The present disclosure generally relates to implantable medical devices and more particularly to implantable medical devices with pressure sensors BACKGROUND Implantable medical devices are commonly used to perform a variety of functions, such as to monitor one or more conditions and/or delivery therapy to a patient. In some cases, an implantable medical device may deliver neurostimulation therapy to a patient. In some cases, an implantable medical device may simply monitor one or more conditions, such as pressure, acceleration, cardiac events, and may communicate the detected conditions or events to another device, such as another implantable medical device or an external programmer.
In some cases, an implantable medical device may be configured to deliver pacing and/or defibrillation therapy to a patient. Such implantable medical devices may treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. In some cases, heart conditions may lead to rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various devices (e.g., pacemakers, defibrillators, etc.) may be implanted into a patient's body. When so provided, such devices can monitor and provide therapy, such as electrical stimulation therapy, to the patient's heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, a patient may have multiple implanted devices that cooperate to monitor and/or provide therapy to the patient's heart.
The present disclosure generally relates to implantable medical devices and more particularly to implantable medical devices with pressure sensors.
In a first example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to deliver pacing therapy to a patient's heart. The LCP may comprise a housing having a proximal end and a distal end, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, a diaphragm that is exposed to the environment outside of the housing, the diaphragm is responsive to an external pressure applied to the diaphragm by the environment outside of the housing, a piezoelectric membrane having a first pressure sensor electrode and a second pressure sensor electrode, the piezoelectric membrane may be configured to generate an electrical voltage between the first pressure sensor electrode and the second pressure sensor electrode in response to a pressure change applied to the diaphragm, the electrical voltage representative of a change in external pressure applied to the diaphragm, and circuitry in the housing operatively coupled to the first electrode and the second electrode of the LCP, and also operatively coupled to the first pressure sensor electrode and the second pressure sensor electrode, the circuitry may be configured to deliver a pacing therapy to the patient's heart via the first electrode and the second electrode of the LCP, wherein the pacing therapy is dependent, at least in part, on the electrical voltage generated by the piezoelectric membrane and that is representative of the change in external pressure applied to the diaphragm.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a pressure pulse by monitoring the electrical voltage generated between the first pressure sensor electrode and the second pressure sensor electrode by the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric may be secured to at least part of the interior surface of the diaphragm.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric membrane may be spaced a distance from the interior surface of the diaphragm and may be operatively coupled to the interior surface of the diaphragm via an incompressible fluid.
Alternatively or additionally to any of the examples above, in another example, the incompressible fluid may be in a fluid cavity that is at least partially defined by the interior surface of the diaphragm and may be in fluid communication with both the interior surface of the diaphragm and the piezoelectric membrane, wherein the fluid cavity may be configured to communicate a pressure applied to the incompressible fluid by the diaphragm to the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric membrane may be spaced a distance from the interior surface of the diaphragm and may be operatively coupled to the interior surface of the diaphragm via a mechanical linkage, wherein the mechanical linkage may be configured to translate movement of the diaphragm to a pressure applied to the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm of the housing may include one or more contours.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a change in pressure in a first chamber of the heart caused by a contraction of a second chamber of the heart.
Alternatively or additionally to any of the examples above, in another example, the first chamber may be a ventricle, and the second chamber may be the corresponding atrium.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may be integrally formed with the housing.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may be hermetically sealed to the housing.
Alternatively or additionally to any of the examples above, in another example, the LCP may further comprise a fixation member at the distal end of the housing for fixing the distal end of the housing to an implant site, and wherein the diaphragm of the housing is adjacent the proximal end of the housing.
Alternatively or additionally to any of the examples above, in another example, the housing may include an elongated body with a distal end surface facing distally and a proximal end surface facing proximally, wherein the diaphragm of the housing may be situated on the proximal end surface of the housing.
Alternatively or additionally to any of the examples above, in another example, the diaphragm and/or piezoelectric membrane may be formed to maximize the dynamic change of the diaphragm and/or piezoelectric membrane when implanted.
Alternatively or additionally to any of the examples above, in another example, the LCP may further comprise an anti-thrombogenic coating disposed over the diaphragm of the housing.
