This invention generally relates to interventional medical device systems that are navigable through body vessels of a human subject. More particularly, this invention relates to detachment systems for delivering and deploying an implantable medical device to a target location of a body vessel and methods of using the same.
The use of catheter delivery systems for positioning and deploying therapeutic devices, such as dilation balloons, stents and embolic coils, in the vasculature of the human body has become a standard procedure for treating endovascular diseases. It has been found that such devices are particularly useful in treating areas where traditional operational procedures are impossible or pose a great risk to the patient, for example in the treatment of aneurysms in cranial blood vessels. Due to the delicate tissue surrounding cranial blood vessels, especially for example brain tissue, it is very difficult and often risky to perform surgical procedures to treat defects of the cranial blood vessels. Advancements in catheter deployment systems have provided an alternative treatment in such cases. Some of the advantages of catheter delivery systems are that they provide methods for treating blood vessels by an approach that has been found to reduce the risk of trauma to the surrounding tissue, and they also allow for treatment of blood vessels that in the past would have been considered inoperable.
Typically, procedures using catheter deployment systems to treat an aneurysm involve inserting the distal end of a delivery catheter into the vasculature of a patient and guiding it through the vasculature to a predetermined delivery site. A vascular occlusion device, such as an embolic coil, can be attached to an implant engagement/delivery system at a distal end of a delivery member (e.g. microcatheter) which pushes the coil through the delivery catheter and out of the distal end of the delivery catheter into the delivery site. Example delivery members and engagement/delivery systems are described in U.S. Patent Publication Number 2019/0192162 A1, U.S. Patent Publication Number 2019/0328398 A1, and U.S. Patent Publication Number 2021/0001082 A1, each of which are incorporated herein by reference.
Many catheter-based implant delivery systems can include one or more inner elongated member(s) extending through the catheter that can be manipulated at the proximal end by a physician to deploy the implantable device. The inner elongated member can retain the implantable device in the catheter until the time for release of the implant. These systems can be actuated by retracting or pulling the elongated member relative to the catheter. Some of the challenges that have been associated with properly executing such aneurysm treatment procedures include ensuring the delivery member and engagement system remain in a stable position throughout a treatment. For example, in some aneurysm treatment applications, as the aneurysm becomes increasingly packed with embolic material, the delivery member can tend to shift due to increasing pushback from the embolic material being implanted. If the delivery member shifts during treatment, a physician may not be able to accurately control placement of embolic material and may choose to cease packing the aneurysm. In such an example, the aneurysm may not be sufficiently packed, which can lead to recanalization. Further, excessive movement or stretching of the delivery member and/or engagement system thereon can result in premature detachment of the embolic coil. Some examples of ways to mitigate the likelihood of premature release can result in a less flexible mechanical release system.
Additionally, catheter deployment systems can be used to treat intravascular lesions associated with intracranial atherosclerosis disease (ICAD). In some instances, an intravascular lesion may not be soft enough for a stentriever to effectively engage and remove the lesion from the blood vessel. In such case, it can be desired to deploy a stent such that the intravascular lesion can be treated by stenting. A physician may not know whether the lesion is better treated by a stent or stentriever prior to delivery of either device. Because a stentriever is retractable and a stent typically is not, in such cases, the stentriever is typically deployed in a first pass, followed by the stent (if appropriate) in a second pass. Multiple passes through vasculature can increase trauma to vasculature and increase treatment time, thereby increasing the likelihood of complications.
Thus, there is a need for systems, devices, and methods that can mitigate the likelihood of premature deployment of an intravascular treatment device while also providing a flexible mechanical release system.
Generally, it is an object of the present invention to provide a detachment system for delivering an implantable medical device to a target location of a body vessel that includes a proximal delivery tube, a distal delivery tube, and a braid segment disposed between. The braid segment provides stability during the deployment of the implantable device in the aneurysm, while maximizing flexibility of the detachment system.
