The present invention relates to implantable medical devices. More particularly, the present invention relates to implantable medical devices that detect and compensate for magnetic resonance imaging (MRI) induced capture threshold changes.
Magnetic resonance imaging (MRI) is a non-invasive imaging method that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a magnetic coil having a magnetic field strength of between about 0.2 to 3.0 Tesla. During the procedure, the body tissue is also briefly exposed to radio frequency (RF) pulses of electromagnetic energy. The relaxation of proton spins following cessation of the RF pulses can be used to image the body tissue.
During imaging, the electromagnetic radiation produced by the MRI system can be picked up by implantable device leads used in implantable medical devices such as pacemakers or cardiac defibrillators. This energy may be transferred through the lead to the electrode in contact with the tissue, which can cause elevated temperatures at the point of contact. The degree of tissue heating is typically related to factors such as the length of the lead, the conductivity or impedance of the lead, and the surface area of the lead electrodes. The effectiveness of implanted cardiac management devices may be compromised by the heating of cardiac tissue at the lead/heart interface. For example, pacemakers deliver low energy pace pulses that cause the heart to initiate a beat. The minimum voltage of those pace pulses that results in a response from the heart is known as the capture threshold. The capture threshold may increase as a result of localized heating of the lead due to the MRI RF field. Consequently, with an elevated capture threshold for the cardiac tissue, the implantable medical device may not deliver a pulse of sufficient voltage to generate a desired response in the tissue (i.e., loss of capture).
In one aspect, the present invention relates to controlling energy delivered from an implantable medical device to stimulate tissue within a patient's body. An electrical signal used to stimulate the tissue is changed from a first energy state to a second energy state during a magnetic resonance imaging (MRI) scan. The energy delivered is maintained at the second energy state after the MRI scan. A capture threshold of the tissue is then measured, and the energy delivered to the tissue is adjusted based on the measured capture threshold of the tissue.
In another aspect, the present invention relates to controlling energy delivered from an implantable medical device to stimulate tissue. Energy having a first energy state is delivered to stimulate the tissue. Magnetic resonance imaging (MRI) scan fields (e.g., magnetic and/or electromagnetic fields) are detected, and the energy delivered is increased from the first energy state to a second energy state. The energy delivered is maintained at the second energy state after the MRI scan fields are no longer detected. A capture threshold of the tissue is then measured, and the energy delivered by the implantable medical device is adjusted, if necessary, based on the measured capture threshold of the tissue.
In a further aspect, the present invention relates to an implantable medical device including an electrode configured to contact tissue in a body vessel and a lead having a lead conductor connected to the electrode. Sensing circuitry receives signals through the lead based on electrical activity of the tissue, and therapy circuitry delivers electrical stimulation to the tissue through the lead. Magnetic field detection circuitry detects magnetic resonance imaging (MRI) scan fields. Control circuitry is operable to set a level of energy delivered by the therapy circuitry to stimulate the tissue to an MRI mode energy state when the magnetic detection circuitry detects the MRI scan fields. After the magnetic field detection circuitry no longer detects the MRI scan fields, the control circuitry adjusts the level of energy delivered based on a capture threshold of the tissue periodically measured by the sensing circuitry.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
As shown in
Although the illustrative embodiment depicts only a single lead 14 inserted into the patient's heart 20, it should be understood that multiple leads can be utilized so as to electrically stimulate other areas of the heart 20. In some embodiments, for example, the distal end of a second lead (not shown) may be implanted in the right atrium 18. In addition, or in lieu, another lead may be implanted in or near the right side of the heart 20 (e.g., in the coronary veins) to stimulate the right side of the heart 20. Other types of leads such as epicardial leads may also be utilized in addition to, or in lieu of, the lead 14 depicted in
During operation, the lead 14 can be configured to convey electrical signals between the IMD 12 and the heart 20. For example, in those embodiments where the IMD 12 is a pacemaker, the lead 14 can be utilized to deliver electrical therapeutic stimulus for pacing the heart 20. In those embodiments where the IMD 12 is an implantable cardiac defibrillator, the lead 14 can be utilized to deliver electric shocks to the heart 20 in response to an event such as a heart attack or arrhythmia. In some embodiments, the IMD 12 includes both pacing and defibrillation capabilities.
When the IMD 12 is subjected to a magnetic field from an MRI scanner or other external magnetic source, electromagnetic radiation is delivered to the patient's body that can be picked up by the lead 14 and transferred to one or more lead electrodes 36 in contact with the body tissue. This electromagnetic radiation can cause heating at the interface of the lead electrodes 36 and body tissue. This can affect the capture threshold of the heart 20, which is the stimulus amplitude and/or duration of the electrical signals provided by the IMD 12 to the heart 20 that cause the heart 20 to beat.
The energy storage device 40 operates to provide operating power to the controller 42, the sensing/therapy module 44, the communication module 46, and the MRI detect module 48. The controller 42 operates to control the sensing/therapy module 44, the communication module 46, and the MRI detect module 48, each of which is operatively coupled to and communicates with the controller 42. For example, the controller 42 may command the sensing/therapy module 44 to deliver a desired therapy, such as a pacing or defibrillation stimulus, or to determine the capture threshold of the tissue to which the electrodes 36 are coupled. In addition, the controller 42 may command the communication module 46 to transmit and/or receive data from the external device 19. Furthermore, the controller 42 may receive signals from the MRI detect module 48 indicating the presence or absence of electromagnetic radiation generated by an MRI scan.
