This document generally relates to cardiac rhythm management (CRM) systems and particularly, but not by way of limitation, to such systems providing for detection and classification of cardiac arrhythmias using wireless electrocardiogram (ECG), which is sensed by an implantable device using implantable electrodes and approximates a surface ECG.
The heart is the center of a person's circulatory system. It includes a complex electro-mechanical system performing two major pumping functions. The left portions of the heart, including the left atrium (LA) and the left ventricle (LV), draw oxygenated blood from the lungs and pump it to the organs of the body to provide the organs with their metabolic needs for oxygen. The right portions of the heart, including the right atrium (RA) and the right ventricle (RV), draw deoxygenated blood from the organs and pump it into the lungs where the blood gets oxygenated. These mechanical pumping functions are accomplished by contractions of the myocardium (heart muscles). In a heart having a normal electrical system, the sinoatrial node, the heart's natural pacemaker, generates electrical signals, called action potentials, at a rate responsive to the body's metabolic need. The action potentials propagate through an electrical conduction system to various regions of the heart to excite myocardial tissues in these regions. Coordinated delays in the propagations of the action potentials in a normal electrical conduction system cause the various regions of the heart to contract in synchrony such that the pumping functions are performed efficiently. When the electrical system functions abnormally, the heart may contract in a rate that is abnormally slow or abnormally fast, or that contractions at one or more cardiac regions become chaotic and asynchronized. Such conditions are known as cardiac arrhythmias. Cardiac arrhythmias result in diminished blood flow in the circulatory system and hence insufficient oxygen supply to meet the body's metabolic needs.
Arrhythmias are treated by therapies including, but not being limited to, various types of pacing, cardioversion, and defibrillation therapies delivered by implantable CRM devices. To deliver the right type of therapy with adequate timing, one or more biopotential signals, called electrograms, are sensed to indicate of a cardiac rhythm, including the type of arrhythmia when the cardiac rhythm becomes abnormal. An intracardiac electrogram is sensed with at least one electrode placed in or on the heart. Depending on the location of the electrode, the intracardiac electrogram indicates localized electrical activities of one particular cardiac region. Under certain circumstances, the localized electrical activities may indicate an ongoing arrhythmia but not the origin of that arrhythmia. Additionally, reliability of intracardiac electrogram-based arrhythmia detection may be compromised by noise or poor electrical connections between the heart and the sensing circuit, which occur due to bodily movements and environmental factors.
To enhance the effectiveness of therapy for cardiac arrhythmias, there is a need for enhancement of intracardiac electrogram-based arrhythmia detections.
A CRM system enhances intracardiac electrogram-based arrhythmia detection using a wireless ECG, which is a signal sensed with implantable electrodes and approximating a surface ECG. In one embodiment, the wireless ECG is a subcutaneous ECG sensed through electrodes implanted in subcutaneous tissue, such as through electrodes incorporated onto an implantable medical device that is subcutaneously implanted.
In one embodiment, a CRM system includes an implantable medical device and a plurality of implantable subcutaneous electrodes. The implantable medical device includes a primary sensing circuit, an auxiliary sensing circuit, a processing circuit, a switch circuit, and a selection circuit. The primary sensing circuit includes an electrogram sensing circuit to sense an intracardiac electrogram. The auxiliary sensing circuit includes a wireless ECG sensing circuit to sense a subcutaneous ECG through the implantable subcutaneous electrodes. The processing circuit receives a signal being one of the intracardiac electrogram and the subcutaneous ECG. The switch circuit receives a selection signal from the selection circuit and connects one of the primary sensing circuit and the auxiliary sensing circuit to the processing circuit according to the selection signal.
In one embodiment, a method for cardiac signal sensing is provided. An intracardiac electrogram is sensed through an implantable lead. A failure signal indicating a failure in sensing the intracardiac electrogram is detected. A subcutaneous ECG is sensed as a substitute for the intracardiac electrogram if the failure signal is detected.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. Other aspects of the invention will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their equivalents.
In the drawings, which are not necessarily drawn to scale, like numerals describe similar components throughout the several views. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined, or that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description provides examples, and the scope of the present invention is defined by the appended claims and their equivalents.
It should be noted that references to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment.
This document discusses a CRM system that uses a wireless ECG as one of the signals controlling delivery of electrical therapy to a heart. The wireless ECG includes a signal approximating the surface ECG sensed by an implantable medical device without using an electrode attached to the skin. In this document, a “user” includes a physician or other caregiver using the CRM system to treat a patient. “Electrogram” or “intracardiac electrogram” refers to a cardiac electrical signal sensed with one or more sensing electrodes placed in or on the heart. “Surface ECG” refers to a cardiac electrical signal sensed with electrodes attached onto the exterior surface of the skin. “Wireless ECG” refers to a signal approximating the surface ECG, acquired without using surface (non-implantable, skin contact) electrodes. “Subcutaneous ECG” is a form of wireless ECG and includes a cardiac electrical signal sensed through electrodes implanted in subcutaneous tissue, such as through electrodes incorporated onto an implantable medical device that is subcutaneously implanted.
A surface ECG is morphologically different from the intracardiac electrogram because of the difference in the sources that produce these signals. As reflected in their corresponding morphologies, the surface ECG results from electrical activities of the entire heart, while the intracardiac electrogram primarily results from the spread of electrical activity in a region in close proximity to the one or more sensing electrodes placed in or on the heart. The wireless ECG, including but not being limited to the subcutaneous ECG, has a morphology that approximates that of the surface ECG and reflects electrical activities of a substantial portion of the heart, up to the entire heart.
In various embodiments discussed below, the wireless ECG is used for arrhythmia detection and/or classification. An accurate classification of a detected arrhythmia ensures that an adequate therapy is delivered when necessary. When a detected arrhythmia is known or likely to be one of two types of arrhythmias, the arrhythmia classification may include discrimination between the two types of arrhythmias. For example, a tachycardia detected based on a rapid ventricular rate may be one of ventricular tachycardia (VT) and supraventricular tachycardia (SVT). A VT therapy such as a ventricular defibrillation shock should be delivered only if the tachycardia is VT. A classification of this detected tachycardia includes discrimination of VT from SVT. A proper classification of SVT prevents the defibrillation shock from being delivered to a ventricle, thus avoiding unnecessary discomfort to the patient and shortening of the life expectancy of a battery-powered implantable therapeutic device.
According to the present subject matter, a classification and/or confirmation process following an initial detection provides enhancement of arrhythmia detection. In various embodiments, VT detection is enhanced by discriminating VT from SVT following a detection of a rapid ventricular rate and/or by confirming a detection of a VT episode with a separate detection of the same VT episode. In further embodiments, an arrhythmia classification (including discrimination) process is confirmed with a separate classification process applied to the same detected arrhythmia. Thus, in various embodiments, a detection process for a particular type arrhythmia includes an initial detection followed by a classification and/or confirmation process.
