Implantable heart valve devices, mitral valve repair devices and associated systems and methods

Abstract
Systems, devices and methods for repairing a native heart valve. In one embodiment, a repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support having a contracted configuration and an extended configuration, and an appendage, such as a flap or apron extending from the support. In the contracted configuration, the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae. In the extended configuration, the support is configured to project anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet, and the appendage is configured to extend beyond an edge of the posterior leaflet toward the anterior leaflet.
Description
TECHNICAL FIELD

The present technology relates generally to implantable heart valve devices. In particular, several embodiments are directed to mitral valve devices for percutaneous repair of native mitral valves and associated systems and methods for repair and/or replacement of native mitral valves.


BACKGROUND

Conditions affecting the proper functioning of the mitral valve include, for example, mitral valve regurgitation, mitral valve prolapse and mitral valve stenosis. Mitral valve regurgitation is a disorder of the heart in which the leaflets of the mitral valve fail to coapt into apposition at peak systolic contraction pressures such that blood leaks abnormally from the left ventricle into the left atrium. There are a number of structural factors that may affect the proper closure of the mitral valve leaflets.


One structural factor that causes the mitral valve leaflet to separate is dilation of the heart muscle. FIG. 1A is a schematic illustration of a native mitral valve showing normal coaptation between the anterior mitral valve leaflet (AMVL) and the posterior mitral valve leaflet (PMVL), and FIG. 1B is a schematic illustration of a native mitral valve following a myocardial infarction which has dilated the ventricular free wall to an extent that mitral valve regurgitation has developed. Functional mitral valve disease is characterized by dilation of the left ventricle and a concomitant enlargement of the mitral annulus. As shown in FIG. 1B, the enlarged annulus separates the free edges of the anterior and posterior leaflets from each other such that the mitral leaflets do not coapt properly. The enlarged left ventricle also displaces the papillary muscles further away from the mitral annulus. Because the chordae tendineae are of a fixed length, displacement of the papillary displacement can cause a “tethering” effect that can also prevent proper coaptation of the mitral leaflets. Therefore, dilation of the heart muscle can lead to mitral valve regurgitation.


Another structural factor that can cause abnormal backflow is compromised papillary muscle function due to ischemia or other conditions. As the left ventricle contracts during systole, the affected papillary muscles do not contract sufficiently to effect proper closure of the valve. This in turn can lead to mitral valve regurgitation.


Treatment for mitral valve regurgitation has typically involved the application of diuretics and/or vasodilators to reduce the amount of blood flowing back into the left atrium. Other procedures have involved surgical approaches (open and intravascular) for either the repair or replacement of the valve. Replacement surgery, either done through large open thoracotomies or less invasively through a percutaneous approach, can be effective, but there are compromises of implanting a prosthetic valve. For example, prosthetic mechanical valves require a lifetime of anticoagulation therapy and risks associated with stroke or bleeding. Additionally, prosthetic tissue valves have a finite lifetime, eventually wearing out, for example, over twelve or fifteen years. Therefore, valve replacement surgeries have several shortcomings.


Mitral valve replacement also poses unique anatomical obstacles that render percutaneous mitral valve replacement significantly more challenging than other valve replacement procedures, such as aortic valve replacement. First, aortic valves are relatively symmetric and uniform, but in contrast the mitral valve annulus has a non-circular D-shape or kidney-like shape, with a non-planar, saddle-like geometry often lacking symmetry. Such unpredictability makes it difficult to design a mitral valve prosthesis having that properly conforms to the mitral annulus. Lack of a snug fit between the prosthesis and the native leaflets and/or annulus may leave gaps therein that allows backflow of blood through these gaps. Placement of a cylindrical valve prosthesis, for example, may leave gaps in commissural regions of the native valve that cause perivalvular leaks in those regions. Thus, the anatomy of mitral valves increases the difficulty of mitral valve replacement procedures and devices.


In addition to its irregular, unpredictable shape, which changes size over the course of each heartbeat, the mitral valve annulus lacks radial support from surrounding tissue. The aortic valve, for example, is completely surrounded by fibro-elastic tissue that provides good support for anchoring a prosthetic valve at a native aortic valve. The mitral valve, on the other hand, is bound by muscular tissue on the outer wall only. The inner wall of the mitral valve is bound by a thin vessel wall separating the mitral valve annulus from the inferior portion of the aortic outflow tract. As a result, significant radial forces on the mitral annulus, such as those imparted by an expanding stent prostheses, could lead to impairment of the inferior portion of the aortic tract.


Typical mitral valve repair approaches have involved cinching or resecting portions of the dilated annulus. Cinching of the annulus has been accomplished by implanting annular or peri-annular rings that are generally secured to the annulus or surrounding tissue. Other repair procedures have also involved suturing or clipping of the valve leaflets into partial apposition with one another. For example, the Evalve (Abbott Vascular) MitraClip® clips the two mitral valve leaflets together in the region where the leaflets fail to coapt to thereby reduce or eliminate regurgitation. Mitral valve repair surgery has proven effective, and especially for patients with degenerative disease. Repair surgery typically involves resecting and sewing portions of the valve leaflets to optimize their shape and repairing any torn chordae tendineae, and such surgeries usually include placement of an annuloplasty ring to shrink the overall circumference of the annulus in a manner that reduces the anterior-posterior dimension of the annulus.


Efforts to develop technologies for percutaneous mitral annuloplasty that avoid the trauma, complications, and recovery process associated with surgery, have led to devices and methods for cinching the annulus via the coronary sinus, or cinching the annulus via implantation of screws or anchors connected by a tensioned suture or wire. In operation, the tensioned wire draws the anchors closer to each other to cinch (i.e., pull) areas of the annulus closer together. Additional techniques proposed previously include implanting paired anchors on the anterior and posterior areas of the annulus and pulling them together, and using RF energy to shrink the annular tissue among other approaches.


However, all of these percutaneous annuloplasty approaches have eluded meaningful clinical or commercial success to date, at least partly due to the forces required to change the shape of the native annulus, which is relatively stiff and is subject to significant loads due to ventricular pressure. Furthermore, many of the surgical repair procedures are highly dependent upon the skill of the cardiac surgeon where poorly or inaccurately placed sutures may affect the success of procedures. Overall, many mitral valve repair and replacement procedures have limited durability due to improper sizing or valve wear.


Given the difficulties associated with current procedures, there remains the need for simple, effective, and less invasive devices and methods for treating dysfunctional heart valves, for example, in patients suffering functional mitral valve disease.


SUMMARY OF TECHNOLOGY

At least some embodiments are directed to a method of repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle. A repair device having a support can be implanted under the posterior leaflet. The support can be pressed against a portion of an underside of the posterior leaflet and thereby push at least a portion of the posterior leaflet toward the anterior leaflet.


In some embodiments, a method of repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle includes positioning a repair device in the left ventricle under the posterior leaflet and between a wall of the left ventricle and chordae tendineae. The repair device can engage an underside of the posterior leaflet such that a portion of the posterior leaflet moves toward the anterior leaflet. In some embodiments, the repair device can further include an appendage extending (e.g., hanging) down beyond an edge of the posterior leaflet and extending that leaflet closer to the anterior leaflet.


At least some embodiments are directed to a method for repairing a native valve of a patient and includes positioning a heart valve repair device in a subannular position behind at least one leaflet connected to chordae tendineae. The repair device has a support in an unexpanded configuration. The support in the subannular position is expanded such that the support engages an interior surface of a heart wall and a downstream-facing surface of the leaflet. The repair device is configured to reposition the leaflet into an at least partially closed position and brace the leaflet to affect native valve function. In some embodiments, the repair device is configured to improve function of the native valve by bracing the leaflet.


In some embodiments, a repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support having (a) a contracted configuration in which the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae and (b) an extended configuration in which the support projects anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet sufficiently to improve coaptation of the posterior and anterior leaflets.


In some embodiments, a heart valve repair device to treat a native valve of a patient comprises a support implantable in a subannular position relative to the native valve. The support can be configured to engage an interior surface of a heart wall and an outward-facing surface of a leaflet of the native valve in the subannular position such that the support repositions the leaflet into a desired position (e.g., at least partially closed position).


In further embodiments, a heart valve repair device to treat a native valve of a patient comprises a frame have a first end configured to be placed at least proximate a first commissure of the native valve, a second end configured to be placed at least proximate a second commissure of the native valve, and a curved region between the first and second ends. The curved region of the frame is configured to engage a backside of a leaflet of the native heart valve so as to reposition the leaflet such that the leaflet at least partially coapts with an adjacent leaflet of the native valve.


In some embodiments, a system to treat a native valve of a patient comprises a prosthetic valve repair device implantable in a subannular position relative to the native valve. The repair device includes a support configured to engage an interior surface of a heart wall and an outward-facing surface of a leaflet of the native valve in a subannular position of the native valve. The support is configured to change an effective annulus shape and/or an effective annulus cross-sectional dimension when the device is in a deployed configuration. In certain embodiments, the system further includes a prosthetic valve having a radially expandable support structure with a lumen and a valve in the lumen and coupled to the support structure. The radially expandable support structure is configured to be deployed within the native valve when the prosthetic valve repair device is implanted in the subannular position and supported within the changed annulus shape or changed annulus cross-sectional dimension.


At least some embodiments are directed to a valve repair device that comprises means for supporting a posterior leaflet. The means for supporting the posterior leaflet has contracted configuration for insertion under the posterior leaflet between a wall of the left ventricle and chordae tendineae and an extended configuration for projecting anteriorly with respect to a posterior wall of the left ventricle. In one embodiment, the means for supporting extends a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet to affect coaptation of the posterior and anterior leaflets. In one embodiment, the means for supporting includes one or more extensions units expandable using one or more filler materials. The means for supporting can further include an elongated spine coupled to the extension unit(s).





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent.



FIG. 1A is a schematic illustration of a native mitral valve showing normal coaptation between the anterior mitral valve leaflet and the posterior mitral valve leaflet.



FIG. 1B is a schematic illustration of a native mitral valve following myocardial infarction which has caused the ventricular free wall to dilate, and wherein mitral valve regurgitation has developed.



FIGS. 2 and 3 are schematic illustrations of a mammalian heart having native valve structures.



FIG. 4 is a schematic cross-sectional side view of a native mitral valve showing the annulus and leaflets.



FIG. 5 is a schematic illustration of a heart in a patient suffering from cardiomyopathy, and which is suitable for combination with various prosthetic heart valve repair devices in accordance with embodiments of the present technology.



FIG. 6A is a schematic illustration of a native mitral valve of a heart showing normal closure of native mitral valve leaflets.



FIG. 6B is a schematic illustration of a native mitral valve of a heart showing abnormal closure of native mitral valve leaflets in a dilated heart, and which is suitable for combination with various prosthetic heart valve repair devices in accordance with embodiments of the present technology.



FIG. 6C is a schematic illustration of a mitral valve of a heart showing dimensions of the annulus, and which is suitable for combination with various prosthetic heart valve repair devices in accordance with embodiments of the present technology.



FIGS. 7 and 8 are schematic cross-sectional illustrations of the heart showing retrograde approaches to the native mitral valve through the aortic valve and arterial vasculature in accordance with various embodiments of the present technology.



FIG. 9 is a schematic cross-sectional illustration of the heart showing an approach to the native mitral valve using a trans-apical puncture in accordance with various embodiments of the present technology.



FIG. 10A is a schematic cross-sectional illustration of the heart showing an antegrade approach to the native mitral valve from the venous vasculature in accordance with various embodiments of the present technology.



FIG. 10B is a schematic cross-sectional illustration of the heart showing access through the inter-atrial septum (IAS) maintained by the placement of a guide catheter over a guidewire in accordance with various embodiments of the present technology.



FIG. 11A is a cross-sectional top view of a prosthetic heart valve repair device in an expanded configuration in accordance with an embodiment of the present technology.



FIG. 11B is a cross-sectional side view of a prosthetic heart valve repair device in an expanded configuration in accordance with an embodiment of the present technology.



FIG. 11C is a cross-sectional side view of a prosthetic heart valve repair device in a contracted configuration in accordance with an embodiment of the present technology.



FIG. 12A is a cross-sectional top view of a prosthetic heart valve repair device and a delivery system at a stage of implanting the prosthetic heart repair valve device in accordance with an embodiment of the present technology.



FIG. 12B is a cross-sectional top view of the prosthetic heart valve repair device and delivery system of FIG. 12A at a subsequent stage of implanting the prosthetic heart repair valve device in accordance with an embodiment of the present technology.



FIG. 13 is a cross-sectional view schematically illustrating a left atrium, left ventricle, and native mitral valve of a heart with an embodiment of a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIG. 14A is a cross-sectional view schematically illustrating a portion of a left atrium, left ventricle, and native mitral valve of a heart with an embodiment of a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIG. 14B is a cross-sectional view schematically illustrating a portion of a left atrium, left ventricle, and native mitral valve of a heart with an additional embodiment of a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIG. 15 is a cross-sectional view schematically illustrating a portion of a left atrium, left ventricle, and native mitral valve of a heart with an embodiment of a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIGS. 16A and 16B are cross-sectional views schematically illustrating a portion of a left atrium, left ventricle, and native mitral valve of a heart with an embodiment of a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIGS. 17A-17C are schematic top views of a native mitral valve in the heart viewed from the left atrium and showing a heart valve repair device implanted at the native mitral valve in accordance with additional embodiments of the present technology.



FIG. 18 is a perspective view of a prosthetic heart valve repair device in an expanded configuration in accordance with another embodiment of the present technology.



FIG. 19 is a cross-sectional view schematically illustrating a left atrium, left ventricle, and native mitral valve of a heart with a prosthetic heart valve repair device implanted in the native mitral valve region in accordance with an embodiment of the present technology.



FIG. 20A is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing normal closure of native mitral valve leaflets.



FIG. 20B is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing abnormal closure of native mitral valve leaflets, and which is suitable for combination with various prosthetic heart valve repair devices in accordance with embodiments of the present technology.



FIG. 20C is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing a heart valve repair device implanted at the native mitral valve in accordance with an embodiment of the present technology.



FIG. 21A is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing a heart valve repair device implanted at the native mitral valve in accordance with a further embodiment of the present technology.



FIG. 21B is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing a heart valve repair device implanted at the native mitral valve in accordance with another embodiment of the present technology.



FIG. 21C is a schematic top view of a native mitral valve in the heart viewed from the left atrium and showing the heart valve repair device of FIG. 21A and a prosthetic heart valve implanted at the native mitral valve in accordance with an embodiment of the present technology.



FIG. 22 illustrates a method for repairing a native valve of a patient in accordance with an embodiment of the present technology.





DETAILED DESCRIPTION

Specific details of several embodiments of the technology are described below with reference to FIGS. 1A-22. Although many of the embodiments are described below with respect to devices, systems, and methods for percutaneous repair of a native mitral valve using prosthetic heart valve repair devices, other applications and other embodiments in addition to those described herein are within the scope of the technology. Additionally, several other embodiments of the technology can have different configurations, components, or procedures than those described herein. A person of ordinary skill in the art, therefore, will accordingly understand that the technology can have other embodiments with additional elements, or the technology can have other embodiments without several of the features shown and described below with reference to FIGS. 1A-22.


With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference a relative position of the portions of a heart valve repair device and/or an associated delivery device with reference to an operator and/or a location in the vasculature or heart. For example, in referring to a delivery catheter suitable to deliver and position various heart valve repair or replacement devices described herein, “proximal” can refer to a position closer to the operator of the device or an incision into the vasculature, and “distal” can refer to a position that is more distant from the operator of the device or further from the incision along the vasculature (e.g., the end of the catheter). With respect to a prosthetic heart valve repair or replacement device, the terms “proximal” and “distal” can refer to the location of portions of the device with respect to the direction of blood flow. For example, proximal can refer to an upstream-oriented position or a position of blood inflow, and distal can refer to a downstream-oriented position or a position of blood outflow.


Additionally, the term “expanded configuration” refers to the configuration or state of the device when allowed to freely expand to an unrestrained size without the presence of constraining or distorting forces. The terms “deployed configuration” or “deployed” refer to the device after expansion at the native valve site and subject to the constraining and distorting forces exerted by the native anatomy. The terms “extended configuration” or “extended state” refer to the “expanded configuration and/or deployed configuration,” and the terms “contracted configuration” or “contracted state” refer to the device in a compressed or otherwise collapsed state.


For ease of reference, throughout this disclosure identical reference numbers and/or letters are used to identify similar or analogous components or features, but the use of the same reference number does not imply that the parts should be construed to be identical. Indeed, in many examples described herein, the identically numbered parts are distinct in structure and/or function. The headings provided herein are for convenience only.