The IMD 12 may also include timing circuitry (not shown) which operates to schedule, prompt, and/or activate the IMD 12 to perform various activities. In one embodiment, the timing circuitry is an internal timer or oscillator, while in other embodiments, timing may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.
The communication module 46 is configured to both transmit and receive telemetry signals to and from other devices, such as the external device 19. In other embodiments, the IMD 12 includes at least one transducer configured for receiving a telemetry signal and at least one transducer for transmitting a telemetry signal. The wireless transducer 26 may be any type of device capable of sending and/or receiving information via a telemetry signal, including, but not limited to, a radio frequency (RF) transmitter, an acoustic transducer, or an inductive transducer.
The sensing/therapy module 44 operates to perform the therapeutic and/or diagnostic functions of the IMD 12. In one embodiment, the sensing/therapy module 44 delivers a cardiac pacing and/or defibrillation stimulus. The sensing/therapy module 44 is not limited to performing any particular type of physiologic measurement or therapy, and may be configured to perform other types of physiologic measurements and therapy, such as neurological measurements and therapy. The sensing/therapy module 44 is also operable to automatically determine the capture threshold of the heart 20 by providing a pacing stimulus to the heart 20 and sensing whether the stimulus results in a contraction of the heart 20. In some embodiments, the sensing/therapy module 44 delivers a sequence of pacing pulses of varying magnitude and/or duration to the heart 20 and senses a response of the tissue to the pacing pulses to determine whether the pulses have a large enough duration and/or magnitude to stimulate the heart 20. One example circuit arrangement that may be included in sensing/therapy module 44 to determine the capture threshold of heart 20 is disclosed in U.S. Pat. No. 7,092,756, entitled “Autocapture Pacing/Sensing Configuration,” which is incorporated herein by reference in its entirety.
The MRI detect module 48 senses the presence of the magnetic and/or electromagnetic fields associated with an MRI scan. In some embodiments, the MRI detect module 48 includes a power inductor and a core saturation detector. When the power inductor saturates in the presence of an MRI field, the inductance of the power inductor decreases, which is detected by the core saturation detector. One example module having such a configuration that is suitable for use in MRI detect module 48 is disclosed in U.S. patent application Ser. No. 11/276,159, entitled “MRI Detector for Implantable Medical Device,” which is incorporated herein by reference in its entirety. Any type of sensor or device may alternatively or additionally be incorporated into the MRI detect module 48 that is operable to detect the presence of MRI fields. Example sensors or devices that may be included in the MRI detect module 48 include, but are not limited to, a Hall effect sensor, a magnetotransistor, a magnetodiode, a magneto-optical sensor, and/or a giant magnetoresistive sensor.
When the MRI detect module 48 detects the presence of an MRI field, the MRI detect module 48 sends a signal to the controller 42. The controller 42 may then switch operation of the IMD 12 from a normal mode of operation to an MRI mode of operation. Alternatively, the IMD 12 may be programmed to the MRI mode of operation, for example by using the external device 19. The MRI mode of operation may include non-sensing fixed rate bradycardia pacing (described in more detail below), disablement of tachycardia therapy, or any mode of operation that is safe and desirable in a high electromagnetic field environment where sensing of cardiac activity may be compromised.
The communication module 52 for the external device 19 is configured to both transmit and receive signals to and from the IMD 12. In other embodiments, the external device 19 includes at least one transducer configured to receive a signal and at least one transducer for transmitting a signal. The communication module 52 may be any type of device capable of communicating with the communication module 46 of the IMD 12 including, but not limited to, an RF transmitter, an acoustic transducer, or an inductive transducer.
In some embodiments, the controller 54 includes a processor for analyzing, interpreting, and/or processing the received signals, and a memory for storing the processed information and/or commands for use internally. For example, the controller 54 may be used to analyze signals related to the capture threshold of the heart 20 from the IMD 12. The controller 54 can be configured as a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) compatible device such as a CoolRISC processor available from Xemics or other programmable devices, and/or any other hardware components or software modules for processing, analyzing, storing data, and controlling the operation of the external device 19.
The user feedback device 56 may include a screen or display panel for communicating information to the clinician and/or to the patient. In some embodiments, the screen or display panel is configured to display operational information about the IMD 12. For example, the screen or display panel may display visual information indicative of the capture threshold of the heart 20 as received from the IMD 12 for use in assessing whether the active pacing signals are sufficient to stimulate the heart 20.
The input device 58 includes an interface through which a clinician may input information or commands to be executed by the external device 19. In some embodiments, the input device 58 is a keyboard. For example, if information about the capture threshold test conducted by the sensing/therapy module 44 of the IMD 12 is provided on the user feedback device 56, the clinician may provide an input to the external device 19 through the input device 58 to communicate pacing signal configuration information to the IMD 12 based on the information about the capture threshold test.
When the MRI detect module 48 senses the absence of the MRI fields (i.e., when the MRI scan is completed), the MRI detect module 48 sends a signal to the controller 42 to suspend the MRI mode of operation. Alternatively, the controller 42 may suspend the MRI mode of operation after a predetermined period of time (e.g., one hour) based on an anticipated length of the MRI scan. In any case, in step 62, the controller 42 maintains the stimulation energy provided by the sensing/therapy module 44 at the second energy state after the MRI scan. This is because the capture threshold of the heart 20 may remain elevated after the MRI scan, since the tissue of the heart 20 does not immediately recover from the effects of the MRI fields. This assures that proper pacing is maintained while the tissue is residually affected by the MRI scan.