In another example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to deliver pacing therapy to a patient's heart. The LCP may comprise a housing having a proximal end and a distal end, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, a diaphragm that is exposed to the environment outside of the housing, the diaphragm is responsive to an external pressure applied to the diaphragm by the environment outside of the housing, a piezoelectric membrane having a first pressure sensor electrode and a second pressure sensor electrode, the piezoelectric membrane may be configured to generate an electrical voltage between the first pressure sensor electrode and the second pressure sensor electrode in response to a pressure change applied to the diaphragm, the electrical voltage representative of a change in external pressure applied to the diaphragm, and circuitry in the housing operatively coupled to the first electrode and the second electrode of the LCP, and also operatively coupled to the first pressure sensor electrode and the second pressure sensor electrode, the circuitry may be configured to deliver a pacing therapy to the patient's heart via the first electrode and the second electrode of the LCP, wherein the pacing therapy is dependent, at least in part, on the electrical voltage generated by the piezoelectric membrane and that is representative of the change in external pressure applied to the diaphragm.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a pressure pulse by monitoring the electrical voltage generated between the first pressure sensor electrode and the second pressure sensor electrode by the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric membrane may be secured to at least part of the interior surface of the diaphragm.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric membrane may be spaced a distance from the interior surface of the diaphragm and may be operatively coupled to the interior surface of the diaphragm via an incompressible fluid.
Alternatively or additionally to any of the examples above, in another example, the incompressible fluid may be in a fluid cavity that is at least partially defined by the interior surface of the diaphragm and may be in fluid communication with both the interior surface of the diaphragm and the piezoelectric membrane, wherein the fluid cavity may be configured to communicate a pressure applied to the incompressible fluid by the diaphragm to the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may have an interior surface that faces toward an interior of the housing, and the piezoelectric membrane may be spaced a distance from the interior surface of the diaphragm and may be operatively coupled to the interior surface of the diaphragm via a mechanical linkage, wherein the mechanical linkage may be configured to translate movement of the diaphragm to a pressure applied to the piezoelectric membrane.
Alternatively or additionally to any of the examples above, in another example, the diaphragm of the housing may include one or more contours.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a change in pressure in a first chamber of the heart caused by a contraction of a second chamber of the heart.
Alternatively or additionally to any of the examples above, in another example, the first chamber may be a ventricle, and the second chamber may be the corresponding atrium.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may be integrally formed with the housing.
Alternatively or additionally to any of the examples above, in another example, the diaphragm may be hermetically sealed to the housing.
Alternatively or additionally to any of the examples above, in another example, the LCP may further comprise a fixation member at the distal end of the housing for fixing the distal end of the housing to an implant site, and wherein the diaphragm of the housing may be adjacent the proximal end of the housing.
Alternatively or additionally to any of the examples above, in another example, the housing may include an elongated body with a distal end surface facing distally and a proximal end surface facing proximally, wherein the diaphragm of the housing may be situated on the proximal end surface of the housing.
Alternatively or additionally to any of the examples above, in another example, the diaphragm and/or piezoelectric membrane may be formed to maximize the dynamic change of the diaphragm and/or piezoelectric membrane when implanted.
In another example, a leadless cardiac pacemaker (LCP) may be configured to sense cardiac activity and to pace a patient's heart. The LCP may comprise a housing having a proximal end and a distal end, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, the housing having a diaphragm that is exposed to the environment outside of the housing, the diaphragm is responsive to a pressure applied to the diaphragm by the environment outside of the housing, a piezoelectric material operatively coupled to the diaphragm of the housing for detecting a deflection in the diaphragm by generating charge that is representative of the pressure applied to the diaphragm by the environment outside of the housing, and circuitry in the housing in operative communication with the first electrode, the second electrode and the piezoelectric material, the circuitry may be configured to deliver a pacing therapy to the patient's heart via the first electrode and the second electrode, wherein the pacing therapy is dependent, at least in part, on the charge that is generated by the piezoelectric material and that is representative of the pressure applied to the diaphragm by the environment outside of the housing.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a pressure pulse by monitoring the charge generated by the piezoelectric material.
