1. Field of the Invention
The invention refers to an implantable medical device such as an implantable pacemaker or an implantable cardioverter/defibrillator (ICD).
2. Description of the Related Art
For more than 35 years, manufacturers have used a reed switch in cardiac implants to set the implant into a mode of operation that is commonly referred to as the magnet mode. The reed switch is normally open, and is closed when a permanent magnet is brought into close proximity to the implant.
MRI is a diagnostic tool that has become increasingly popular, and is typically contraindicated for pacemaker and ICD patients due to possible mechanical forces, heating of leads, permanent damage to the electronic circuit or inappropriate therapy (e.g. loss of sensing or pacing at the UTR). An MRI has a static magnetic field that typically has a strength of 1.5 T, and newer MRI machines with fields of 3 T or higher are becoming available. When it is exposed to such a field, a reed switch will remain closed, placing the device into its magnet mode. However, a reed switch is unable to differentiate between a magnetic field of 2 mT or 1.5 T.
The use of a Hall sensor to detect magnetic fields is a known alternative to reed switches. The Hall effect sensor has the advantage that its output voltage is proportional to the strength of the magnetic field, enabling determination of whether the magnetic field is from a normal permanent magnet or an MRI. U.S. Pat. No. 6,937,906 discloses an implantable pacemaker being able to detect the MRI magnetic field, as well as automatically changing the mode of the device to “a second sensing mode less effected by the MRI interference signal”.
Another known alternative to a reed switch is a GMR sensor, see U.S. Pat. No. 6,101,417.
It is an object of the invention to provide an implantable medical device that has a sensor that is able to differentiate between low-level and very high-level magnetic fields, as that would make it possible to automatically place the device into a patient safe “MRI mode” if the presence of an MRI magnetic field were detected.
This object is achieved by an implantable medical device comprising an electronic control unit and an magnetic resonance imaging magnetic field detector that is connected to said control unit, wherein the magnetic resonance imaging magnetic field detector is adapted to generate a signal being characteristic for a magnetic field as used for magnetic resonance imaging (MRI) and wherein the control unit is adapted to positively recognize a presence of a magnetic field as used for magnetic resonance imaging (MRI) and to cause the implantable medical device to enter an MRI-safe mode of operation.
The magnetic resonance imaging magnetic field detector may comprise a band-pass receiver comprising an antenna and a receiver output that is connected to a comparator to compare a band-pass receiver output signal to a threshold value, said threshold value being adapted to a minimum output value to be expected in an MRI environment and wherein said control unit is adapted to cause the implantable medical device to enter an MRI-safe mode of operation upon reception of a comparator output signal indicating a receiver output signal exceeding said threshold value.
Alternatively or additionally the magnetic resonance imaging magnetic field detector may comprise a giant magnetoresistive ratio sensor that is adapted and arranged to put out a sensor signal that depends on both, magnitude and direction of a magnetic field, and wherein the control unit is adapted to respond to an output signal from said giant magnetoresistive ratio sensor differently depending on whether the sensor output signal represents
a: no or a very low magnetic field up to an order of 0, 1 mT or
b: a medium magnetic field in the order of 1 mT or
c: a strong magnetic field in the order of 1 T or more,
The control unit is further adapted to cause the implantable medical device to enter said MRI-safe mode of operation when the sensor output signal represents a strong magnetic field in the order of 1 T or more.
With respect to an implantable medical device comprising a band-pass receiver the antenna of said band-pass receiver is preferably a programming coil used for programming the implantable medical device.
With respect to a MRI safe mode of operation it is preferred that the control unit is adapted to cause the implantable medical device to enter a V00 mode of operation upon reception of a comparator output signal indicating a receiver output signal exceeding said threshold value.
Alternatively, the control unit may be adapted to cause the implantable medical device to enter a D00 mode of operation upon reception of a comparator output signal indicating a receiver output signal exceeding said threshold value.
In yet another alternatively preferred embodiment the control unit is adapted to cause a system reset of the implantable medical device upon reception of a comparator output signal indicating a receiver output signal exceeding said threshold value.
Preferably the GMR sensor is adapted to recognize a magnetic field vector depending on magnitude and direction of a magnetic field and to compensate said magnetic field vector for B0- and G-fields.
Preferably the GMR sensor has a high sensitivity to detect magnetic fields in the range of 1 mT to 100 mT, in order to be able to detect the presence of the magnets in a programmer head or any bar or donut magnet that may be used by a patient or clinic to put the device into its magnet mode. With appropriate signal conditioning circuits it is possible to detect the presence of very high magnetic fields of an MRI diagnostic test. MRI magnetic fields are typically 1.5 T or higher.