In step 64, the controller 54 then commands the sensing/therapy module 44 to measure the capture threshold of the tissue of the heart 20. As discussed above, the sensing/therapy module 44 may deliver a sequence of pacing pulses of varying magnitude and/or duration to the tissue and sense the response of the tissue to the pacing pulses. The sensing/therapy module 44 may conduct the capture threshold test automatically after a programmed period of time from when the MRI detect module 48 senses that the MRI field is no longer present, or after a programmed period of time independent of when the MRI field was last detected. Alternatively, the sensing/therapy module 44 may conduct the capture threshold test in response to signals from the external device 19. The medical personnel controlling the external device 19 may manually determine the proper capture threshold based on signals generated by the sensing/therapy module 44 during the capture threshold test. If the determination of the capture threshold is not successful, then the sensing/therapy module 44 maintains the stimulation energy at the second energy state.
If the sensing/therapy module 44 determines the capture threshold successfully, then, in step 66, the controller 42 controls the sensing/therapy module 44 to adjust the stimulation energy provided to pace the heart 20 based on the measured capture threshold. This may be performed automatically by the IMD 12 or in response to signals provided by the external device 19. Thus, if the sensing/therapy module 44 determines that the capture threshold has decreased from the second energy state (i.e., the MRI mode stimulation state), the controller 42 reduces the energy state (i.e., the amplitude and/or duration) of the stimulation pulses to correspond to the decreased capture threshold. This assures that the draw on the energy storage device 40 is minimized while at the same time assuring proper energy and pace amplitude is provided to the heart 20 for stimulation.
In some embodiments, steps 54 and 56 are repeated by the IMD 12 until a physiological event occurs. For example, steps 54 and 56 may be periodically or intermittently repeated until the capture threshold returns to the first, pre-MRI stimulation energy state. This assures that the IMD 12 provides proper pacing stimulation until the heart 20 is no longer affected by the MRI fields. As another example, steps 54 and 56 may be repeated until the capture threshold remains steady for a programmed number of capture threshold tests. Thus, even if the capture threshold does not return to the first, pre-MRI stimulation energy state, the IMD 12 operates to provide pacing pulses at a level sufficient to stimulate the tissue.
In summary, the present invention relates to controlling energy delivered from an implantable medical device to stimulate tissue. Energy delivered to stimulate the tissue is changed from a first energy state to a second energy state during a magnetic resonance imaging (MRI) scan. The energy delivered is maintained at the second energy state after the MRI scan. A capture threshold of the tissue is then measured, and the level of energy delivered to the tissue is adjusted based on the measured capture threshold of the tissue. By monitoring the capture threshold after the MRI scan, the implantable medical device delivers a sufficient level of energy to stimulate the tissue when the tissue is residually affected by the MRI scan.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. While the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. For example, while the present invention has been described with regard to cardiac pacing, the principles of the present invention are also applicable to other types of systems with stimulation properties that may be altered by MRI fields, such as neurological therapy systems. In addition, while the system described uses electrical signals to stimulate tissue, other types of control agents may be employed to compensate for the effects of the MRI fields on the tissue, such as by chemical stimulation. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application is a division of U.S. application Ser. No. 12/568,433, filed Sep. 28, 2009, now issued as U.S. Pat. No. 8,571,661, which claims priority to U.S. Provisional Application 61/102,027, filed Oct. 2, 2008, which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3888260 | Fischell | Jun 1975 | A |
