Various embodiments of the present invention relate to medical devices and the simultaneous delivery of diagnostic and therapeutic treatments. More specifically, embodiments of the present invention relate to medical devices with magnetic shielding and methods of shielding medical devices from magnetic fields during medical procedures such as magnetic resonance imaging (MRI).
Magnetic resonance imaging (MRI) is a non-invasive imaging method that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a magnetic coil having a magnetic field strength of between about 0.2 to 3 Teslas. During the procedure, the body tissue is briefly exposed to RF pulses of electromagnetic energy in a plane perpendicular to the magnetic field. The resultant electromagnetic energy from these pulses can be used to image the body tissue by measuring the relaxation properties of the excited atomic nuclei in the tissue.
During imaging, the electromagnetic radiation produced by the MRI system may be picked up by implantable device leads used in implantable medical devices such as pacemakers or cardiac defibrillators. This energy may be transferred through the lead to the electrode in contact with the tissue, which may lead to elevated temperatures at the point of contact. The degree of tissue heating is typically related to factors such as the length of the lead, the conductivity or impedance of the lead, and the surface area of the lead electrodes. Exposure to a magnetic field may also induce an undesired voltage in the lead.
Medical device leads with magnetic shielding and methods of shielding medical device leads from magnetic fields during medical procedures such as magnetic resonance imaging (MRI) are described. Some embodiments provide for an implantable medical device, comprising a lead including a lead conductor having a length and a helically coiled ribbon shield radially surrounding the lead conductor along at least a portion of the length of the lead. In some embodiments, the ribbon shield is configured to dissipate electromagnetic energy received by the lead during a magnetic resonance imaging procedure.
In accordance with various embodiments, the ribbon shield can include one or more inner ribbon conductors and/or one or more outer ribbon conductors (e.g., a plurality of wire conductors). The outer ribbon conductors, in some embodiments, can be disposed about the one or more inner ribbon conductors. In some embodiments, the outer ribbon conductor can have a variable width (e.g., a necked-down configuration, an arrowhead configuration, or an undulating configuration) along the length of the lead. In some embodiments, the helically coiled ribbon has a variable pitch (e.g., sinusoidal function, a modified square-wave function, continuously changing pitch, or a pitch changing at only a finite number of locations) along the length of the lead.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
A proximal portion 26 of the lead 14 can be coupled to or formed integrally with the pulse generator 12. A distal portion 28 of the lead 14, in turn, can be implanted within a desired location within the heart 16 such as the right ventricle 20, as shown, and can include an electrode 29 that supplies therapeutic energy for pacing the heart 16 and/or for sensing electrical activity occurring within the heart 16. Although the illustrative embodiment depicts only a single lead 14 inserted into the patient's heart 16, it should be understood, however, that multiple leads can be utilized so as to electrically stimulate other areas of the heart 16. In some embodiments, for example, the distal portion of a second lead (not shown) may be implanted in the right atrium 18. In addition, or in lieu, another lead may be implanted at the left side of the heart 16 (e.g., in the coronary veins) to stimulate the left side of the heart 16. Other types of leads such as epicardial leads may also be utilized in addition to, or in lieu of, the lead 14 depicted in
During operation, the lead 14 can be configured to convey electrical signals between the heart 16 and the pulse generator 12. For example, in those embodiments where the pulse generator 12 is a pacemaker, the lead 14 can be utilized to deliver electrical therapeutic stimulus for pacing the heart 16. In those embodiments where the pulse generator 12 is an implantable cardiac defibrillator, the lead 14 can be utilized to deliver electric shocks to the heart 16 in response to an event such as a heart attack. In some embodiments, the pulse generator 12 includes both pacing and defibrillation capabilities.
In certain embodiments, the lead 14 further includes a layer of insulation 37 disposed about all or a portion of the ribbon 30 to further prevent electrical energy generated by the presence of a gradient field from entering into the tissue 36 surrounding the lead 14.