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a change in pressure in a first chamber of the heart caused by a contraction of a second chamber of the heart.
Alternatively or additionally to any of the examples above, in another example, the first chamber may be a ventricle, and the second chamber may be the corresponding atrium.
In another example, an implantable medical device (IMD) may comprise a housing having a proximal end and a distal end, a first electrode secured relative to the housing and exposed to the environment outside of the housing, a second electrode secured relative to the housing and exposed to the environment outside of the housing, the housing having a diaphragm that is exposed to the environment outside of the housing, the diaphragm is responsive to a pressure applied to the diaphragm by the environment outside of the housing, a piezoelectric membrane disposed on an inner surface of the diaphragm, the piezoelectric membrane generating a charge in response to the pressure applied to the diaphragm by the environment outside of the housing, and circuitry in the housing in operative communication with the first electrode, the second electrode and the piezoelectric membrane, the circuitry may be configured to deliver an electrostimulation therapy to the patient's heart via the first electrode and the second electrode, wherein the therapy is dependent, at least in part, on the charge that is generated by the piezoelectric membrane and that is representative of the pressure applied to the diaphragm by the environment outside of the housing.
Alternatively or additionally to any of the examples above, in another example, the piezoelectric membrane may comprise polyvinylidene fluoride (PVDF).
Alternatively or additionally to any of the examples above, in another example, the circuitry may be configured to detect a change in pressure in a first chamber of a heart caused by a contraction of a second chamber of the heart.
The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. While the present disclosure is applicable to any suitable implantable medical device (IMD), the description below uses pacemakers and more particularly leadless cardiac pacemakers (LCP) as particular examples.
A normal, healthy heart induces contraction by conducting intrinsically generated electrical signals throughout the heart. These intrinsic signals cause the muscle cells or tissue of the heart to contract. This contraction forces blood out of and into the heart, providing circulation of the blood throughout the rest of the body. However, many patients suffer from cardiac conditions that affect this contractility of their hearts. For example, some hearts may develop diseased tissues that no longer generate or conduct intrinsic electrical signals. In some examples, diseased cardiac tissues conduct electrical signals at differing rates, thereby causing an unsynchronized and inefficient contraction of the heart. In other examples, a heart may initiate intrinsic signals at such a low rate that the heart rate becomes dangerously low. In still other examples, a heart may generate electrical signals at an unusually high rate. In some cases such an abnormality can develop into a fibrillation state, where the contraction of the patient's heart chambers are almost completely de-synchronized and the heart pumps very little to no blood. Implantable medical devices, which may be configured to determine occurrences of such cardiac abnormalities or arrhythmias and deliver one or more types of electrical stimulation therapy to patient's hearts, may help to terminate or alleviate these and other cardiac conditions.
The communication module 102 may be configured to communicate with devices such as sensors, other medical devices, and/or the like, that are located externally to the LCP 100. Such devices may be located either external or internal to the patient's body. Irrespective of the location, remote devices (i.e., external to the LCP 100 but not necessarily external to the patient's body) can communicate with the LCP 100 via the communication module 102 to accomplish one or more desired functions. For example, the LCP 100 may communicate information, such as sensed electrical signals, data, instructions, messages, etc., to an external medical device through the communication module 102. The external medical device may use the communicated signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, analyzing received data, and/or performing any other suitable function. The LCP 100 may additionally receive information such as signals, data, instructions and/or messages from the external medical device through the communication module 102, and the LCP 100 may use the received signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, analyzing received data, and/or performing any other suitable function. The communication module 102 may be configured to use one or more methods for communicating with remote devices. For example, the communication module 102 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, and/or any other signals suitable for communication.
In the example shown in
In some examples, the LCP 100 may not include a pulse generator 104 or may turn off the pulse generator 104. When so provided, the LCP 100 may be a diagnostic only device. In such examples, the LCP 100 may not deliver electrical stimulation therapy to a patient. Rather, the LCP 100 may collect data about cardiac electrical activity and/or physiological parameters of the patient and communicate such data and/or determinations to one or more other medical devices via the communication module 102.