3898995 | Dresbach | Aug 1975 | A |
4091818 | Brownlee et al. | May 1978 | A |
4379459 | Stein | Apr 1983 | A |
4404125 | Abolins et al. | Sep 1983 | A |
4516579 | Irnich | May 1985 | A |
4611127 | Ibrahim et al. | Sep 1986 | A |
4694837 | Blakeley et al. | Sep 1987 | A |
4729376 | DeCote, Jr. | Mar 1988 | A |
4751110 | Gulla et al. | Jun 1988 | A |
4779617 | Whigham | Oct 1988 | A |
4823075 | Alley | Apr 1989 | A |
4841259 | Mayer | Jun 1989 | A |
4869970 | Gulla et al. | Sep 1989 | A |
4934366 | Truex et al. | Jun 1990 | A |
5038785 | Blakeley et al. | Aug 1991 | A |
5075039 | Goldberg | Dec 1991 | A |
5076841 | Chen et al. | Dec 1991 | A |
5120578 | Chen et al. | Jun 1992 | A |
5181511 | Nickolls et al. | Jan 1993 | A |
5187136 | Klobucar et al. | Feb 1993 | A |
5188117 | Steinhaus et al. | Feb 1993 | A |
5197468 | Proctor et al. | Mar 1993 | A |
5217010 | Tsitlik et al. | Jun 1993 | A |
5243911 | Dow et al. | Sep 1993 | A |
5279225 | Dow et al. | Jan 1994 | A |
5288313 | Portner | Feb 1994 | A |
5292342 | Nelson et al. | Mar 1994 | A |
5309096 | Hoegnelid | May 1994 | A |
5325728 | Zimmerman et al. | Jul 1994 | A |
5345362 | Winkler | Sep 1994 | A |
5391188 | Nelson et al. | Feb 1995 | A |
5406444 | Selfried et al. | Apr 1995 | A |
5424642 | Ekwall | Jun 1995 | A |
5438900 | Sundstrom | Aug 1995 | A |
5454837 | Lindegren et al. | Oct 1995 | A |
5470345 | Hassler et al. | Nov 1995 | A |
5523578 | Herskovic | Jun 1996 | A |
5527348 | Winkler et al. | Jun 1996 | A |
5529578 | Struble | Jun 1996 | A |
5545187 | Bergstrom et al. | Aug 1996 | A |
5562714 | Grevious | Oct 1996 | A |
5607458 | Causey, III et al. | Mar 1997 | A |
5609622 | Soukup et al. | Mar 1997 | A |
5618208 | Crouse et al. | Apr 1997 | A |
5620476 | Truex et al. | Apr 1997 | A |
5647379 | Meltzer | Jul 1997 | A |
5649965 | Pons et al. | Jul 1997 | A |
5650759 | Hittman et al. | Jul 1997 | A |
5662694 | Lidman et al. | Sep 1997 | A |
5662697 | Li et al. | Sep 1997 | A |
5683434 | Archer | Nov 1997 | A |
5687735 | Forbes et al. | Nov 1997 | A |
5694952 | Lidman et al. | Dec 1997 | A |
5697958 | Paul et al. | Dec 1997 | A |
5709225 | Budgifvars et al. | Jan 1998 | A |
5714536 | Ziolo et al. | Feb 1998 | A |
5722998 | Prutchi et al. | Mar 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5749910 | Brumwell et al. | May 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5759197 | Sawchuk et al. | Jun 1998 | A |
5764052 | Renger | Jun 1998 | A |
5766227 | Nappholz et al. | Jun 1998 | A |
5776168 | Gunderson | Jul 1998 | A |
5782241 | Felblinger et al. | Jul 1998 | A |
5782891 | Hassler et al. | Jul 1998 | A |
5792201 | Causey, III et al. | Aug 1998 | A |
5800496 | Swoyer et al. | Sep 1998 | A |
5800497 | Bakels et al. | Sep 1998 | A |
5814090 | Latterell et al. | Sep 1998 | A |
5817130 | Cox et al. | Oct 1998 | A |
5827997 | Chung et al. | Oct 1998 | A |
5853375 | Orr | Dec 1998 | A |
5867361 | Wolf et al. | Feb 1999 | A |
5869078 | Baudino | Feb 1999 | A |
5870272 | Seifried et al. | Feb 1999 | A |
5871509 | Noren | Feb 1999 | A |
5877630 | Kraz | Mar 1999 | A |
5895980 | Thompson | Apr 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
5959829 | Stevenson et al. | Sep 1999 | A |
5964705 | Truwit et al. | Oct 1999 | A |
5968854 | Akopian et al. | Oct 1999 | A |
5973906 | Stevenson et al. | Oct 1999 | A |
5978204 | Stevenson | Nov 1999 | A |
5978710 | Prutchi et al. | Nov 1999 | A |
5999398 | Makl et al. | Dec 1999 | A |
6008980 | Stevenson et al. | Dec 1999 | A |
6031710 | Wolf et al. | Feb 2000 | A |
6032063 | Hoar et al. | Feb 2000 | A |
6055455 | O'Phelan et al. | Apr 2000 | A |
6079681 | Stern et al. | Jun 2000 | A |
6101417 | Vogel et al. | Aug 2000 | A |
6147301 | Bhatia | Nov 2000 | A |
6161046 | Maniglia et al. | Dec 2000 | A |
6162180 | Miesel et al. | Dec 2000 | A |
6173203 | Barkley et al. | Jan 2001 | B1 |
6188926 | Vock | Feb 2001 | B1 |
6192279 | Barreras, Sr. et al. | Feb 2001 | B1 |