Overview


Systems, devices and methods are provided herein for percutaneous repair of native heart valves, such as mitral valves. Several of the details set forth below are provided to describe the following examples and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make and use them. Several of the details and advantages described below, however, may not be necessary to practice certain examples and methods of the technology. Additionally, the technology may include other examples and methods that are within the scope of the claims but are not described in detail.


Embodiments of the present technology provide systems, methods and apparatus to treat valves of the body, such as heart valves including the mitral valve. The apparatus and methods enable a percutaneous approach using a catheter delivered intravascularly through a vein or artery into the heart. Additionally, the apparatus and methods enable other less-invasive approaches including trans-apical, trans-atrial, and direct aortic delivery of a heart valve repair device to a target location in the heart. The apparatus and methods enable a prosthetic device to be anchored at or near a native valve location by engaging a subannular surface and other sub-valvular elements of the valve annulus, chordae tendineae, and/or valve leaflets. Additionally, the embodiments of the devices and methods described herein can be combined with many known surgeries and procedures, such as known methods of accessing the valves of the heart (e.g., the mitral valve or tricuspid valve) with antegrade or retrograde approaches, and combinations thereof.


The devices and methods described herein provide a valve repair device that has the flexibility to adapt and conform to the variably-shaped native mitral valve anatomy while physically supporting or bracing (e.g., pushing) the posterior leaflet of the mitral valve toward the anterior leaflet in at least a partially closed position to facilitate coaptation of the native mitral leaflets during systole. Several embodiments of the device effectively reduce the size of the mitral orifice and render the native mitral valve competent. The device has the structural strength and integrity necessary to withstand the dynamic conditions of the heart over time and to permanently anchor the repair device in the subannular position so that the patient can resume a substantially normal life. The systems and methods further deliver such a device in a less-invasive manner to provide a patient with a new, permanent repair device using a lower-risk procedure that has a faster recovery period compared to conventional procedures.


Several embodiments of the present technology include devices for repairing a native valve of a heart. Native heart valves have an annulus and leaflets, and such repair devices include a support for engaging an interior surface of a heart wall and an outward-facing surface (e.g., a backside, underside or downstream side) of a leaflet of the native valve in a subannular position of the native valve. The device can be configured to support the leaflet in an at least partially closed position. In the at least partially closed position the leaflet can be positioned so that valve function is improved, usually by improving the coaptation of the leaflets. For example, in the at least partially closed position the leaflet can be held closer to an opposing leaflet of the native valve such that the two leaflets coapt, or sealingly engage with one another, through a portion of the cardiac cycle. The leaflet may be positioned so that a portion of the leaflet-which may be the free edge of the leaflet or a mid-portion of the leaflet—coapts with a surface of the opposing leaflet with which the leaflet did not coapt prior to treatment. The device can have a support that optionally can include a spine or beam and an extension unit coupled to or extending from or around the spine. In one embodiment, the extension unit can include a biocompatible material suitable to support tissue ingrowth. In various embodiments, the extension unit can include a plurality of projections configured to expand or otherwise extend between and/or engage chordae tendineae associated with the leaflet. In some embodiments, the extension unit comprises a flexible, fluid-impermeable cover, such as an inflatable bladder or balloon, and an injectable filler material within the cover that expands portions of the extension unit and maintains the expanded configuration over time (e.g., filling and expanding the plurality of projections).


Some embodiments of the disclosure are directed to systems to repair a native valve of a patient and implant a prosthetic valve. In one embodiment, the system can have a prosthetic heart valve repair device implantable in a subannular position relative to the native valve and having a support for engaging an interior surface of a heart wall and an outward-facing surface (e.g., a backside, underside or downstream side) of a leaflet of the native valve in a subannular position of the native valve. In this embodiment, the support can be configured to change an annulus shape and/or an annulus cross-sectional dimension when the device is in a deployed configuration. For example, the support can be configured to change the annulus shape from a non-circular cross-section to a more circular or substantially circular cross-section. The system can also include a prosthetic heart valve. The prosthetic heart valve can, for example, include a radially expandable support structure with a lumen and a valve coupled to the support structure in the lumen. In this arrangement, when the prosthetic heart valve repair device is implanted in the subannular position, the radially expandable support structure can be supported within the changed annulus shape or changed annulus cross-sectional dimension. In a particular example, the heart valve repair device can be positioned behind a posterior mitral valve leaflet in a subannular region, and the prosthetic heart valve can have a substantially circular cross-sectional dimension.


Other aspects of the present technology are directed to methods for repairing a native valve of a patient. In one embodiment, a method includes positioning a heart valve repair device in a subannular position behind at least one leaflet connected to chordae tendineae. The repair device can have a support that is initially in a contracted configuration. The method can also include expanding or otherwise extending the support in the subannular position such that the support engages an interior surface of a heart wall and an outward-facing surface (e.g., a backside, underside or downstream side) of the leaflet. In one example, the native valve is a mitral valve and the support can engage a left ventricular wall and a posterior mitral valve leaflet. In exemplary embodiments the support is extended toward a free edge of the leaflet, or toward an opposing leaflet with which the supported leaflet should coapt. In embodiments for mitral valve repair, the support may be extended in an anterior direction (i.e., away from a posterior wall of the ventricle and toward the anterior leaflet), or toward the anterior edge of the posterior leaflet. In various embodiments, the repair device is configured to support the leaflet in at least a partially closed position to facilitate coaptation of the valve leaflets and thereby repair the native valve. This coaptation may occur at the distal free edges of one or both leaflets, or along a middle portion of one or both leaflets.


Another embodiment of the disclosure is directed to a heart valve repair device to treat a native valve of a patient. In various arrangements, the repair device can comprise a frame having a first end configured to be placed at least proximate a first commissure of the native valve and a second end configured to be placed at least proximate a second commissure of the native valve. The frame can further include a curved region between the first and second ends. The curved region of the frame can be configured to engage a backside of a leaflet of the native heart valve such that the leaflet at least partially coapts with an adjacent leaflet of the native valve.


The devices and methods disclosed herein can be configured for treating non-circular, asymmetrically shaped valves and bileaflet or bicuspid valves, such as the mitral valve. It can also be configured for treating other valves of the heart such as the tricuspid valve. Many of the devices and methods disclosed herein can further provide for long-term (e.g., permanent) and reliable anchoring of the prosthetic device even in conditions where the heart or native valve may experience gradual enlargement or distortion.


Cardiac and Mitral Valve Physiology



FIGS. 2 and 3 show a normal heart H. The heart comprises a left atrium that receives oxygenated blood from the lungs via the pulmonary veins PV and pumps this oxygenated blood through the mitral valve MV into the left ventricle LV. The left ventricle LV of a normal heart H in systole is illustrated in FIG. 3. The left ventricle LV is contracting and blood flows outwardly through the aortic valve AV in the direction of the arrows. Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA. More specifically, the mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly, or “coapt” to close, as illustrated in FIG. 3. The opposite ends of the leaflets LF are attached to the surrounding heart structure via an annular region of tissue referred to as the annulus AN.



FIG. 4 is a schematic cross-sectional side view showing an annulus and leaflets of a mitral valve in greater detail. As illustrated, the opposite ends of the leaflets LF are attached to the surrounding heart structure via a fibrous ring of dense connective tissue referred to as the annulus AN, which is distinct from both the leaflet tissue LF as well as the adjoining muscular tissue of the heart wall. The leaflets LF and annulus AN are comprised of different types of cardiac tissue having varying strength, toughness, fibrosity, and flexibility. Furthermore, the mitral valve MV may also comprise a unique region of tissue interconnecting each leaflet LF to the annulus AN that is referred to herein as leaflet/annulus connecting tissue LAC (indicated by overlapping cross-hatching).


Referring back to FIG. 3, the free edges FE of the mitral leaflets LF are secured to the lower portions of the left ventricle LV through chordae tendineae CT which include a plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF. The primary chordae CT in turn, are attached to the papillary muscles PM, which extend upwardly from the lower wall of the left ventricle LV and interventricular septum IVS. Although FIG. 3 shows the primary chordae tendineae (CT) which connect the leaflets to the papillary muscles, the posterior leaflet of the mitral valve (as well as the leaflets of the tricuspid valve) also have secondary and tertiary chordae tendineae which connect the leaflets directly to the ventricular wall. These secondary and tertiary chordae tendineae have a range of lengths and positions, connecting to the leaflets at all heights, including close to the leaflets' connection to the valve annulus. The secondary and tertiary chordae tendineae are illustrated in FIGS. 3, 5, 12, 13-16B and 19, and described in further detail herein.


Referring now to FIG. 5, regurgitation can occur in patients suffering from functional mitral valve disease (e.g., cardiomyopathy) where the heart is dilated and the increased size prevents the valve leaflets LF from meeting properly. The enlargement of the heart causes the mitral annulus to become enlarged such that the free edges FE cannot meet (e.g., coapt) during systole. The free edges FE of the anterior and posterior leaflets normally meet along a line of coaptation C as shown in FIG. 6A, a view of the top or left atrial side of the valve, but a significant gap G can be left in patients suffering from cardiomyopathy, as shown in FIG. 6B.



FIGS. 6A-6C further illustrates the shape and relative sizes of the leaflets L of the mitral valve. As shown in FIG. 6C, the overall mitral valve has a generally “D”-shape or kidney-like shape, with a long axis MVA1 and a short axis MVA2. In healthy humans the long axis MVA1 is typically within a range from about 33.3 mm to about 42.5 mm in length (37.9+/−4.6 mm), and the short axis MVA2 is within a range from about 26.9 to about 38.1 mm in length (32.5+/−5.6 mm). However, with patients having decreased cardiac function these values can be larger, for example MVA1 can be within a range from about 45 mm to 55 mm and MVA2 can be within a range from about 35 mm to about 40 mm. The line of coaptation C is curved or C-shaped such that the anterior leaflet AL is larger than the posterior leaflet PL (FIG. 6A). Both leaflets appear generally crescent-shaped from the superior or atrial side, with the anterior leaflet AL being substantially wider in the middle of the valve than the posterior leaflet PL. As illustrated in FIG. 6A, at the opposing ends of the line of coaptation C, the leaflets join together at corners called the anterolateral commissure AC and posteromedial commissure PC.



FIG. 6C shows the shape and dimensions of the annulus of the mitral valve. As described above, the annulus is an annular area around the circumference of the valve comprised of fibrous tissue which is thicker and tougher than that of the leaflets LF and distinct from the muscular tissue of the ventricular and atrial walls. The annulus may comprise a saddle-like shape with a first peak portion PP1 and a second peak portion PP2 located along an interpeak axis IPD, and a first valley portion VP1 and a second valley portion VP2 located along an intervalley axis IVD. The first and second peak portion PP1 and PP2 are higher in elevation relative to a plane containing the nadirs of the two valley portions VP1, VP2, typically being about 8-19 mm higher in humans, thus giving the valve an overall saddle-like shape. The distance between the first and second peak portions PP1, PP2, referred to as interpeak span IPD, is substantially shorter than the intervalley span IVD, the distance between first and second valley portions VP1, VP2.


Referring back to FIG. 4, “subannular,” as used herein, refers to a portion of the mitral valve MV that lies on or downstream DN of the plane PO of the native orifice. As used herein, the plane PO of the native valve orifice is a plane generally perpendicular to the direction of blood flow through the valve and which contains either or both the major axis MVA1 or the minor axis MVA2 (FIG. 6C). Thus, a subannular surface of the mitral valve MV is a tissue surface lying on the ventricular side of the plane PO, and preferably one that faces generally downstream, toward the left ventricle LV. The subannular surface may be disposed on the annulus AN itself or the ventricular wall behind the native leaflets LF, or it may comprise an outward-facing or downward-facing surface of the native leaflet OF, which lies below the plane PO. The subannular surface or subannular tissue may thus comprise the annulus AN itself, the outward-facing surface OF of the native leaflets LF, leaflet/annulus connective tissue, the ventricular wall or combinations thereof.


A person of ordinary skill in the art will recognize that the dimensions and physiology of the mitral valves may vary among patients, and although some patients may comprise differing physiology, the teachings as described herein can be adapted for use by many patients having various conditions, dimensions and shapes of the mitral valve. For example, work in relation to embodiments suggests that some patients may have a long dimension across the annulus and a short dimension across the annulus without well-defined peak and valley portions, and the methods and device as described herein can be configured accordingly.


Access to the Mitral Valve


Access to the mitral valve or other atrioventricular valves can be accomplished through the patient's vasculature in a percutaneous manner. By percutaneous it is meant that a location of the vasculature remote from the heart is accessed through the skin; typically using a surgical cut down procedure or a minimally invasive procedure, such as using needle access through, for example, the Seldinger technique. The ability to percutaneously access the remote vasculature is well-known and described in the patent and medical literature. Depending on the point of vascular access, the approach to the mitral valve may be antegrade and may rely on entry into the left atrium by crossing the inter-atrial septum. Alternatively, approach to the mitral valve can be retrograde where the left ventricle is entered through the aortic valve. Once percutaneous access is achieved, the interventional tools and supporting catheter(s) may be advanced to the heart intravascularly and positioned adjacent the target cardiac valve in a variety of manners.


An example of a retrograde approach to the mitral valve is illustrated in FIGS. 7 and 8. The mitral valve MV may be accessed by an approach from the aortic arch AA, across the aortic valve AV, and into the left ventricle LV below the mitral valve MV. The aortic arch AA may be accessed through a conventional femoral artery access route, as well as through more direct approaches via the brachial artery, axillary artery, radial artery, or carotid artery. Such access may be achieved with the use of a guidewire 6. Once in place, a guide catheter 4 may be tracked over the guidewire 6. Alternatively, a surgical approach may be taken through an incision in the chest, preferably intercostally without removing ribs, and placing a guide catheter through a puncture in the aorta itself. The guide catheter 4 affords subsequent access to permit placement of the prosthetic valve device, as described in more detail herein.


In some specific instances, a retrograde arterial approach to the mitral valve may be selected due to certain advantages. For example, use of the retrograde approach can eliminate the need for a trans-septal puncture (described below). The retrograde approach is also more commonly used by cardiologists and thus has the advantage of familiarity.


An additional approach to the mitral valve is via trans-apical puncture, as shown in FIG. 9. In this approach, access to the heart is gained via thoracic incision, which can be a conventional open thoracotomy or sternotomy, or a smaller intercostal or sub-xyphoid incision or puncture. An access cannula is then placed through a puncture in the wall of the left ventricle at or near the apex of the heart and then sealed by a purse-string suture. The catheters and prosthetic devices of the invention may then be introduced into the left ventricle through this access cannula.


The trans-apical approach has the feature of providing a shorter, straighter, and more direct path to the mitral or aortic valve. Further, because it does not involve intravascular access, the trans-apical procedure can be performed by surgeons who may not have the necessary training in interventional cardiology to perform the catheterizations required in other percutaneous approaches.


Using a trans-septal approach, access is obtained via the inferior vena cava IVC or superior vena cava SVC, through the right atrium RA, across the inter-atrial septum IAS and into the left atrium LA above the mitral valve MV.


As shown in FIG. 10A, a catheter 1 having a needle 2 may be advanced from the inferior vena cava IVC into the right atrium RA. Once the catheter 1 reaches the anterior side of the inter-atrial septum IAS, the needle 2 may be advanced so that it penetrates through the septum, for example at the fossa ovalis FO or the foramen ovale into the left atrium LA. The catheter is then advanced into the left atrium over the needle. At this point, a guidewire may be exchanged for the needle 2 and the catheter 1 withdrawn.


As shown in FIG. 10B, access through the inter-atrial septum IAS may usually be maintained by the placement of a guide catheter 4, typically over a guidewire 6 which has been placed as described above. The guide catheter 4 affords subsequent access to permit introduction of the device to repair the mitral valve, as described in more detail herein.


In an alternative antegrade approach (not shown), surgical access may be obtained through an intercostal incision, preferably without removing ribs, and a small puncture or incision may be made in the left atrial wall. A guide catheter may then be placed through this puncture or incision directly into the left atrium, sealed by a purse string-suture.


The antegrade or trans-septal approach to the mitral valve, as described above, can be advantageous. For example, the antegrade approach may decrease risks associated with crossing the aortic valve as in retrograde approaches. This can be particularly relevant to patients with prosthetic aortic valves, which may not be crossed at all or without substantial risk of damage.


