1. Field of the Invention
The present invention relates to implantable medical devices such as pacemakers and defibrillators and, more particularly, to an improved rechargeable power supply configuration including a remote primary circuit for contactless charging, and a housing design for the implantable medical device that incorporates a non-contact secondary circuit for charging by the remote primary circuit.
2. Description of the Background
It is forecast that the US market for implantable medical devices will grow 10.9% per year through 2007, to nearly $24.4 billion. The growth leaders are anticipated to be cardiac resynchronization devices, implantable cardioverter defibrillators (ICDs), drugeluting stents, bioengineered tissue implants, neurological stimulators, cochlear implants and retinal implants. Much of this growth is due to technological advances in the devices themselves which make them less obtrusive and more reliable. Also, based on increasing clinical evidence of therapeutic effectiveness and lifesaving benefits, third-party insurance concerns are covering an expanding number of heart patients for pacemakers, implantable cardioverter defibrillators and coronary stents. These devices are enabling persons afflicted with cardiac rhythm disorders and heart failure to live a more normal life without dependence on complex drug regimens. The most pressing need for further technological advances lies in the size and weight of implanted devices, and this remains the major challenge for many researchers. The size of an implanted device directly affects the comfort of the patient. Particularly, if an implant is large it will require that much large opening in the living body either to insert or remove it, possibly causing an excessive bleeding and increasing vulnerability to infection during the implantation.
A battery occupies 50 to 80% of volume in most of implanted medical devices. However, batteries have a limited lifespan and must be replaced periodically. The replacement also requires a surgical operation to make an opening in the body, which is very inconvenient to and can be dangerous for some patients. For this reason, transcutaneous power transmission has been tired as a form of non-contact power transmission.
For example, a prior art charger for implanted medical device is disclosed in U.S. Pat. No. 4,143,661, which shows a very large coil implanted in a human body so as to surround a leg or the waist to use it as the secondary coil. Implanting such a large coil adversely affects the patient's condition. In addition, a large coil inserted into a human body could cause damages to the body.
Another prior art charger is disclosed in U.S. Pat. No. 5,358,514. The charger disclosed therein includes a secondary transformer, a battery and other supplemental circuitry. For magnetic flux supplied from outside of a human body to reach the charger, the charger cannot be enclosed in a metal case, which imposes restrictions on the design of the implanted device. Since ferromagnetic core surrounded by a coil is used as a component of a secondary transformer, it is bulky and vulnerable to impact from outside.
Yet another prior art charger is disclosed in U.S. Pat. No. 6,505,077 to Kast et al., which shows a recharging coil 54 carried on the housing exterior surface 64 of a medical device 20. The recharging coil 54 is manufactured from copper wire, copper magnet wire, copper litz woven wire, gold alloy and the like, and is coupled to recharging feedthroughs 68 with an electrical connection 56.
None of the foregoing nor any known contactless battery charging systems are well-adapted for incorporation directly in/on the housings of existing implantable medical devices, rather than at remote locations. This is because existing designs are too bulky and unsuitable for implantation, are too prone to oxidation once implanted (and to poisoning the patient), are too inefficient for practical charging, or are simply incompatible with the materials of most implantable medical devices. For example, for magnetic flux supplied from outside of a human body to reach a charger, the charger cannot be enclosed in a metal case.
Consequently, it would be greatly advantageous to provide a completely sealed and safe contactless battery charging system with secondary coils that can be incorporated directly in/on the housings of most existing implantable medical devices, so as to minimize space.
It is, therefore, an object of the present invention to provide a transcutaneous power transmission apparatus for use in an implantable medical device.
It is another object to provide a transcutaneous power transmission apparatus for use in an implantable medical device that is small and compact, and can be implanted with the medical device, thereby minimizing surgery and subsequent treatments.
It is another object to provide a transcutaneous power transmission apparatus for use in an implantable medical device that optimizes the transcutaneous magnetic coupling to minimize charging time.