Implantable medical device 110 includes circuitry for sensing at least one intracardiac electrogram and at least one wireless ECG. In various embodiments, implantable medical device 110 analyzes the wireless ECG to supplement or enhance intracardiac electrogram-based arrhythmia detection and classification for effective delivery of electrical therapies to heart 101. In other embodiments, implantable medical device 110 senses the wireless ECG as an alternative to an intracardiac electrogram, such as when the wireless ECG is associated with a better signal quality for the purpose of detecting cardiac electrical events.
In one embodiment, one or more pacing electrodes of lead system 108 are used as one or more electrodes for the wireless ECG sensing. In one embodiment, as illustrated in
Implantable medical device 110 includes a hermetically sealed can 211 to house its circuit. Can 211 has an outer surface subject to contact with body tissue. Can 211 includes or provides for a base of a can electrode 214 that is selectable as one of the electrodes for the wireless ECG sensing. At least a portion of the outer surface of can 211 is made of electrically conductive material. In one embodiment, can 211 is used as can electrode 214. In one specific embodiment, can electrode 214 includes at least one conductive portion of can 211. In another embodiment, can electrode 214 is incorporated onto the outer surface of can 211. Can electrode 214 is electrically insulated from any conductive portion of can 211 using a non-conductive layer. In one specific embodiment, a hermetically sealed feedthrough including a conductor provides for an electrical connection between can electrode 214 and the circuit housed in can 211.
A header 212 is attached to can 211 and includes connectors providing for electrical access to the circuit housed in can 211. In one embodiment, one or more header electrodes 216A-B are incorporated into the header. Header electrodes 216A-B are each selectable as one of the electrodes for the wireless ECG sensing.
In one embodiment, two or more concentric electrodes 217A-C are incorporated onto the outer surface of can 211. Each of the concentric electrodes 217A-C is selectable as one of the electrodes for the wireless ECG sensing. Concentric electrodes 217A-C are insulated from the conductive portion of can 211 with a non-conductive layer and connected to the circuit housed in can 211 via hermetically sealed feedthroughs. In one embodiment, two electrodes, including an inner electrode and an outer electrode, are selected from concentric electrodes 217A-C for the wireless ECG sensing. In one embodiment, the outer electrode has a ring shape. In another embodiment, the outer electrode has a shape approaching the contour of can 211.
In one embodiment, implantable medical device 110 includes an antenna 213 for the far-field RF telemetry. Antenna 213 is electrically connected to the circuit housed in can 211. In one embodiment, antenna 213 projects from header 212 and extends along one side of can 211. In one embodiment, antenna 213 includes a metal conductor with a distal portion exposed for functioning as an antenna electrode 218, which is selectable as one of the electrodes for the wireless ECG sensing.
It is to be understood that the electrodes illustrated in
In various embodiments in which multiple wireless ECG vectors are needed, multiple pairs of electrodes are selected, simultaneously or one at a time, for a multi-channel (multi-vector) wireless ECG sensing. In one specific embodiment, one or more of wireless ECG vectors are sensed to approximate one or more vectors of a standard multi-lead surface ECG recording. In another specific embodiment, multiple wireless ECG vectors are sensed based on needs of specific information for particular diagnostic purposes. Such wireless ECG vectors do not necessarily approximate standard surface ECG vectors. In one specific embodiment, implantable medical device 110 includes header electrodes 216A-B and can electrode 214 for the wireless ECG sensing. Implantable medical device 110 is programmable for sensing ECG vectors between (1) header electrodes 216A and 216B, (2) header electrode 216A and can electrode 214, and/or (3) header electrode 216B and can electrode 214. In another specific embodiment, implantable medical device 110 includes one of header electrodes 216A-B, antenna electrode 218, and can electrode 214 for the wireless ECG sensing. Implantable medical device 110 is programmable for sensing ECG vectors between (1) header electrode 216A or 216B and antenna electrode 218, (2) header electrode 216A or 216B and can electrode 214, and/or (3) antenna electrode 218 and can electrode 214. In another specific embodiment, implantable medical device 110 includes header electrodes 216A-B, antenna electrode 218, and can electrode 40 for the wireless ECG sensing. Implantable medical device 110 is programmable for sensing ECG vectors between (1) header electrodes 216A and 218, (2) header electrode 216A and antenna electrode 218, (3) header electrode 216A and can electrode 214, (4) header electrode 216B and antenna electrode 218, (5) header electrode 216B and can electrode 214, and/or (6) antenna electrode 218 and can electrode 214. Other specific embodiments involving any electrode combinations for the wireless ECG sensing will be employed based on possible diagnostic and other medical needs and considerations.
The selection of ECG vectors depends on the purpose for the wireless ECG sensing. In one embodiment, the wireless ECG is sensed for detecting atrial depolarizations (P waves), and the ECG vector that provide for a reliable P wave detection are selected. In another embodiment, the wireless ECG is sensed for detecting ventricular depolarizations (R waves), and one or more ECG vectors that provide for a reliable R wave detection are selected. In another embodiment, the wireless ECG is sensed for a global view of all cardiac activities, one or more ECG vectors that provide such global view, either alone or in combination, are selected. In one embodiment, when more than one ECG vector provides for a reliable sensing for a particular purpose, the ECG vector showing the highest signal-to-noise ratio (SNR) for that purpose is selected. For example, if the wireless ECG is sensed for detecting P waves, the ECG vector showing the highest SNR with P waves being considered as the signal is selected.
Implantable system 305 includes lead system 108, implantable electrodes 306, and implantable medical device 310. Implantable electrodes 306 are electrodes for the wireless ECG sensing and include, but are not limited to, any two or more electrodes discussed above with reference to
In one embodiment, one or more wireless ECGs are sensed and transmitted to external system 325 for diagnostic purposes. In another embodiment, one or more wireless ECGs sensed and transmitted to external system 325 for therapeutic purposes, such as for decisions to start, stop, or adjust a therapy or for therapy optimization. In another embodiment, one or more wireless ECGs are processed by implant controller 338 to be used as one or more signals controlling therapy delivery by implantable medical device 310. In another embodiment, one or more wireless ECGs are sensed for use by implant controller 338 and transmission to external system 325.
External system 325 includes an external telemetry module 340, an external controller 342, a user input device 344, and a presentation device 346. External telemetry module 340 receives acquired signals or other data from implantable medical device 310 and transmits commands and other data to implantable medical device 310. External controller 342 controls the operation of external system 325. User input device 344 and presentation device 346 are part of a user interface allowing a user to control the operation of CRM system 300. User input device 344 receives commands and other information from the user for programming implantable medical device 310 as well as external system 325. In one embodiment, presentation device 346 presents acquired signals including the one or more intracardiac electrograms and the one or more wireless ECGs. In a further embodiment, the user selects one or more signals from the one or more intracardiac electrograms and the one or more wireless ECGs for particular purposes by programming implantable medical device 310.