The prosthetic valve repair device may also be implanted using conventional open-surgical approaches. For some patients, the devices and methods of the invention may offer a therapy better suited for the treatment of certain valve pathologies or more durable than existing treatments such as annuloplasty or valve replacement.


The prosthetic valve repair device may be specifically designed for the approach or interchangeable among approaches. A person of ordinary skill in the art can identify an appropriate approach for an individual patient and design the treatment apparatus for the identified approach in accordance with embodiments described herein.


Orientation and steering of the prosthetic valve repair device can be combined with many known catheters, tools and devices. Such orientation may be accomplished by gross steering of the device to the desired location and then refined steering of the device components to achieve a desired result.


Gross steering may be accomplished by a number of methods. A steerable guidewire may be used to introduce a guide catheter and the prosthetic valve repair device into the proper position. The guide catheter may be introduced, for example, using a surgical cut down or Seldinger access to the femoral artery in the patient's groin. After placing a guidewire, the guide catheter may be introduced over the guidewire to the desired position. Alternatively, a shorter and differently shaped guide catheter could be introduced through the other routes described above.


A guide catheter may be pre-shaped to provide a desired orientation relative to the mitral valve. For access via the trans-septal approach, the guide catheter may have a curved, angled or other suitable shape at its tip to orient the distal end toward the mitral valve from the location of the septal puncture through which the guide catheter extends. For the retrograde approach, as shown in FIGS. 7 and 8, guide catheter 4 may have a pre-shaped J-tip which is configured so that it turns toward the mitral valve MV after it is placed over the aortic arch AA and through the aortic valve AV. As shown in FIG. 7, the guide catheter 4 may be configured to extend down into the left ventricle LV and to assume a J-shaped configuration so that the orientation of an interventional tool or catheter is more closely aligned with the axis of the mitral valve MV. As shown in FIG. 8, the guide catheter might alternatively be shaped in a manner suitable to advance behind the posterior leaflet. In either case, a pre-shaped guide catheter may be configured to be straightened for endovascular delivery by means of a stylet or stiff guidewire which is passed through a lumen of the guide catheter. The guide catheter might also have pull-wires or other means to adjust its shape for more fine steering adjustment.


Selected Embodiments of Prosthetic Heart Valve Repair Devices and Methods


Embodiments of the present technology can be used to treat one or more of the valves of the heart as described herein, and several embodiments are well suited for treating the mitral valve. Introductory examples of prosthetic heart valve repair devices, system components, and associated methods in accordance with embodiments of the present technology are described in this section with reference to FIGS. 11A-22. It will be appreciated that specific elements, substructures, advantages, uses, and/or other features of the embodiments described with reference to FIGS. 11A-22 can be suitably interchanged, substituted or otherwise configured with one another. Furthermore, suitable elements of the embodiments described with reference to FIGS. 11A-22 can be used as stand-alone and/or self-contained devices.


Systems, devices and methods in accordance with the present technology provide percutaneous implantation of prosthetic heart valve repair devices in a heart of a patient. In some embodiments, methods and devices treat valve diseases by minimally invasive implantation of repair devices behind one or more native leaflets in a subannular position using the techniques described above with respect to FIGS. 7-10B. In one embodiment, the repair device can be suitable for engaging an interior surface of a heart wall, such as a left ventricular wall, and a backside of a leaflet (e.g., the posterior leaflet of a mitral valve in the heart of a patient). In another embodiment, the repair device can be suitable for implantation and repair of another valve in the heart of the patient (e.g., a bicuspid or tricuspid valve).



FIG. 11A is a cross-sectional top view showing a prosthetic heart valve repair device 100 (“repair device 100”) in an expanded or extended configuration in accordance with an embodiment of the present technology, and FIGS. 11B and 11C are cross-sectional side views showing the repair device 100 in the expanded configuration and a contracted or delivery configuration, respectively. The repair device 100 can be movable between the delivery configuration shown in FIG. 11C and the expanded configuration shown in FIGS. 11A-B to be deployed under the posterior leaflet of the mitral valve. In the delivery configuration shown in FIG. 11C, the repair device 100 has a low profile suitable for delivery through a lumen 102 of a small-diameter catheter 104 positioned in the heart via the trans-septal, retrograde, or trans-apical approaches described herein. In some embodiments, the delivery configuration of the repair device 100 will preferably have an outer diameter as small as possible, such as no larger than about 8-10 mm for trans-septal approaches, about 6-8 mm for retrograde approaches, or about 8-12 mm for trans-apical approaches to the mitral valve MV. In some embodiments, the repair device 100 can be resilient and relatively resistant to compression once deployed, making it easier to position and retain the device in the target location. As seen in FIG. 11A, repair device 100 may be preformed to assume a curved shape or other non-straight shape when unconstrained in the deployed configuration. Accordingly, repair device 100 may be flexible and resilient so that it may be formed in a more linear shape when positioned in lumen 102 of catheter 104 and it will resiliently return to its preformed deployed configuration when released from the catheter. Alternatively or additionally, repair device 100 may be inflatable or fillable with a fluid material as further described below, and it may be configured to assume a predetermined deployed shape as a result of fluid pressure.


In the embodiment shown in FIG. 11A, the repair device 100 includes a support 110 for engaging and at least partially conforming to a subannular position between an interior surface of a heart chamber wall (e.g., a left ventricle wall) and a backside of a native valve leaflet (e.g., the mitral valve posterior leaflet). The support 110 can generally have a first end 112, a second end 114, and curved region 116 between the first and second ends 112, 114. In one embodiment, the support 110 can be positioned as close as possible to the valve annulus in the subannular region (e.g., at the highest point in the space between the outside-facing surface of the valve leaflet and the ventricular wall). The curved shape of the curved region 116 may accommodate and/or otherwise conform to the curved shape of the posterior mitral annulus, or it may be relatively stiff to encourage a specific shape. The length of the support 110 can extend substantially the entire distance between the commissures, or only part way around the posterior leaflet PL without reaching the commissures, or beyond one or both commissures so as to extend below a portion of the anterior leaflet AL. The support 110 is preferably configured to be wedged or retained by compression or friction with the underside (e.g., the outward-facing surface or downstream side) of the posterior leaflet PL and the inner wall of the ventricle, and/or engagement with the chordae tendineae attached to the posterior leaflet PL. In some embodiments the support 110 is configured to be positioned between the basal and/or tertiary chordae tendineae and the ventricular wall. The support 110 will preferably be sufficiently rigid to deflect the posterior leaflet PL to the desired post-treatment configuration, but still having some flexibility to allow it to flex and avoid tissue damage under high forces. The support 110 may also have some resilience and compressibility to remain engaged with the chordae tendineae, the leaflet and the wall tissue as the heart changes shape both acutely and long-term. The support can be a frame, bladder, balloon, foam, tube (e.g., a mesh tube), or other structure that is configured to extend (e.g., expand) at a target site in a manner that pushes or otherwise repositions a leaflet of a native valve from a pre-treatment position in which the native leaflets fail to coapt properly to a post-treatment position in which the leaflets coapt during a portion of the cardiac cycle. The support can be further configured to brace, support, or otherwise maintain the leaflet in the post-treatment position for at least a portion of the cardiac cycle, preferably permanently.


The support 110 can be pre-shaped such that upon deployment, the repair device 100 accommodates (e.g., approximates) the shape of the native anatomy or the desired post-treatment shape of the native anatomy. For example, the support 110 can be pre-shaped to expand into a “C” shape or other suitably curved shape to accommodate the curvature of the mitral valve annulus and/or to conform to a portion of the native mitral valve annulus. In some embodiments, several components of the support 110 can have a subannular engaging surface 118 that includes one or more peaks (not shown) and one or more valleys (not shown) in the upstream-downstream direction for accommodating or conforming to the native saddle-shape contour of the mitral annulus. An outer edge 117 of the curved region 116 of the support 110 can be positionable against the interior surface of the heart wall.


Referring to FIGS. 11A and 11B together, the support 110 can include a central spine 111 (e.g., a beam, a tube, or a frame) that may be a stent structure, such as a balloon-expandable or self-expanding stent. In other embodiments, the spine 111 can be a coiled spring, a braided tube, a wire, a polymeric member, or other form. The spine 111 and/or other portions of the support 110, in various embodiments, can include metal material such as nickel-titanium alloys (e.g. nitinol), stainless steel, or alloys of cobalt-chrome. In other embodiments, the support 110 can include a polymer such as Dacron®, polyester, polypropylene, nylon, Teflon®, PTFE, ePTFE, etc. Other suitable materials known in the art of elastic and/or expandable or flexible implants may be also be used to form some components of the support 110. As shown in FIG. 11A, several embodiments of the spine 111 can be formed, at least in part, from a cylindrical braid or stent structure comprising elastic filaments. Accordingly, the spine 111 and/or other portions of the support 110 can include an elastic, superelastic or other shape memory component that self-expands upon deployment of the device 100 to a formed or a pre-formed configuration at a target site. The spine 111 can further include a lumen 119 through which a guidewire (not shown) and/or strengthening/stiffening elements 115 (shown in FIG. 11B), such as wires, coils, or polymeric elements, can be placed into or integrated within the support 110. Such strengthening/stiffening elements 115 can be inserted into the lumen 119 before or during deployment of the repair device 100 to provide additional resistive pressure against the cardiac tissue once implanted. Spine 111 can be flexible and resilient so it can be straightened for delivery in a catheter or sheath or over a wire, and it can resiliently return to a curved shape (e.g., a curved shape similar to the native valve annulus) when unconstrained. In some embodiments, the spine 111 preferably has sufficient stiffness to structurally support the treated valve leaflet in the desired position and shape. In some embodiments, spine 111 may be covered with a biocompatible, flexible fabric or polymer, preferably one that allows tissue ingrowth.


The support 110 can further include an extension unit 120 attached to and/or positioned around at least a portion of the spine 111. In one embodiment, for example, the extension unit 120 can be biocompatible with cardiac tissue at or near the native valve of the patient so as to promote tissue ingrowth and strengthen implantation of the repair device 100 within the native valve region. In exemplary embodiments, extension unit 120 can comprise a flexible cover of biocompatible fabric or polymer that surrounds spine 111. In one embodiment, the extension unit 120 can include an expandable member, such as an expandable tube, balloon, bladder, foam or other expandable material, that is coupled to the spine 111. The expandable member may itself surround spine 111, may be held within a flexible fabric or polymeric cover extending around or attached to spine 111, or may be attached directly to a lateral side of spine 111. For example, the extension unit 120 can be an elastic or inelastic balloon made from impermeable, flexible biocompatible materials. The extension unit 120 can comprise a fabric or other flexible, stretchable and/or biocompatible material such as braided, woven, or crocheted Dacron®, expanded PTFE (Gore-Tex®), bovine pericardium, or other suitable flexible material to integrate with adjacent tissue and promote tissue ingrowth to facilitate further stability of the repair device 100 in the subannular position. In other embodiments, the extension unit 120 can include polyester fabric, a polymer, thermoplastic polymer, a synthetic fiber, a natural fiber or polyethylene terephthalate (PET). Several embodiments of the extension unit 120 may be pre-shaped to accommodate a relatively fixed maximal dimension and shape when the repair device 100 is implanted. In various embodiments, the extension unit 120 can be porous and/or adhere to the interior surface of the heart wall and/or the backside of the leaflet. Tissue ingrowth into the extension unit 120 can form a pannus of tissue which is hemocompatible and can strengthen the combined structure of the repair device 100, the subannular tissue and/or interior surface of the heart wall, and the backside of the leaflet. Extension unit 120 will be expandable (e.g., in a transverse or radial direction relative to the longitudinal axis of the spine 111) from a collapsed configuration for endovascular or trans-apical delivery to an expanded configuration suitable for bracing the valve leaflet in the desired position. Extension unit 120 will usually be more flexible than spine 111 when in an unexpanded configuration, and in some embodiments will become substantially more rigid when expanded, e.g. by filling or inflating with a fluid. This rigidity may be imparted solely by fluid pressure, or by hardening or curing the fluid (e.g. epoxy or cement) within the extension unit.


The support 110 can further include a plurality of projections 130 and depressions 131 in the expanded configuration. The projections 130 alternate with depressions 131 such that each depression is disposed between two projections, forming a series of peaks and valleys. For example, the projections 130 can be features of the extension unit 120 that extend toward the other native leaflet and generally parallel to the underside of the supported leaflet such that the projections 130 extend between and engage the secondary and/or tertiary chordae tendineae that tether the leaflet (e.g., the mitral valve posterior leaflet) to the ventricular wall. In some embodiments all or a portion of the projections 130 may extend in generally the same (anterior) direction, while in other embodiments the projections 130 may extend in a radially inward direction relative to the curvature of the spine 111 (or native valve annulus). As such, a portion of the secondary and/or tertiary chordae tendineae can be positioned in the depressions 131 after the repair device 100 has been deployed. The upper or leaflet-facing sides of the projections 130 are preferably smooth and wide enough to support the leaflet without abrading or damaging the leaflet should it move or rub against the projections during the cardiac cycle. The depressions 131 are preferably wide enough to receive at least one of the chordae somewhat snugly to inhibit lateral movement of the support.


Referring still to FIGS. 11A-B and in accordance with an embodiment of the present technology, the extension unit 120 can include a plurality of pockets 132 that can be configured to receive filler material 140 during or upon deployment of the device 100 to form the projections 130. For example, a liquid that cures into a permanently semi-flexible or rigid material can be injected into the extension unit 120 to at least partially fill the pockets 132 of the extension unit 120 and thereby form the projections 130. In other embodiments, not shown, the pockets 132 can be expanded to form the projections 130 using internal elements such as segmented stents, one or more coiled spring elements, or other reinforcement structures. For example, the stent or spring might be pre-shaped to help the device 100 assume the deployed configuration (e.g., shape and profile). Accordingly, once in the deployed configuration, the projections 130 can be interspersed between the chordae tendineae CT.


The side of the support opposite the projections 130 (i.e., posterior side in mitral embodiments) will preferably be configured to atraumatically and compressively engage the ventricular wall to assist in anchoring the device in place. The posterior surface may be a soft, compressive, and resilient material, preferably atraumatic to the heart wall, and preferably one that encourages tissue in-growth. In some embodiments, the posterior side may have retention elements, e.g. spikes, hooks, bristles, points, bumps, or ribs, protruding from its surface, to engage the ventricular wall to further assist in anchoring and immobilizing the device. The posterior side may also have one or more expandable, resilient, or spring-like elements thereon that engage the ventricular wall and urge the support 110 in the anterior direction (away from the wall) to firmly and compressively engage the chordae tendonae between the projections 130. This can supplement or substitute for the expansion of the support 110 or extension member.



FIGS. 12A and 12B are cross-sectional top views of the repair device 100 and a delivery system at stages of implanting the repair device 100 (spine 111 removed for clarity in FIG. 12A) in accordance with an embodiment of the present technology. Referring to FIG. 12A, a guidewire GW is positioned at the implant site and a guide catheter 1210 is passed over the guidewire GW until the guide catheter 1210 is positioned at least proximate the valve. An optional delivery catheter or sheath 1220 can then be passed through the guide catheter 1210. The guidewire GW can be withdrawn, and the repair device 100 is then passed through the guide catheter 1210 or the optional sheath 1220. In another embodiment, the guidewire GW is received in the lumen 119 (FIGS. 11A and 11B) of the repair device 100 such that the repair device 100 passes over the guidewire GW during implantation. When the repair device 100 is used to repair a native mitral valve MV, the guidewire GW can be positioned under the posterior leaflet PL of the native mitral valve MV, the guide catheter 1210 and/or optional sheath 1220 are then placed at a target site under the posterior leaflet PL, and then the repair device 100 is positioned within the guide catheter 1210 and/or the optional sheath 1220 at the target site. At this stage, the anterior and posterior leaflets fail to coapt, resulting in a gap G between the posterior leaflet PL and the anterior leaflet AL.



