlates to the dimension or size (e.g., diameter) of apertures and the relative effective size of the species. Selective permeability of the perforations in two-dimensional materials such as graphene-based materials can also depend on functionalization of perforations (if any) and the specific species. Separation or passage of two or more species in a mixture includes a change in the ratio(s) (weight or molar ratio) of the two or more species in the mixture during and after passage of the mixture through a perforated two-dimensional material.
In some embodiments, the characteristic size of the perforation is from 0.3 to 10 nm, from 1 to 10 nm, from 5 to 10 nm, from 5 to 20 nm, from 10 nm to 50 nm, from 50 nm to 100 nm, from 50 nm to 150 nm, from 100 nm to 200 nm, or from 100 nm to 500 nm. In some embodiments, the average pore size is within the specified range. In some embodiments, 70% to 99%, 80% to 99%, 85% to 99% or 90 to 99% of the perforations in a sheet or layer fall within a specified range, but other pores fall outside the specified range.
Nanomaterials in which pores are intentionally created may be referred to as perforated graphene, perforated graphene-based materials or perforated two-dimensional materials, and the like. Perforated graphene-based materials include materials in which non-carbon atoms have been incorporated at the edges of the pores. Pore features and other material features may be characterized in a variety of manners including in relation to size, area, domains, periodicity, coefficient of variation, etc. For instance, the size of a pore may be assessed through quantitative image analysis utilizing images preferentially obtained through transmission electron microscopy, and if TEM is ineffective, through atomic force microscopy, and if AFM is ineffective, through scanning electron microscopy, as for example presented in
Each pore size of a test sample may be measured to determine a distribution of pore sizes within the test sample. Other parameters may also be measured such as area, domain, periodicity, coefficient of variation, etc. Multiple test samples may be taken of a larger membrane to determine that the consistency of the results properly characterizes the whole membrane. In such instance, the results may be confirmed by testing the performance of the membrane with test species. For example, if measurements indicate that certain sizes of species should be restrained from transport across the membrane, a performance test provides verification with test species. Alternatively, the performance test may be utilized as an indicator that the pore measurements will determine a concordant pore size, area, domains, periodicity, coefficient of variation, etc.
The size distribution of holes may be narrow, e.g., limited to 0.1-0.5 coefficient of variation. In some embodiments, the characteristic dimension of the holes is selected for the application.
In some embodiments involving circular shape fitting the equivalent diameter of each pore is calculated from the equation A=πd2/4. Otherwise, the area is a function of the shape fitting. When the pore area is plotted as a function of equivalent pore diameter, a pore size distribution may be obtained. The coefficient of variation of the pore size may be calculated herein as the ratio of the standard deviation of the pore size to the mean of the pore size as measured across the test samples. The average area of perforations is an averaged measured area of pores as measured across the test samples.
In some embodiments, the ratio of the area of the perforations to the ratio of the area of the sheet may be used to characterize the sheet as a density of perforations. The area of a test sample may be taken as the planar area spanned by the test sample. Additional sheet surface area may be excluded due to wrinkles other non-planar features. Characterization may be based on the ratio of the area of the perforations to the test sample area as density of perforations excluding features such as surface debris. Characterization may be based on the ratio of the area of the perforations to the suspended area of the sheet. As with other testing, multiple test samples may be taken to confirm consistency across tests and verification may be obtained by performance testing. The density of perforations may be, for example, 2 per nm2 (2/nm2) to 1 per μm2(1/μm2).
In some embodiments, the perforated area comprises 0.1% or greater, 1% or greater or 5% or greater of the sheet area, less than 10% of the sheet area, less than 15% of the sheet area, from 0.1% to 15% of the sheet area, from 1% to 15% of the sheet area, from 5% to 15% of the sheet area or from 1% to 10% of the sheet area. In some further embodiments, the perforations are located over greater than 10% or greater than 15% of said area of said sheet of graphene-based material. A macroscale sheet is macroscopic and observable by the naked eye. In some embodiments, at least one lateral dimension of the sheet is greater than 3 cm, greater than 1 cm, greater than 1 mm or greater than 5 mm. In some further embodiments, the sheet is larger than a graphene flake which would be obtained by exfoliation of graphite in known processes used to make graphene flakes. For example, the sheet has a lateral dimension greater than about 1 micrometer. In an additional embodiment, the lateral dimension of the sheet is less than 10 cm. In some further embodiments, the sheet has a lateral dimension (e.g., perpendicular to the thickness of the sheet) from 10 nm to 10 cm or greater than 1 mm and less than 10 cm.