Various specific embodiments of implantable system 305 are discussed below with reference to
Implantable medical device 410 includes electrogram sensing circuit 330, wireless ECG sensing circuit 332, an arrhythmia detection circuit 450, and an arrhythmia classification circuit 452. Arrhythmia detection circuit 450 detects an arrhythmia based on at least one intracardiac electrogram sensed by electrogram sensing circuit 330 through lead system 108. Arrhythmia classification circuit 452 classifies the detected arrhythmia based on at least one wireless ECG sensed by wireless ECG sensing circuit 332 through implantable electrodes 306. For example, arrhythmia detection circuit 450 detects a tachycardia based on a ventricular rhythm detected from a ventricular electrogram showing ventricular depolarizations (R waves). Arrhythmia classification circuit 452 classifies the detected tachycardia as one of VT and SVT based an atrial rhythm detected from a wireless ECG including detectable atrial depolarizations (P waves).
In one embodiment, therapy circuit 534 includes a cardioversion/defibrillation circuit 560 to deliver ventricular cardioversion/defibrillation pulses to the heart through ventricular lead 508. In a further embodiment, therapy circuit 534 also includes an anti-tachycardia pacing (ATP) circuit 562 to deliver ATP pulses to the heart through ventricular lead 508.
Implant controller 538 includes a ventricular event detector 554, a ventricular rate detector 555, a ventricular arrhythmia detector 556, an atrial event detector 557, an atrial rate detector 558, and an arrhythmia classification circuit 559. Ventricular event detector 554 detects ventricular events including ventricular depolarizations (R waves) from the ventricular electrogram sensed by electrogram sensing circuit 330 through ventricular lead 508. Ventricular rate detector 555 detects a ventricular rate being the number of ventricular events detected over a minute (beats per minute). Ventricular arrhythmia detector 556 detects a ventricular arrhythmia when the ventricular rate exceeds a predetermined tachycardia threshold rate. In one embodiment, ventricular arrhythmia detector 556 detects two or more types of ventricular arrhythmias based on the ventricular rate and predetermined threshold rates each associated with one type of ventricular arrhythmia. In one specific embodiment, ventricular arrhythmia detector 556 includes at least a VT detector that detects VT based on a predetermined threshold VT rate and a ventricular fibrillation (VF) detector that detects VF based on a predetermined threshold VF rate. Atrial event detector 557 detects atrial events including atrial depolarizations (P waves) from the wireless ECG sensed by wireless ECG sensing circuit 332 through implantable electrodes 306. Atrial rate detector 558 detects the atrial rate being the number of atrial events detected over a minute (beats per minute). When a ventricular arrhythmia is detected by ventricular arrhythmia detector 538, arrhythmia classification circuit 559 classifies the detected arrhythmia by discriminating between a ventricular arrhythmia of a ventricular origin and a ventricular arrhythmia of a supraventricular origin. Arrhythmia classification circuit 559 includes a rate comparator to compare the atrial rate and the ventricular rate. The rate comparator includes an input to receive the atrial rate, another input to receive the ventricular rate, and an output indicative of an arrhythmia type classified based on the comparison between the atrial and ventricular rate. In one embodiment, ventricular arrhythmia detector 556 detects VT or VF. If the ventricular rate is substantially greater than the atrial rate, arrhythmia classification circuit 559 classifies the detected VT or VF as a tachycardia or fibrillation of a ventricular origin. A detection of VF or VT is declared or indicated only after an arrhythmia is detected by ventricular arrhythmia detector 538 and classified as VT or VF by arrhythmia classification circuit 559. The classification enhances the detection of VT or VF by confirming that a detected arrhythmia is indeed of ventricular origin before applying a ventricular cardioversion/defibrillation or ventricular ATP therapy. In one embodiment, cardioversion/defibrillation circuit 560 delivers a cardioversion/defibrillation therapy after a detected tachycardia or fibrillation is classified as a tachycardia or fibrillation of ventricular origin. In one embodiment, in addition to the classification of the VT or VF based on the comparison between the ventricular rate and atrial rate, implant controller 538 includes other detection enhancement features known as therapy inhibitors. Such therapy inhibitors prevent the delivery of a cardioversion/defibrillation therapy when certain events or conditions are detected while ventricular arrhythmia detector 556 detects VT or VF. Examples of such therapy inhibitors are discussed in U.S. Pat. No. 6,493,579, “SYSTEM AND METHOD FOR DETECTION ENHANCEMENT PROGRAMMING,” assigned to Cardiac Pacemakers, Inc., which is hereby incorporated by reference in its entirety. In one embodiment, implant controller 538 is programmed to cause cardioversion/defibrillation circuit 560 to deliver a cardioversion/defibrillation therapy immediately after arrhythmia classification circuit 559 determines that the ventricular rate is substantially greater than the atrial rate, regardless of the status of other therapy inhibitors. In other words, the detection enhancement based on the comparison between the ventricular rate and atrial rate is programmable for bypassing all other detection enhancement features in implant controller 538 in determining the delivery of the cardioversion/defibrillation therapy. Ventricular lead 508 includes at least one cardioversion/defibrillation electrode. In a further embodiment, ATP circuit 562 delivers ventricular ATP pulses after a detected tachycardia is classified as a tachycardia of ventricular origin. Ventricular lead 508 further includes at least one pacing electrode.
Implant controller 638 includes ventricular event detector 554, ventricular rate detector 555, ventricular arrhythmia detector 556, atrial event detector 557, atrial rate detector 558, an atrial arrhythmia detector 664, and an arrhythmia classification circuit 665. Atrial arrhythmia detector 664 detects an atrial arrhythmia when the atrial rate exceeds a predetermined tachycardia threshold rate. In one embodiment, atrial arrhythmia detector 664 includes an atrial fibrillation (AF) detector to detect AF and an atrial tachycardia (AT) detector to detect AT such as atrial flutter. Arrhythmia classification circuit 665 includes a specificity enhancement circuit to classify the detected ventricular arrhythmia by discriminating between a ventricular arrhythmia of a ventricular origin and a ventricular arrhythmia of a supraventricular origin. The discrimination is at least partially based on whether an atrial arrhythmia is concurrently detected. If atrial arrhythmia is not concurrently detected, the detected ventricular arrhythmia is classified as an arrhythmia of a ventricular origin. If atrial arrhythmia is concurrently detected, further detection and/or classification is required to determine whether the detected ventricular arrhythmia has a supraventricular origin or both supraventricular and ventricular origins. In one embodiment, ventricular arrhythmia detector 556 detects VT or VF. If no atrial arrhythmia including AF and atrial flutter is detected, the specificity enhancement circuit of arrhythmia classification circuit 559 classifies the detected tachycardia or fibrillation as a tachycardia or fibrillation of a ventricular origin. If an atrial arrhythmia such as an AF or atrial flutter is detected, the specificity enhancement circuit of arrhythmia classification circuit 559 performs additional analysis, such as morphology-based analysis of the ventricular electrogram, to determine whether to classify the detected tachycardia or fibrillation as a tachycardia or fibrillation of a supraventricular origin or a ventricular origin.