FIG. 12B shows a subsequent stage of implanting the repair device 100 under the posterior leaflet PL of the native mitral valve MV. The sheath 1220 can have a lumen 1222, and the repair device 100 can be attached to a shaft 1230 by a release mechanism 1232. Additionally, an inflation tube 1240 can extend along or through the sheath 1220 and through a one-way valve (not shown) into the extension unit 120 of the support 110. In one embodiment, the repair device 100 is contained in a radially collapsed state in the lumen 1222 of the sheath 1220 as the repair device 100 is positioned under the posterior leaflet PL, and then the sheath 1220 is retracted proximally to expose the repair device 100 at the target site. After the repair device 100 has been exposed, the filler material 140 is injected into the extension unit 120 via the inflation tube 1240 causing the projections 130 to extend away from the spine 111 towards the central axis of the valve orifice (arrows AD). The projections 130 accordingly push at least the free edge of the posterior leaflet PL toward the anterior leaflet AL until the gap G (FIG. 12A) at least partially closes to enhance the competency of the native mitral valve MV. In the embodiment shown in FIG. 12B, the gap G is completely eliminated such that the free edge of the posterior leaflet PL fully coapts with the free edge of the anterior leaflet AL. Additionally, the chordae tendineae CT positioned in the depressions 131 between the projections 130 secure the repair device 100 in the subannular space. The release mechanism 1232 is then activated to separate the repair device 100 from the shaft 1230. The sheath 1220 along with the shaft 1230 and inflation tube 1240 are then withdrawn from the patient.


In other embodiments, the repair device 100 may include a fluid absorbing material that expands after implantation by absorption of blood or other fluids to inflate the extension unit 120 either in addition to or in lieu of using the inflation tube 1240. For example, the extension unit 120 may have a fluid permeable cover and an absorbent material within the cover that expands as it absorbs fluid, or the extension unit 120 can be a foam that expands to form the projections 130. Alternatively, the extension unit 120 may be filled with a fluid absorbing substance such as a biocompatible hydrogel which expands when exposed to blood or other fluid. In this way, the support 110 may be implanted and optionally expanded partially, then allowed to expand to its fully expanded configuration by absorption of fluids. Alternatively, the extension unit 120 may be sufficiently porous to allow blood to pass into it such that blood will collect and fill up the extension unit. Eventually, the blood may clot and be replaced by tissue to strengthen and rigidify the repair device 100. In further embodiments, the extension unit 120 may be configured to receive an injectable material to realize a fully-expanded configuration.



FIG. 13 is a cross-sectional view schematically illustrating a left atrium, left ventricle, and native mitral valve of a heart with an embodiment of the repair device 100 implanted in the native mitral valve region. In this embodiment, the repair device 100 is implanted in a subannular position and behind the posterior leaflet PL of the native mitral valve MV at the ventricular side of the mitral annulus AN as described above with reference to FIGS. 12A and 12B. The repair device 100, for example, can have a ventricular wall engaging surface 150 that engages the ventricular wall along a distance DV and a posterior leaflet engaging surface 160 configured to engage the outward-facing surface (e.g., underside or downstream side) of the posterior leaflet PL. The repair device 100 is retained in this subannular position by the chordae tendineae CT (e.g., the basal or tertiary chordae tendineae which are associated with the posterior leaflet PL closest to the annulus AN). As repair device 100 is expanded from a collapsed, delivery configuration to an expanded, deployed configuration, the width or area of the posterior leaflet engaging surface 160 enlarges. In some embodiments, repair device 100 can be expanded until the posterior leaflet engaging surface has the desired width or area, e.g., until the posterior leaflet is repositioned and/or reshaped such that it coapts with the anterior leaflet and regurgitation through the valve is reduced or eliminated. As shown in FIG. 13, when the device 100 is in the deployed configuration, the posterior leaflet engaging surface 160 engages the outward-facing surface (e.g., underside) of at least the posterior leaflet PL along a distance DL from the posterior wall of the ventricle toward the anterior leaflet AL to push, brace or otherwise support the posterior leaflet PL such that it coapts with the anterior leaflet AL and/or otherwise reduces mitral valve regurgitation (e.g., drives the posterior leaflet PL toward the anterior leaflet AL into at least a partially closed position). The distance DL can be selected or controlled to adapt the repair device 100 to the specific anatomy of the patient. In several embodiments, the distance DL is from about 2-20 mm, preferably at least about 8 mm, or in other embodiments from about 8 to about 12 mm. In some embodiments, the device 100 can support the posterior leaflet PL in a fully closed position, and in further embodiments the repair device 100 can extend the posterior leaflet PL toward the anterior leaflet to a closed position that extends beyond the leaflet's naturally closed position. For example, the shape of the posterior leaflet PL may be changed by expanding the repair device 100 to push it toward or bracing it in a position closer to the anterior leaflet AL. In one example, the repair device 100 can have a triangular or polygonal cross-section for engaging the ventricular wall, the annulus AN, and the outward-facing surface of the posterior leaflet PL. In other embodiments, the repair device 100 can have a circular, oval, elliptical, or oblong cross-section.


The overall cross-sectional shape of the repair device 100 can determine the resting location of the posterior leaflet PL as it is braced in the at least partially closed position. Therefore, the distances DV and DL, and the curvatures of the ventricular wall engaging surface 150 and the posterior leaflet engaging surface 160, can be configured to accommodate different anatomical requirements of different patients. For example, FIG. 14A shows another embodiment of a repair device 100a similar to the repair device 100 illustrated in FIG. 13, but in the deployed configuration the repair device 100a includes a ventricular wall engaging surface 150a with a vertical or cranial-caudal distance DVa that is less than the corresponding distance DV of the ventricular wall engaging surface 150 of the repair device 100 shown in FIG. 13. The repair device 100a further includes a posterior leaflet engaging surface 160a that contacts the underside of the posterior leaflet PL along posterior-anterior dimension by a distance DLa greater than that of the posterior engaging surface 160 of the repair device 100 of FIG. 13. As such, the repair device 100a is able to support the posterior leaflet PL in a position closer to the anterior leaflet AL than the device 100; the repair device 100, more specifically, can move the line along which posterior leaflet PL hinges to open and close away from the posterior heart wall of the left ventricle and closer to the anterior leaflet AL to reduce the size of the movable portion of the posterior leaflet that opens and closes during the cardiac cycle. The leaflet hinge may alternatively be eliminated altogether so that the leaflet is substantially stationary throughout the cardiac cycle.



FIG. 14B illustrates yet another embodiment of a repair device 101 similar to the repair devices 100 and 100a illustrated in FIGS. 13 and 14A, respectively, but in the deployed configuration the repair device 101 includes an appendage 135, such as an apron or flap. The appendage 135 is positioned such that it extends (e.g., hangs) down beyond an edge of the posterior leaflet PL to extend the posterior leaflet toward the anterior leaflet AL. The appendage 135 is positioned behind the chordae tendineae CT in some areas, but is expected to be effective in extending the posterior leaflet PL between the two groups of chordae. In some embodiments, this feature is expected to help reduce or inhibit mitral regurgitation by closing the posterior leaflet PL and drawing its edge close to the anterior leaflet AL. It is expected that the appendage 135 is useful when the posterior leaflet PL and anterior leaflet AL are separated by a large distance.


configured in accordance with another embodiment of the present technology. The repair device 100b shown in FIG. 15 is similar to the repair device 100a shown in FIG. 14A, but 100b in the deployed configuration is flatter (shorter in the atrial-ventricular direction) than the repair device 100a. For example, the repair device 100b has a ventricular wall engaging surface 150b that engages the ventricular wall along a distance DVb that is less than the distance DVa of the repair device 100a. The repair device 100b may be easier to implant than the repair device 100a because the lower profile of the repair device 100b can fit in a smaller delivery catheter and in the tight spaces between the ventricular heart wall and the chordae tendineae CT.



FIGS. 16A and 16B are cross-sectional side views of a repair device 100c configured in accordance with another embodiment of the present technology. In this embodiment, the repair device 100c has an extension unit 1620 including a bellows 1622 that preferentially expands in the anterior direction AD. The bellows 1622 can be an accordion style portion of the extension unit 1620, and the remainder of the extension unit 1620 can be a flexible fabric or polymeric material that is made from the same material as the bellows 1622 or a different material. In other embodiments, the portion of the extension unit 1620 other than the bellows 1622 can be made from a metal or other material that can flex at a lower bend 1624. In operation, as the extension unit 1620 is inflated, the bellows 1622 allows the projection 130 to move in the anterior direction AD such that the repair device 100c engages the underside of the posterior leaflet PL by an increasing distance (e.g., DLc1 in FIG. 16A to DLc2 in FIG. 16B).



FIGS. 17A-17C are schematic top views of a native mitral valve MV in the heart viewed from the left atrium and showing an embodiment of any of the repair devices 100-100c described above implanted at the native mitral valve MV in accordance with additional embodiments of the present technology (repair devices 100-100c are identified collectively as “repair device 100” and shown in dotted lines with respect to FIGS. 17A-17C). The presence of the projections 130 may allow the repair device 100 to expand fully for supporting or bracing the outward-facing surface of the posterior leaflet PL in at least a partially closed position without tearing or excessively displacing or stretching the chordae tendineae which retain the repair device 100 at the target implantation location. In some embodiments, the chordae tendineae also help retain the repair device 100 in a desired cross-sectional shape. The projections 130 may be configured to extend anteriorly or radially along the underside of posterior leaflet PL through gaps between the basal or tertiary chordae by a sufficient distance to brace the posterior leaflet PL in the desired position for effective coaptation. The distal tips of the projections 130 are preferably rounded and smooth to avoid trauma to the leaflet and to allow the leaflet to bend or fold around the projections 130 in the partially closed position. The projections 130 may also have structures, materials, or coatings thereon to engage and retain the chordae tendineae such that the projections 130 will not pull out in the reverse direction. For example, the projections 130 may have an enlarged head or T-shape at their distal ends, scales or backward-pointing tines along their sidewalls, or other features that allow the projections 130 to slide easily between the chordae tendineae in one direction but to resist movement in the other. The projections 130 may also be coated with a tissue in-growth promoting agent. In some embodiments, the device 100 can include other materials that encourages tissue ingrowth and/or tissue healing around the device such that the depressions 131 between the projections 130 may be filled with tissue (e.g., pannus of tissue) leaving a relatively smooth surface exposed to the left ventricle.


As shown in FIG. 17A, the repair device 100 can have a relatively consistent cross-sectional dimension over the length of the device (e.g., at the first and second ends 112, 114 and along the curved region 116). In a different embodiment shown in FIG. 17B, the curved region 116 device 100 can have a cross-sectional dimension D1 that is larger than cross-sectional dimensions D2, D3 at the first and second ends 112, 114, respectively. In this embodiment, the larger cross-sectional dimension D1 may assist the coaptation of the posterior leaflet PL with the anterior leaflet AL in the central region CR of the native mitral valve MV. In other embodiments, the device 100 can be configured to have larger cross-sectional dimensions at one or more ends (e.g., first and/or second ends 112, 114). For example, FIG. 17C shows a repair device 100 having an asymmetric cross-section profile. As shown in FIG. 17C, the repair device can have a second end 114 having a cross-sectional dimension D4 that is larger than cross-sectional dimensions D5 and D6 of the curved region 116 and the first end 112, respectively. Accordingly, the repair device 100 can include a variety of dimensions (e.g., cross-sectional dimensions) and shapes that can be used to address a specific heart valve morphology of a patient. For example, the device 100 could be shaped and sized to repair areas of regurgitation within the native valve while preserving functionality of the leaflets (e.g., posterior leaflet function) to the extent possible in healthy areas of the native valve. In alternative embodiments, the device 100 may have a plurality of expandable, inflatable, or fillable regions or pockets arranged along the length of the device which can be independently expanded by injection of fluid to create regions of different cross-sectional size or shape along the length of device 100. In some embodiments, each of these regions or pockets could be selectively expanded as the heart continues to beat until the posterior leaflet is positioned and shaped as needed to reduce or eliminate regurgitation through the valve.


Repair devices in accordance with any of the foregoing embodiments can have other shapes, dimensions, sizes and configurations to address patient specific anatomy or to otherwise achieve coaptation of the native valve leaflets in a specific patient. The shape and dimension of the repair device 100 may be selected such that the posterior leaflet is braced in a position which results in sealing coaptation of the posterior and anterior leaflets during systole. The repair device 100 may be adjustable in size or shape before or after placement to allow the physician to adjust the device to achieve the desired post-treatment leaflet position. For example, the repair device 100 may have malleable portions that can be manually shaped by the physician, mechanically articulating portions that can be remotely adjusted, or inflatable portions into which a fluid may be injected to change their shape or size.


One aspect of several embodiments of the repair devices 100-100c described above is that the support 110 is secured at the target site without anchors or other components that pierce the tissue of the leaflets, annulus and/or the wall of the heart. For example, the combination of expanding or otherwise extending the projections 130 between the chordae tendineae and pressing the support 110 against the underside of the posterior leaflet and the wall of the left ventricle securely holds the repair device in place. This is expected to simplify the treatment and reduce trauma to the heart.


In other embodiments, repair device 100 may have features on its exterior to enhance fixation with the native tissue. For example, the posterior surface that engages the wall of the ventricle, and/or the upper surface that engages the posterior leaflet, may have barbs, bumps, ribs, spikes, or other projections configured to engage the tissue and enhance fixation through friction or by penetration of the tissue surface. Additionally or alternatively, friction-enhancing fabrics, polymers or other materials may be provided on these surfaces. In other embodiments, loops or hooks may be coupled to repair device 100 which are configured to engage with or extend around the chordae or papillary muscles. Further, the material used to cover repair device 100 may enhance tissue ingrowth such that the device is encapsulated in tissue within a short time after implantation.


Another aspect of several embodiments of the repair devices 100-100c is that the degree to which the projections 130 of the extension unit 120 extend in an anterior direction can be controlled to custom tailor the repair device 100 to the anatomy of a specific patient. For example, when the extension unit 120 is an inflatable bladder or balloon, the distance that the projections 130 extend in the anterior direction can be controlled by the amount of filler material 140 that is injected into the extension unit 120. This is expected to provide enhanced flexibility and customization of the repair device 100.



FIG. 18 is a perspective view of another embodiment of a repair device 1800 having a curved support 1810 with a first end 1812 and a second end 1814. The support 1810 may be similar to or the same as any of the supports 110 described above. The repair device 1800 further includes retention elements 1890 projecting from the support 1810 to enhance anchoring to the native tissue. Each retention member can have a post 1892 configured to extend through the opening between the valve leaflets and a cross-member 1894 configured rest on a upstream side or exterior surface of the valve leaflets. The retention elements 1890 may have a T-shape as shown in FIG. 18, lollipop shape, arrowhead shape, or other suitable structure to resist passing back between the leaflets. Optionally, the retention elements 1890 may be configured to press against, frictionally engage with, or penetrate the tissue of the native annulus, posterior leaflet, or atrial wall. In still other embodiments, the retention elements 1890 may be configured to engage and optionally penetrate into the ventricular wall. For example, a ventricular wall-engaging surface of the repair device may have one or more retention members in the form of spikes, barbs, ridges, bumps, hooks, or other frictional or wall-penetrating structures disposed thereon. Such retention members can be delivered through a central lumen of the repair device 1800 after placement, or be automatically deployed as the repair device 1800 expands.



FIG. 19 is a side cross-sectional view of the repair device 1800 after the repair device has been implanted under the posterior leaflet PL of a native mitral valve MV. In this embodiment, the retention elements 1890 extend from the support 1810 between the leaflets to an upstream or super-annular side of the leaflets. Preferably, the retention elements 1890 are mounted near the ends 1812, 1814 of the support 1810 so as to extend through the commissures of the valve to the upstream side (shown in more detail in FIG. 20C below). Alternatively, the retention elements 1890 can penetrate through the leaflet itself (shown in more detail in FIG. 19).



FIG. 20A is a schematic top view of a native mitral valve MV in the heart viewed from the left atrium and showing normal closure of a native posterior leaflet (PL) and a native anterior leaflet (AL), and FIG. 20B is a schematic top view of a native mitral valve MV in the heart viewed from the left atrium and showing abnormal closure of the posterior and anterior leaflets PL, AL. In FIG. 20B, the posterior leaflet PL fails to sufficiently coapt with the anterior leaflet AL, which in turn allows blood to regurgitate through the valve. FIG. 20C is a schematic top view showing an embodiment of the repair device 1800 (shown in dotted lines) implanted at a subannular location of the otherwise abnormally closed native mitral valve MV of FIG. 20B in accordance with an embodiment of the present technology. As shown in FIG. 20C, after the repair device 1800 is deployed behind the posterior leaflet PL in the subannular position, the repair device 1800 braces the posterior leaflet PL from the backside surface of the leaflet to support the leaflet in at least a partially closed position in which it sufficiently coapts with the anterior leaflet AL to reduce or eliminate regurgitation. The posterior leaflet PL in this example is braced such that it remains in a substantially closed position and is substantially prevented from moving away from the anterior leaflet AL during the cardiac cycle. The anterior leaflet AL can continue to open and close during diastole and systole, respectively. The repair device 1800 includes one or more retention elements 1890 as described above with respect to FIGS. 18 and 19. For example, the retention elements 1890 are shown extending through the commissures of the valve to the upstream side.