An example detachment system for delivering an implantable medical device to a target location of a blood vessel can include a generally hollow proximal tube, a generally hollow distal tube, a braid segment, and an engagement system. The proximal tube can include a proximal end and a distal end. The distal tube can include a proximal end, a distal end, and a compressible portion of the distal tube itself which is axially moveable from a compressed condition to an elongated condition. The braid segment can be disposed between the proximal end of the distal tube and the distal end of the proximal tube. The braid segment can be formed from a plurality of wires. The engagement system can be configured to engage and deploy the implantable medical device that is disposed at the distal end of the distal tube.
The braid segment can be concentrically disposed around a polymer liner.
A polymer sleeve can be positioned over the proximal tube, the braid segment, and at least a portion of the distal tube.
The polymer sleeve can include one or more hydrophilic coatings.
The polymer sleeve can have a wall having a thickness of between approximately 0.02 millimeters and approximately 0.08 millimeters.
The braid segment can include between approximately 8 and approximately 16 wire segments.
The braid segment can be constructed to have a pick per inch of between approximately 50 and approximately 100.
The compressible portion of the distal tube can be a spiral-cut portion of the distal tube.
The engagement system can be configured to move the compressible portion to the compressed condition when engaging the implantable medical device and deploy the implantable medical device when releasing the compressible portion to the elongated condition.
The compressible portion can be adapted to automatically move to the elongated condition when the engagement system is disengaged from the implantable medical device.
In one example, the implantable medical device can be a stentriever when engaged to the engagement system, the stentriever having a proximal end collapsed by the engagement system and a distal end collapsed by the engagement system. The implantable medical device can be a stent when disengaged from the engagement system, the stent having an open proximal end and an open distal end.
An example method of detaching an implantable medical device can include one or more of the following steps presented in no particular order. The method can further include additional steps as appreciated and understood by a person of ordinary skill in the art according to the teachings of this disclosure.
The method can include forming a compressible portion on a distal tube; forming a flexible portion on a proximal tube; attaching a braid segment to a distal end of a proximal tube and a proximal end of the distal tube; and engaging the implantable medical device with an engagement system.
The method can further include sliding a polymer sleeve over the proximal tube, the braid segment, and at least a portion of the distal tube.
The method can further include engaging the polymer sleeve to the implantable medical device.
The method can further include coating the polymer sleeve with one or more hydrophilic coatings.
The method can include wrapping the braid segment around a polymer liner prior to attaching the braid segment to the distal end of the proximal tube and the proximal end of the distal tube.
The engagement step can include using the loop wire with the locking member to engage the implantable medical device and applying force to the loop wire to move the compressible portion to the compressed condition.
The method can further include applying a force on the locking member, disengaging the implantable medical device, and allowing the compressible portion to return to the elongated condition.
The method can include deploying the implantable medical device engaged by moving the compressible portion to the elongated condition.
In one example, the implantable medical device can be a stentriever configured to expand to appose a wall of a blood vessel upon deployment.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
A key success factor in intravascular treatment such as aneurysm treatments is for the detachment device (e.g. microcatheter) to remain stable during the deployment of an implant or other medical treatment device. During an intravascular treatment, lack of flexibility of a distal portion of a detachment device can cause the detachment device to pull back from the treatment site or otherwise move out of position while the implant is being placed in an aneurysm or other treatment site. A detachment device having a more flexible distal portion can therefore provide a stable system for delivering medical devices in neurovascular anatomy in addition to other applications facing a similar challenge. Flexible structures, however can tend deform, extend, or expand when navigating tortuous anatomy. Deformation of the detachment system can inhibit the detachment system's ability to navigate to a treatment site and/or effectively deploy the medical device. Elongation of the detachment system can result in premature deployment of the medical device. An object of the present invention is to provide a detachment system having a highly flexible braided segment that is stretch resistant and structurally stable throughout delivery and deployment of a medical treatment device.
Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
As discussed herein, vasculature can be that of any “subject” or “patient” including of any human or animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.
As discussed herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.
The figures illustrate a generally hollow or tubular structure according to the present invention. When used herein, the terms “tubular” and “tube” are to be construed broadly and are not limited to a structure that is a right cylinder or strictly circumferential in cross-section or of a uniform cross-section throughout its length. For example, the tubular structure or system is generally illustrated as a substantially right cylindrical structure. However, the tubular system may have a tapered or curved outer surface without departing from the scope of the present invention.