Various parameters of the shielding ribbon 30 can be configured so as to maximize the impedance path along the length of the lead 14 while also providing a low impedance path from the shield to the surrounding tissue 36 and coupling back the induced voltage to the surrounding tissue which is being dissipated in the tissue along the length of the lead. Examples of ribbon parameters can include, but are not limited to, the width of the ribbon 30, the pitch of the ribbon 30, the thickness of the ribbon 30, and the material properties of the ribbon 30. In some embodiments, the wide surface area of the width of the ribbon 30 is configured so as to provide maximum coverage of the lead 14, which prevents the electromagnetic field from reaching the enclosed lead conductor surface as shown further in conjunction with
During the operation of the MRI scanner, RF energy can be picked up by the lead creating a voltage potential 33 between the conductor 32 and ribbon 30 and a second voltage potential between ribbon 30 and insulation 37. More specifically, the tangential components of the electrical field along the length of the lead 14 are being integrated by the conductors, creating a voltage potential along the length of the lead 14. In accordance with some embodiments, the outer conductor shields the inner conductor(s) from this electric field. The voltage along the length of the lead 14 need not be uniform as in circuits where the dimensions of the circuit are much shorter than wavelength. Moreover, the shape of the distribution of the voltage potentials depends on factors including, but not limited to, characteristic impedance of the lead and surrounding tissue, geometries, frequency, etc. According to various embodiments, the choice of the width of the ribbon 30, the materials used in the conductor 32, ribbon 30, and insulation 37, pitch of the conductor 32, pitch of the ribbon 30 as well as other parameters can affect the voltage between these layers of the lead 14.
The inductance of a helix ribbon (such as ribbon 30 shown in
As further represented in the circuit 39, the lead 14 has an equivalent impedance (i.e., inductance in parallel with capacitance which creates a resonance circuit) at the frequency of the MRI device, as indicated generally by “Z_lead(f).” At resonance the impedance of Z_lead(f) is maximized in some embodiments. The impedance of the electrode 29 contact to the tissue likewise has an equivalent impedance, as indicated generally by resistor 42. Capacitor 41, in turn, may represent the capacitive coupling of lead 14 to surrounding tissue along the length of the lead 14, which is a path for the high frequency current (energy) to leak into the surrounding tissue at the RF frequency of the MRI scanner.
The parameters of the ribbon 30 can be varied such that the impedance of the helix along its axis is maximized at RF frequencies exhibited in an MRI environment. The outer diameter of the shield of some embodiments can be between approximately 30-100 mils. In some embodiments, the width of the shield can be between approximately 4-15 mils. The thickness of the shield in various embodiments can be between approximately 1-10 mils. In some embodiments, the separation between the shield turns can be less than or equal to 1 mil. In other embodiments, the outer diameter of the shield, width of the shield, thickness of the shield, and/or separation between the shield turns can be smaller or larger than those ranges indicated above. In some embodiments, the shield material can be MP35N or other materials. The relative dielectric constant of insulating material can be between approximately 2-10 in accordance with some embodiments. However, in other embodiments, the dielectric constant can be smaller or larger.
Some embodiments provide that the insulation thickness between the shield and surrounding tissue should be as small as possible. If a silicon or polypropylene is used, for example, this range can be less than 10 mils. Other techniques that can maximize this capacitance coupling can be used in accordance with various embodiments. Examples include, but are not limited to, coating the shield and/or use of a higher dielectric constant material for insulation.
This can be seen, for example, in
In use, the relatively high impedance path provided by the ribbon 30 prevents propagation of the electromagnetic energy through the length of the ribbon 30. At the same time, the relatively wide width of the ribbon 30, in conjunction with a very thin insulator layer 37 in some embodiments, can produce a very low impedance-capacitive coupling to the surrounding tissue 36. One reason for having a low impedance is to couple the absorbed energy to the surrounding tissue. As a result, this prevents propagation of energy along the length of the lead, minimizing concentration of the energy at electrode 29 that is in contact with the tissue. If the shield is not insulated, as shown in one alternative embodiment depicted, for example, in
In some embodiments, dissipation of energy along the length of shield is also possible. For example, the shielding material can be chosen in such a way that the thickness of shield is about four times the skin depth of the material. The over all resistance of the shield, in some embodiments, can be chosen to be on the order of a magnitude more than the inner conductor. Since the cross section of the ribbon shield is much larger than the inner leads, the resistivity of the material should be much higher because resistance=resistivity×length/cross section area.