Various aspects of the present technology provide heart valve repair devices that can reduce the effective annular area of the mitral valve orifice, by holding the posterior leaflet permanently closed, or in other embodiments mostly closed, or in further embodiments in an extended position beyond its natural closed position state. When the repair device is deployed at the target region of the mitral valve, the native valve may have only a functional anterior leaflet, thereby reducing the effective orifice area. Not to be bound by theory, the remaining effective orifice area is believed to be sufficient to avoid a physiologically detrimental or an excessive pressure gradient through the mitral orifice during systole. Regurgitant mitral valves typically have dilated to a size much larger than their original area, so a reduction in the orifice area may not compromise the valve. Additionally, many conventional mitral valve repair surgeries result in a posterior leaflet that extends only a very short distance from the posterior annulus. After these surgeries, the motion of the anterior leaflet provides nearly all of the orifice area. Accordingly, immobilization of the posterior leaflet of a dilated mitral valve in the closed position is not believed to lead to hemodynamic complications due to a high pressure gradient during antegrade flow through the valve.


Following implantation and deployment of the repair device in the target location, and while the device extends and holds the posterior leaflet of the mitral valve at least partially in the closed position, the device additionally can apply tension from the valve leaflet to the chordae tendineae attached to the papillary muscles and the ventricular wall. This additional tension applied by the implanted repair device can, in some embodiments, pull the papillary muscles and the free wall of the left ventricle closer to the mitral valve to reduce the tethering effect on the anterior leaflet and allow the anterior leaflet to close more effectively. Thus, in addition to the hemodynamic benefit of a competent mitral valve by at least partially closing the posterior leaflet, the device might slightly improve morphology of both the anterior leaflet and the left ventricle, and help the valve to provide a structural benefit to the ventricle.


In another aspect of the present technology, several embodiments of the repair device 100 can be used in conjunction with a prosthetic heart valve replacement device delivered percutaneously or trans-apically to treat an abnormal or diseased native heart valve. Percutaneous or transapical replacement of the mitral valve is particularly challenging due, at least in part, to the non-circular, large, and asymmetric shape of the mitral annulus. In addition, a diseased mitral valve can enlarge over time making implantation of a percutaneous prosthetic heart valve even more challenging. In accordance with an embodiment of the present technology, the repair device 100 can be configured to change either an annulus shape or an annulus cross-sectional dimension when the device 100 is in the deployed configuration. In a particular example, the repair device 100 can be implanted in the sub annular position behind a posterior leaflet PL of a native mitral valve MV to decrease the effective size of the mitral valve annulus. In another embodiment, the repair device 100 can be configured to change the native annulus shape to a more circular shape or having a circular orifice, which may be advantageous for receiving some variations of implantable prosthetic heart valves. In one embodiment, the repair device 100 may be implanted in a first surgical step and implantation of a prosthetic heart valve device may occur at a second surgical step either immediately or at some future date.



FIG. 21A is a schematic top view of a native mitral valve MV in the heart viewed from the left atrium and showing a heart valve repair device 100 (shown in dotted lines) implanted at the native mitral valve wherein the opposing ends 112, 114 of the repair device 100 extend beyond the native valve commissures of the posterior leaflet PL. In this embodiment the first and second ends 112, 114 can support at least a portion of the anterior leaflet AL and/or create a smaller and/or circular native mitral valve orifice 170 for receiving a replacement heart valve device. FIG. 21B illustrates another embodiment of a heart valve repair device 100 (shown in dotted lines) implanted at the native mitral valve MV, wherein the repair device 100 has first and second ends 112, 114 that extend beyond the native valve commissures and meet, overlap and/or join behind the anterior leaflet AL. Additional strengthening and/or stiffening materials (e.g., nitinol, stainless steel, etc.) can be used, in some embodiments, to hold the ends 112, 114 in desired locations behind the anterior leaflet AL. In the embodiment shown in FIG. 21B, the device 100 can either partially or fully support the subannular region behind the anterior leaflet AL as well as partially or fully support the anterior leaflet AL to effectively shrink the effective annular area and/or create a smaller and/or more circular native mitral valve orifice 170 for receiving a replacement heart valve device.


In one example, the smaller and/or circular native mitral valve orifice 170 may be able to accommodate valve prostheses designed for implantation in circular orifices, such as aortic valve replacement devices. For example, FIG. 21C is a schematic top view of the native mitral valve MV shown in FIG. 21A and showing the heart valve repair device 100 (shown in dotted lines) and a prosthetic heart valve 180 implanted at the native mitral valve MV.


As described above with respect to FIGS. 7-1B, a variety of percutaneous and minimally invasive techniques can be used to access and implant the heart valve repair devices disclosed herein. In one specific embodiment, and in accordance with an embodiment of the present technology, FIG. 22 illustrates a method 2200 for repairing a native valve of a patient. The method 2200 can include positioning a heart valve repair device in a subannular position and behind at least one leaflet, wherein the leaflet is connected to chordae tendineae (block 2202). The repair device can have a support in a contracted configuration. Optionally, the support can include an extension unit configured to be biocompatible with cardiac tissue at or near the native valve of the patient. The method 2200 can also include extending the support in the subannular position such that the support engages an interior surface of a heart wall and a backside of the at least one leaflet (block 2204). Further optional steps of the method 2200 can include injecting a filler material into the extension unit (block 2206).


In one embodiment, positioning of a heart valve repair device can include placing a percutaneously positioned guide catheter with its distal tip approaching one of the mitral valve commissures and positioned at the end of the groove behind the posterior leaflet. A steerable guidewire and flexible catheter can then be advanced from the guide catheter around the groove behind the posterior leaflet and in the direction of the other opposite commissure. Once the catheter is in place, the guidewire can be withdrawn and the repair device can be introduced (e.g., in a contracted configuration) through the flexible catheter. If necessary, a flexible secondary guiding catheter or sheath can be placed over the guidewire or catheter before introducing the repair device. The repair device can be contained in the contracted configuration by a thin extension unit or sheath during the introduction process. Once the repair device is positioned behind the posterior leaflet, the sheath is withdrawn and the device is deployed or inflated. Further guidance can be used to ensure that the projections, if present, expand between the tertiary chordae tendineae. In some embodiments, radiopaque markers can be incorporated in known locations on the catheter, the sheath, or the repair device to ensure proper delivery to the target location.


The repair devices, systems and methods disclosed herein may also be used to repair and/or treat regurgitant tricuspid valves. The tricuspid valve, like the mitral valve, has leaflets tethered by chordae tendineae. Such a repair device as disclosed herein might be deployed behind one, two or all three of the tricuspid valve leaflets.


In still further applications, embodiments of the repair devices in accordance with the present technology can be used to enhance the functionality of various prosthetic valves. For example, the repair device can be configured to push or brace prosthetic leaflets or prosthetic aptation devices implanted at a native heart valve thereby facilitating coaptation of the prosthetic leaflets. In particular examples, several embodiments of repair devices in accordance with the present technology can be used to at least partially coapt (a) the prosthetic aptation devices shown and described in U.S. Pat. No. 7,404,824 B1, filed by Webler et al. on Nov. 12, 2003, which is herein incorporated by reference or (b) the prosthetic leaflets of devices shown and described in U.S. Pat. No. 6,730,118, filed by Spenser et al. on Oct. 11, 2002 and/or U.S. Patent Publication No. 2008/0243245, filed by Thambar et al. on May 28, 2008, which is also incorporated herein by reference. In another embodiment, several embodiments of repair devices in accordance with the present technology can also be used concomitantly with other valve therapies, such as the MitraClip® device sold by Abbott Laboratories, which connects the free edges of the two leaflets of the mitral valve.


Various aspects of the present disclosure provide heart valve repair devices, systems and methods for bracing at least a portion of the posterior leaflet of the native mitral valve in a closed or partially closed position to reduce or eliminate regurgitation occurrence in the mitral valve, while retaining enough effective valve area to prevent any significant pressure gradient across the mitral valve. Other aspects of the present disclosure provide heart valve repair devices, systems and methods for reducing the effective area of the mitral orifice and/or rendering a mitral valve competent without substantially reshaping the native annulus. Additionally, while additional tethering or anchoring mechanisms known in the art can be used to anchor the device in the target location, the devices described herein do not require additional tethering or anchoring mechanisms.


Features of the prosthetic heart valve device components described above also can be interchanged to form additional embodiments of the present technology. For example, the appendage 135 of the repair device 101 illustrated in FIG. 14B can be incorporated into the repair device 100 shown in FIGS. 11A-11C, the repair devices 100a-100c described above with reference to FIGS. 14A, 15, 16A and 16B, and the repair device 1800 shown in FIG. 18.


The following Examples are illustrative of several embodiments of the present technology.


EXAMPLES

1. A method of repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle, comprising:

    • implanting a repair device having a support and an appendage under the posterior leaflet; and
    • causing the support to press against a portion of an underside of the posterior leaflet and thereby push at least a portion of the posterior leaflet toward the anterior leaflet and extend the appendage beyond an edge of the posterior leaflet toward the anterior leaflet.


2. A method of repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle, comprising:

    • positioning a repair device in the left ventricle under the posterior leaflet and between a wall of the left ventricle and chordae tendineae; and
    • engaging an underside of the posterior leaflet with a support of the repair device such that a portion of the posterior leaflet moves toward the anterior leaflet,
    • wherein, in the engaged arrangement, the repair device further includes a flap extending beyond an edge of the posterior leaflet toward the anterior leaflet.


3. The method of any of examples 1-2 wherein causing the support to press against the underside of the posterior leaflet or engaging the underside of the posterior leaflet with the support comprises projecting at least a portion of the support in an anterior direction such that the support urges a portion of the posterior leaflet towards the anterior leaflet.


4. The method of any of examples 1-3 wherein:

    • the support comprises an extension unit;
    • positioning the repair device under the posterior leaflet comprises implanting the extension unit under the posterior leaflet in an unexpanded state; and
    • causing the support to press against an underside of the posterior leaflet or engaging the underside of the posterior leaflet with the support comprises extending at least a portion of the extension unit such that the support presses against a wider portion of the posterior leaflet than in the unexpanded state.


5. The method of example 4 wherein the extension unit comprises an inflatable bladder and extending the extension unit comprises injecting an inflation medium into the inflatable bladder.


6. The method of example 5 wherein the inflation medium comprises a biocompatible fluid.


7. The method of example 5 wherein the inflation medium comprises a curable fluid that is injected into the bladder in a fluidic state and then cures to a hardened state.


8. The method of example 4 wherein the extension unit comprises a self-expanding metal structure and extending at least a portion of the extension unit comprises releasing the self-expanding metal structure from a collapsed state such that the self-expanding metal structure presses against the underside of the posterior leaflet.


9. The method of any of examples 1-8 wherein the support comprises a plurality of projections and a plurality of depressions, each depression being disposed between two of the projections, and causing the support to press against an underside of the posterior leaflet or engaging the underside of the posterior leaflet with the support comprises extending the projections along the underside of the posterior leaflet such that an upper side of the projections presses against the posterior leaflet and the chordae tendineae are positioned in at least some of the depressions.


10. A method for repairing a native valve of a patient, the method comprising:

    • positioning a heart valve repair device in a subannular position behind at least one leaflet connected to chordae tendineae, the repair device having a support in an unexpanded configuration; and
    • expanding the support in the subannular position such that the support engages an interior surface of a heart wall and a downstream-facing surface of the at least one leaflet,
    • wherein the repair device is configured to reposition the leaflet into an at least partially closed position and brace the leaflet such that the function of the native valve is improved,
    • wherein, in the expanded arrangement, the repair device further includes an appendage extending beyond an edge of the at least one leaflet toward another leaflet.


11. The method of example 10 wherein the native valve is a mitral valve, and wherein the heart wall is a left ventricular wall and the leaflet is a posterior mitral valve leaflet.


12. The method of examples 10 or 11 wherein prior to positioning the heart valve repair device the patient has mitral valve regurgitation, and wherein the repair device reduces the regurgitation after expanding the support in the subannular position.


13. The method of any one of examples 10-12 wherein the support comprises an extension unit configured to expand along the downstream-facing surface of the at least one leaflet.


14. The method of example 13 wherein the extension unit is configured to expand in a direction toward a free edge of the at least one leaflet.


15. The method of example 13 wherein tissue grows into the extension unit after the repair device braces the leaflet in the partially closed position.


16. The method of any one of examples 13-15 wherein the extension unit comprises a plurality of projections configured to extend between the chordae tendineae connected to the leaflet.


17. The method of any one of examples 13-16, further comprising injecting a filler material into the extension unit.


18. The method of example 17 wherein the filler material fills and expands the plurality of projections so as to extend between the chordae tendineae.


19. The method of example 10 wherein, after expanding, the support is held in place by chordae tendineae attached to the leaflet.


20. The method of example 19 wherein the support is retained between the chordae tendineae and the leaflet and a subannular wall of the heart.


21. The method of examples 19 or 20 wherein the chordae tendineae are basal or tertiary chordae tendineae.


22. The method of example 10 wherein the repair device is held in place without penetrating the leaflet or heart wall tissue.


23. The method of example 10, further comprising releasing the repair device at the subannular position from a delivery device, wherein the repair device resides substantially entirely on the subannular side of the leaflet after being released from the delivery device.


24. The method of example 10, further comprising releasing the repair device at the subannular position from a delivery device, wherein the support maintains the leaflet so as not to open wider than the partially closed position after being released from the delivery device.


25. The method of example 24 wherein the support allows the leaflet to move between the partially closed position and a completely closed position during a cardiac cycle.


26. The method of example 10 wherein the support maintains a first leaflet of the valve in the partially closed position so as to sealingly engage a second leaflet of the valve during a portion of a cardiac cycle.


27. The method of example 10 wherein the repair device further comprises at least one retention member, wherein the retention member extends through or between one or more of the valve leaflets to a super-annular side thereof to maintain the support in the subannular position.


28. The method of example 10 wherein the repair device further comprises at least one retention member configured to engage the inward facing wall of the heart.


29. The method of example 10 wherein the support is expanded by injecting a fluid therein.


30. The method of example 10 wherein expanding the support includes releasing the support from a constrained configuration such that the support self-expands to an expanded configuration.


31. The method of example 10 wherein the support is expanded at least partially by absorption of blood or other body fluids.


32. The method of example 10 wherein an effective orifice area of the valve is reduced when the support is expanded.


33. The method of example 10 wherein expansion of the support changes the shape of an annulus of the valve and/or a shape of a functional orifice of the valve.


34. The method of example 10 wherein expansion of the support repositions the at least one leaflet such that an inward facing surface thereof coapts with an opposing surface of a second leaflet of the native valve during at least a portion of the cardiac cycle.


35. The method of example 10 wherein the placement and expansion of the support does not substantially change the shape of an annulus of the valve.


36. A repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle, the repair device comprising:

    • a support having (a) a contracted configuration in which the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae and (b) an extended configuration in which the support projects anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet sufficiently to improve coaptation of the posterior and anterior leaflets; and
    • an appendage, wherein in the extended configuration, the appendage extends beyond an edge of the posterior leaflet toward the anterior leaflet.


37. The repair device of example 36, wherein the support comprises an extension unit configured to push at least a portion of the leaflet towards an opposing leaflet of the native valve.


38. The repair device of example 37 wherein the extension unit is expandable from a contracted configuration to an expanded configuration.


39 The repair device of example 38 wherein the extension unit comprises an inflatable or fillable member.


40. The repair device of example 39, further comprising a port in communication with the inflatable or fillable member for delivering a fluid thereto.


41. The repair device of example 37 wherein the support comprises an elongated spine, the extension unit being coupled to the spine.


42. The repair device of example 41 wherein the extension unit is substantially more flexible than the spine in the contracted configuration.


43. The repair device of example 41 wherein the spine has a longitudinal axis and the extension unit is configured to expand in a direction transverse to the longitudinal axis.


44. The repair device of example 41 wherein the spine is curved in an unconstrained state and the extension unit is configured to expand in a radial direction relative to the spine.


45. The repair device of example 37 wherein the extension unit comprises a flexible cover extending around the spine.


46. The repair device of example 45 wherein the flexible cover is inflatable or fillable with a fluid.


47. The repair device of example 37 wherein the extension unit is substantially more rigid in the expanded configuration.


48. The repair device of example 36 wherein the support is formed of a biocompatible material for promoting tissue ingrowth.