An intracardiac electrogram is sensed at 700. Concurrently, a wireless ECG is sensed at 710. Arrhythmia is detected based on the intracardiac electrogram at 720. The detected arrhythmia is classified based on at least the wireless ECG at 730. In one embodiment, the classification includes discrimination between an arrhythmia of ventricular origin and an arrhythmia of atrial origin.
In one embodiment, a ventricular electrogram is sensed at 700. Ventricular events are detected from the ventricular electrogram. A ventricular rate is detected as the number of ventricular events detected over a minute. At least one of a tachycardia and fibrillation is detected based on the ventricular electrogram at 720. To classify the detected tachycardia or fibrillation, atrial events are detected from the wireless ECG. An atrial rate is detected as the number of atrial events detected over a minute. The detected tachycardia or fibrillation is classified as a tachycardia or fibrillation of ventricular origin if the ventricular rate is substantially greater than the atrial rate. In one embodiment, the detected tachycardia or fibrillation is classified as a tachycardia or fibrillation of ventricular origin if the ventricular rate is greater than the atrial rate by at least a predetermined rate margin. In one specific embodiment, the rate margin is programmed to about 10 beats per minute.
In another embodiment, a ventricular electrogram is sensed at 700. Ventricular events are detected from the ventricular electrogram. A ventricular rate is detected as the number of ventricular events detected over a minute. At least one of a tachycardia and fibrillation is detected based on the ventricular electrogram at 720. To classify the detected tachycardia or fibrillation, atrial arrhythmia is detected from the wireless ECG. This includes detection of at least one of AF and atrial flutter. If the atrial arrhythmia is not detected, the detected tachycardia or fibrillation is classified as VT or VF. If the atrial arrhythmia is detected, further analysis, such as morphological analysis of the ventricular electrogram, is performed to determine whether to classify the detected tachycardia or fibrillation as tachycardia or fibrillation having a ventricular origin or both supraventricular and ventricular origins.
In one embodiment, a ventricular cardioversion/defibrillation shock is delivered to the heart after a detected tachycardia or fibrillation is classified as a tachycardia or fibrillation of ventricular origin. In a further embodiment, ventricular ATP pulses are delivered to the heart after a detected tachycardia is classified as a tachycardia of ventricular origin. In one embodiment, ventricular arrhythmia detection is enhanced by the rate comparison and one or more additional methods that detect events and conditions indicative or suggestive of a need to inhibit the ventricular cardioversion/defibrillation shock. If the detected tachycardia or fibrillation is classified as a tachycardia or fibrillation of ventricular origin based on that the ventricular rate is substantially greater than the atrial rate, the ventricular cardioversion/defibrillation shock is delivered immediately, regardless of any result produced by the one or more addition methods.
Implantable medical device 810 includes electrogram sensing circuit 330, wireless ECG sensing circuit 332, a switch circuit 866, a selection circuit 868, and a processing circuit 870. Electrogram sensing circuit 330 is used as a primary sensing circuit for implantable medical device 810 and senses an intracardiac electrogram. Wireless ECG sensing circuit 332 is used as an auxiliary sensing circuit for implantable medical device 810 and senses a wireless ECG. Processing circuit 870 includes an input to receive a cardiac signal selected from one of the intracardiac electrogram and the wireless ECG. Switch circuit 866 connects the input of processing circuit 870 and one of electrogram sensing circuit 330 and wireless ECG sensing circuit 332 according to a selection signal. The selection signal determines which of the intracardiac electrogram and the wireless ECG is routed to processing circuit 870 for further processing. Selection circuit 868 produces the selection signal in response to an indication of a failure mode in which the primary sensing circuit fails to provide reliable sensing. The failure mode results from, for example, a dislodgment or breakage of the lead connected to electrogram sensing circuit 330 for the electrogram sensing. The wireless ECG provides for backup sensing as part of a failure mode operation until implantable medical device 810 exits the failure mode, for example, when the lead problem is corrected. In one embodiment, selection circuit 868 also produces the selection signal in response to a command transmitted from external system 325. The command represents a user's selection of a cardiac signal.
Implant controller 938 includes switch circuit 866, selection circuit 968, and processing circuit 870. Selection circuit 968 is a specific embodiment of selection circuit 868. In one embodiment, selection circuit 968 includes a lead failure detector 971, a signal quality analyzer 972, and a command receiver 973. In another embodiment, selection circuit 968 includes any one or two of lead failure detector 971, signal quality analyzer 972, and command receiver 973. Lead failure detector 971 detects a lead failure that substantially affects the quality of the intracardiac electrogram. Selection circuit 968 produces the selection signal to connect the input of processor 870 to wireless ECG sensing circuit 332 when the lead failure is detected. In one embodiment, lead failure detector 971 includes a lead impedance measurement circuit to measure a lead impedance as applied to electrogram sensing circuit 330. Selection circuit 968 produces the selection signal to connect the input of processor 870 to wireless ECG sensing circuit 332 when the lead impedance exceeds a predetermined threshold impedance value. Signal quality analyzer 972 analyzes a measure of quality of the intracardiac electrogram and produces a quality parameter indicative of the quality of the intracardiac electrogram. Selection circuit 968 produces the selection signal to connect the input of processor 870 to wireless ECG sensing circuit 332 when the quality parameter is below a predetermined threshold parameter value. In one embodiment, signal quality analyzer 972 includes an SNR measurement circuit to measure the SNR of the intracardiac electrogram. Selection circuit 968 produces the selection signal to connect the input of processor 870 to wireless ECG sensing circuit 332 when the SNR is below a predetermined threshold ratio. Command receiver 973 receives an external command entered by the user through user input 344 of external system 325. Selection circuit 968 produces the selection signal to connect the input of processor 870 to one or of electrogram sensing circuit 320 and wireless ECG sensing circuit 332 based on the external command. In one embodiment, the user decides to use the wireless ECG for backup sensing in response to a lead problem or poor electrogram quality presented through presentation device 346. The wireless ECG serves as a substitute signal for the intracardiac electrogram until reliable intracardiac electrogram sensing by electrogram sensing circuit 330 is resumed, such as when the lead for the intracardiac electrogram sensing is reconnected, repositioned, or replaced.
An intracardiac electrogram is sensed through an implantable lead with at least one intracardiac electrode at 1000. A failure signal indicating a failure in sensing the intracardiac electrogram is detected at 1010. If the failure signal is detected at 1020, a wireless ECG is sensed as a substitute for the intracardiac electrogram at 1030.