In some examples, the LCP 100 may include an electrical sensing module 106, and in some cases, a mechanical sensing module 108. The electrical sensing module 106 may be configured to sense the cardiac electrical activity of the heart. For example, the electrical sensing module 106 may be connected to the electrodes 114/114′, and the electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through the electrodes 114/114′. The cardiac electrical signals may represent local information from the chamber in which the LCP 100 is implanted. For instance, if the LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by the LCP 100 through the electrodes 114/114′ may represent ventricular cardiac electrical signals. The mechanical sensing module 108 may include one or more sensors, such as an accelerometer, a blood pressure sensor, a heart sound sensor, a blood-oxygen sensor, a temperature sensor, a flow sensor and/or any other suitable sensors that are configured to measure one or more mechanical and/or chemical parameters of the patient. Both the electrical sensing module 106 and the mechanical sensing module 108 may be connected to a processing module 110, which may provide signals representative of the sensed mechanical parameters. Although described with respect to
The electrodes 114/114′ can be secured relative to the housing 120 but exposed to the tissue and/or blood surrounding the LCP 100. In some cases, the electrodes 114 may be generally disposed on either end of the LCP 100 and may be in electrical communication with one or more of the modules 102, 104, 106, 108, and 110. The electrodes 114/114′ may be supported by the housing 120, although in some examples, the electrodes 114/114′ may be connected to the housing 120 through short connecting wires such that the electrodes 114/114′ are not directly secured relative to the housing 120. In examples where the LCP 100 includes one or more electrodes 114′, the electrodes 114′ may in some cases be disposed on the sides of the LCP 100, which may increase the number of electrodes by which the LCP 100 may sense cardiac electrical activity, deliver electrical stimulation and/or communicate with an external medical device. The electrodes 114/114′ can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114/114′ connected to LCP 100 may have an insulative portion that electrically isolates the electrodes 114/114′ from adjacent electrodes, the housing 120, and/or other parts of the LCP 100.
The processing module 110 can be configured to control the operation of the LCP 100. For example, the processing module 110 may be configured to receive electrical signals from the electrical sensing module 106 and/or the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, occurrences and, in some cases, types of arrhythmias. Based on any determined arrhythmias, the processing module 110 may control the pulse generator module 104 to generate electrical stimulation in accordance with one or more therapies to treat the determined arrhythmia(s). The processing module 110 may further receive information from the communication module 102. In some examples, the processing module 110 may use such received information to help determine whether an arrhythmia is occurring, determine a type of arrhythmia, and/or to take particular action in response to the information. The processing module 110 may additionally control the communication module 102 to send/receive information to/from other devices.
In some examples, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip and/or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits (e.g., general purpose programmable microprocessors) while still being able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other examples, the processing module 110 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to modify the control logic of the LCP 100 even after implantation, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed ASIC. In some examples, the processing module 110 may further include a memory, and the processing module 110 may store information on and read information from the memory. In other examples, the LCP 100 may include a separate memory (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory.
The battery 112 may provide power to the LCP 100 for its operations. In some examples, the battery 112 may be a non-rechargeable lithium-based battery. In other examples, a non-rechargeable battery may be made from other suitable materials, as desired. Because the LCP 100 is an implantable device, access to the LCP 100 may be limited after implantation. Accordingly, it is desirable to have sufficient battery capacity to deliver therapy over a period of treatment such as days, weeks, months, years or even decades. In some instances, the battery 112 may a rechargeable battery, which may help increase the useable lifespan of the LCP 100. In still other examples, the battery 112 may be some other type of power source, as desired.
To implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors 116. The anchor 116 may include any one of a number of fixation or anchoring mechanisms. For example, the anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, the anchor 116 may include threads on its external surface that may run along at least a partial length of the anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor 116 within the cardiac tissue. In other examples, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.
While it is contemplated that the MD 200 may be another leadless device such as shown in
The mechanical sensing module 208, as with the mechanical sensing module 108, may contain or be electrically connected to one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, acoustic sensors, ultrasonic sensors and/or other sensors which are configured to measure one or more mechanical/chemical parameters of the heart and/or patient. In some examples, one or more of the sensors may be located on the leads 212, but this is not required. In some examples, one or more of the sensors may be located in the housing 220.