Preferably, the MRI magnetic field detector is adapted to use averaging techniques to self-calibrate the GMR sensor.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
In
Referring to
Controlling the dual chamber pacer 10 is a control unit CTRL 40 that is connected to sensing stages A-SENS 36 and V-SENS 38 and to stimulation pulse generators A-STIM 32 and V-STIM 34. Control unit CTRL 40 receives the output signals from the atrial sensing stage A-SENS 36 and from the ventricular sensing stage V-SENS 38. The output signals of sensing stages A-SENS 36 and V-SENS 38 are generated each time that a P-wave representing an intrinsic atrial event or an R-wave representing an intrinsic ventricular event, respectively, is sensed within the heart 12. An As-signal is generated, when the atrial sensing stage A-SENS 36 detects a P-wave and a Vs-signal is generated, when the ventricular sensing stage V-SENS 38 detects an R-wave.
Control unit CTRL 40 also generates trigger signals that are sent to the atrial stimulation pulse generator A-STIM 32 and the ventricular stimulation pulse generator V-STIM 34, respectively. These trigger signals are generated each time that a stimulation pulse is to be generated by the respective pulse generator A-STIM 32 or V-STIM 34. The atrial trigger signal is referred to simply as the “A-pulse”, and the ventricular trigger signal is referred to as the “V-pulse”. During the time that either an atrial stimulation pulse or ventricular stimulation pulse is being delivered to the heart, the corresponding sensing stage, A-SENS 36 and/or V-SENS 38, is typically disabled by way of a blanking signal presented to these amplifiers from the control unit CTRL 40, respectively. This blanking action prevents the sensing stages A-SENS 36 and V-SENS 38 from becoming saturated from the relatively large stimulation pulses that are present at their input terminals during this time. This blanking action also helps prevent residual electrical signals present in the muscle tissue as a result of the pacer stimulation from being interpreted as P-waves or R-waves.
Furthermore, atrial sense events As recorded shortly after delivery of a ventricular stimulation pulses during a preset time interval called post ventricular atrial refractory period (PVARP) are generally recorded as atrial refractory sense event Ars but ignored.
Control unit CTRL 40 comprises circuitry for timing ventricular and/or atrial stimulation pulses according to an adequate stimulation rate that can be adapted to a patient's hemodynamic need as pointed out below.
Still referring to
Further, data sensed during the operation of the pacemaker may be stored in the memory MEM 42 for later retrieval and analysis. This includes atrioventricular interval data that are acquired by the control unit CTRL 40. control unit CTRL 40 is adapted to determine the atrioventricular interval data as required for automatic atrioventricular interval analysis by determining the time interval between an atrial event, either sensed (As) or stimulated (Ap) and an immediately following ventricular sensed event Vs as indicated by the ventricular sensing stage V-SENS 38.
A telemetry circuit TEL 46 is further included in the pacemaker 10. This telemetry circuit TEL 46 is connected to the control unit CTRL 40 by way of a suitable command/data bus. Telemetry circuit TEL 46 allows for wireless data exchange between the pacemaker 10 and some remote programming or analyzing device which can be part of a centralized service center serving multiple pacemakers.
The pacemaker 10 in
In order to allow rate adaptive pacing in a DDDR or a DDIR mode, the pacemaker 10 further includes a physiological sensor ACT 48 that is connected to the control unit CTRL 40 of the pacemaker 10. While this sensor ACT 48 is illustrated in
Control unit CTRL 40 is adapted to put the pacemaker 10 into a VVO or a DDO mode of operation wherein either only the ventricle or the ventricle and the atrium are stimulated with fixed stimulation rate and no sensing nor any inhibition is provided. For such a mode of operation the ventricular stimulation pulse generator V-STIM 32 or both, the ventricular stimulation pulse generator V-STIM 32 and the atrial stimulation pulse generator 34 can be connected to a fixed rate oscillator that is insensitive to MRI magnetic fields.
A further feature of pacemaker 10 is a magnetic field detector MAG-SENS 50 that is connected to control unit CTRL 40. The magnetic field detector MAG-SENS 50 is adapted to generate a detect signal being characteristic for a magnetic field as used for magnetic resonance imaging (MRI). The control unit CTRL 40 is adapted to process the detect signal generated by the magnetic field detector MAG-DETEC 50 and to thus positively recognize a presence of a magnetic field as used for magnetic resonance imaging (MRI). The control unit CTRL 40 responds to detection of a presence of a magnetic field as used for magnetic resonance imaging by causing the implantable medical device to enter an MRI-safe mode of operation.
In one embodiment, the magnetic field detector MAG-DETEC 50 is a giant magnetoresistive (GMR) sensor as depicted in
When a magnetic field is applied, the GMR effect results in a decrease in the electrical resistance of a multilayer structure comprised of alternating layers of ferromagnetic and paramagnetic thin films. The GMR sensor typically comprises 4 equal value resistors, fabricated using thin-film technology on a silicon substrate, in a Wheatstone Bridge configuration. However, it is also possible to fabricate a GMR sensor with one or more resistors.