Chemical vapor deposition growth of graphene-based material typically involves use of a carbon containing precursor material, such as methane and a growth substrate. In some embodiments, the growth substrate is a metal growth substrate. In some embodiments, the metal growth substrate is a substantially continuous layer of metal rather than a grid or mesh. Metal growth substrates compatible with growth of graphene and graphene-based materials include transition metals and their alloys. In some embodiments, the metal growth substrate is copper based or nickel based. In some embodiments, the metal growth substrate is copper or nickel. In some embodiments, the graphene-based material is removed from the growth substrate by dissolution of the growth substrate.
In some embodiments, the sheet of graphene-based material is formed by chemical vapor deposition (CVD) followed by at least one additional conditioning or treatment step. In some embodiments, the conditioning step is selected from thermal treatment, UV-oxygen treatment, ion beam treatment, and combinations thereof. In some embodiments, thermal treatment may include heating to a temperature from 200° C. to 800° C. at a pressure of 10−7 torr to atmospheric pressure for a time of 2 hours to 8 hours. In some embodiments, UV-oxygen treatment may involve exposure to light from 150 nm to 300 nm and an intensity from 10 to 100 mW/cm2 at 6 mm distance for a time from 60 to 1200 seconds. In some embodiments, UV-oxygen treatment may be performed at room temperature or at a temperature greater than room temperature. In some further embodiments, UV-oxygen treatment may be performed at atmospheric pressure (e.g. 1 atm) or under vacuum. In some embodiments, ion beam treatment may involve exposure of the graphene-based material to ions having an ion energy from 50 eV to 1000 eV (for pretreatment) and the fluence is from 3×1010 ions/cm2 to 8×1011 ions/cm2 or 3×1010 ions/cm2 to 8×1013 ions/cm2 (for pretreatment). In some further embodiments, the source of ions may be collimated, such as a broad beam or flood source. In some embodiments, the ions may be noble gas ions such as Xe+. In some embodiments, one or more conditioning steps are performed while the graphene-based material is attached to a substrate, such as a growth substrate.
In some embodiments, the conditioning treatment affects the mobility and/or volatility of the non-graphitic carbon-based material. In some embodiments, the surface mobility of the non-graphenic carbon-based material is such that when irradiated with perforation parameters such as described herein, the non-graphenic carbon-based material, may have a surface mobility such that the perforation process results ultimately in perforation. Without wishing to be bound by any particular belief, hole formation is believed to be related to beam induced carbon removal from the graphene sheet and thermal replenishment of carbon in the hole region by non graphenic carbon. The replenishment process may be dependent upon energy entering the system during perforation and the resulting surface mobility of the non-graphenic carbon based material. To form holes, the rate of graphene removal may be higher than the non-graphenic carbon hole filling rate. These competing rates depend on the non-graphenic carbon flux (e.g., mobility [viscosity and temperature] and quantity) and the graphene removal rate (e.g., particle mass, energy, flux).
In some embodiments, the volatility of the non-graphenic carbon-based material may be less than that which is obtained by heating the sheet of graphene-based material to 500° C. for 4 hours in vacuum or at atmospheric pressure with an inert gas.
In various embodiments, CVD graphene or graphene-based material can be liberated from its growth substrate (e.g., Cu) and transferred to a supporting grid, mesh or other supporting structure. In some embodiments, the supporting structure may be configured so that at least some portions of the sheet of graphene-based material are suspended from the supporting structure. For example, at least some portions of the sheet of graphene-based material may not be in contact with the supporting structure.
In some embodiments, the sheet of graphene-based material following chemical vapor deposition comprises a single layer of graphene having at least two surfaces and non-graphenic carbon based material may be provided on said surfaces of the single layer graphene. In some embodiments, the non-graphenic carbon based material may be located on one of the two surfaces or on both. In some further embodiments, additional graphenic carbon may also present on the surface(s) of the single layer graphene.
In embodiments of the disclosure herein, the particle beam is a nanoparticle beam or cluster beam. In further embodiments, the beam is collimated or is not collimated.
Furthermore, the beam need not be highly focused. In some embodiments, a plurality of the nanoparticles or clusters is singly charged. In additional embodiments, the nanoparticles comprise from 500 to 250,000 atoms or from 500 to 5,000 atoms.