Examples of detachment systems 10 of the present invention, as illustrated in
The proximal delivery tube 100 can have a proximal end portion 102, a distal end portion 104, and a flexible portion 106. The flexible portion 106 can be disposed between the proximal end portion 102 and the distal end portion 104. The proximal delivery tube 100 can have an axial lumen therein. The distal delivery tube 300 can have a proximal end portion 302, a distal end portion 304, and a compressible portion 306. The compressible portion 306 can be disposed between the proximal end portion 302 and the distal end portion 304. The compressible portion 306 can be closer to the distal end portion 304. The distal delivery tube 300 can form an axial lumen therein.
The delivery tubes 100, 300 can be made of a biocompatible material, such as stainless steel. The tubes 100, 300 can have a diameter of between about 0.25 millimeters (0.010 inch) and about 0.46 millimeters (0.018 inch). In one example, the delivery tubes can have a diameter of approximately 0.37 millimeters (0.0145 inch). These examples of tube size are suitable for delivering and deploying embolic coils to target locations, typically aneurysms, within the neurovasculature. It is contemplated that differently sized tubes 100, 300 comprised of other materials can be useful for different applications and are within the scope of the present invention.
The flexible portion 106 of the proximal delivery tube 100 can allow the proximal delivery tube 100 to bend and flex. This ability can assist tracking the detachment system 10 through the catheter and the tortuous path through the human vasculature. The flexible portion 106 can be formed with interference spiral cuts. These cuts can allow for gaps to permit bending but in one example, do not act as a spiral-cut spring. In this configuration, the interference spiral cuts can bend and flex but do not compress.
The compressible portion 306 is axially adjustable between an elongated condition and a compressed condition. The compressible portion 306 can be formed from a spiral-cut portion of the distal tube 300 by a laser-cutting operation. However, it is contemplated that any other arrangement allowing axial adjustment (e.g., a wound wire or spiral ribbon) is also suitable for use with detachment systems according to the present invention. The compressible portion 306 can be in the elongated condition at rest and automatically or resiliently return to the elongated condition from a compressed condition, unless otherwise constrained. The detachment device 10 can include a loop wire 400 that together with the locking member 140 are configured to secure the implant 12 to the detachment device 10. The compressible portion 306 can be maintained in a compressed condition via tension in the loop wire 400 when the loop wire 400 and locking member 140 are engaged to the implant 12. The loop wire 400 can be affixed to the distal tube 300 near the proximal end 302 of the distal tube 300.
The braid segment 200a, 200b, 200c can be disposed between the proximal end 302 of the distal tube 300 and the distal end 104 of the proximal tube 100. The braid segment 200a, 200b, 200c can be affixed to the proximal end 302 of the distal tube 300 and the distal end 104 of the proximal tube 100. The braid segment 200a, 200b, 200c can be affixed to the proximal end 302 of the distal tube 300 and the distal end 104 of the proximal tube 100 using any attachment mechanism including but not limited to, adhesives, welding, or the like. The proximal tube 100 can extend a majority of the length of the detachment system 10, while the braid segment 200a, 200b, 200c and the distal tube 300 can extend over the most distal portion of the detachment system. In one example, the braid segment 200a, 200b, 200c and the distal tube 300 can extend over the most distal 500 millimeters of the detachment system 10.
The braid segment 200a, 200b, 200c can be formed from a plurality of wires 202. The plurality of wires 202 can be made of a biocompatible material, such as stainless steel or nitinol. The plurality of wires 202 can include round wires. Alternatively or in addition to, the plurality of wires 202 can include flat wires. The plurality of wires 202 can include between approximately 6 wires to approximately 20 wires. The braid segment 200a, 200b, 200c can be constructed with various picks per inch. In one example, the braid segment 200a, 200b, 200c can be constructed with between approximately 50 picks per inch to approximately 100 picks per inch. The number of wires in the plurality of wires 202 and the picks per inch can result in the braid segment 200a, 200b, 200c having a reduced cross-section dimension prior to kinking when a hollow member is bent. By reducing a cross-section dimension, the braid segment 200a, 200b, 200c can be substantially oval shaped. The number of wires in the plurality of wires 202 and the picks per inch can facilitate elongation of the braid segment 200a, 200b, 200c such that the braid segment 200a, 200b, 200c can resist stretching when the detachment system 10 is withdrawn in a blood vessel BV while the implant 12 is held in the aneurysm by friction. Additionally, elongation of the braid segment 200a, 200b, 200c can inhibit the braid segment 200a, 200b, 200c from compressing axially or radially collapsing when the compressible portion 106, 206, 306 is in a compressed configuration prior to deployment.