49. The repair device of any one of examples 36-48 wherein the support is expandable.


50. The repair device of any one of examples 36-49 wherein the support is configured to conform to a shape defined by native tissue in the subannular position.


51. The repair device of example 50 wherein the support is configured to be held in place by chordae tendineae attached to the valve leaflet.


52. The repair device of example 51 wherein the support is configured to be compressively retained between the chordae tendineae and the leaflet and a subannular wall of the heart.


53. The repair device of example 36 wherein the support is configured to be held in the subannular position without penetrating the leaflet or heart wall tissue.


54. The repair device of example 36 wherein the support is configured to reside substantially entirely on the subannular side of the leaflet.


55. The repair device of example 36 wherein the support is configured to maintain the leaflet so as not to open wider than the partially closed position.


56. The repair device of example 55 wherein the support is configured to allow the leaflet to move between the partially closed position and a completely closed position during a cardiac cycle.


57. The repair device of example 36 wherein the support maintains a first leaflet of the valve in the partially closed position so as to sealingly engage a second leaflet of the valve during a portion of a cardiac cycle.


58. The repair device of any one of examples 36-57 wherein the repair device has a triangular or polygonal cross-section.


59. The repair device of any one of examples 36-58 wherein the repair device includes a plurality of projections configured to expand between and engage chordae tendineae attached to the leaflet.


60. The repair device of example 59 wherein the support is preformed to include the plurality of projections when in a deployed configuration.


61. The repair device of example 60 wherein the support includes at least one bladder configured to receive filler material, and wherein the support is expandable with the filler material to form the plurality of projections when the repair device is in a deployed configuration.


62. The repair device of example 36-61 wherein the support has a first radial cross-section near a first end of the support, a second radial cross-section near a second end of the support, and a third radial cross-section near a central region of the support, and wherein the first, second, and third radial cross-sections are substantially equal.


63. The repair device of example 36-62 wherein the support has a first radial cross-section near a first end of the support, a second radial cross-section near a second end of the support, and a third radial cross-section near a central region of the support, and wherein the third radial cross-section is greater than the first and second radial cross-sections.


64. The repair device of example 36-61 wherein the support has a first radial cross-section near a first end of the support, a second radial cross-section near a second end of the support, and a third radial cross-section near a central region of the support, and wherein the first radial cross-section is greater than the second and third radial cross-sections.


65. The repair device of any one of examples 36-64 wherein the support engages an outward-facing surface of a plurality of leaflets.


66. The repair device of any one of examples 36-65 wherein the native valve is a mitral valve, and wherein the support is configured to engage an underside of a posterior leaflet of the mitral valve.


67. The repair device of example 66 wherein the support is configured to reside substantially entirely under the posterior leaflet.


68. The repair device of any one of examples 36-66 wherein the native valve is a tricuspid valve, and wherein the support is configured to engage an underside of a leaflet of the tricuspid valve.


69. The repair device of any one of examples 36-66 wherein the native valve is a mitral valve, and wherein the support is configured to—

    • engage the outward-facing surface of a posterior leaflet; and
    • extend beyond native valve commissures to support at a least a portion of an anterior leaflet.


70. The repair device of any one of examples 36-69 wherein the support includes a flexible and resilient spine.


71. The repair device of example 70 wherein the spine is one of a wire, a stent structure, a coiled spring or a braided tube.


72. The repair device of example 70 wherein the support further comprises a flexible cover extending around the spine.


73. The repair device of example 72 wherein the flexible cover is inflatable or fillable with a fluid.


74. The repair device of any one of examples 36-70 wherein the support is self-expanding.


75. The repair device of any one of examples 36-70 wherein the support includes at least one of nitinol or stainless steel.


76. The repair device of any one of examples 36-70 wherein the support expands to form a “C” shape to conform to a portion of a native mitral valve.


77. The repair device of any one of examples 36-70 wherein the support includes a subannular engaging surface, and wherein the subannular engaging surface includes one or more peaks and one or more valleys.


78. A system to treat a native valve of a patient, the system comprising:

    • a prosthetic valve repair device implantable in a subannular position relative to the native valve and having a support and an appendage, wherein the support is configured to engage an interior surface of a heart wall and an outward-facing surface of a leaflet of the native valve in a subannular position of the native valve, and wherein the support is configured to change an effective annulus shape and/or an effective annulus cross-sectional dimension when the device is in a deployed configuration, and further wherein the appendage is configured to extend beyond an edge of the leaflet toward an adjacent leaflet; and
    • a prosthetic valve having—
      • a radially expandable support structure with a lumen; and
      • a valve in the lumen and coupled to the support structure;
    • wherein the radially expandable support structure is configured to be deployed within the native valve when the prosthetic valve repair device is implanted in the subannular position and supported within the changed annulus shape or changed annulus cross-sectional dimension.


79. The system of example 78, further comprising a delivery catheter having a lumen configured to retain the prosthetic valve device in a delivery configuration having a lower profile than the deployed configuration.


80. The system of examples 78 or 79 wherein the native valve has a plurality of native leaflets joined at commissures, and wherein the support is configured to engage the outward-facing surface of at least one leaflet and extend beyond the commissures.


81. The system of example 80 wherein the native valve is a mitral valve, and wherein the support is configured to—

    • engage the outward-facing surface of a posterior leaflet; and
    • extend beyond the commissures to support at a least a portion of an anterior leaflet.


82. The system of any one of examples 78-81 wherein the prosthetic heart valve has a substantially circular cross-sectional dimension.


83. The system of example 82 wherein the support is configured to change the effective annulus shape from a non-circular cross-section to a substantially circular cross-section.


CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments. The embodiments, features, systems, devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in U.S. Provisional Patent Application No. 61/825,491, which is incorporated herein by reference in its entirety.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle, the repair device comprising: a support configured to be inserted under the posterior leaflet and deployed to position at least a portion of the posterior leaflet toward the anterior leaflet sufficiently to improve coaptation of the posterior and anterior leaflets, wherein the support is an open ring including a first end, a second end, and a curved portion extending between the first end and the second end such that the support is configured to conform to a portion of a native mitral valve annulus; andan appendage configured to, when the support is deployed, extend transverse to a longitudinal axis of the support beyond an edge of the posterior leaflet toward the anterior leaflet.
  • 2. The repair device of claim 1, wherein the support includes a contracted configuration in which the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae, wherein the support comprises an extension unit configured to push the at least a portion of the posterior leaflet towards the anterior leaflet of the native mitral valve when the support is deployed in an extended configuration, and wherein the extension unit is expandable from the contracted configuration to the extended configuration.
  • 3. The repair device of claim 2, wherein the extension unit comprises an inflatable or fillable member.
  • 4. The repair device of claim 3, further comprising a port in communication with the inflatable or fillable member for delivering a fluid thereto.
  • 5. The repair device of claim 2, wherein the support comprises an elongated spine, the extension unit being coupled to the spine.
  • 6. The repair device of claim 5, wherein the extension unit is substantially more flexible than the spine in the contracted configuration.
  • 7. The repair device of claim 6, wherein the spine has a longitudinal axis and the extension unit is configured to expand in a direction transverse to the longitudinal axis of the spine.
  • 8. The repair device of claim 5, wherein the spine is curved in an unconstrained state and the extension unit is configured to expand in a radial direction relative to the spine.
  • 9. The repair device of claim 5, wherein the extension unit comprises a flexible cover extending around the spine.
  • 10. The repair device of claim 9, wherein the flexible cover is inflatable or fillable with a fluid.
  • 11. The repair device of claim 2, wherein the extension unit is substantially more rigid in the extended configuration than in the contracted configuration.
  • 12. The repair device of claim 1, wherein the support is configured to be held under the posterior leaflet penetrating the posterior leaflet or heart wall tissue.
  • 13. The repair device of claim 1, wherein the support is configured to reside substantially entirely under the posterior leaflet.
  • 14. The repair device of claim 1, wherein the support is configured to allow the posterior leaflet to move between a partially closed position and a completely closed position during a cardiac cycle.
  • 15. The repair device of claim 1, wherein the support is configured to maintain the posterior leaflet of the native mitral valve in a partially closed position so as to sealingly engage the anterior leaflet of the native mitral valve during a portion of a cardiac cycle.
  • 16. The repair device of claim 1, wherein the support has a triangular or polygonal cross-section.
  • 17. The repair device of claim 1, wherein the support comprises a spine and an extension unit coupled to the spine, and wherein: the extension unit is expandable from a contracted configuration to an extended configuration;the extension unit includes a plurality of projections and depressions; andthe projections are configured to expand between and engage chordae tendineae attached to the posterior leaflet.
  • 18. The repair device of claim 17, wherein the extension unit is preformed to include the plurality of projections when in the extended configuration.
  • 19. The repair device of claim 17, wherein the extension unit includes at least one bladder configured to receive filler material, and wherein the extension unit is expandable with the filler material to form the plurality of projections when the repair device is in the extended configuration.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 16/273,065, filed Feb. 11, 2019, now U.S. Pat. No. 10,820,996, which is a continuation of U.S. patent application Ser. No. 15/241,155, filed Aug. 19, 2016, entitled “IMPLANTABLE HEART VALVE DEVICES, MITRAL VALVE REPAIR DEVICES AND ASSOCIATED SYSTEMS AND METHODS”, now U.S. Pat. No. 10,238,490, which claims priority to U.S. Provisional Patent Application No. 62/208,458, filed Aug. 21, 2015, entitled “IMPLANTABLE HEART VALVE DEVICES, MITRAL VALVE REPAIR DEVICES AND ASSOCIATED SYSTEMS AND METHODS”, both of which are incorporated by reference in their entireties.