A variety of metal particles are suitable for use in the methods of the present disclosure. For example, nanoparticles of Al, Ag, Au, Ti, Cu and nanoparticles comprising Al, Ag, Au, Ti, Cu are suitable. Metal NPs can be generated in a number of ways including magnetron sputtering and liquid metal ion sources (LMIS). Methods for generation of nanoparticles are further described in Cassidy, Cathal, et al. “Inoculation of silicon nanoparticles with silver atoms.” Scientific reports 3 (2013), Haberland, Hellmut, et al. “Filling of micron-sized contact holes with copper by energetic cluster impact.” Journal of Vacuum Science & Technology A 12.5 (1994): 2925-2930, Bromann, Karsten, et al. “Controlled deposition of size-selected silver nanoclusters.” Science 274.5289 (1996): 956-958, Palmer, R. E., S. Pratontep, and H-G. Boyen. “Nanostructured surfaces from size-selected clusters.” Nature Materials 2.7 (2003): 443-448, Shyjumon, I., et al. “Structural deformation, melting point and lattice parameter studies of size selected silver clusters.” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 37.3 (2006): 409-415, Allen, L. P., et al. “Craters on silicon surfaces created by gas cluster ion impacts.” Journal of applied physics 92.7 (2002): 3671-3678, Wucher, Andreas, Hua Tian, and Nicholas Winograd. “A Mixed Cluster Ion Beam to Enhance the Ionization Efficiency in Molecular Secondary Ion Mass Spectrometry.” Rapid communications in mass spectrometry: RCM 28.4 (2014): 396-400. PMC. Web. 6 Aug. 2015 and Pratontep, S., et al. “Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation.” Review of scientific instruments 76.4 (2005): 045103, each of which is hereby incorporated by reference for its description of nanoparticle generation techniques.
Gas cluster beams can be made when high pressure gas adiabatically expands in a vacuum and cools such that it condenses into clusters. Clusters can also be made ex situ such as C60 and then accelerated towards the graphene.
In some embodiments, the nanoparticles are specially selected to introduce moieties into the graphene. In some embodiments, the nanoparticles function as catalysts. The moieties may be introduced at elevated temperatures, optionally in the presence of a gas. In other embodiments, the nanoparticles introduce“chiseling” moieties, which are moieties that help reduce the amount of energy needed to remove an atom during irradiation.
In embodiments, the size of the perforation apertures is controlled by controlling both the nanoparticle size and the nanoparticle energy. Without wishing to be bound by any particular belief, if all the nanoparticles have sufficient energy to perforate, then the resulting perforation is believed to correlated with the nanoparticle sizes selected. However, the size of the perforation is believed to be influenced by deformation of the nanoparticle during the perforation process. This deformation is believed to be influenced by both the energy and size of the nanoparticle and the stiffness of the graphene layer(s). A grazing angle of incidence of the nanoparticles can also produce deformation of the nanoparticles. In addition, if the nanoparticle energy is controlled, it is believed that nanoparticles can be deposited with a large mass and size distribution, but that a sharp cutoff can still be achieved.
Without wishing to be bound by any particular belief, the mechanism of perforation is believed to be a continuum bound by sputtering on one end (where enough energy is delivered to the graphene sheet to atomize the carbon in and around the NP impact site) and ripping or fracturing (where strain induced failure opens a torn hole but leaves the graphene carbons as part of the original sheet). Part of the graphene layer may fold over at the site of the rip or fracture. In an embodiment the cluster can be reactive so as to aid in the removal of carbon (e.g. an oxygen cluster or having trace amounts of a molecule known to etch carbon in a gas cluster beam i.e. a mixed gas cluster beam). Without wishing to be bound by any particular belief, the stiffness of a graphene layer is believed to be influenced by both the elastic modulus of graphene and the tautness of the graphene. Factors influencing the elastic modulus of a graphene layer are believed to include temperature, defects (either small defects or larger defects from NP irradiation), physisorption, chemisorption and doping. Tautness is believed to be influenced by coefficient of thermal expansion mismatches (e.g. between substrate and graphene layer) during deposition, strain in the graphene layer, wrinkling of the graphene layer. It is believed that strain in a graphene layer can be influenced by a number of factors including application of gas pressure to the backside (substrate side) of a graphene layer, straining of an elastic substrate prior to deposition of graphene, flexing of the substrate during deposition, and defecting the graphene layer in controlled regions to cause the layer to locally contract and increase the local strain.