A typical implementation of a GMR sensor is shown in
The behaviour of the GMR sensor of
The GMR sensor is sensitive to the axis of the magnetic field, as is also the case with a reed switch. The “window” where the orientation of the applied magnet axis results in the reed switch opening is similar to that of a GMR sensor in a practical application.
The high static magnetic field of an MRI may cause mechanical forces to be applied to the implantable device if it contains any ferrous materials. This static magnetic field will close a convention reed switch and place the device in its magnet mode.
In addition to a very high static magnetic field, the MRI also has three gradient coils (one for each axis) which produce a high-level AC magnetic field and a pulsed RF signal. These EMI sources may cause a pacemaker or ICD to become inhibited or provide inappropriate therapy—for example, an ICD may inappropriately detect a “false” ventricular tachycardia and subsequently provide ATP pacing or shock therapy. In ICD's it is common for the “magnet mode” to disable the tachycardia or shock therapy, which is desirable during an MRI procedure.
These issues are addressed by the implantable medical device such a pacemaker 10 using a GMR sensor for providing a MRI magnetic field detector 50 for automatic MRI detection and reprogramming of the device to a patient safe mode
In one embodiment of pacemaker 10 a GMR sensor is used both for the detection of magnetic fields associated with a permanent magnet, as supplied to pacemaker and ICD patients and medical personnel or found in a device programming wand, and also for the detection of the very high magnetic field present during an MRI procedure. The outputs of the GMR sensor may be processed by control unit CTRL 40 to distinguish the two cases, so that pacemaker 10 can respond to them in different manners.
When the very high magnetic field of an MRI is detected, this information may be used by control unit CTRL 40 to automatically reprogram the device to a patient safe MRI safe mode (if the device has not already been placed into such a mode prior to the MRI). One example of a MRI Safe mode is VOO or DOO overdrive stimulation at a stimulation 20% above the programmed base pacing rate or the intrinsic rate, whichever is the highest.
The GMR sensor is sensitive to the axis of the magnetic field, similar to the behavior of a reed switch. A magnetic field at right angles to the GMR axis of sensitivity will produce no output. To avoid this behavior, two GMR sensors may be mounted onto the electronic circuit at 90 degrees to each other to ensure that one or both GMR sensors are oriented in the axis of the magnetic field (this is impractical for reed switches due to their cost and size).
The GMR sensor output voltage is measured between OUT+ and OUT− and the supply voltage is measured between V+ and V−. Both are sampled towards the end of the 91 us active interval to allow sufficient time for the measurement circuit to become stable. The characteristics of the two signals as a function of applied magnetic field are shown in
The voltage between OUT+ and OUT− is used as a sensitive measurement for low magnetic field strengths only, while the voltage between V+ and V− is a crude measurement of magnetic field that is used to qualify the sensitive measurement. For the GMR sensor characteristics shown in
The high magnetic field strength detection limit may increase or decrease depending on the GMR sensor characteristics and the desired MRI safe mode threshold. Long term averaging of the signals at CH1 and CH2 can be used to self-calibrate the system.
An alternative embodiment of the magnetic field detector MAG-DETEC 50 is shown in
The MRI magnetic field detector 50″″ of
Exemplary embodiments of such MRI magnetic field detector 50″″ are shown in
As has been shown above, a small solenoid coil, located in the header of the implant, may be used as an antenna. If, e.g., the coil has a diameter of 2 mm and 50 turns of 0.1 mm wire with 0.1 mm spacing, resulting in a length of 2.5 mm, the induced peak voltage under above conditions is 370 mV. This, together with the relatively low frequency, allows to use an ultra low-power direct receiver, without conversion to an intermediate frequency, according to the following block diagram (subsequent digital evaluation circuitry not shown).
The band-pass filters are designed for the expected range of excitation frequencies, e.g. 15 MHz to 70 MHz. The receiver may be a dedicated integrated circuit for flexible application. It may also be part of some other (e.g. CMOS) implant IC, and within that, components of an existing RF receiver may be reused.
The detection threshold is programmable to adapt to the actual signal path losses. The receiver may be operated continually in a pulsed manner with a low duty cycle to save power, or may be enabled by the noise detection circuitry of the implant, thus verifying the source of noise and triggering appropriate action, or it may be turned on by an external command.
In another embodiment, the dedicated antenna is replaced by an antenna, e.g., a loop antenna, that is already present for radio frequency communications purposes at higher frequencies, see
Although an exemplary embodiment of the present invention has been shown and described, it should be apparent to those of ordinary skill that a number of changes and modifications to the invention may be made without departing from the spirit and scope of the invention. This invention can readily be adapted to such devices by following the present teachings. All such changes, modifications and alterations should therefore be recognized as falling within the scope of the present invention.