While not required, in some examples, the MD 200 may be an implantable medical device. In such examples, the housing 220 of the MD 200 may be implanted in, for example, a transthoracic region of the patient. The housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of the MD 200 from fluids and tissues of the patient's body.
In some cases, the MD 200 may be an implantable cardiac pacemaker (ICP). In this example, the MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. The MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. The MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via the leads 212 implanted within the heart or in concert with the LCP by commanding the LCP to pace. In some examples, the MD 200 may additionally be configured provide defibrillation therapy.
In some instances, the MD 200 may be an implantable cardioverter-defibrillator (ICD). In such examples, the MD 200 may include one or more leads implanted within a patient's heart. The MD 200 may also be configured to sense cardiac electrical signals, determine occurrences of tachyarrhythmias based on the sensed signals, and may be configured to deliver defibrillation therapy in response to determining an occurrence of a tachyarrhythmia. In some instances, the MD 200 may be a subcutaneous implantable cardioverter-defibrillator (S-ICD). In examples where the MD 200 is an S-ICD, one of the leads 212 may be a subcutaneously implanted lead. In at least some examples where the MD 200 is an S-ICD, the MD 200 may include only a single lead which is implanted subcutaneously, but this is not required. In some cases, the S-ICD lead may extend subcutaneously from the S-ICD can, around the sternum and may terminate adjacent the interior surface of the sternum.
In some examples, the MD 200 may not be an implantable medical device. Rather, the MD 200 may be a device external to the patient's body, and may include skin-electrodes that are placed on a patient's body. In such examples, the MD 200 may be able to sense surface electrical signals (e.g., cardiac electrical signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). In such examples, the MD 200 may be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy. The MD 200 may be further configured to deliver electrical stimulation via the LCP by commanding the LCP to deliver the therapy.
Various devices of the system 300 may communicate via a communication pathway 308. For example, the LCPs 302 and/or 304 may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 302/304, 306, and 310 of the system 300 via the communication pathway 308. In one example, one or more of the devices 302/304 may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, the device or devices 302/304 may communicate such determinations to one or more other devices 306 and 310 of the system 300. In some cases, one or more of the devices 302/304, 306, and 310 of the system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation to the heart of the patient. In another example, the LCPs 302 and/or 304 may sense indications of blood pressure (e.g., via one or more pressure sensors) and indications of volume (e.g., via an impedance between the electrodes of an LCP or between LCPs via an ultrasound transducer placed within the LCP, or via strain sensors placed on the heart in communication with the LCP). In one example, one or more of the devices 302/304 may receive such signals and, based on the received signals, determine a pressure-volume loop, and in some cases may communicate such information to one or more other devices 302/304, 306, and 310 of the system 300 via the communication pathway 308.
It is contemplated that the communication pathway 308 may communicate using RF signals, inductive coupling, conductive coupling optical signals, acoustic signals, or any other signals suitable for communication. Additionally, in at least some examples, the device communication pathway 308 may comprise multiple signal types. For instance, the other sensors/device 310 may communicate with the external device 306 using a first signal type (e.g., RF communication) but communicate with the LCPs 302/304 using a second signal type (e.g., conducted communication, inductive communication). Further, in some examples, communication between devices may be limited. For instance, as described above, in some examples, the LCPs 302/304 may communicate with the external device 306 only through the other sensors/devices 310, where the LCPs 302/304 send signals to the other sensors/devices 310, and the other sensors/devices 310 relay the received signals to the external device 306.
In some cases, the communication pathway 308 may include conducted communication. Accordingly, devices of the system 300 may have components that allow for such conducted communication. For instance, the devices of the system 300 may be configured to transmit conducted communication signals (e.g., current and/or voltage pulses) into the patient's body via one or more electrodes of a transmitting device, and may receive the conducted communication signals (e.g., pulses) via one or more electrodes of a receiving device. The patient's body may “conduct” the conducted communication signals (e.g., pulses) from the one or more electrodes of the transmitting device to the electrodes of the receiving device in the system 300. In such examples, the delivered conducted communication signals (e.g., pulses) may differ from pacing or other therapy signals. For example, the devices of the system 300 may deliver electrical communication pulses at an amplitude/pulse width that is sub-threshold to the heart. Although, in some cases, the amplitude/pulse width of the delivered electrical communication pulses may be above the capture threshold of the heart, but may be delivered during a refractory period of the heart and/or may be incorporated in or modulated onto a pacing pulse, if desired.