US Referenced Citations (766)
Number Name Date Kind
3526219 Balamuth Sep 1970 A
3565062 Kuris Feb 1971 A
3589363 Banko Jun 1971 A
3667474 Lapkin et al. Jun 1972 A
3823717 Pohlman et al. Jul 1974 A
3861391 Antonevich et al. Jan 1975 A
3896811 Storz Jul 1975 A
4042979 Angell Aug 1977 A
4188952 Loschilov et al. Feb 1980 A
4431006 Trimmer et al. Feb 1984 A
4445509 Auth May 1984 A
4484579 Meno et al. Nov 1984 A
4490859 Black et al. Jan 1985 A
4587958 Noguchi et al. May 1986 A
4589419 Laughlin et al. May 1986 A
4602911 Ahmadi et al. Jul 1986 A
4646736 Auth Mar 1987 A
4692139 Stiles Sep 1987 A
4747821 Kensey et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4777951 Cribier et al. Oct 1988 A
4787388 Hofmann Nov 1988 A
4796629 Grayzel Jan 1989 A
4808153 Parisi Feb 1989 A
4819751 Shimada et al. Apr 1989 A
4841977 Griffith et al. Jun 1989 A
4870953 DonMicheal et al. Oct 1989 A
4878495 Grayzel Nov 1989 A
4898575 Fischell et al. Feb 1990 A
4909252 Goldberger Mar 1990 A
4919133 Chiang Apr 1990 A
4920954 Alliger et al. May 1990 A
4936281 Stasz Jun 1990 A
4960411 Buchbinder Oct 1990 A
4960424 Grooters Oct 1990 A
4986830 Owens et al. Jan 1991 A
4990134 Auth Feb 1991 A
5058570 Idemoto et al. Oct 1991 A
5069664 Guess et al. Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5106302 Farzin-nia et al. Apr 1992 A
5248296 Alliger Sep 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5295958 Shturman Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5314407 Auth et al. May 1994 A
5318014 Carter Jun 1994 A
5332402 Teitelbaum Jul 1994 A
5344426 Lau et al. Sep 1994 A
5344442 Deac Sep 1994 A
5352199 Tower Oct 1994 A
5356418 Shturman Oct 1994 A
5397293 Alliger et al. Mar 1995 A
5411025 Webster, Jr. et al. May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5489297 Duran Feb 1996 A
5584879 Reimold et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5626603 Venturelli et al. May 1997 A
5656036 Palmaz Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5662704 Gross et al. Sep 1997 A
5681336 Clement et al. Oct 1997 A
5695507 Auth et al. Dec 1997 A
5725494 Brisken Mar 1998 A
5782931 Yang et al. Jul 1998 A
5817101 Fiedler Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5853422 Huebsch et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5868781 Killion Feb 1999 A
5873811 Wang et al. Feb 1999 A
5904679 Clayman May 1999 A
5910129 Koblish et al. Jun 1999 A
5957882 Nita et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5989208 Nita Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
6047700 Eggers et al. Apr 2000 A
6050188 Bolza-Schunemann Apr 2000 A
6056759 Fiedler May 2000 A
6085754 Alferness et al. Jul 2000 A
6113608 Monroe et al. Sep 2000 A
RE36939 Tachibana et al. Oct 2000 E
6129734 Shturman et al. Oct 2000 A
6132444 Shturman et al. Oct 2000 A
6168579 Tsugita Jan 2001 B1
6217595 Shturman et al. Apr 2001 B1
6254635 Schroeder et al. Jul 2001 B1
6295712 Shturman et al. Oct 2001 B1
6306414 Koike Oct 2001 B1
6321109 Ben-haim et al. Nov 2001 B2
6402679 Mortier et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6494890 Shturman et al. Dec 2002 B1
6494891 Cornish et al. Dec 2002 B1
6505080 Sutton Jan 2003 B1
6530952 Vesely Mar 2003 B2
6540782 Snyders Apr 2003 B1
6562067 Mathis May 2003 B2
6565588 Clement et al. May 2003 B1
6569196 Vesely May 2003 B1
6579308 Jansen et al. Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6595912 Lau et al. Jul 2003 B2
6605109 Fiedler Aug 2003 B2
6616689 Ainsworth et al. Sep 2003 B1
6623452 Chien et al. Sep 2003 B2
6638288 Shturman et al. Oct 2003 B1
6648854 Patterson et al. Nov 2003 B1
6689086 Nita et al. Feb 2004 B1
6702748 Nita et al. Mar 2004 B1
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6746463 Schwartz Jun 2004 B1
6811801 Nguyen et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6843797 Nash et al. Jan 2005 B2
6852118 Shturman et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6869439 White et al. Mar 2005 B2
6951571 Srivastava Oct 2005 B1
6986775 Morales et al. Jan 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7052487 Cohn et al. May 2006 B2
7077861 Spence Jul 2006 B2
7125420 Rourke et al. Oct 2006 B2
7186264 Liddicoat et al. Mar 2007 B2
7261732 Justino Aug 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7381218 Schreck Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7442204 Schwammenthal et al. Oct 2008 B2
7473275 Marquez Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803168 Gifford et al. Sep 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7942928 Webler et al. May 2011 B2
8002826 Seguin Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini et al. Feb 2012 B2
8226711 Mortier et al. Jul 2012 B2
8252051 Chau et al. Aug 2012 B2
8398704 Straubinger et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414643 Tuval et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8496671 Hausen Jul 2013 B1
8512252 Ludomirsky et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523883 Saadat Sep 2013 B2
8532352 Ionasec et al. Sep 2013 B2
8540767 Zhang Sep 2013 B2
8545551 Loulmet Oct 2013 B2
8551161 Dolan Oct 2013 B2
8579788 Orejola Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8597348 Rowe et al. Dec 2013 B2
8608796 Matheny Dec 2013 B2
8608797 Gross et al. Dec 2013 B2
8623077 Cohn Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632585 Seguin et al. Jan 2014 B2
8632586 Spenser et al. Jan 2014 B2
8634935 Gaudiani Jan 2014 B2
8647254 Callas et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679176 Matheny Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8688234 Zhu et al. Apr 2014 B2
8690858 Machold et al. Apr 2014 B2
8709074 Solem et al. Apr 2014 B2
8712133 Guhring et al. Apr 2014 B2
8715160 Raman et al. May 2014 B2
8721665 Oz et al. May 2014 B2
8721718 Kassab May 2014 B2
8740918 Seguin Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758431 Orlov et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8771292 Allen et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777991 Zarbatany et al. Jul 2014 B2
8778016 Janovsky et al. Jul 2014 B2
8781580 Hedberg et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8792699 Guetter et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Seguin et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8812431 Voigt et al. Aug 2014 B2
8828043 Chambers Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852213 Gammie et al. Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858622 Machold et al. Oct 2014 B2
8859724 Meier et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926694 Costello Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8968393 Rothstein Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8974445 Warnking et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8979923 Spence et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986376 Solem Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9011522 Annest Apr 2015 B2
9011523 Seguin Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023098 Kuehn May 2015 B2
9023100 Quadri et al. May 2015 B2
9050188 Schweich, Jr et al. Jun 2015 B2
9056009 Keränen Jun 2015 B2
9066800 Clague et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9119713 Board et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9138313 McGuckinm, Jr. et al. Sep 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9192466 Kovalsky et al. Nov 2015 B2
9192471 Bolling Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9232942 Seguin et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9254192 Lutter et al. Feb 2016 B2
9271833 Kim et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9295547 Costello et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9326850 Venkatasubramanian May 2016 B2
9339378 Quadri et al. May 2016 B2
9339379 Quadri et al. May 2016 B2
9339380 Quadri et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9358108 Bortlein et al. Jun 2016 B2
9387075 Bortlein et al. Jul 2016 B2
9387078 Gross et al. Jul 2016 B2
9393111 Ma et al. Jul 2016 B2
9554906 Aklog et al. Jan 2017 B2
9610159 Christianson et al. Apr 2017 B2
9629719 Rothstein et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9681951 Ratz et al. Jun 2017 B2
9687342 Figulla et al. Jun 2017 B2
9687343 Bortlein et al. Jun 2017 B2
9693859 Braido et al. Jul 2017 B2
9693862 Campbell et al. Jul 2017 B2
9694121 Alexander et al. Jul 2017 B2
9700409 Braido et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9730791 Ratz et al. Aug 2017 B2
9730792 Lutter et al. Aug 2017 B2
9730794 Carpentier et al. Aug 2017 B2
9744036 Duffy et al. Aug 2017 B2
9750605 Ganesan et al. Sep 2017 B2
9750606 Ganesan et al. Sep 2017 B2
9750607 Ganesan et al. Sep 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763658 Eigler et al. Sep 2017 B2
9763782 Solem et al. Sep 2017 B2
9770328 Macoviak et al. Sep 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9827101 Solem et al. Nov 2017 B2
9833313 Board et al. Dec 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9839511 Ma et al. Dec 2017 B2
9844435 Eidenschink Dec 2017 B2
9848880 Coleman et al. Dec 2017 B2
9848983 Lashinski et al. Dec 2017 B2
9861477 Backus et al. Jan 2018 B2
9861480 Zakai et al. Jan 2018 B2
9895221 Vidlund et al. Feb 2018 B2
10080659 Zentgraf et al. Sep 2018 B1
10085835 Thambar et al. Oct 2018 B2
10111747 Gifford, III Oct 2018 B2
10123874 Khairkhahan et al. Nov 2018 B2
10238490 Gifford, III Mar 2019 B2
20010021872 Bailey et al. Sep 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020007219 Merrill et al. Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020072792 Burgermeister et al. Jun 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020082637 Lumauig Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20030078653 Vesely Apr 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040057955 O'Brien et al. Mar 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122510 Sarac Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040199191 Schwartz Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman Nov 2004 A1
20040243162 Wulfman Nov 2004 A1
20050007219 Ma et al. Jan 2005 A1
20050075662 Ma et al. Jan 2005 A1
20050075720 Pedersen et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050137682 Nguyen et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050137690 Justino Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137700 Salahieh et al. Jun 2005 A1
20050137701 Spence et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050267523 Salahieh et al. Jun 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060106456 Machold et al. May 2006 A9
20060149360 Schwammenthal et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Schwammenthal et al. Jul 2006 A1
20060253191 Navia et al. Aug 2006 A1
20060287719 Salahieh et al. Nov 2006 A1
20070056346 Spencer et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070073391 Bourang et al. Mar 2007 A1
20070078302 Ortiz et al. Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070173932 Cali et al. Jul 2007 A1
20080039935 Buch et al. Feb 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080103586 Styrc et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080140190 Macoviak et al. Jun 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20090043381 Macoviak Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093670 Annest et al. Apr 2009 A1
20090118744 Wells et al. May 2009 A1
20090149872 Gross et al. Jun 2009 A1
20090157174 Yoganathan et al. Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090259292 Bonhoeffer Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281609 Benichou et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090319038 Gurskis et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100023115 Robaina et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100030330 Bobo et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100121436 Tuval et al. May 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249915 Zhang Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324554 Gifford et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015722 Hauser et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110029071 Zlotnick et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110153008 Marchand et al. Jun 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110184512 Webler et al. Jul 2011 A1
20110208293 Tabor Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319990 Macoviak et al. Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120078347 Braido et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179239 Quadri Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130079873 Migliazza et al. Mar 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197354 Maschke et al. Aug 2013 A1
20130197630 Azarnoush Aug 2013 A1
20130204356 Dwork et al. Aug 2013 A1
20130204358 Matheny Aug 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130238089 Lichtenstein et al. Sep 2013 A1
20130244927 Lal et al. Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130259337 Guhring et al. Oct 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Calgue et al. Oct 2013 A1
20130261739 Kuehn Oct 2013 A1
20130261741 Accola Oct 2013 A1
20130268066 Rowe Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130282060 Tuval Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130289642 Hedberg et al. Oct 2013 A1
20130289717 Solem Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130296851 Boronyak et al. Nov 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304180 Green et al. Nov 2013 A1
20130304181 Green et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304198 Solem Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130309292 Andersen Nov 2013 A1
20130310436 Lowes et al. Nov 2013 A1
20130310925 Eliasen et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130331864 Jelich et al. Dec 2013 A1
20130338684 Hausen Dec 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20130345797 Dahlgren et al. Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140018913 Cartledge et al. Jan 2014 A1
20140023261 Watanabe et al. Jan 2014 A1
20140025164 Montorfano et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052240 Zhang Feb 2014 A1
20140056906 Yue et al. Feb 2014 A1
20140066895 Kipperman Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140088071 Nakai et al. Mar 2014 A1
20140088680 Costello et al. Mar 2014 A1
20140088693 Seguin et al. Mar 2014 A1
20140088695 Figulla et al. Mar 2014 A1
20140128965 Figulla et al. Mar 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140107775 Hjelle et al. Apr 2014 A1
20140114404 Gammie et al. Apr 2014 A1
20140114407 Rajamannan Apr 2014 A1
20140135913 Spence et al. Apr 2014 A1
20140163652 Hjelle et al. Apr 2014 A1
20140163668 Gammie et al. Apr 2014 A1
20140172076 Rajamannan Apr 2014 A1
20140121763 Duffy et al. May 2014 A1
20140172084 Duffy et al. May 2014 A1
20140172085 Rafiee May 2014 A1
20140172086 Lichtenstein et al. May 2014 A1
20140179993 Witzel et al. Jun 2014 A1
20140180401 Rafiee Jun 2014 A1
20140188108 Jonsson et al. Jun 2014 A1
20140188215 Callas et al. Jun 2014 A1
20140194920 Quadri et al. Jun 2014 A1
20140194976 Quadri et al. Jun 2014 A1
20140200397 Alexander et al. Jun 2014 A1
20140200649 Quill et al. Jun 2014 A1
20140200657 Goodine et al. Jul 2014 A1
20140200662 Hlavka et al. Jul 2014 A1
20140214159 Krahbichler Jul 2014 A1
20140219524 Starksen et al. Jul 2014 A1
20140222040 Raman et al. Jul 2014 A1
20140222138 Essinger et al. Jul 2014 A1
20140228942 Maurer et al. Jul 2014 A1
20140228946 Eftel et al. Jul 2014 A1
20140242086 Lal et al. Aug 2014 A1
20140243860 Morris et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243964 Venkatasubramanian Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257101 Gaudiani Sep 2014 A1
20140257466 Board et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257473 Rajamannan Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276395 Wilson et al. Sep 2014 A1
20140276609 Magee et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276971 Kovach Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277404 Wilson et al. Sep 2014 A1
20140277405 Wilson et al. Sep 2014 A1
20140277406 Arcidi Sep 2014 A1
20140277407 Dale et al. Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277409 Bortlein et al. Sep 2014 A1
20140277410 Bortlein et al. Sep 2014 A1
20140277411 Bortlein et al. Sep 2014 A1
20140277412 Bortlein et al. Sep 2014 A1
20140277420 Migliazza et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140288480 Zimmerman et al. Sep 2014 A1
20140296878 Oz et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140309727 Lamelas et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371846 Wilson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150005875 Tuval et al. Jan 2015 A1
20150025623 Granada et al. Jan 2015 A1
20150032127 Gammie et al. Jan 2015 A1
20150045878 Rowe Feb 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150094803 Navia Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112427 Schweich, Jr. et al. Apr 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112433 Schweich, Jr. et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150119982 Quill et al. Apr 2015 A1
20150127091 Cecere et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142105 Bolling et al. May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150157459 Macoviak et al. Jun 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150164641 Annest Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150173898 Drasler et al. Jun 2015 A1
20150173900 Hauser et al. Jun 2015 A1
20150190229 Seguin Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150202043 Zakai et al. Jul 2015 A1
20150209137 Quadri et al. Jul 2015 A1
20150209139 Granada et al. Jul 2015 A1
20150216655 Lane et al. Aug 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150223802 Tegzes Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150223935 Subramanian et al. Aug 2015 A1
20150230920 Alfieri et al. Aug 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150250590 Gries et al. Sep 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150257879 Bortlein et al. Sep 2015 A1
20150257881 Bortlein et al. Sep 2015 A1