In one embodiment, the failure signal is a signal indicative of a lead failure that substantially affects the quality of the intracardiac electrogram. In one specific embodiment, the failure signal includes a signal indicative of lead impedance. The lead impedance indicates a dislodgement or breakage of an implantable lead used for sensing the intracardiac electrogram.
In another embodiment, the failure signal is a signal indicative of poor electrogram quality. A quality parameter indicative of a quality of the intracardiac electrogram is produced based on an analysis of the intracardiac electrogram. The failure signal is produced when the quality parameter falls below a predetermined threshold parameter value. In one specific embodiment, the quality of the intracardiac electrogram is indicated by the SNR of the intracardiac electrogram. The failure signal is produced when the SNR is below a predetermined threshold ratio.
In another embodiment, the failure signal is an external command entered by the user. The user enters the command for using the wireless ECG as a substitute for the intracardiac electrogram when informed of a problem affecting the reliably of intracardiac electrogram sensing or upon observation of such a problem.
In one embodiment, the failure signal includes any one or more of the signal indicative of the lead failure, the signal indicative of poor electrogram quality, and the external command. The wireless ECG is used as the substitute for the intracardiac electrogram when at least one of those failure signals is detected.
Implantable medical device 1110 includes electrogram sensing circuit 330, wireless ECG sensing circuit 332, processing circuit 1175, and signal selection circuit 1176. Electrogram sensing circuit 330 senses one or more intracardiac electrograms. Wireless ECG sensing circuit 332 senses one or more wireless ECGs. Processing circuit 1175 receives and processes at least one cardiac signal selected from the one or more intracardiac electrograms and the one or more wireless ECGs based on a selection signal produced by signal selection circuit 1176. Signal selection circuit 1176 includes a signal quality assessment circuit 1177 and a selection signal generator 1178. Signal quality assessment circuit 1177 analyzes the one or more intracardiac electrograms and the one or more wireless ECGs and produces quality parameters each being a measure of quality of one of these cardiac signals. Selection signal generator 1178 produces the selection signal based on at least these quality parameters.
Implant controller 1238 includes a signal selection circuit 1276 being a specific embodiment of signal selection circuit 1176. Signal selection circuit 1276 includes a signal quality assessment circuit 1277, which includes an SNR measurement circuit 1279 to measure an SNR of each of the plurality of cardiac signals including the one or more intracardiac electrograms and the one or more wireless ECGs. Selection signal generator 1178 produces the selection signal based on the SNRs. Command receiver 1280 receives an external command entered by the user. In one embodiment, signal selection circuit 1178 produces the selection signal based on at least the SNRs and the external command. In one specific embodiment, signal selection circuit 1178 produces the selection signal based on at least the SNRs unless directed otherwise by the external command.
In one embodiment, as illustrated in
In one embodiment, arrhythmia detection circuit 1282 includes a VT detector. Arrhythmia classification circuit 1284 classifies each arrhythmia detected by the VT detector as one of VT and a SVT.
It is to be understood that the wireless ECG as an alternative vector can be used for many purposes that require sensing of cardiac activities and that processing circuit 1275 is merely an example illustrating one such use.
A plurality of cardiac signals is sensed at 1300. The plurality of cardiac signals includes one or more intracardiac electrograms and one or more wireless ECGs. Quality parameters each being a measure of quality of one cardiac signal are produced at 1310 based on a quality analysis of the cardiac signals. One or more cardiac signals are selected based on at least the quality parameters at 1320. An arrhythmia is detected based on the selected one or more cardiac signals at 1330.
In one embodiment, the quality parameters include an SNR for each cardiac signal. The SNR for a cardiac signal is measured by using the amplitude of the signal components that are of interest for the intended use as the signal amplitude. For example, if a cardiac signal is to be selected for detecting atrial depolarizations, the SNR is measured by using the amplitude of the P-waves as the signal amplitude.
In one embodiment, an external command is received from the user. At least one cardiac signal is selected based on at least the quality parameters and the user command. In one specific embodiment, the external command has the highest priority in selecting the one or more cardiac signals.
In one embodiment, the detected arrhythmia is classified based on morphological features detected from the selected one or more cardiac signals. The morphological features are detected during the detected arrhythmia. Arrhythmic morphological parameters are produced based on the morphological features detected during the detected arrhythmia. The detected arrhythmia is classified by comparing the arrhythmic morphological parameters to a set of template morphological parameters. The template morphological parameters are produced based on morphological features detected during a known rhythm. In one embodiment, the known rhythm is an NSR. In another embodiment, the known rhythm is a known type arrhythmia. In one embodiment, at least one intracardiac electrogram and at least one wireless ECG are selected, and the template morphological parameters used for the arrhythmia classification are produced based on a combination of at least one intracardiac electrogram and at least one wireless ECG. In one embodiment, the detected arrhythmia is classified as a confirmation of the detection. In one specific embodiment, AT is detected based on an atrial rate and confirmed based on morphological features detected during the detected AT. In another specific embodiment, VT is detected based on a ventricular rate and confirmed based on morphological features detected during the detected VT. In another embodiment, VT is detected based on a ventricular rate and classified as one of VT and SVT based on morphological features detected during the detected VT.
Implantable medical device 1410 includes electrogram sensing circuit 330, wireless ECG sensing circuit 332, a first arrhythmia detection circuit 1490, a second arrhythmia detection circuit 1491, and an arrhythmia detection confirmation circuit 1492. First arrhythmia detection circuit 1490 receives an intracardiac electrogram from electrogram sensing circuit 330 and detects an arrhythmia based on the intracardiac electrogram. Second arrhythmia detection circuit 1491 receives a wireless ECG from wireless ECG sensing circuit 332 and detects an arrhythmia based on the wireless ECG. In one embodiment, first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491 employ the same arrhythmia detection methodology or substantially similar arrhythmia detection methodologies to detect the same episode of the arrhythmia concurrently. In one specific embodiment, first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491 each detect a ventricular arrhythmia by detecting a ventricular rate and compare the detected ventricular rate to a predetermined tachycardia threshold rate. In another embodiment, first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491 employ substantially different arrhythmia detection methodologies. Arrhythmia detection confirmation circuit 1492 indicates a detection of an arrhythmia based on the results of detection produced by first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491. In one embodiment, arrhythmia detection confirmation circuit 1492 indicates a detection of an arrhythmia only when the same type arrhythmia is detected concurrently by first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491. In another embodiment, weighting factors are applied to the results of detection. Arrhythmia detection confirmation circuit 1492 indicates a detection of an arrhythmia based on whether the same type arrhythmia is detected concurrently by first arrhythmia detection circuit 1490 and second arrhythmia detection circuit 1491 as well as the weighting factors. In one embodiment, the weighting factors are produced based on measures of quality of the intracardiac electrogram and the wireless ECG. In one specific embodiment, the weighting factor applied to the result of detection for each arrhythmia detection circuit is determined by the SNR of the signal used by that arrhythmia detection circuit for the detection. The weighting factor increases when the SNR increases. In other embodiments, the weighting factors are determined by the heart rates and/or measures of rate stability for the intracardiac electrogram and the wireless ECG.