Delivered electrical communication pulses may be modulated in any suitable manner to encode communicated information. In some cases, the communication pulses may be pulse width modulated or amplitude modulated. Alternatively, or in addition, the time between pulses may be modulated to encode desired information. In some cases, conducted communication pulses may be voltage pulses, current pulses, biphasic voltage pulses, biphasic current pulses, or any other suitable electrical pulse as desired.
In some cases, the communication pathway 308 may include inductive communication, and when so provided, the devices of the system 300 may be configured to transmit/receive inductive communication signals.
In some cases, the LCP 402 may be in the left ventricle, right atrium or left atrium of the heart, as desired. In some cases, more than one LCP 402 may be implanted. For example, one LCP may be implanted in the right ventricle and another may be implanted in the right atrium. In another example, one LCP may be implanted in the right ventricle and another may be implanted in the left ventricle. In yet another example, one LCP may be implanted in each of the chambers of the heart.
In
The medical device systems 400 and 500 may also include an external support device, such as external support devices 420 and 520. The external support devices 420 and 520 can be used to perform functions such as device identification, device programming and/or transfer of real-time and/or stored data between devices using one or more of the communication techniques described herein. As one example, communication between the external support device 420 and the pulse generator 406 is performed via a wireless mode, and communication between the pulse generator 406 and the LCP 402 is performed via a conducted mode. In some examples, communication between the LCP 402 and the external support device 420 is accomplished by sending communication information through the pulse generator 406. However, in other examples, communication between the LCP 402 and the external support device 420 may be via a communication module. In some embodiments, the external support devices 420, 520 may be provided with or be in communication with a display 422, 522. The display 422, 522 may be a personal computer, tablet computer, smart phone, laptop computer, or other display as desired. In some instances, the display 422, 522 may include input means for receiving an input from a user. For example, the display 422, 522 may also include a keyboard, mouse, actuatable buttons, or be a touchscreen display. These are just examples.
It is contemplated that the housing 612 may take a variety of different shapes. For example, in some cases, the housing 612 may have a generally cylindrical shape. In other cases, the housing 612 may have a half-dome shape. In yet other embodiments, the housing 612 may be a rectangular prism. It is contemplated that the housing may take any cross sectional shape desired, including but not limited to annular, polygonal, oblong, square, etc.
In some cases, the LCP 610 may include a pulse generator (e.g., electrical circuitry) and a power source (e.g., a battery) within the housing 612 to provide electrical signals to the electrodes 620, 622 to control the pacing/sensing electrodes 620, 622. While not explicitly shown, the LCP 610 may also include a communications module, an electrical sensing module, a mechanical sensing module, and/or a processing module, and the associated circuitry, similar in form and function to the modules 102, 106, 108, 110 described above. The various modules and electrical circuitry may be disposed within the housing 612. Electrical communication between the pulse generator and the electrodes 620, 622 may provide electrical stimulation to heart tissue and/or sense a physiological condition.