20150257882 Bortlein et al. Sep 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150313739 Hummen et al. Nov 2015 A1
20150320553 Chau et al. Nov 2015 A1
20150327999 Board et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150342733 Alkhatib et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150351908 Keranen et al. Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20150374495 Ruyra Baliarda et al. Dec 2015 A1
20160000983 Mohl et al. Jan 2016 A1
20160015513 Lashinski et al. Jan 2016 A1
20160015514 Lashinski et al. Jan 2016 A1
20160015515 Lashinski et al. Jan 2016 A1
20160015543 Perouse et al. Jan 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038246 Wang et al. Feb 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160038283 Divekar et al. Feb 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160120643 Kupumbati May 2016 A1
20160143730 Kheradvar May 2016 A1
20160151154 Gorman, III et al. Jun 2016 A1
20160151156 Seguin et al. Jun 2016 A1
20160151552 Solem Jun 2016 A1
20160157999 Lane et al. Jun 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158001 Wallace et al. Jun 2016 A1
20160158002 Wallace et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160206424 Al-jilaihawi et al. Jul 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278920 Braido et al. Sep 2016 A1
20160317290 Chau et al. Nov 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170100250 Marsot et al. Apr 2017 A1
20170119526 Luong et al. May 2017 A1
20170125208 Kikuiri et al. May 2017 A1
20170128198 Cartledge et al. May 2017 A1
20170128205 Tamir et al. May 2017 A1
20170128206 Rafiee et al. May 2017 A1
20170128208 Christianson et al. May 2017 A1
20170156860 Lashinski Jun 2017 A1
20170165054 Benson et al. Jun 2017 A1
20170165055 Hauser et al. Jun 2017 A1
20170165064 Nyuli et al. Jun 2017 A1
20170172737 Kuetting et al. Jun 2017 A1
20170181851 Annest Jun 2017 A1
20170189177 Schweich, Jr. et al. Jul 2017 A1
20170189179 Ratz et al. Jul 2017 A1
20170189180 Alkhatib Jul 2017 A1
20170189181 Alkhatib et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170231763 Yellin et al. Aug 2017 A1
20170258585 Marquez et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281345 Yang et al. Oct 2017 A1
20170290659 Ulmer et al. Oct 2017 A1
20170296338 Campbell et al. Oct 2017 A1
20170296339 Thambar et al. Oct 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20170325941 Wallace et al. Nov 2017 A1
20170325945 Dale et al. Nov 2017 A1
20170325948 Wallace et al. Nov 2017 A1
20170333186 Spargias Nov 2017 A1
20170333188 Carpentier et al. Nov 2017 A1
20170340440 Ratz et al. Nov 2017 A1
20170348098 Rowe et al. Dec 2017 A1
20170348100 Lane et al. Dec 2017 A1
20170354496 Quadri et al. Dec 2017 A1
20170354497 Quadri et al. Dec 2017 A1
20170354499 Granada et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170360549 Lashinski et al. Dec 2017 A1
20170360558 Ma Dec 2017 A1
20170360585 White Dec 2017 A1
20190029812 Gifford, III Jan 2019 A1
Foreign Referenced Citations (361)
Number Date Country
1440261 Sep 2003 CN
101076290 Nov 2007 CN
101291637 Oct 2008 CN
101588771 Nov 2009 CN
102065777 May 2011 CN
102985031 Mar 2013 CN
202821715 Mar 2013 CN
103491900 Jan 2014 CN
104055600 Sep 2014 CN
104203158 Dec 2014 CN
104768500 Jul 2015 CN
104799974 Jul 2015 CN
19605042 Jan 1998 DE
102006052564 Dec 2007 DE
0186104 Jul 1986 EP
1512383 Mar 2005 EP
1545371 Jun 2005 EP
1551274 Jul 2005 EP
1629794 Mar 2006 EP
1646332 Apr 2006 EP
1702247 Sep 2006 EP
1734903 Dec 2006 EP
1891914 Feb 2008 EP
2026280 Feb 2009 EP
2037829 Mar 2009 EP
2081519 Jul 2009 EP
2111190 Oct 2009 EP
2142143 Jan 2010 EP
2167742 Mar 2010 EP
2278944 Feb 2011 EP
2306821 Apr 2011 EP
2327429 Jun 2011 EP
2400924 Jan 2012 EP
2400926 Jan 2012 EP
2410947 Feb 2012 EP
2444031 Apr 2012 EP
2488126 Aug 2012 EP
2509538 Oct 2012 EP
2549955 Jan 2013 EP
2549956 Jan 2013 EP
2566416 Mar 2013 EP
2586492 May 2013 EP
2618784 Jul 2013 EP
2623068 Aug 2013 EP
2626013 Aug 2013 EP
2629699 Aug 2013 EP
2633457 Sep 2013 EP
2637659 Sep 2013 EP
2641569 Sep 2013 EP
2644158 Oct 2013 EP
2654624 Oct 2013 EP
2656794 Oct 2013 EP
2656795 Oct 2013 EP
2656796 Oct 2013 EP
2667823 Dec 2013 EP
2670358 Dec 2013 EP
2676640 Dec 2013 EP
2688041 Jan 2014 EP
2695586 Feb 2014 EP
2697721 Feb 2014 EP
2713953 Apr 2014 EP
2714068 Apr 2014 EP
2723272 Apr 2014 EP
2723273 Apr 2014 EP
2723277 Apr 2014 EP
2739214 Jun 2014 EP
2741711 Jun 2014 EP
2750630 Jul 2014 EP
2750631 Jul 2014 EP
2755562 Jul 2014 EP
2755602 Jul 2014 EP
2757962 Jul 2014 EP
2777616 Sep 2014 EP
2777617 Sep 2014 EP
2782523 Oct 2014 EP
2785282 Oct 2014 EP
2786817 Oct 2014 EP
2790609 Oct 2014 EP
2793751 Oct 2014 EP
2809263 Dec 2014 EP
2810620 Dec 2014 EP
2814428 Dec 2014 EP
2814429 Dec 2014 EP
2819617 Jan 2015 EP
2819618 Jan 2015 EP
2819619 Jan 2015 EP
2416739 Feb 2015 EP
2833836 Feb 2015 EP
2838475 Feb 2015 EP
2839815 Feb 2015 EP
2844190 Mar 2015 EP
2849680 Mar 2015 EP
2849681 Mar 2015 EP
2852354 Apr 2015 EP
2870933 May 2015 EP
2873011 May 2015 EP
2875797 May 2015 EP
2760375 Jun 2015 EP
2882374 Jun 2015 EP
2886082 Jun 2015 EP
2886083 Jun 2015 EP
2886084 Jun 2015 EP
2895111 Jul 2015 EP
2901966 Aug 2015 EP
2907479 Aug 2015 EP
2945572 Nov 2015 EP
2948094 Dec 2015 EP
2948102 Dec 2015 EP
2964152 Jan 2016 EP
2967859 Jan 2016 EP
2967860 Jan 2016 EP
2967866 Jan 2016 EP
2968847 Jan 2016 EP
2981208 Feb 2016 EP
2982336 Feb 2016 EP
2999433 Mar 2016 EP
3003187 Apr 2016 EP
3003219 Apr 2016 EP
3003220 Apr 2016 EP
3010447 Apr 2016 EP
3013281 May 2016 EP
3017792 May 2016 EP
3021792 May 2016 EP
3023117 May 2016 EP
3027143 Jun 2016 EP
3033048 Jun 2016 EP
3037064 Jun 2016 EP
3079633 Oct 2016 EP
3229736 Nov 2016 EP
2470119 May 2017 EP
2999436 May 2017 EP
2419050 Jun 2017 EP
3184081 Jun 2017 EP
3191027 Jul 2017 EP
2611389 Aug 2017 EP
3082656 Aug 2017 EP
3206628 Aug 2017 EP
2010103 Sep 2017 EP
2509538 Sep 2017 EP
3223751 Oct 2017 EP
3027144 Nov 2017 EP
3110368 Nov 2017 EP
3110369 Nov 2017 EP
3132773 Nov 2017 EP
3245980 Nov 2017 EP
3250154 Dec 2017 EP
3256077 Dec 2017 EP
3258883 Dec 2017 EP
3273910 Jan 2018 EP
H06504516 May 1994 JP
H10258124 Sep 1998 JP
2002509756 Apr 2002 JP
2005280917 Oct 2005 JP
2008528117 Jul 2008 JP
2008541863 Nov 2008 JP
2009195712 Sep 2009 JP
2010518947 Jun 2010 JP
5219518 Jun 2013 JP
WO1992017118 Oct 1992 WO
WO1995016407 Jun 1995 WO
WO1999004730 Feb 1999 WO
WO1999039648 Aug 1999 WO
WO1999049799 Oct 1999 WO
WO2001010343 Feb 2001 WO
WO2002003892 Jan 2002 WO
WO2002028421 Apr 2002 WO
WO2002039908 May 2002 WO
WO2003043685 May 2003 WO
WO2004084746 Oct 2004 WO
WO2004093728 Nov 2004 WO
WO2004096097 Nov 2004 WO
WO2004112657 Dec 2004 WO
WO2005002466 Jan 2005 WO
WO2005007219 Jan 2005 WO
WO2005009285 Feb 2005 WO
WO2005009506 Feb 2005 WO
WO2005087140 Sep 2005 WO
WO2006041877 Apr 2006 WO
WO2006063199 Jun 2006 WO
WO2007008371 Jan 2007 WO
WO2007067820 Jun 2007 WO
WO2007098232 Aug 2007 WO
2007129125 Nov 2007 WO
WO2008022077 Feb 2008 WO
WO2008028569 Mar 2008 WO
WO2008035337 Mar 2008 WO
WO2008103497 Aug 2008 WO
WO2008103722 Aug 2008 WO
WO2008129405 Oct 2008 WO
WO2009045338 Apr 2009 WO
WO2009091509 Jul 2009 WO
WO2010006627 Jan 2010 WO
WO2010008549 Jan 2010 WO
WO2010057262 May 2010 WO
WO2010080594 Jul 2010 WO
WO2010098857 Sep 2010 WO
WO2010099032 Sep 2010 WO
WO2010117680 Oct 2010 WO
WO2010121076 Oct 2010 WO
WO2011025981 Mar 2011 WO
WO2011034973 Mar 2011 WO
WO2011047168 Apr 2011 WO
WO2011051043 May 2011 WO
WO2011057087 May 2011 WO
WO2011072084 Jun 2011 WO
WO2011106137 Sep 2011 WO
WO2011106544 Sep 2011 WO
WO2011111047 Sep 2011 WO
WO2011137531 Nov 2011 WO
WO2011139747 Nov 2011 WO
WO2012011018 Jan 2012 WO
WO2012011108 Jan 2012 WO
WO2012027487 Mar 2012 WO
WO2012035279 Mar 2012 WO
WO2012040655 Mar 2012 WO
WO2012047644 Apr 2012 WO
WO2012052718 Apr 2012 WO
WO2012055498 May 2012 WO
WO2012087842 Jun 2012 WO
WO2012095455 Jul 2012 WO
WO2012102928 Aug 2012 WO
WO2012106602 Aug 2012 WO
WO2012118508 Sep 2012 WO
WO2012118816 Sep 2012 WO
WO2012118894 Sep 2012 WO
WO2012177942 Dec 2012 WO
WO2013021374 Feb 2013 WO
WO2013021375 Feb 2013 WO
WO2013028387 Feb 2013 WO
WO2013059743 Apr 2013 WO
WO2013059747 Apr 2013 WO
WO2013114214 Aug 2013 WO
WO2013120181 Aug 2013 WO
WO2013123059 Aug 2013 WO
WO2013128432 Sep 2013 WO
WO2013130641 Sep 2013 WO
WO2013131925 Sep 2013 WO
WO2013140318 Sep 2013 WO
WO2013148017 Oct 2013 WO
WO2013148018 Oct 2013 WO
WO2013148019 Oct 2013 WO
WO2013150512 Oct 2013 WO
WO2013152161 Oct 2013 WO
WO2013158613 Oct 2013 WO
WO2013169448 Nov 2013 WO
WO2013175468 Nov 2013 WO
WO2013176583 Nov 2013 WO
WO2013188077 Dec 2013 WO
WO2013192107 Dec 2013 WO
2014039392 Mar 2014 WO
WO2014036113 Mar 2014 WO
WO2014043527 Mar 2014 WO
WO2014047111 Mar 2014 WO
WO2014047325 Mar 2014 WO
WO2014055981 Apr 2014 WO
WO2014059432 Apr 2014 WO
WO2014064694 May 2014 WO
WO2014066365 May 2014 WO
WO2014089424 Jun 2014 WO
WO2014093861 Jun 2014 WO
WO2014111918 Jul 2014 WO
WO2014114794 Jul 2014 WO
WO2014114795 Jul 2014 WO
WO2014114796 Jul 2014 WO
WO2014114798 Jul 2014 WO
WO2014116502 Jul 2014 WO
WO2014121280 Aug 2014 WO
WO2014128705 Aug 2014 WO
WO2014134277 Sep 2014 WO
WO2014138194 Sep 2014 WO
WO2014138284 Sep 2014 WO
WO2014138482 Sep 2014 WO
WO2014138868 Sep 2014 WO
WO2014144100 Sep 2014 WO
WO2014144937 Sep 2014 WO
WO2014145338 Sep 2014 WO
WO2014147336 Sep 2014 WO
WO2014152306 Sep 2014 WO
WO2014152375 Sep 2014 WO
WO2014152503 Sep 2014 WO
WO2014153544 Sep 2014 WO
WO2014158617 Oct 2014 WO
WO2014162181 Oct 2014 WO
WO2014162306 Oct 2014 WO
WO2014163705 Oct 2014 WO
WO2014168655 Oct 2014 WO
WO2014179391 Nov 2014 WO
WO2014181336 Nov 2014 WO
WO2014189974 Nov 2014 WO
WO2014191994 Dec 2014 WO
WO2014194178 Dec 2014 WO
WO2014201384 Dec 2014 WO
WO2014201452 Dec 2014 WO
WO2014205064 Dec 2014 WO
WO2014207699 Dec 2014 WO
WO2014210124 Dec 2014 WO
WO2014210299 Dec 2014 WO
WO2015009503 Jan 2015 WO
WO2015020971 Feb 2015 WO
WO2015028986 Mar 2015 WO
WO2015051430 Apr 2015 WO
WO2015052663 Apr 2015 WO
WO2015057407 Apr 2015 WO
WO2015057735 Apr 2015 WO
WO2015057995 Apr 2015 WO
WO2015061378 Apr 2015 WO
WO2015061431 Apr 2015 WO
WO2015061463 Apr 2015 WO
WO2015061533 Apr 2015 WO
WO2015075128 May 2015 WO
WO2015081775 Jun 2015 WO
WO2015089334 Jun 2015 WO
WO2015092554 Jun 2015 WO
WO2015120122 Aug 2015 WO
WO2015125024 Aug 2015 WO
WO2015127264 Aug 2015 WO
WO2015127283 Aug 2015 WO
WO2015191604 Aug 2015 WO
WO2015191839 Aug 2015 WO
WO2015195823 Aug 2015 WO
WO2016011185 Aug 2015 WO
WO2015128739 Sep 2015 WO
WO2015128741 Sep 2015 WO
WO2015128747 Sep 2015 WO
WO2015132667 Sep 2015 WO
WO2015132668 Sep 2015 WO
WO2015135050 Sep 2015 WO
WO2015142648 Sep 2015 WO
WO2015142834 Sep 2015 WO
WO2016020918 Sep 2015 WO
WO2016027272 Sep 2015 WO
WO2016059533 Sep 2015 WO
WO2016065158 Sep 2015 WO
WO2016073741 Sep 2015 WO
WO2016083551 Sep 2015 WO
WO2016093877 Sep 2015 WO
WO2015148241 Oct 2015 WO
WO2015171190 Nov 2015 WO
WO2015171743 Nov 2015 WO
WO2015179181 Nov 2015 WO
WO2016097337 Jun 2016 WO
WO2016108181 Jul 2016 WO
WO2016133950 Aug 2016 WO
2016154168 Sep 2016 WO
WO2016150806 Sep 2016 WO
WO2016201024 Dec 2016 WO
WO2016209970 Dec 2016 WO
WO2017011697 Jan 2017 WO
WO2017062640 Apr 2017 WO
WO2017096157 Jun 2017 WO
WO2017101232 Jun 2017 WO
WO2017117388 Jul 2017 WO
WO2017127939 Aug 2017 WO
WO2017136596 Aug 2017 WO
WO2017196511 Nov 2017 WO
WO2017196909 Nov 2017 WO
WO2017196977 Nov 2017 WO
WO2017197064 Nov 2017 WO
WO2017218671 Dec 2017 WO
WO2018017886 Jan 2018 WO
WO2018029680 Feb 2018 WO
Non-Patent Literature Citations (55)
Entry
US 9,265,606 B2, 02/2016, Buchbinder et al. (withdrawn)
Communication Pursuant to Article 94(3) EPC in European Application No. 16 757 502.6, dated Nov. 30, 2021.
Notice of Reasons for Rejection in Japanese Application No. 2018-509843, dated Jan. 5, 2022.
Bernard et al., “Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty,” European Heart Journal, Jul. 1990, vol. 11 (2), pp. 98-107.
BlueCross BlueShield of Northern Carolina Corporate Medical Policy “Balloon valvuloplasty, Percutaneous”, (Jun. 1994).
Cimino et al., “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biologyl, Jun. 1996, vol. 22 (1), pp. 89-100, and pp. 101-117.
Cimino, “Ultrasonic Surgery: Power Quantification and Efficiency Optimization”, Aesthetic Surgery Journal, Feb. 2001, pp. 233-241.
Cowell et al., “A Randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis,” NEJM, Jun. 2005, vol. 352 (23), pp. 2389-2397.
De Korte et al., “Characterization of Plaque Components and Vulnerability with Intravascular Ultrasound Elastography”, Phys. Med. Biol., Feb. 2000, vol. 45, pp. 1465-1475.
European Search Report dated Mar. 13, 2015 for European Application. No. 05853460.3.
Feldman, “Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets”, Cathet Cardiovasc Diagn, May 1993, vol. 29 (1), pp. 1-7.
Fitzgerald et al., “Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine”, Circulation, Feb. 2001, vol. 103, pp. 1828-1831.
Freeman et al., “Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up”, J Am Coll Cardiol., Sep. 1990, vol. 16 (3), pp. 623-630.
Greenleaf et al., “Selected Methods for Imaging Elastic Properties of Biological Tissues”, Annu. Rev. Biomed. Eng., Apr. 2003, vol. 5, pp. 57-78.
Gunn et al., “New Developments in Therapeutic Ultrasound-Assisted Coronary Angioplasty”, Curr Interv Cardiol Rep., Dec. 1990, vol. 1 (4), pp. 281-290.
Guzman et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius”, Ultrasound in Med. & Biol., Mar. 2003, vol. 29 (8), pp. 1211-1222.
Hallgrimsson et al., “Chronic Non-Rheumatic Aortic Valvular Disease: a Population Study Based on Autopsies”, J Chronic Dis., Jun. 1979, vol. 32 (5), pp. 355-363.
Isner et al., “Contrasting Histoarchitecture of Calcified Leaflets from Stenotic Bicuspid Versus Stenotic Tricuspid Aortic Valves”, J Am Coll Cardiol., Apr. 1990, vol. 15 (5), p. 1104-1108.
Lung et al., “A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease”, Euro Heart Journal, Mar. 2003, vol. 24, pp. 1231-1243.
McBride et al “Aortic Valve Decalcification”, J Thorac Cardiovas-Surg, Jul. 1990, vol. 100, pp. 36-42.
Miller et al., “Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies”, Ultrasound in Med. & Biol., May 2007, vol. 27 (8), pp. 1107-1113.
Mohler, “Mechanisms of Aortic Valve Calcificaion”, Am J Cardiol, Dec. 2004, vol. 94 (11), pp. 1396-1402.
Otto et al., “Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis”, Circulation, Feb. 1994, vol. 89, pp. 642-650.
Passik et al., “Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases”, Mayo Clin Proc, Feb. 1987, vol. 62, pp. 19-123.
Quaden et al., “Percutaneous Aortic Valve Replacement: Resection Before Implantation”, Eur J Cardiothorac Surg, Jan. 2005, vol. 27, pp. 836-840.
Riebman et al., “New Concepts in the Management of Patients with Aortic Valve Disease”, Abstract, Valvular Heart Disease, JACC, Mar. 2004, p. 34A.
Rosenschein et al., “Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts” Circulation, Jan. 1999, vol. 99, pp. 26-29.
Sakata et al., “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach”, Catheter Cardiovasc Interv., Mar. 2005, vol. 64 (3), pp. 314-321.
Sasaki et al., “Scanning Electron Microscopy and Fourier Transformed Infrared Spectroscopy Analysis of Bone Removal Using Er:YAG and CO2 Lasers”, J Periodontol., Jun. 2002, vol. 73 (6), pp. 643-652.
Search Report and Written Opinion dated Dec. 10, 2012 for PCT Application No. PCT/US2012/043636.
Search Report and Written Opinion dated Dec. 6, 2016 for PCT Application No. PCT/US2016/047831.
International Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061215.
International Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061219.
International Search Report and Written Opinion dated Jul. 11, 2018 for PCT Application No. PCT/US2018/027990, 15 pages.
International Search Report and Written Opinion dated Jun. 28, 2018 for PCT Application No. PCT/US2018/027983, 15 pages.
International Search Report and Written Opinion dated Aug. 3, 2018 for PCT Application No. PCT/US2018/035086, 15 pages.
International Search Report and Written Opinion dated Aug. 9, 2018 for PCT Application No. PCT/US2018/035081, 11 pages.
Search Report and Written Opinion dated Mar. 2, 2015 for PCT Application No. PCT/US2014/029549.
Search Report and Written Opinion dated May 1, 2012 for PCT Application No. PCT/US2011/065627.
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543.
Search Report and Written Opinion dated Oct. 20, 2014 for PCT Application No. PCT/US2014/038849.
Search Report and Written Opinion dated Sep. 4, 2014 for PCT Application No. PCT/US2014/014704.
The Core Valve System Medtronic, 2012, 4 Pages.
Van Den Brand et al., “Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process”, Br Heart J, Jun. 1992, vol. 67, pp. 445-459.
Verdaasdonk et al., “The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques”, SPIE, Jan. 1999, vol. 3594, pp. 221-231.
Voelker et al., “Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with Conventional Balloon Dilation”, Am Heart J., Nov. 1991, vol. 122 (5), pp. 1327-1333.
Waller et al., “Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination”, Clin Cardiol., Nov. 1991, vol. 14 (11), pp. 924-930.
Wang, “Balloon Aortic Valvuloplasty”, Prog Cardiovasc Dis., Jul.-Aug. 1997, vol. 40 (1), pp. 27-36.
Wilson et al., “Elastography—The movement Begins”, Phys. Med. Biol., Jun. 2000, vol. 45, pp. 1409-1421.
Yock et al., “Catheter-Based Ultrasound Thrombolysis”, Circulation, Mar. 1997, vol. 95 (6), pp. 1411-1416.
Prosecution History from U.S. Appl. No. 15/241,155, dated May 16, 2018 through Feb. 5, 2019, 51 pp.
International Preliminary Report on Patentability from International Application No. PCT/US2016/047831, dated Feb. 27, 2018, 8 pp.
Communication Pursuant to Rules 161(1) and 162 EPC dated May 7, 2018, from counterpart European Application No. 16757502.6, 3 pp.
Response to Communication pursuant to Rules 161(1) and 162 EPC dated May 7, 2018, from counterpart European Application No. 16757502.6, filed Nov. 16, 2018, 26 pp.
Notice of First Office Action, CN Application No. 202010483590.3, dated Sep. 7, 2022.
Related Publications (1)
Number Date Country
20210113329 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62208458 Aug 2015 US
Continuations (2)
Number Date Country
Parent 16273065 Feb 2019 US
Child 17087530 US
Parent 15241155 Aug 2016 US
Child 16273065 US