6198968 | Prutchi et al. | Mar 2001 | B1 |
6198972 | Hartlaub et al. | Mar 2001 | B1 |
6209764 | Hartlaub et al. | Apr 2001 | B1 |
6217800 | Hayward | Apr 2001 | B1 |
6235038 | Hunter et al. | May 2001 | B1 |
6245464 | Spillman et al. | Jun 2001 | B1 |
6246902 | Naylor et al. | Jun 2001 | B1 |
6249701 | Rajasekhar et al. | Jun 2001 | B1 |
6268725 | Vernon et al. | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6275369 | Stevenson et al. | Aug 2001 | B1 |
6288344 | Youker et al. | Sep 2001 | B1 |
6324431 | Zarinetchi et al. | Nov 2001 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6365076 | Bhatia | Apr 2002 | B1 |
6381494 | Gilkerson et al. | Apr 2002 | B1 |
6421555 | Nappholz | Jul 2002 | B1 |
6424234 | Stevenson | Jul 2002 | B1 |
6446512 | Zimmerman et al. | Sep 2002 | B2 |
6452564 | Schoen et al. | Sep 2002 | B1 |
6456481 | Stevenson | Sep 2002 | B1 |
6459935 | Piersma | Oct 2002 | B1 |
6470212 | Weijand et al. | Oct 2002 | B1 |
6487452 | Legay | Nov 2002 | B2 |
6490148 | Allen et al. | Dec 2002 | B1 |
6496714 | Weiss et al. | Dec 2002 | B1 |
6503964 | Smith et al. | Jan 2003 | B2 |
6506972 | Wang | Jan 2003 | B1 |
6510345 | Van Bentem | Jan 2003 | B1 |
6512666 | Duva | Jan 2003 | B1 |
6522920 | Silvian et al. | Feb 2003 | B2 |
6526321 | Spehr | Feb 2003 | B1 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6545854 | Trinh et al. | Apr 2003 | B2 |
6555745 | Kruse et al. | Apr 2003 | B1 |
6563132 | Talroze et al. | May 2003 | B1 |
6566978 | Stevenson et al. | May 2003 | B2 |
6567259 | Stevenson et al. | May 2003 | B2 |
6580947 | Thompson | Jun 2003 | B1 |
6584351 | Ekwall | Jun 2003 | B1 |
6595756 | Gray et al. | Jul 2003 | B2 |
6607485 | Bardy | Aug 2003 | B2 |
6626937 | Cox | Sep 2003 | B1 |
6629938 | Engvall et al. | Oct 2003 | B1 |
6631290 | Guck et al. | Oct 2003 | B1 |
6631555 | Youker et al. | Oct 2003 | B1 |
6640137 | MacDonald | Oct 2003 | B2 |
6643903 | Stevenson et al. | Nov 2003 | B2 |
6646198 | Maciver et al. | Nov 2003 | B2 |
6648914 | Berrang et al. | Nov 2003 | B2 |
6662049 | Miller | Dec 2003 | B1 |
6673999 | Wang et al. | Jan 2004 | B1 |
6711440 | Deal et al. | Mar 2004 | B2 |
6713671 | Wang et al. | Mar 2004 | B1 |
6718203 | Weiner et al. | Apr 2004 | B2 |
6718207 | Connelly | Apr 2004 | B2 |
6725092 | MacDonald et al. | Apr 2004 | B2 |
6731979 | MacDonald | May 2004 | B2 |
6795730 | Connelly et al. | Sep 2004 | B2 |
6901292 | Hrdlicka et al. | May 2005 | B2 |
6925328 | Foster et al. | Aug 2005 | B2 |
6937906 | Terry et al. | Aug 2005 | B2 |
6944489 | Zeijlemaker et al. | Sep 2005 | B2 |
6963779 | Shankar | Nov 2005 | B1 |
7013180 | Dublin et al. | Mar 2006 | B2 |
7020517 | Weiner | Mar 2006 | B2 |
7050855 | Zeijlemaker et al. | May 2006 | B2 |
7076283 | Cho et al. | Jul 2006 | B2 |
7082328 | Funke | Jul 2006 | B2 |
7092756 | Zhang et al. | Aug 2006 | B2 |
7123013 | Gray | Oct 2006 | B2 |
7138582 | Lessar et al. | Nov 2006 | B2 |
7164950 | Kroll et al. | Jan 2007 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7174220 | Chitre et al. | Feb 2007 | B1 |
7212863 | Strandberg | May 2007 | B2 |
7231251 | Yonce et al. | Jun 2007 | B2 |
7242981 | Ginggen | Jul 2007 | B2 |
7272444 | Peterson et al. | Sep 2007 | B2 |
7369898 | Kroll et al. | May 2008 | B1 |
7388378 | Gray et al. | Jun 2008 | B2 |
7509167 | Stessman | Mar 2009 | B2 |
7561915 | Cooke et al. | Jul 2009 | B1 |
7801625 | MacDonald | Sep 2010 | B2 |
7835803 | Malinowski et al. | Nov 2010 | B1 |
7839146 | Gray | Nov 2010 | B2 |
8014867 | Cooke et al. | Sep 2011 | B2 |
8032228 | Ameri et al. | Oct 2011 | B2 |
8086321 | Ameri | Dec 2011 | B2 |
8121705 | MacDonald | Feb 2012 | B2 |
8160717 | Ameri | Apr 2012 | B2 |
8311637 | Ameri | Nov 2012 | B2 |
8543207 | Cooke et al. | Sep 2013 | B2 |
8554335 | Ameri et al. | Oct 2013 | B2 |
8565874 | Stubbs et al. | Oct 2013 | B2 |
8571661 | Stubbs et al. | Oct 2013 | B2 |
8639331 | Stubbs et al. | Jan 2014 | B2 |
20010002000 | Kumar et al. | May 2001 | A1 |
20010006263 | Hayward | Jul 2001 | A1 |
20010011175 | Hunter et al. | Aug 2001 | A1 |
20010018123 | Furumori et al. | Aug 2001 | A1 |
20010025139 | Pearlman | Sep 2001 | A1 |
20010037134 | Munshi | Nov 2001 | A1 |