In one embodiment, the arrhythmia detection by implantable medical device 1410 includes a classification process. First arrhythmia detection circuit 1490 includes a first arrhythmia classification circuit that classifies the detected arrhythmia based on the intracardiac electrogram. Second arrhythmia detection circuit 1491 includes a second arrhythmia classification circuit that classifies the detected arrhythmia based on the wireless ECG. In one embodiment, the first arrhythmia classification circuit and the second arrhythmia detection circuit employ the same arrhythmia classification methodology or substantially similar arrhythmia classification methodologies to classify the same episode of the arrhythmia concurrently. In another embodiment, the first arrhythmia classification circuit and the second arrhythmia classification circuit employ substantially different arrhythmia classification methodologies. Arrhythmia detection confirmation circuit 1492 includes an arrhythmia classification confirmation circuit to indicate a classification of the arrhythmia based on results of classification produced by the first arrhythmia classification circuit and the second arrhythmia classification circuit. In one embodiment, the arrhythmia classification confirmation circuit indicates a classification of an arrhythmia only when the first arrhythmia classification circuit and the second arrhythmia classification circuit produce consistent classifications. In another embodiment, weighting factors are applied to the results of the classifications produced by the first arrhythmia classification circuit and the second arrhythmia classification circuit. The arrhythmia classification confirmation circuit indicates a classification of an arrhythmia based on whether the first arrhythmia classification circuit and the second arrhythmia classification circuit produce consistent classifications as well as the weighting factors. In one embodiment, the weighting factors used by the arrhythmia classification confirmation circuit are produced based on measures of quality of the intracardiac electrogram and the wireless ECG. In one specific embodiment, the weighting factor applied to the result of detection for each arrhythmia classification circuit is determined by the SNR of the signal used by that arrhythmia classification circuit for the classification. The weighting factor increases when the SNR increases. In other embodiments, the weighting factors are determined by the heart rates and/or measures of rate stability for the intracardiac electrogram and the wireless ECG.
Implant controller 1538 includes a first arrhythmia detection circuit 1590 and a second arrhythmia detection circuit 1591. In one embodiment, electrogram sensing circuit 330 senses an atrial electrogram. Wireless ECG sensing circuit 332 senses a wireless ECG indicative of atrial depolarizations. First arrhythmia detection circuit 1590 and second arrhythmia detection circuit 1591 each detect an atrial arrhythmia including AT and AF. In another embodiment, electrogram sensing circuit 330 senses a ventricular electrogram. Wireless ECG sensing circuit 332 senses a wireless ECG indicative of ventricular depolarizations. First arrhythmia detection circuit 1590 and second arrhythmia detection circuit 1591 each detects a ventricular arrhythmia including VT and VF. First arrhythmia detection circuit 1590 is a specific embodiment of first arrhythmia detection circuit 1490 and includes a tachycardia detection circuit 1593 and a fibrillation detection circuit 1594. Second arrhythmia detection circuit 1591 is a specific embodiment of second arrhythmia detection circuit 1491 and includes a tachycardia detection circuit 1595 and a fibrillation detection circuit 1596. In one embodiment, tachycardia detection circuits 1593 and 1595 are each an AT detector, and fibrillation detection circuits 1594 and 1596 are each an AF detector. In another embodiment, tachycardia detection circuits 1593 and 1595 are each a VT detector, and fibrillation detection circuits 1594 and 1596 are each a VF detector. Arrhythmia detection confirmation circuit 1492 indicates a detection of an arrhythmia when the same type arrhythmia is detected concurrently by first arrhythmia detection circuit 1590 and second arrhythmia detection circuit 1591. Therapy circuit 334 delivers a therapy to the heart when arrhythmia detection confirmation circuit 1492 indicates a detection of an arrhythmia that requires the therapy.
An intracardiac electrogram is sensed at 1600, and arrhythmia is detected based on the intracardiac electrogram at 1610. At the same time, a wireless ECG is sensed at 1605, and arrhythmia is detected based on the wireless ECG at 1615. If an arrhythmia is detected based on the intracardiac electro gram at 1620, it to be confirmed by a concurrent detection of a same-type arrhythmia based on the wireless ECG. If an arrhythmia is detected based on the wireless ECG at 1625, it is to be confirmed based on whether the same type arrhythmia is detected based on the intracardiac electrogram. In one embodiment, if the same type arrhythmia is detected based on the intracardiac electrogram and the wireless ECG concurrently at 1630, a detection of arrhythmia of that type is indicated at 1640. In another embodiment, weighting factors are applied to the results of detecting the arrhythmia based on the subcutaneous ECG and the intracardiac electrogram. In one specific embodiment, the weighting factors are determined based on the SNRs of the intracardiac electro gram and the subcutaneous ECG. In another specific embodiment, the weighting factors are determined based on heart rates measured from the intracardiac electrogram and the subcutaneous ECG. In one embodiment, the intracardiac electrogram is an atrial electrogram, the wireless ECG allows detection of atrial depolarizations, and the arrhythmia to be detected includes AT and AF. In another embodiment, the intracardiac electrogram is a ventricular electro gram, the wireless ECG allows detection of ventricular depolarizations, and the arrhythmia to be detected includes VT and VF.
In one embodiment, the method for using the wireless ECG to confirm arrhythmia detection further includes using the wireless ECG to confirm arrhythmia classification. Arrhythmia is detected and classified based on the intracardiac electrogram at 1610 and concurrently detected and classified based on the wireless ECG at 1615. If an arrhythmia is detected and classified as a particular type arrhythmia based on the intracardiac electrogram at 1620, that classification is to be confirmed by a separate classification based on the wireless ECG. If an arrhythmia is detected and classified as a particular type arrhythmia based on the wireless ECG at 1625, that classification is to be confirmed based on the intracardiac electrogram. In one embodiment, if the same particular type arrhythmia is classified based on the intracardiac electrogram and the wireless ECG concurrently at 1630, a classification of arrhythmia of that particular type is indicated at 1640. In another embodiment, weighting factors are applied to the results of classifying the arrhythmia based on the subcutaneous ECG and the intracardiac electrogram. In one specific embodiment, the weighting factors used for the classification confirmation are determined based on the SNRs of the intracardiac electrogram and the subcutaneous ECG. In another specific embodiment, the weighting factors are determined based on heart rates measured from the intracardiac electrogram and the subcutaneous ECG.