In various embodiments, the pitch of a helix is the width of one complete helix turn, measured along the helix axis.
In some embodiments, the pitch of the ribbon may be the same as the pitch of the inner conductor 32, larger than the pitch of the inner conductor 32, or smaller than the pitch of the inner conductor 32.
In some illustrative embodiments, the width of the shielding conductor 52 can be relatively large in comparison to the width of the inner conductors 54, 56. As shown in
Dimensions of various embodiments depend on a number of variables. A range of wire width in some embodiments can be between approximately 2-6 mils. In some embodiments, the wire thickness can be between approximately 1-3 mils. The shield width, in some embodiments, can be between approximately 4-12 mils. However, in some cases, the shield width can depend on the number of conductors. The shield thickness in some embodiments can be between approximately 1-3 mils. In some embodiments, the shield to edge distance can be less than 1 mil. In other embodiments, the wire width, wire thickness, shield width, shield thickness, and/or shield to edge distance may be smaller or larger than the ranges provided above.
An insulator material 62 may surround the inner conductors 54, 56 and the outer conductor 52, as shown. In another embodiment depicted in
In the illustrative embodiment of
In certain embodiments, the pitch of the shielding and/or the inner conductor can be varied along the length of the lead to alter the impedance characteristics of the shielding and/or lead in a desired manner. For example, different sections of the ribbon shielding can have a high impedance for different RF frequencies depending on the type of MRI device employed. MRI's with different sized magnetic coils often operate at different RF frequencies. However, within a particular MRI device, the RF frequency is typically fixed. For an MRI device having a 1.5 Tesla magnetic coil, for example, the RF frequency is approximately 64 MHz. For an MRI having a 3 Tesla magnetic coil, the RF frequency is approximately 128 MHz. Other RF frequencies are also employed for MRI devices with different magnetic coil strengths.
In one such embodiment depicted in
In some embodiments, the pitch pattern of the ribbon shield is repeated several times along the length of the lead such that the pitch pattern covers a lead length of less than ¼ of the wavelength of the highest frequency of interest. This detuning prevents the lead/shield from approaching the antenna resonance length, thus minimizing the RF energy picked-up on the lead/shield.
For example, F1 could be an RF frequency of 64 MHz for a 1.5 T MRI scanner while F2 could be a 128 MHZ for a 3.0 T MRI scanner. Thus, for frequency F1 shown in the top graph, the location along the length of the shielding where an increase of impedance occurs is different than for frequency F2 shown in the bottom graph. This can be seen by a shift in the impedance peaks in the top and bottom graphs shown in
As can be further seen in
In certain embodiments, the width of the shielding conductor for the lead can be varied in order to change the capacitance between turns of the conductive shield within the lead. The changing capacitance results from the distance between adjacent shield conductors being varied. As a result, the lead will have different capacitances between adjacent coil turns and therefore different resonance frequencies.
The resonance frequency of a parallel inductor and capacitor is proportional to ½π√{square root over (LC)}. Instead of changing the inductance of the lead by changing the pitch, as is done in some embodiments, other embodiments change the parasitic capacitances that exist between adjacent coil turns by changing the width of the shield along the length of the lead. This change in capacitance between adjacent coil turns along the length of the lead can also impart other desired characteristics to the lead, including ease of manufacturing, flexibility, reliability, etc.