In embodiments, nanoparticle perforation can be further controlled by straining the graphene layers during perforation to induce fracture, thereby “ripping” or “tearing” one or more graphene layers. In some embodiments, the stress is directional and used to preferentially fracture in a specific orientation. For example, ripping of one or more graphene sheets can be used to create “slit” shaped apertures; such apertures can be substantially larger than the nanoparticle used to initiate the aperture. In additional embodiments, the stress is not oriented in a particular direction.
In some embodiments, enclosures can be further modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Accordingly, the enclosures and methods are not limited by the foregoing description.
Specific names of compounds are intended to be exemplary, as it is known that one of ordinary skill in the art can name the same compounds differently. When a compound is described herein such that a particular isomer or enantiomer of the compound is not specified, for example, in a formula or in a chemical name, that description is intended to include each isomer and enantiomer of the compound described individually or in any combination. One of ordinary skill in the art will appreciate that methods, device elements, starting materials and synthetic methods other than those specifically exemplified can be employed in the practice of the invention without resort to undue experimentation. All art-known functional equivalents, of any such methods, device elements, starting materials and synthetic methods are intended to be included in this invention. Whenever a range is given in the specification, for example, a temperature range, a time range, or a composition range, all intermediate ranges and subranges, as well as all individual values included in the ranges given are intended to be included in the disclosure. When a Markush group or other grouping is used herein, all individual members of the group and all combinations and subcombinations possible of the group are intended to be individually included in the disclosure.
As used herein, “comprising” is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. As used herein, “consisting of” excludes any element, step, or ingredient not specified in the claim element. As used herein, “consisting essentially of” does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim. Any recitation herein of the term “comprising”, particularly in a description of components of a composition or in a description of elements of a device, is understood to encompass those compositions and methods consisting essentially of and consisting of the recited components or elements. The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although some embodiments have been specifically disclosed, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
In general the terms and phrases used herein have their art-recognized meaning, which can be found by reference to standard texts, journal references and contexts known to those skilled in the art. The preceding definitions are provided to clarify their specific use in the context of the invention.
All references throughout this application, for example patent documents including issued or granted patents or equivalents; patent application publications; and non-patent literature documents or other source material; are hereby incorporated by reference herein in their entireties, as though individually incorporated by reference, to the extent each reference is at least partially not inconsistent with the disclosure in this application (for example, a reference that is partially inconsistent is incorporated by reference except for the partially inconsistent portion of the reference).
All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. References cited herein are incorporated by reference herein in their entirety to indicate the state of the art, in some cases as of their filing date, and it is intended that this information can be employed herein, if needed, to exclude (for example, to disclaim) specific embodiments that are in the prior art. For example, when a compound is claimed, it should be understood that compounds known in the prior art, including certain compounds disclosed in the references disclosed herein (particularly in referenced patent documents), are not intended to be included in the claims.
Some embodiments are further illustrated by the following examples. The examples are provided for illustrative purposes only, and are not to be construed as limiting the scope or content of embodiments any way.
The in vitro bioreactivity of L929 mouse fibroblast cell cultures were quantitatively determined in response to an extract of test material. The cells were grown to semi-confluency in 96-well tissue culture plates, so that they formed a half-confluent monolayer. An extract of the test material was prepared in Minimum Essential Medium (MEM), dipped in ethanol and allowed to dry, and then transferred onto the cell layer in the culture plate. Positive and negative controls were prepared in the same way. All extracts were dosed in 6 replicates except for the controls, which were dosed in 12 replicates. Control materials were tested at 100% concentration (neat), and the test materials were tested at 100% (neat), 50%, 25%, and 12.5% concentrations.
The plates were incubated for 24 to 26 hours at 37±1° C. in a humified atmosphere containing 5±1% CO2. After examination of the plates, the culture medium was carefully removed and the cells were washed with Phosphate Buffer Saline (PBS). 100 μL of Neutral Red (NR) medium (50 μg/mL in MEM without Phenol Red, filtered through a 0.2 μm filter and used the same day) was added to each test well, and the plates were further incubated for 3±0.2 hours in an incubator at 37±1° C. The cells were then washed with PBS and 100 μL of ethanol/acetic acid solution was added to each test well to extract the NR. The optical density (OD) of each well was measured at 540 nm.