It is to be understood that the above detailed description, including EXAMPLES 1-4, is intended to be illustrative, and not restrictive. For example, the system components of implantable systems 305, 405, 505, 605, 805, 905, 1105, 1205, 1405, and 1505 as discussed above can be combined by various possible permutations to form other implantable systems or devices. Other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a division of U.S. patent application Ser. No. 10/975,166, filed on Oct. 28, 2004, now U.S. Pat. No. 7,212,849, the specification of which is incorporated herein by reference. This application is related to, commonly assigned U.S. patent application Ser. No. 10/897,365, entitled “SYSTEMS, DEVICES, AND METHODS FOR TACHYARRHYTHMIA DISCRIMINATION OR THERAPY DECISIONS,” filed on Jul. 22, 2004, now issued as U.S. Pat. No. 7,228,176, U.S. patent application Ser. No. 10/890,810, entitled “SELF-DIAGNOSTIC METHOD AND SYSTEM FOR IMPLANTABLE CARDIAC DEVICE,” filed on Jul. 14, 2004, U.S. patent application Ser. No. 10/795,126, entitled “WIRELESS ECG IN IMPLANTABLE DEVICES,” filed on Mar. 5, 2004, now issued as U.S. Pat. No. 7,299,086, U.S. patent application Ser. No. 10/746,855, entitled “WIRELESS ECG PACE AVOIDANCE AND DISPLAY METHOD,” filed on Dec. 24, 2003, now issued as U.S. Pat. No. 7,277,754, U.S. patent application Ser. No. 10/731,223, entitled “DISCRIMINATION OF SUPRAVENTRICULAR TACHYCARDIA AND VENTRICULAR TACHYCARDIA EVENTS,” filed on Dec. 9, 2003, now issued as U.S. Pat. No. 7,039,463, U.S. patent application Ser. No. 10/339,926, entitled “SYSTEM AND METHOD FOR DETECTION ENHANCEMENT PROGRAMMING,” filed on Jan. 10, 2003, now abandoned, U.S. patent application Ser. No. 10/291,200, entitled “CARDIAC RHYTHM MANAGEMENT SYSTEMS AND METHODS USING MULTIPLE MORPHOLOGY TEMPLATES FOR DISCRIMINATING BETWEEN RHYTHMS,” filed on Nov. 8, 2002, now issued as U.S. Pat. No. 7,031,764, U.S. patent application Ser. No. 10/025,958, entitled “SYSTEM AND METHOD FOR DETECTION ENHANCEMENT PROGRAMMING,” filed on Dec. 18, 2001, now issued as U.S. Pat. No. 7,532,931, U.S. patent application Ser. No. 10/008,367, entitled “APPARATUS AND METHOD FOR TREATING VENTRICULAR TACHYARRHYTHMIAS,” filed on Nov. 13, 2001, now issued as U.S. Pat. No. 7,113,824, and U.S. patent application Ser. No. 10/014,933, entitled “SYSTEM AND METHOD FOR ARRHYTHMIA DISCRIMINATION,” filed on Oct. 22, 2001, now issued as U.S. Pat. No. 6,959,212, which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4088139 | Auerbach | May 1978 | A |
4333470 | Barthel | Jun 1982 | A |
4531527 | Reinhold, Jr. et al. | Jul 1985 | A |
4539999 | Mans | Sep 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4585004 | Brownlee | Apr 1986 | A |
4589420 | Adams et al. | May 1986 | A |
RE32378 | Barthel | Mar 1987 | E |
4884345 | Long | Dec 1989 | A |
4924875 | Chamoun | May 1990 | A |
5000189 | Throne et al. | Mar 1991 | A |
5002052 | Haluska | Mar 1991 | A |
5014698 | Cohen | May 1991 | A |
5107850 | Olive | Apr 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5139028 | Steinhaus et al. | Aug 1992 | A |
5156148 | Cohen | Oct 1992 | A |
5161527 | Nappholz et al. | Nov 1992 | A |
5193550 | Duffin | Mar 1993 | A |
5205283 | Olson | Apr 1993 | A |
5215098 | Steinhaus et al. | Jun 1993 | A |
5217021 | Steinhaus et al. | Jun 1993 | A |
5255186 | Steinhaus et al. | Oct 1993 | A |
5265602 | Anderson et al. | Nov 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273049 | Steinhaus et al. | Dec 1993 | A |
5275621 | Mehra | Jan 1994 | A |
5292348 | Saumarez et al. | Mar 1994 | A |
5312445 | Nappholz et al. | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5324310 | Greeninger et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5360436 | Alt et al. | Nov 1994 | A |
5366487 | Adams et al. | Nov 1994 | A |
5378775 | Shimizu et al. | Jan 1995 | A |
5379775 | Kruse | Jan 1995 | A |
5379776 | Murphy et al. | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5400795 | Murphy et al. | Mar 1995 | A |
5411031 | Yomtov | May 1995 | A |
5447524 | Alt | Sep 1995 | A |
5448997 | Kruse et al. | Sep 1995 | A |
5456261 | Luczyk | Oct 1995 | A |
5458623 | Lu et al. | Oct 1995 | A |
5503160 | Pering et al. | Apr 1996 | A |
5509927 | Epstein et al. | Apr 1996 | A |
5520191 | Karlsson et al. | May 1996 | A |
5531767 | Fain | Jul 1996 | A |
5620471 | Duncan | Apr 1997 | A |
5630425 | Panescu | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5645070 | Turcott | Jul 1997 | A |
5682900 | Arand et al. | Nov 1997 | A |
5683425 | Hauptmann | Nov 1997 | A |
5712801 | Turcott | Jan 1998 | A |
5713367 | Arnold et al. | Feb 1998 | A |
5738105 | Kroll | Apr 1998 | A |
5766225 | Kramm | Jun 1998 | A |
5776168 | Gunderson | Jul 1998 | A |
5779645 | Olson et al. | Jul 1998 | A |
5792065 | Xue et al. | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5817133 | Houben | Oct 1998 | A |
5819741 | Karlsson et al. | Oct 1998 | A |
5827197 | Bocek et al. | Oct 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5857977 | Caswell et al. | Jan 1999 | A |
5873897 | Armstrong et al. | Feb 1999 | A |
5891170 | Nitzsche et al. | Apr 1999 | A |
5935081 | Kadhiresan | Aug 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5978707 | Krig et al. | Nov 1999 | A |