When the detachment device 10 is assembled, the braid segment 200a, 200b, 200c can be more flexible than the proximal tube 100 and the distal tube 300. One way to measure flexibility is to perform a three-point bend test wherein a portion of a detachment system 10 is held fixed at two end points, a force is applied perpendicularly to the detachment system 10 centrally between the points, and flexibility is quantified by the length of deflection of the detachment system 10 caused by the force. When measured this way, in some examples, the braid section 200a, 200b, 200c can be more flexible than the distal tube 300 and more flexible than the proximal tube 100. In other words, when the three-point test is performed identically on the three sections 100, 200a, 200a, 200c, 300, the braid segment 200a, 200b, 200c can deflect over a length that is greater than the deflection length of the distal tube 300 and greater than the length of deflection of the proximal tube 100. Flexibility can be measured in other ways as would be appreciated and understood by a person of ordinary skill in the art.
The flexible braid segment 200a, 200b, 200c can be more flexible than the relatively stiff proximal tube 100 and the relatively flexible distal tube 300. The relatively stiff proximal tube 100 extending a majority of the length of the detachment system 10 can resist kinking while being pushed through a microcatheter. The flexible braid 200a, 200b, 200c and the distal tube 300 can each be sufficiently flexible to reduce the effects of push-back when the implantable medical device 12 is being placed in an aneurysm. Because the flexible braid segment 200a, 200b, 200c does not have to be compressible resilient like the distal tube, the flexible braid segment 200a, 200b, 200c can have greater flexibility than the distal tube 300. By varying the pick per inch, the number of wire segments, and/or the size of each of the wire segments in the plurality of wires 202, compressibility and elongation of the detachment system 10, including the flexible braid segment 200a, 200b, 200c can be precisely manipulated and/or controlled.
As illustrated in
The polymer sleeve 206 can provide stability to the braid segment 200c and reduce friction while delivering the detachment system 10 to the desired location in a patient. The polymer sleeve 206 can protect the braid segment 200c as the detachment system 10 is transported through the vasculature and to the desired location in a patient.
As illustrated in
As illustrated in
Although
To load the detachment system 10, the locking member 140 can be inserted axially within the lumens of the proximal tube 100, the braid segment 200a, 200b, 200c, and the distal tube 300. A distal end 404 of the loop wire 400 can be inserted into the distal delivery tube 300 through an anchor portion located proximate the proximal end 302 of the distal tube 300. The loop wire 400 can be passed through the lumen of the distal tube 300 to the distal end 304. The distal end 404 of the loop wire 400 can then be looped to form the opening 405. The opening 405 can be passed through the locking portion 18. The locking member 140 can be passed through the opening 405 to engage the medical device 12.
In
Upon crossing the affected area including the thrombus T and/or lesion, in some treatments, the thrombus material may be sufficiently soft to pass through the strut framework 620 of the stentriever as illustrated in
As illustrated in
As illustrated in
At the instant the locking member 140 exits the opening 405 and is pulled free of the loop wire, the distal end 404 of the loop wire 400 can return to its original, preformed shape. At this point in the release sequence, no component is holding the stentriever 612 to the detachment system 10, as all the eyelets 622 affixed to the expandable framework 620 are released.