According to the present invention, the above-described and other objects are accomplished by providing an apparatus for providing power to an implantable medical device comprising a primary side circuit for transmitting power in the form of magnetic flux; and a secondary side circuit integral to the implantable medical device for receiving the power transmitted from the primary side circuit and for providing the received power to recharge a battery in the implantable medical device, wherein the primary and secondary side circuits are not physically coupled. A variety of attachment configurations are disclosed for attaching and shielding the secondary circuit directly onto the housing of the implantable medical device, inclusive of flexible printed circuit coils and wire coils recessed into helical notches. The system can be utilized for various implantable medical devices that requires electrical power, such as an artificial heart, a pacemaker, an implantable cardiverter defibrillator, a neurostimulator, a GI stimulator, an implantable drug infusion pump, a bone growth stimulation device, and many other devices. The system improves the power transmission coupling such that sufficient electric power can be transmitted to the medical device repeatedly without having to take the implanted medical device out of the human body. Further, since charging is more efficient and the secondary coils are integral to the implant housing the size of the battery can be reduced, thereby reducing the overall size of the implanted medical device. Moreover, the secondary coil(s) conform to the implant housing and are hermetically sealed to be non-obtrusive, non-corrosive and medically safe.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiment and certain modifications thereof when taken together with the accompanying drawings in which:
The present invention is a contactless power transfer system for an implantable medical device, which includes a primary recharging unit located outside the human body and a contactless power transfer housing forming a portion of the implantable medical device that is implanted inside the human body. A number of embodiments of the present invention will now be described in details with reference to the accompanying drawings.
The charging coils 15 are wound onto a bobbin 17 for stability and ease of assembly, and the bobbin 17 is inserted into a toroid ferrite core 18 that is formed with a circular recess for receiving the bobbin 17. The ferrite core 18 provides EMI shielding capabilities against outside interference and, due to the open-face toroid configuration, directionalizes the transmission to maximize power transmission to the implantable medical device. Ferrite core 18 is preferably an efficient magnetic material such as Alnico (an alloy composed of iron, cobalt, nickel, aluminum, and copper) or Ferrite, but may be may be any other suitable core material such as iron, etc. The primary charging coils 15 are enclosed inside the ferrite core 18 by an isolation composite cover 14, which is a disc of smaller diameter than the toroid-shaped housing 27 and which protrudes slightly beyond the plane of housing 27. The isolation composite cover 14 seals the charging coils 15, bobbin 17 and ferrite core 18 inside the toroid-shaped housing 27, and also positions a flux sensor 16 centrally over the ferrite core 18. Moreover, as seen later the isolation composite cover 14 serves as a skin depressant during use to maximize the magnetic coupling between the primary recharging unit 4 and the secondary. The flux sensor 16 may be a conventional Hall Effect sensor element as used in magnetic field variation meters and the like. The flux sensor 16 may be integrally molded in composite cover 14 such that it is positioned within the air gap of the ferrite core 18, and this is coupled back to the controller to ensure that the correct flux field will be set up within the core 18 material.
The front surface of the housing 30 is defined by a circular recess that is covered by a ferromagnetic composite sheet 32 for protection. Sheet 32 may be any thin ferromagnetic sheet material to prevent magnetic flux generated from nearby electronic devices from affecting the medical device, such as a polymer or resin sheet containing iron particles, which may be laminated or coated onto the entire front surface of the housing 30 and across the circular recess. Ferrite compounds in liquid phase, film shape, or solid phase can be utilized as the shield layer 32. The ferrite compounds in liquid phase include a shielding paint that is a mixture of paint and ferrite powder for absorbing electromagnetic flux, such as SMF series products that are produced by Samhwa Electrics. Film type ferrite material includes ferrite polymer compound film supplied by Siemens of Germany. Secondary side coils 36 are contained within the circular recess. When a current is supplied to a coil, magnetic flux is produced in the coaxial direction. Thus, power transmission efficiency is enhanced by placing the flat secondary coil 36 inside the living body oriented directly outward toward the skin such that the primary coils 15 of the recharging unit 4 can be brought into frontal parallel alignment. The secondary side coils 36 are contained within an isolation layer 34. In accordance with the present invention, the secondary side coils 36 are a flat and thin single-layer windings so that they fit flush within the circular recess without disrupting the exterior surface profile of the otherwise small and implantable medical device. A preferred method of forming the secondary side coils 36 integrally with isolation layer 34 is by conventional flex-PCB methods, laminating the coils 36 between opposing polyamide sheets, the plastic then serving as isolation layer 34. Alternatively, the coils 36 may be electronically printed directly onto a polymer substrate, and preferably sealed therein by overlaying a second polymer sheet. A “Flexible PCB” is a term of art in the electronics industry, meaning flexible polyamide film with conductive traces thereon. Flexible printed circuits are thin, lightweight, flexible, durable, and meet a wide range of temperature and environmental extremes such as those encountered in the human body. Flexible printed circuits are well-suited for applications requiring fine line traces (such as coils), and are much better suited for dynamic applications such as human implantation. Moreover, flex PCBs flex and can conform to the exterior housing of most implantable medical devices, taking no additional space. The ability to layer a flexible PCB coil 36 into a recess on the housing 30 greatly reduces manufacturing costs, and the flush configuration also reduces the incision needed to implant the system and avoids complications. Most importantly, the flat concentric coil-to-coil inductive coupling that results gives an efficient transcutaneous power transfer. However, one skilled in the art should understand that the present invention is not confined to flex-PCB methods, as other method exist (and will be described) for arranging a substantially flat single-layer coil 36 onto the surface of an implanted medical device.