The number of living cells was correlated to the intensity determined by photometric measurements after desorption of the NR. That is, a decrease in the number of living cells was directly correlated with the amount of NR, as monitored by absorbance at 540 nm. A reduction in viability of the test material as compared to a blank (i.e., cells exposed to extraction medium) was calculated using the following equation:
Viability %=100× OD540e/OD540b, where OD540e is the mean value of the measured optical density of the extracts of the test material, positive control, or negative control; and OD540b is the mean value of the measured optical density of the blanks. The test system was considered suitable if the following conditions were met: (a) the viability % for the negative control was ≧70%, (b) the viability % for the positive control was <70%, and (c) the mean of each replicate of the untreated control (i.e., each column in the tabulated results for the untreated control) was within ±15% of the untreated control mean. If the viability of test material sample was <70%, it was considered to have cytotoxic potential.
Cytotoxicity testing was conducted with the following test materials: (i) uncoated/bare substrate; (ii) unperforated graphene on substrate; and (iii) perforated graphene on substrate. Photographs of exemplary test materials are shown in
Cytotoxicity of the uncoated/bare substrate was tested using the parameters in Table 1.
The results of the cytotoxicity testing are shown in Table 2.
Based on these results, the substrate material was determined to not have a cytotoxic effect.
Cytotoxicity of uncoated graphene disposed on the substrate was tested using the parameters in Table 3.
The results of the cytotoxicity testing are shown in Table 4.
Based on these results, the unperforated graphene on substrate material was determined to not have a cytotoxic effect.
Cytotoxicity of perforated graphene disposed on the substrate was tested using the parameters in Table 5.
The results of the cytotoxicity testing are shown in Table 6.
Based on these results, the perforated graphene on substrate material was determined to not have a cytotoxic effect.
A muscle implantation test was used to asses local effects on living tissue when test materials or devices are implanted. Test materials measured approximately 1 mm in width and 10 mm in length. Test materials included (i) uncoated/bare substrate; (ii) unperforated graphene on substrate; and (iii) perforated graphene on substrate. The thickness of the materials was essentially the thickness of the polymer. Control strips also measured 1 mm in width and 10 mm in length.
Prior to implantation, the materials were sterilized in 70% ethanol. Then, 6 strips were implanted into each of the paravertebral muscles of a rabbit, approximately 2.5 cm from the midline and parallel to the spinal column and approximately 2.5 cm from each other. The test material was folded in half, so that the graphene-side (if applicable) was facing out (for uncoated/bare substrate a tape layer was applied, and the test material was implanted with the taped layer facing out) and implanted on one side of the spine. In a similar fashion, negative control strips were implanted in the contralateral muscle of each animal. A total of at least 10 test material strips and 10 control strips were required for evaluation.
The animals were maintained for 2 weeks under observation to ensure proper healing of implant sites and for clinical signs of toxicity. At the end of the 2-week period, the animals were weighed and sacrificed by an injectable barbiturate. Sufficient time was allowed to lapse for the tissue to be cut without bleeding.
The paravertebral muscles in which the test or control strips were implanted were excised in toto from each animal by slicing around the implant sites with a scalpel and lifting the tissue. Excised tissue was examined grossly and placed in containers with 10% neutral buffered formalin. Axillary lymph nodes were examined and found to be free of abnormalities, and so they were not collected.
Following fixation in formalin, each of the implant sites was excised from the larger mass of tissue and examined macroscopically for signs of inflammation, encapsulation, hemorrhaging, necrosis, and discoloration using the following scale: 0=normal; 1=mild; 2=moderate; and 3=severe. In all cases, the presence, form, and location of the implanted material appeared unchanged.
After macroscopic observation, the implant material was removed and a slide of tissue containing the implant site was processed. Histologic slides of hematoxylin and eosin stained sections were prepared and evaluated by light microscopic examination. The biological reaction (inflammatory responses and healing responses) were assessed by microscopic observation and the responses graded and recorded according to Tables 7 and 8.
aphf = per high powered (400×) field.
The relative size of the involved area was scored by assessing the width of the area from the implant/tissue interface to unaffected areas which have the characteristics of normal tissue and normal vascularity. Relative size of the involved area was scored using the following scale: 0=0 mm, no site; 1=up to 0.5 mm, very slight; 2=0.6-1.0 mm, mild; 3=1.1-2.0 mm, moderate; 4=>2.0 mm, severe.