20010050837 | Stevenson et al. | Dec 2001 | A1 |
20020019658 | Munshi | Feb 2002 | A1 |
20020026224 | Thompson et al. | Feb 2002 | A1 |
20020038135 | Connelly et al. | Mar 2002 | A1 |
20020050401 | Youker et al. | May 2002 | A1 |
20020072769 | Silvian et al. | Jun 2002 | A1 |
20020082648 | Kramer et al. | Jun 2002 | A1 |
20020102835 | Stucchi et al. | Aug 2002 | A1 |
20020116028 | Greatbatch et al. | Aug 2002 | A1 |
20020116029 | Miller et al. | Aug 2002 | A1 |
20020116033 | Greatbatch et al. | Aug 2002 | A1 |
20020116034 | Miller et al. | Aug 2002 | A1 |
20020117314 | Maciver et al. | Aug 2002 | A1 |
20020128689 | Connelly et al. | Sep 2002 | A1 |
20020128691 | Connelly | Sep 2002 | A1 |
20020133086 | Connelly et al. | Sep 2002 | A1 |
20020133199 | MacDonald et al. | Sep 2002 | A1 |
20020133200 | Weiner et al. | Sep 2002 | A1 |
20020133201 | Connelly et al. | Sep 2002 | A1 |
20020133202 | Connelly et al. | Sep 2002 | A1 |
20020133208 | Connelly | Sep 2002 | A1 |
20020133211 | Weiner et al. | Sep 2002 | A1 |
20020133216 | Connelly et al. | Sep 2002 | A1 |
20020138102 | Weiner et al. | Sep 2002 | A1 |
20020138107 | Weiner et al. | Sep 2002 | A1 |
20020138108 | Weiner et al. | Sep 2002 | A1 |
20020138110 | Connelly et al. | Sep 2002 | A1 |
20020138112 | Connelly et al. | Sep 2002 | A1 |
20020138113 | Connelly et al. | Sep 2002 | A1 |
20020138124 | Helfer et al. | Sep 2002 | A1 |
20020143258 | Weiner et al. | Oct 2002 | A1 |
20020147388 | Mass et al. | Oct 2002 | A1 |
20020147470 | Weiner et al. | Oct 2002 | A1 |
20020162605 | Horton et al. | Nov 2002 | A1 |
20020166618 | Wolf et al. | Nov 2002 | A1 |
20020175782 | Trinh et al. | Nov 2002 | A1 |
20020183796 | Connelly | Dec 2002 | A1 |
20020198569 | Foster et al. | Dec 2002 | A1 |
20030036774 | Maier et al. | Feb 2003 | A1 |
20030036776 | Foster et al. | Feb 2003 | A1 |
20030045907 | MacDonald | Mar 2003 | A1 |
20030053284 | Stevenson et al. | Mar 2003 | A1 |
20030055457 | MacDonald | Mar 2003 | A1 |
20030056820 | MacDonald | Mar 2003 | A1 |
20030074029 | Deno et al. | Apr 2003 | A1 |
20030081370 | Haskell et al. | May 2003 | A1 |
20030083570 | Cho et al. | May 2003 | A1 |
20030083723 | Wilkinson et al. | May 2003 | A1 |
20030083726 | Zeijlemaker et al. | May 2003 | A1 |
20030083728 | Greatbatch et al. | May 2003 | A1 |
20030100925 | Pape et al. | May 2003 | A1 |
20030109901 | Greatbatch | Jun 2003 | A1 |
20030111142 | Horton et al. | Jun 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030114898 | Von Arx et al. | Jun 2003 | A1 |
20030120197 | Kaneko et al. | Jun 2003 | A1 |
20030130647 | Gray et al. | Jul 2003 | A1 |
20030130700 | Miller et al. | Jul 2003 | A1 |
20030130701 | Miller | Jul 2003 | A1 |
20030130708 | Von Arx et al. | Jul 2003 | A1 |
20030135114 | Pacetti et al. | Jul 2003 | A1 |
20030135160 | Gray et al. | Jul 2003 | A1 |
20030139096 | Stevenson et al. | Jul 2003 | A1 |
20030140931 | Zeijlemaker et al. | Jul 2003 | A1 |
20030144704 | Terry et al. | Jul 2003 | A1 |
20030144705 | Funke | Jul 2003 | A1 |
20030144706 | Funke | Jul 2003 | A1 |
20030144716 | Reinke et al. | Jul 2003 | A1 |
20030144717 | Hagele | Jul 2003 | A1 |
20030144718 | Zeijlemaker | Jul 2003 | A1 |
20030144719 | Zeijlemaker | Jul 2003 | A1 |
20030144720 | Villaseca et al. | Jul 2003 | A1 |
20030144721 | Villaseca et al. | Jul 2003 | A1 |
20030149459 | Von Arx et al. | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030176900 | MacDonald | Sep 2003 | A1 |
20030179536 | Stevenson et al. | Sep 2003 | A1 |
20030191505 | Gryzwa et al. | Oct 2003 | A1 |
20030195570 | Deal et al. | Oct 2003 | A1 |
20030199755 | Halperin et al. | Oct 2003 | A1 |
20030204207 | MacDonald et al. | Oct 2003 | A1 |
20030204215 | Gunderson et al. | Oct 2003 | A1 |
20030204217 | Greatbatch | Oct 2003 | A1 |
20030213604 | Stevenson et al. | Nov 2003 | A1 |
20030213605 | Brendel et al. | Nov 2003 | A1 |
20040005483 | Lin | Jan 2004 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040015197 | Gunderson | Jan 2004 | A1 |
20040019273 | Helfer et al. | Jan 2004 | A1 |
20040049237 | Larson et al. | Mar 2004 | A1 |
20040088012 | Kroll et al. | May 2004 | A1 |
20040093432 | Luo et al. | May 2004 | A1 |