Although the present invention can be used to provide shielding against electromagnetic energy produced during MRI imaging, other applications where the shielding against RF energy is desired are also possible. In certain embodiments, for example, the devices and methods described herein can be used in other environments in which RF noise or other electromagnetic interference is present.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 60/992,874, filed on Dec. 6, 2007, which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4131759 | Felkel | Dec 1978 | A |
4484586 | McMickle et al. | Nov 1984 | A |
5554139 | Okajima | Sep 1996 | A |
5800496 | Swoyer et al. | Sep 1998 | A |
5954760 | Jarl | Sep 1999 | A |
6143013 | Samson et al. | Nov 2000 | A |
6671554 | Gibson et al. | Dec 2003 | B2 |
6876886 | Wang | Apr 2005 | B1 |
6980865 | Wang et al. | Dec 2005 | B1 |
7013180 | Villaseca et al. | Mar 2006 | B2 |
7123013 | Gray | Oct 2006 | B2 |
7138582 | Lessar et al. | Nov 2006 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7174220 | Chitre et al. | Feb 2007 | B1 |
7388378 | Gray et al. | Jun 2008 | B2 |
7410485 | Fink et al. | Aug 2008 | B1 |
7551966 | MacDonald | Jun 2009 | B2 |
8244346 | Foster et al. | Aug 2012 | B2 |
20030083723 | Wilkinson et al. | May 2003 | A1 |
20030083726 | Zeijlemaker et al. | May 2003 | A1 |
20030140931 | Zeijlemaker et al. | Jul 2003 | A1 |
20030144705 | Funke | Jul 2003 | A1 |
20030144718 | Zeijlemaker | Jul 2003 | A1 |
20030144719 | Zeijlemaker | Jul 2003 | A1 |
20030144720 | Villaseca et al. | Jul 2003 | A1 |
20030144721 | Villaseca et al. | Jul 2003 | A1 |
20030204217 | Greatbatch | Oct 2003 | A1 |
20040162600 | Williams | Aug 2004 | A1 |
20040210289 | Wang et al. | Oct 2004 | A1 |
20050065587 | Gryzwa | Mar 2005 | A1 |
20050113676 | Weiner et al. | May 2005 | A1 |
20050113873 | Weiner et al. | May 2005 | A1 |
20050113876 | Weiner et al. | May 2005 | A1 |
20050222656 | Wahlstrand et al. | Oct 2005 | A1 |
20050222657 | Wahlstrand et al. | Oct 2005 | A1 |
20050222658 | Hoegh et al. | Oct 2005 | A1 |
20050222659 | Olsen et al. | Oct 2005 | A1 |
20050247472 | Helfer et al. | Nov 2005 | A1 |
20050283167 | Gray | Dec 2005 | A1 |
20060030774 | Gray et al. | Feb 2006 | A1 |
20060041294 | Gray | Feb 2006 | A1 |
20060247747 | Olsen et al. | Nov 2006 | A1 |
20060247748 | Wahlstrand et al. | Nov 2006 | A1 |
20060271138 | MacDonald | Nov 2006 | A1 |
20070106332 | Denker et al. | May 2007 | A1 |
20070179577 | Marshall et al. | Aug 2007 | A1 |
20070179582 | Marshall et al. | Aug 2007 | A1 |
20070191914 | Stessman | Aug 2007 | A1 |
20080033497 | Bulkes et al. | Feb 2008 | A1 |
20080132985 | Wedan et al. | Jun 2008 | A1 |
20080195186 | Li et al. | Aug 2008 | A1 |
20080262584 | Bottomley et al. | Oct 2008 | A1 |
20090149920 | Li et al. | Jun 2009 | A1 |
20090171421 | Atalar et al. | Jul 2009 | A1 |
20100036466 | Min et al. | Feb 2010 | A1 |
20120130453 | Stahmann et al. | May 2012 | A1 |
20120323297 | Li et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
0092798 | Nov 1983 | EP |
58192205 | Nov 1983 | JP |
8308934 | Nov 1996 | JP |
2003047653 | Feb 2003 | JP |
2004141679 | May 2004 | JP |
2005515854 | Jun 2005 | JP |
WO2005081784 | Sep 2005 | WO |
WO 2007047966 | Apr 2007 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2008/087068 on Aug. 3, 2009. |
International Search Report and Written Opinion issued in PCT/US2008/085533, mailed Aug. 26, 2010. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Aug. 17, 2009 from PCT Application No. PCT/US2008/085533. |
International Search Report and Written Opinion of the International Searching Authority, PCT/US2008/085518, Oct. 29, 2009. |
International Search Report and Written Opinion issued in PCT/US2011/052684, mailed Jan. 25, 2012, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20090149934 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60992874 | Dec 2007 | US |