After release of the stentriever 612, the compressible portion 306 can expand and return to its original, elongated condition. When the compressible portion 306 returns to its original, elongated condition, the compressible portion 306 can “spring” forward. An elastic force can be imparted by the distal end 304 of the distal tube 300 to the stentriever 612 to “push” it away to ensure a clean separation and delivery of the stentriever 612 to the desired location. Upon detachment, the stentriever 612 can fully expand such that the stentriever 612 can appose the walls of the blood vessel.
In step 1005, a compressible portion 306 on a distal tube 300 can be formed. The compressible portion 306 on a distal tube 300 can be formed by spiral-cutting a portion of the distal tube 300.
In step 1010, a flexible portion 106 on a proximal tube 100 can be formed. The flexible portion 106 on the proximal tube 100 can be formed by interference cuts along at least a portion of the proximal tube 100.
In step 1015 a braid segment 200a, 200b, 200c can be attached to a distal end 104 of the proximal tube 100 and a proximal end 302 of the distal tube 300.
In step 1020, the implantable medical device 12 can be engaged with an engagement system 140, 400. The engagement system 140, 400 can include a locking member 140 and a loop wire 400.
The method can include using the loop wire 400 with the locking member 140 to engage the implantable medical device 12 and applying force to the loop wire 400 to move the compressible portion 306 to the compressed condition.
The method can include wrapping the braid segment 200b around a polymer liner 204 prior to attaching the braid segment 200b to the distal end 104 of the proximal tube 100 and the proximal end of the distal tube 300.
The method can include sliding a polymer sleeve 206 over the proximal tube 100, the braid segment 200c and at least a portion of the distal tube 300. The polymer sleeve 206 can be engaged to the implantable medical device.
The method can include engaging the polymer sleeve 206 to the implantable medical device 12.
The method can include coating the polymer sleeve 206 with one or more hydrophilic coating 208.
During detachment, the method can include applying a force on the locking member 140; disengaging the implantable medical device 12; and allowing the compressible portion 306 to return to the elongated condition. By moving the compressible portion 306 to the elongated condition, the implantable medical device 12 can be deployed.
The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. As described herein, the invention contemplates many variations and modifications of the inventive delivery and release system for a vascular occlusion device, including numerous configurations, numerous stiffness properties and methods for delivering the same. Also, there are many possible variations in the materials and configurations of the release mechanism. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
2220203 | Branin | Feb 1939 | A |
3429408 | Maker | Feb 1969 | A |
4858810 | Intlekofer et al. | Aug 1989 | A |
5108407 | Geremia et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5234437 | Sepetka | Aug 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5392791 | Nyman | Feb 1995 | A |
5484409 | Atkinson et al. | Jan 1996 | A |
5569221 | Houser et al. | Oct 1996 | A |
5899935 | Ding | May 1999 | A |
5925059 | Palermo et al. | Jul 1999 | A |
6113622 | Hieshima | Sep 2000 | A |
6203547 | Nguyen et al. | Mar 2001 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6561988 | Turturro et al. | May 2003 | B1 |
7367987 | Balgobin et al. | May 2008 | B2 |
7371251 | Mitelberg et al. | May 2008 | B2 |