6108578 | Bardy et al. | Aug 2000 | A |
6134463 | Wittkampf et al. | Oct 2000 | A |
6151524 | Krig et al. | Nov 2000 | A |
6169918 | Haefner et al. | Jan 2001 | B1 |
6178350 | Olson et al. | Jan 2001 | B1 |
6179865 | Hsu et al. | Jan 2001 | B1 |
6212428 | Hsu et al. | Apr 2001 | B1 |
6223078 | Marcovecchio | Apr 2001 | B1 |
6230055 | Sun et al. | May 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6266554 | Hsu et al. | Jul 2001 | B1 |
6275732 | Hsu et al. | Aug 2001 | B1 |
6308095 | Hsu et al. | Oct 2001 | B1 |
6312388 | Marcovecchio et al. | Nov 2001 | B1 |
6317632 | Krig et al. | Nov 2001 | B1 |
6334071 | Lu | Dec 2001 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6430435 | Hsu et al. | Aug 2002 | B1 |
6434417 | Lovett | Aug 2002 | B1 |
6449503 | Hsu | Sep 2002 | B1 |
6456871 | Hsu et al. | Sep 2002 | B1 |
6477404 | Yonce et al. | Nov 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6484055 | Marcovecchio | Nov 2002 | B1 |
6493579 | Gilkerson et al. | Dec 2002 | B1 |
6505067 | Lee et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522917 | Hsu et al. | Feb 2003 | B1 |
6522925 | Gilkerson et al. | Feb 2003 | B1 |
6526313 | Sweeney et al. | Feb 2003 | B2 |
6658283 | Bornzin et al. | Dec 2003 | B1 |
6658286 | Seim | Dec 2003 | B2 |
6671548 | Mouchawar et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6708058 | Kim et al. | Mar 2004 | B2 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6745068 | Koyrakh et al. | Jun 2004 | B2 |
6760615 | Ferek-Petric | Jul 2004 | B2 |
6766190 | Ferek-Petric | Jul 2004 | B2 |
6889081 | Hsu | May 2005 | B2 |
6959212 | Hsu et al. | Oct 2005 | B2 |
7031764 | Schwartz et al. | Apr 2006 | B2 |
7039463 | Marcovecchio | May 2006 | B2 |
7107093 | Burnes | Sep 2006 | B2 |
7751890 | McCabe et al. | Jul 2010 | B2 |
7991457 | Marcovecchio | Aug 2011 | B2 |
20020002389 | Bradley et al. | Jan 2002 | A1 |
20020032469 | Marcovecchio | Mar 2002 | A1 |
20020035335 | Schauerte | Mar 2002 | A1 |
20020049474 | Marcovecchio et al. | Apr 2002 | A1 |
20020065539 | Von Arx et al. | May 2002 | A1 |
20020072778 | Guck et al. | Jun 2002 | A1 |
20020087091 | Koyrakh et al. | Jul 2002 | A1 |
20020091333 | Hsu et al. | Jul 2002 | A1 |
20020107552 | Krig et al. | Aug 2002 | A1 |
20020123768 | Gilkerson | Sep 2002 | A1 |
20020123769 | Panken et al. | Sep 2002 | A1 |
20020143370 | Kim | Oct 2002 | A1 |
20020147407 | Seim | Oct 2002 | A1 |
20020147474 | Seim et al. | Oct 2002 | A1 |
20020183637 | Kim et al. | Dec 2002 | A1 |
20020183639 | Sweeney et al. | Dec 2002 | A1 |
20020198461 | Hsu et al. | Dec 2002 | A1 |
20030004552 | Plombon et al. | Jan 2003 | A1 |
20030050563 | Suribhotla et al. | Mar 2003 | A1 |
20030060849 | Hsu | Mar 2003 | A1 |
20030069609 | Thompson | Apr 2003 | A1 |
20030083586 | Ferek-Petric | May 2003 | A1 |
20030083587 | Ferek-Petric | May 2003 | A1 |
20030100923 | Bjorling et al. | May 2003 | A1 |
20030105491 | Gilkerson et al. | Jun 2003 | A1 |
20030109792 | Hsu et al. | Jun 2003 | A1 |
20030114889 | Huvelle et al. | Jun 2003 | A1 |
20030120316 | Spinelli et al. | Jun 2003 | A1 |
20030181818 | Kim et al. | Sep 2003 | A1 |
20030208238 | Weinberg et al. | Nov 2003 | A1 |
20040015090 | Sweeney et al. | Jan 2004 | A1 |
20040093035 | Schwartz et al. | May 2004 | A1 |
20040116820 | Daum et al. | Jun 2004 | A1 |
20040116972 | Marcovecchio | Jun 2004 | A1 |
20040127806 | Sweeney | Jul 2004 | A1 |
20040176694 | Kim et al. | Sep 2004 | A1 |
20040215240 | Lovett et al. | Oct 2004 | A1 |
20040230229 | Lovett et al. | Nov 2004 | A1 |
20050010257 | Lincoln et al. | Jan 2005 | A1 |
20050149134 | McCabe et al. | Jul 2005 | A1 |
20050149135 | Krig et al. | Jul 2005 | A1 |
20050159781 | Hsu et al. | Jul 2005 | A1 |
20050197674 | McCabe et al. | Sep 2005 | A1 |
20050256544 | Thompson | Nov 2005 | A1 |
20060015148 | McCabe et al. | Jan 2006 | A1 |
20060074330 | Smith et al. | Apr 2006 | A1 |
20060122527 | Marcovecchio | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
253505 | Jan 1988 | EP |
0308536 | Mar 1989 | EP |
0360412 | Mar 1990 | EP |
0401962 | Dec 1990 | EP |
469817 | Feb 1992 | EP |
0 506 230 | Sep 1992 | EP |
0554208 | Aug 1993 | EP |
0597459 | May 1994 | EP |
0597459 | May 1994 | EP |
0617980 | Oct 1994 | EP |
0711531 | May 1996 | EP |
744190 | Nov 1996 | EP |
0748638 | Dec 1996 | EP |
0784996 | Jul 1997 | EP |
0848965 | Jun 1998 | EP |
0879621 | Nov 1998 | EP |
919256 | Jun 1999 | EP |
993842 | Apr 2000 | EP |
1112756 | Jul 2001 | EP |
WO9302746 | Feb 1993 | WO |
WO-9401173 | Jan 1994 | WO |
WO-9739681 | Oct 1997 | WO |
WO-9739799 | Oct 1997 | WO |
WO-9825669 | Jun 1998 | WO |
WO-9840010 | Sep 1998 | WO |
WO-9848891 | Nov 1998 | WO |
WO 9853879 | Dec 1998 | WO |
WO-9915232 | Apr 1999 | WO |
WO-0053089 | Sep 2000 | WO |
WO-0059573 | Oct 2000 | WO |
WO-0113993 | Mar 2001 | WO |
WO-0126733 | Apr 2001 | WO |
WO-03047690 | Jun 2003 | WO |
WO-2005089643 | Sep 2005 | WO |
WO-2006020198 | Feb 2006 | WO |
WO-2006020198 | Feb 2006 | WO |
WO-2006049767 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070167849 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10975166 | Oct 2004 | US |
Child | 11693110 | US |