For each implanted site, a total score was determined. The inflammatory responses were totaled for each site and weighted by a factor of 2. The healing responses were totaled separately. Inflammatory and healing responses were added together resulting in a total score for each site. The average score of the test sites was compared to the average score of the control sites for that animal. The average difference between the test and controls for all animals was calculated and a bioreactivity rating was assigned as follows: 0.0-2.9=no reaction (negative calculations were reported as 0); 3.0-8.9=slight reaction; 9.0-15.0=moderate reaction; and >15.0=severe reaction.
A pathologist reviewed the calculated level of reactivity. Based on the observation of all factors (e.g., relative size, pattern of response, inflammatory vs. resolution), the pathology observer was given leeway to revise the bioreactivity rating, if justified.
Implantation results are presented below for the following test materials: (i) uncoated/bare substrate; (ii) unperforated graphene on substrate; and (iii) perforated graphene on substrate.
In implantation testing with uncoated/bare substrate, all three test animals decreased a biologically insignificant amount (less than 10%) in weight, as shown in Table 9.
None of the animals exhibited signs of toxicity over the course of the study. Macroscopic evaluation indicated no significant signs of inflammation, encapsulation, hemorrhage, necrosis, or discoloration, as shown in Table 10.
Microscopic evaluation of the implant sites indicated no significant signs of inflammation, fibrosis, neovascsularization, or fatty infiltrate as compared to control material sites, as shown in Table 11.
Based on the above data, the bioreactivity rating was calculated to be 0.7.
In implantation testing with unperforated graphene disposed on the substrate, all three test animals decreased a biologically insignificant amount (less than 6%) in weight, as shown in Table 12.
None of the animals exhibited signs of toxicity over the course of the study. Macroscopic evaluation indicated no significant signs of inflammation, encapsulation, hemorrhage, necrosis, or discoloration, as shown in Table 13.
Microscopic evaluation of the implant sites indicated no significant signs of inflammation, fibrosis, neovascsularization, or fatty infiltrate as compared to control material sites, as shown in Table 14. At one test site, a few MNGs were present only at the non-graphene side.
Based on the above data, the bioreactivity rating was calculated to be 2.2.
In implantation testing with perforated graphene disposed on the substrate, two animals lost between 3% and 10% of their body weights, and one animal maintained its weight, as shown in Table 15:
None of the animals exhibited signs of toxicity over the course of the study. Macroscopic evaluation indicated no significant signs of inflammation, encapsulation, hemorrhage, or necrosis, as shown in Table 16. Mild discoloration was noted in several control sites.
Microscopic evaluation of the implant sites indicated no significant signs of inflammation, fibrosis, neovascsularization, or fatty infiltrate as compared to control material sites, as shown in Table 17.
Some brown pigmented macrophages at the interface were found.
indicates data missing or illegible when filed
Based on the above data, the bioreactivity rating was calculated to be 0.0.
Permeability of small (Allura Red AC) and large (silver nanoparticles) across a SiN substrate layer and a perforated graphene layer were assessed via diffusion cell experiments. Permeability was compared to a control membrane with selectivity on the order of nanometers. Results are displayed in
Diffusive transport of fluorescein conjugated to IgG was assessed via diffusion cell experiments with respect to the following materials: an SiN substrate layer (termed “Bare Chip” in
Permeability of 100 nm diameter Red (580/605) FluoSpheres and fluorescein was assessed via diffusion cell experiments with perforated graphene. As shown in
Permeability of fluorescein across various substrates was measured via Permegear cells. The experiments were conducted with 7 mm diameter test materials, and with 5 μM fluorescein in PB SA buffer at room temperature. As shown in
The data showed that unperforated graphene substantially reduced the amount of fluorescein that traversed the substrate layers. The data also showed the coating the substrate with perforated graphene did not substantially alter permeability of the substrate. That is, the permeability of fluorescein across uncoated TEPI-460/25 was similar to that of fluorescein across TEPI-460/25 coated with perforate graphene. This was the case even if only a small percentage of graphene suspended across the substrate was perforated. For instance, the data show similar results when 12-15%, 8-10%, 5-6%, 4-5%. 3-4% or 2-3% of the graphene suspended across the substrate was porous.
Additional data (not shown) further demonstrated that permeability of fluorescein across the substrate was enhanced by etching the substrate with NaOCl.
This application claims the benefit of U.S. provisional application 62/202,056, filed Aug. 6, 2015, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62202056 | Aug 2015 | US |