7371252 | Balgobin et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7384407 | Rodriguez | Jun 2008 | B2 |
7708754 | Balgobin et al. | May 2010 | B2 |
7708755 | Davis, III et al. | May 2010 | B2 |
7799052 | Balgobin et al. | Sep 2010 | B2 |
7811305 | Balgobin et al. | Oct 2010 | B2 |
7819891 | Balgobin et al. | Oct 2010 | B2 |
7819892 | Balgobin et al. | Oct 2010 | B2 |
7901444 | Slazas | Mar 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8333796 | Tompkins et al. | Dec 2012 | B2 |
8926650 | Que et al. | Jan 2015 | B2 |
8956381 | Que et al. | Feb 2015 | B2 |
9155540 | Lorenzo | Oct 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662120 | Lagodzki et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918718 | Lorenzo | Mar 2018 | B2 |
10149676 | Mirigian et al. | Dec 2018 | B2 |
10285710 | Lorenzo et al. | May 2019 | B2 |
10292851 | Gorochow | May 2019 | B2 |
10420563 | Hebert et al. | Sep 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10668258 | Calhoun et al. | Jun 2020 | B1 |
10806402 | Cadieu et al. | Oct 2020 | B2 |
10806461 | Lorenzo | Oct 2020 | B2 |
20010049519 | Holman et al. | Dec 2001 | A1 |
20020072705 | Vrba et al. | Jun 2002 | A1 |
20020165569 | Ramzipoor et al. | Nov 2002 | A1 |
20030009208 | Snyder et al. | Jan 2003 | A1 |
20040034363 | Wilson et al. | Feb 2004 | A1 |
20040059367 | Davis et al. | Mar 2004 | A1 |
20040087964 | Diaz et al. | May 2004 | A1 |
20060025801 | Lulo et al. | Feb 2006 | A1 |
20060064151 | Guterman | Mar 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060116711 | Elliott et al. | Jun 2006 | A1 |
20060116714 | Sepetka et al. | Jun 2006 | A1 |
20060135986 | Wallace et al. | Jun 2006 | A1 |
20060206139 | Tekulve | Sep 2006 | A1 |
20060241685 | Wilson et al. | Oct 2006 | A1 |
20060247677 | Cheng et al. | Nov 2006 | A1 |
20060276824 | Mitelberg et al. | Dec 2006 | A1 |
20060276825 | Mitelberg et al. | Dec 2006 | A1 |
20060276826 | Mitelberg et al. | Dec 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060276830 | Balgobin et al. | Dec 2006 | A1 |
20060276833 | Balgobin et al. | Dec 2006 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070055302 | Henry et al. | Mar 2007 | A1 |
20070083132 | Sharrow | Apr 2007 | A1 |
20070233168 | Davis et al. | Oct 2007 | A1 |
20070270903 | Davis, III et al. | Nov 2007 | A1 |
20080027561 | Mitelberg et al. | Jan 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080097462 | Mitelberg et al. | Apr 2008 | A1 |
20080119887 | Que et al. | May 2008 | A1 |
20080269719 | Balgobin et al. | Oct 2008 | A1 |
20080269721 | Balgobin et al. | Oct 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20080300616 | Que et al. | Dec 2008 | A1 |
20080306503 | Que et al. | Dec 2008 | A1 |
20090062726 | Ford et al. | Mar 2009 | A1 |
20090099592 | Buiser et al. | Apr 2009 | A1 |
20090312748 | Johnson et al. | Dec 2009 | A1 |
20100094395 | Kellett | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100206453 | Leeflang | Aug 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20110092997 | Kang | Apr 2011 | A1 |
20110118776 | Chen et al. | May 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110295303 | Freudenthal | Dec 2011 | A1 |
20120035707 | Mitelberg et al. | Feb 2012 | A1 |
20120041472 | Tan et al. | Feb 2012 | A1 |
20120083868 | Shrivastava | Apr 2012 | A1 |
20120172913 | Kurrus et al. | Jul 2012 | A1 |
20120172921 | Yamanaka et al. | Jul 2012 | A1 |
20120179194 | Wilson et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120289772 | O'Connell et al. | Nov 2012 | A1 |
20130066413 | Jin et al. | Mar 2013 | A1 |
20130296915 | Bodewadt | Nov 2013 | A1 |
20130325054 | Watson | Dec 2013 | A1 |
20140058435 | Jones et al. | Feb 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140243883 | Tsukashima et al. | Aug 2014 | A1 |