20040263174 | Gray et al. | Dec 2004 | A1 |
20050043761 | Connelly et al. | Feb 2005 | A1 |
20050070787 | Zeijlemaker | Mar 2005 | A1 |
20050070975 | Zeijlemaker et al. | Mar 2005 | A1 |
20050113676 | Weiner et al. | May 2005 | A1 |
20050113873 | Weiner et al. | May 2005 | A1 |
20050113876 | Weiner et al. | May 2005 | A1 |
20050197677 | Stevenson | Sep 2005 | A1 |
20050222656 | Wahlstrand et al. | Oct 2005 | A1 |
20050222657 | Wahlstrand et al. | Oct 2005 | A1 |
20050222658 | Hoegh et al. | Oct 2005 | A1 |
20050222659 | Olsen et al. | Oct 2005 | A1 |
20060025820 | Phillips et al. | Feb 2006 | A1 |
20060030774 | Gray et al. | Feb 2006 | A1 |
20060041294 | Gray | Feb 2006 | A1 |
20060167496 | Nelson et al. | Jul 2006 | A1 |
20060173295 | Zeijlemaker | Aug 2006 | A1 |
20060247747 | Olsen et al. | Nov 2006 | A1 |
20060247748 | Wahlstrand et al. | Nov 2006 | A1 |
20060271138 | MacDonald | Nov 2006 | A1 |
20060293591 | Wahlstrand et al. | Dec 2006 | A1 |
20070019354 | Kamath | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070179577 | Marshall et al. | Aug 2007 | A1 |
20070179582 | Marshall et al. | Aug 2007 | A1 |
20070191914 | Stessman | Aug 2007 | A1 |
20070203523 | Betzold | Aug 2007 | A1 |
20070238975 | Zeijlemaker | Oct 2007 | A1 |
20070255332 | Cabelka et al. | Nov 2007 | A1 |
20080033497 | Bulkes et al. | Feb 2008 | A1 |
20080132985 | Wedan et al. | Jun 2008 | A1 |
20080154342 | Digby et al. | Jun 2008 | A1 |
20080221638 | Wedan et al. | Sep 2008 | A1 |
20080234772 | Shuros et al. | Sep 2008 | A1 |
20090138058 | Cooke et al. | May 2009 | A1 |
20090149906 | Ameri et al. | Jun 2009 | A1 |
20090149909 | Ameri | Jun 2009 | A1 |
20090157146 | Linder et al. | Jun 2009 | A1 |
20090204182 | Ameri | Aug 2009 | A1 |
20090210025 | Ameri | Aug 2009 | A1 |
20100087892 | Stubbs et al. | Apr 2010 | A1 |
20100211123 | Stubbs et al. | Aug 2010 | A1 |
20110137359 | Stubbs et al. | Jun 2011 | A1 |
20110270338 | Cooke et al. | Nov 2011 | A1 |
20110276104 | Ameri et al. | Nov 2011 | A1 |
20120071941 | Ameri | Mar 2012 | A1 |
20120253425 | Yoon et al. | Oct 2012 | A1 |
20140018870 | Cooke et al. | Jan 2014 | A1 |
20140046390 | Stubbs et al. | Feb 2014 | A1 |
20140135861 | Stubbs et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
0331959 | Sep 1989 | EP |
0530006 | Mar 1993 | EP |
0591334 | Apr 1994 | EP |
0331959 | Dec 1994 | EP |
0705621 | Apr 1996 | EP |
0891786 | Jan 1999 | EP |
0891207 | Nov 1999 | EP |
0980105 | Feb 2000 | EP |
0989623 | Mar 2000 | EP |
0989624 | Mar 2000 | EP |
1007132 | Jun 2000 | EP |
1109180 | Jun 2001 | EP |
1128764 | Sep 2001 | EP |
0705621 | Jan 2002 | EP |
1191556 | Mar 2002 | EP |
1271579 | Jan 2003 | EP |
0719570 | Apr 2003 | EP |
1308971 | May 2003 | EP |
1007140 | Oct 2003 | EP |
1372782 | Jan 2004 | EP |
0870517 | Jun 2004 | EP |
1061849 | Nov 2005 | EP |
1060762 | Aug 2006 | EP |
0836413 | Aug 2008 | EP |
WO9104069 | Apr 1991 | WO |
WO9638200 | Dec 1996 | WO |
WO9712645 | Apr 1997 | WO |
WO0054953 | Sep 2000 | WO |
WO0137286 | May 2001 | WO |
WO0180940 | Nov 2001 | WO |
WO0186774 | Nov 2001 | WO |
WO02056761 | Jul 2002 | WO |
WO02065895 | Aug 2002 | WO |
WO02072004 | Sep 2002 | WO |
WO02089665 | Nov 2002 | WO |
WO02092161 | Nov 2002 | WO |
WO03013199 | Feb 2003 | WO |
WO03037399 | May 2003 | WO |
WO03059445 | Jul 2003 | WO |
WO03061755 | Jul 2003 | WO |
WO03063258 | Jul 2003 | WO |
WO-03063946 | Aug 2003 | WO |
WO03063946 | Aug 2003 | WO |
WO03063952 | Aug 2003 | WO |
WO03063954 | Aug 2003 | WO |
WO03063955 | Aug 2003 | WO |
WO03063956 | Aug 2003 | WO |
WO03063958 | Aug 2003 | WO |
WO03063962 | Aug 2003 | WO |
WO-03070098 | Aug 2003 | WO |
WO03070098 | Aug 2003 | WO |
WO03073449 | Sep 2003 | WO |
WO03073450 | Sep 2003 | WO |
WO03086538 | Oct 2003 | WO |
WO03090846 | Nov 2003 | WO |
WO03090854 | Nov 2003 | WO |
WO03095022 | Nov 2003 | WO |
WO2006124481 | Nov 2006 | WO |
Entry |
---|
“The Gradient System”, downloaded from http://www.medical.siemens.com, 1 page. |
Dempsey Mary F. et al., “Investigation of the Factors Responsible for Burns During MRI”, Journal of Magnetic Resonance Imaging 2001;13:627-631. |
File History for U.S. Appl. No. 11/015,807, filed Dec. 17, 2004. |