The gauge, number of turns, and length of single-layer coil 36 will depend on factors such as desired power transmission, distance from the primary coil outside the living body and battery charging time and may be determined empirically.
A flux sensor 38 is positioned within the air gap of coils 36. As above, the flux sensor 36 may be a conventional Hall Effect sensor element integrally formed in isolation layer 34, and this indicates proper alignment with the Hall Effect sensor 16 on the primary recharging unit 4, which is coupled back to the controller to ensure that the optimum flux field is attained when the primary coils 15 are aligned with secondary coils 36.
The secondary side coils 36, isolation layer 34, and flux sensor 38 are set into a composite material 42 which fills the recess in housing 30 and hermetically seals those components therein. The filler composite 42 is a medically-safe material such silicon or latex which prevents corrosion to the coils 36 and also prevents a possible release of foreign materials from the device inside a living body.
Power is then applied through the primary recharging unit 4, which delivers the charging signal through the secondary coil 36 to battery 44. The two coils, acting as primary and secondary windings, form a transformer such that power from an external source connected to the primary coil 15 is inductively transferred to the battery 44 coupled to the secondary coil 36.
As seen in
One skilled in the art should understand that certain changes may be made without departing from the scope and spirit of the invention. For example, the ferromagnetic composite sheet 32 may cover just the recess at the front of housing 30, but not the entire front of housing 30.
In this embodiment, the equivalent of the ferromagnetic composite sheet 32 (described in
It should now be apparent that the foregoing transcutaneous power transmission system for use in an implantable medical device offers is extremely small and compact and minimizes surgery and subsequent treatments. The specific configuration of the primary unit 4 and secondary unit 6 optimizes the transcutaneous magnetic coupling to minimize charging time. The system can be utilized for various implantable medical devices that requires electrical power, such as an artificial heart, a pacemaker, an implantable cardiverter defibrillator, a neurostimulator, a GI stimulator, an implantable drug infusion pump, a bone growth stimulation device, and many other devices. Sufficient electric power can be transmitted to the medical device repeatedly without having to take the implanted medical device out of the human body. Further, since charging is more convenient the size of the battery 44 can be reduced, thereby reducing the overall size of the implanted medical device. Since the secondary coil(s) 36 can be formed in a variety of shapes in or on the housing 30, it is easy to design medical devices that conform to the inside of a living body.
Having now set forth the preferred embodiments and certain modifications of the concepts underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept. It is to be understood, therefore, that the invention may be practiced otherwise than as specifically set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
KR 2001-28347 | May 2001 | KR | national |
The present application is a continuation-in-part of U.S. Application Serial No. 949612, filed Sep. 12, 2001, which in turn derives priority from Korean Application Serial No. KR 2001-28347 filed May 23, 2001. The aforesaid applications are commonly owned by the named inventors.
Number | Date | Country | |
---|---|---|---|
Parent | 09949612 | Sep 2001 | US |
Child | 11143108 | Jun 2005 | US |