20140277084 | Mirigian et al. | Sep 2014 | A1 |
20140277085 | Mirigian et al. | Sep 2014 | A1 |
20140277092 | Teoh et al. | Sep 2014 | A1 |
20140277093 | Guo et al. | Sep 2014 | A1 |
20140277100 | Kang | Sep 2014 | A1 |
20150005808 | Chouinard et al. | Jan 2015 | A1 |
20150025562 | Dinh et al. | Jan 2015 | A1 |
20150182227 | Le et al. | Jul 2015 | A1 |
20150230802 | Lagodzki et al. | Aug 2015 | A1 |
20150335333 | Jones et al. | Nov 2015 | A1 |
20160008003 | Kleshinski et al. | Jan 2016 | A1 |
20160022275 | Garza | Jan 2016 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160045347 | Smouse et al. | Feb 2016 | A1 |
20160157869 | Elgård et al. | Jun 2016 | A1 |
20160228125 | Pederson, Jr. et al. | Aug 2016 | A1 |
20160278782 | Anderson et al. | Sep 2016 | A1 |
20160310304 | Mialhe | Oct 2016 | A1 |
20160331383 | Hebert et al. | Nov 2016 | A1 |
20160346508 | Williams et al. | Dec 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095258 | Tassoni et al. | Apr 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170105739 | Dias et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170245864 | Franano et al. | Aug 2017 | A1 |
20170245885 | Lenker | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170258476 | Hayakawa et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20170367712 | Johnson et al. | Dec 2017 | A1 |
20180028779 | von Oepen et al. | Feb 2018 | A1 |
20180036508 | Ozasa et al. | Feb 2018 | A1 |
20180078263 | Stoppenhagen et al. | Mar 2018 | A1 |
20180228493 | Aguilar et al. | Aug 2018 | A1 |
20180250150 | Majercak et al. | Sep 2018 | A1 |
20180280667 | Keren | Oct 2018 | A1 |
20180289375 | Hebert et al. | Oct 2018 | A1 |
20180296222 | Hebert et al. | Oct 2018 | A1 |
20180325706 | Hebert et al. | Nov 2018 | A1 |
20190142565 | Follmer et al. | May 2019 | A1 |
20190159784 | Sananes et al. | May 2019 | A1 |
20190192162 | Lorenzo | Jun 2019 | A1 |
20190231566 | Tassoni et al. | Aug 2019 | A1 |
20190255290 | Snyder et al. | Aug 2019 | A1 |
20190314033 | Mirigian et al. | Oct 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20200138448 | Dasnurkar et al. | May 2020 | A1 |
20200147347 | Cottone | May 2020 | A1 |
20200187951 | Blumenstyk | Jun 2020 | A1 |
20200229957 | Bardsley et al. | Jul 2020 | A1 |
20200397444 | Montidoro et al. | Dec 2020 | A1 |
20210001082 | Lorenzo et al. | Jan 2021 | A1 |
20210085498 | Nygaard et al. | Mar 2021 | A1 |
20210100555 | Lorenzo | Apr 2021 | A1 |
20210045759 | Merhi et al. | Jun 2021 | A1 |
20210186513 | Hoshino et al. | Jun 2021 | A1 |
20210196281 | Blumenstyk et al. | Jul 2021 | A1 |
20210213252 | Lorenzo et al. | Jul 2021 | A1 |
20210338248 | Lorenzo et al. | Nov 2021 | A1 |
20210346002 | Lorenzo et al. | Nov 2021 | A1 |
20210353299 | Hamel et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
104203341 | Dec 2014 | CN |
106456422 | Feb 2017 | CN |
112168263 | Jan 2021 | CN |
1 985 244 | Oct 2008 | EP |
2498691 | Sep 2012 | EP |
3061412 | Aug 2016 | EP |
3 092 956 | Nov 2016 | EP |
3 501 427 | Jun 2019 | EP |
3799803 | Apr 2021 | EP |
3854321 | Jul 2021 | EP |
1188414 | Mar 2022 | EP |
4119065 | Jan 2023 | EP |
2006-334408 | Dec 2006 | JP |
2012-523943 | Oct 2012 | JP |
2013-78584 | May 2013 | JP |
2014-399 | Jan 2014 | JP |
WO 2007070793 | Jun 2007 | WO |
WO 2008064209 | May 2008 | WO |
WO 2009132045 | Oct 2009 | WO |
2012158152 | Nov 2012 | WO |
WO 2016014985 | Jan 2016 | WO |
WO 2017066386 | Apr 2017 | WO |
WO 2018022186 | Feb 2018 | WO |
WO 2020148768 | Jul 2020 | WO |
Entry |
---|
Extended European Search Report issued in European Patent Application No. 21 18 2230 dated Nov. 25, 2021. |
Number | Date | Country | |
---|---|---|---|
20210401601 A1 | Dec 2021 | US |