Hebrank FX, Gebhardt M. Safe model: a new method for predicting peripheral nerve stimulations in MRI (abstr) in: Proceedings of the Eighth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2000; 2007. |
International Search Report and Written Opinion issued in PCT/US2009/059093, mailed Dec. 29, 2009. |
International Search Report and Written Opinion issued in PCT/US2009/068314, mailed Mar. 25, 2009, 14 pages. |
International Search Report and Written Opinion issued in PCT/US2010/053202, mailed Dec. 30, 2010, 12 pages. |
Kerr, Martha, “Shock Rate Cut 70% With ICDs Programmed to First Deliver Antitachycardia Pacing: Results of the PainFREE Rx II Trial,” Medscape CRM News, May 21, 2003. |
Luechinger, Roger et al., “In vivo heating of pacemaker leads during magnetic resonance imaging”, European Heart Journal 2005;26:376-383. |
Nyenhuis, John A. et al., “MRI and Implantable Medical Devices: Basic Interactions With an Emphasis on Heting”, IEEE Transactions on Device and Materials Reliability, vol. 5, No. Sep. 2005, pp. 467-480. |
Schueler, et al., “MRI Compatibility and Visibility Assessment of Implantable Medical Devices”, Journal of Magnetic Resonance Imaging, 9:596-603 (1999). |
Shellock FG, “Reference manual for magnetic resonance safety, implants, and devices”, pp. 136-139, 2008 ed. Los Angeles; Biomedical Research Publishing Group; 2008. |
Shellock, Frank G. et al., “Cardiovascular catheters and accessories: ex vivo testing of ferromagnetism, heating, and artifacts associated with MRI”, Journal of Magnetic Resonance Imaging, Nov./Dec. 1998; 8:1338-1342. |
Sweeney, Michael O. et al., Appropriate and Inappropriate Ventricular Therapies, Quality of Life, and Mortality Among Primary and Secondary Prevention Implantable Cardioverter Defibrillator Patients: Results From the Pacing Fast VT Reduces Shock Therapies (PainFREE Rx II) Trial, American Heart Association, 2005. |
Wilkoff, Bruce L. et al., “A Comparison of Empiric to Physician-Tailored Programming of Implantable Cardioverter-Defibrillators Results From the Prospective Randomized Multicenter Empiric Trial,” Journal of the American College of Cardiology vol. 48, No. 2, 2006. doi:10.1016/j.jacc.2006.03.037. |
“U.S. Appl. No. 12/568,433, Advisory Action mailed Nov. 16, 2012”, 3 pgs. |
“U.S. Appl. No. 12/568,433, Appeal Brief filed Apr. 12, 2013”, 22 pgs. |
“U.S. Appl. No. 12/568,433, Appeal Decision mailed Mar. 12, 2013”, 2 pgs. |
“U.S. Appl. No. 12/568,433, Final Office Action mailed Sep. 24, 2012”, 8 pgs. |
“U.S. Appl. No. 12/568,433, Non Final Office Action mailed May 7, 2012”, 8 pgs. |
“U.S. Appl. No. 12/568,433, Notice of Allowance mailed Jun. 28, 2013”, 6 pgs. |
“U.S. Appl. No. 12/568,433, Pre-Appeal Brief Request filed Dec. 20, 2012”, 4 pgs. |
“U.S. Appl. No. 12/568,433, Preliminary Amendment filed Apr. 1, 2011”, 5 pgs. |
“U.S. Appl. No. 12/568,433, Response filed Mar. 26, 2012 to Restriction Requirement mailed Mar. 16, 2012”, 1 pg. |
“U.S. Appl. No. 12/568,433, Response filed Jul. 19, 2012 to Non Final Office Action mailed May 7, 2012”, 7 pgs. |
“U.S. Appl. No. 12/568,433, Response filed Nov. 8, 2012 to Final Office Action mailed Sep. 24, 2012”, 7 pgs. |
“U.S. Appl. No. 12/568,433, Restriction Requirement mailed Mar. 16, 2012”, 6 pgs. |
“European Application Serial No. 09793203.2, Examination Notification Art. 94(3) mailed May 25, 2012”, 4 pgs. |
“European Application Serial No. 09793203.2, Noting of loss of rights mailed Apr. 29, 2015”, 1 pg. |
“European Application Serial No. 09793203.2, Office Action mailed Jul. 13, 2011”, 2 pgs. |
“European Application Serial No. 09793203.2, Response filed Jan. 13, 2012 to Office Action mailed Jul. 13, 2011”, 12 pgs. |
“European Application Serial No. 09793203.2, Response filed Nov. 28, 2012 to Examination Notification Art. 94(3) mailed May 25, 2012”, 12 pgs. |
“International Application Serial No. PCT/US2009/059093, International Preliminary Report on Patentability mailed Apr. 14, 2011”, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20140046392 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61102027 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12568433 | Sep 2009 | US |
Child | 14053442 | US |