In the example shown, the LCP 610 includes a fixation mechanism 624 proximate the distal end 616 of the housing 612. The fixation mechanism 624 is configured to attach the LCP 610 to a wall of the heart H, or otherwise anchor the LCP 610 to the anatomy of the patient. As shown in
The LCP 610 may further include a docking member 630 proximate the proximal end 614 of the housing 612. The docking member 630 may be configured to facilitate delivery and/or retrieval of the LCP 610. For example, the docking member 630 may extend from the proximal end 614 of the housing 612 along a longitudinal axis of the housing 612. The docking member 630 may include a head portion 632 and a neck portion 634 extending between the housing 612 and the head portion 632. The head portion 632 may be an enlarged portion relative to the neck portion 634. For example, the head portion 632 may have a radial dimension from the longitudinal axis of the LCP 610 that is greater than a radial dimension of the neck portion 634 from the longitudinal axis of the LCP 610. In some cases, the docking member 630 may further include a tether retention structure (not explicitly shown) extending from or recessed within the head portion 632. The tether retention structure may define an opening configured to receive a tether or other anchoring mechanism therethrough. The retention structure may take any shape that provides an enclosed perimeter surrounding the opening such that a tether may be securably and releasably passed (e.g., looped) through the opening. In some cases, the retention structure may extend though the head portion 632, along the neck portion 634, and to or into the proximal end 614 of the housing 612. The docking member 630 may be configured to facilitate delivery of the LCP 610 to the intracardiac site and/or retrieval of the LCP 610 from the intracardiac site. While this describes one example docking member 630, it is contemplated that the docking member 630, when provided, can have any suitable configuration.
It is contemplated that the LCP 610 may include one or more pressure sensors 640 coupled to or formed within the housing 612 such that the pressure sensor(s) is exposed to and/or otherwise operationally coupled with the environment outside the housing 612 to measure blood pressures within the heart. In some cases, the one or more pressure sensors 640 may be coupled to an exterior surface of the housing 612. In other cases, the one or more pressures sensors 640 may be positioned within the housing 612 with a pressure acting on the housing and/or a port on the housing 612 to affect the pressure sensor 640. For example, if the LCP 610 is placed in the right ventricle, the pressure sensor(s) 640 may measure the pressure within the right ventricle. If the LCP 610 is placed in another portion of the heart (such as one of the atriums or the left ventricle), the pressures sensor(s) may measure the pressure within that portion of the heart. It is contemplated that the pressure sensor(s) 640 may be sensitive enough to detect a pressure change in the right atrium (e.g. atrial kick) when the LCP is placed in the right ventricle. Some illustrative pressure sensor configurations will be described in more detail herein.
In some instances, the pressure sensor(s) 640 may include a deformable diaphragm formed in part or in whole from a piezoelectric material which does not require external power to function. In some instances, the pressure sensor(s) 640 may include a MEMS device, such as a MEMS device with a pressure diaphragm with one or more piezoelectric sensors and/or piezoresistors on the diaphragm, a capacitor-Micro-machined Ultrasonic Transducer (cMUT), a condenser, a micromanometer, a surface acoustic wave (SAW) device, and/or any other suitable sensor adapted for measuring a pressure exerted on the diaphragm. Some illustrative but non-limiting pressure sensors and configurations are describe in commonly assigned Patent Application No. 62/413,766 entitled “IMPLANTABLE MEDICAL DEVICE WITH PRESSURE SENSOR and filed on Oct. 27, 2016, which is hereby incorporated by reference. It is contemplated that when piezoresistors are used, a piezo-resistive bridge may be operated in a low power mode (e.g., limited duty-cycle excitation) to reduce the power demand of the sensor. In some cases, the gain may be modulated to further reduce power demands.
When a piezoelectric material is used, the piezoelectric material may generate an electrical voltage (and/or electric current) between a first pressure sensor electrode and a second pressure sensor electrode in response to a pressure change applied to the piezoelectric material. The electrical voltage (and/or electric current) may be representative of the pressure change. In this instance, the piezoelectric material may not require any external power, but rather the piezoelectric material itself may convert energy extracted from the change in pressure into an electrical voltage (and/or electric current), which can then be used by the LCP to identify a pressure change. In some cases, it may not be necessary or even desirable to measure an absolute pressure value. Instead, just detecting a pressure change is all that is necessary to identify certain pressure events.
The pressures sensor(s) 640 may be part of a mechanical sensing module described herein. It is contemplated that the pressure measurements obtained from the pressures sensor(s) 640 may be used to generate a pressure curve over cardiac cycles. The pressure sensor(s) 640 may measure/sense pressure in the chamber in which the LCP 610 is implanted. For example, an LCP 610 implanted in the right ventricle (RV) could sense RV pressure. It is further contemplated that the pressure sensor(s) 640 may be sensitive enough to detect pressure changes in other chambers as well as the chamber in which the LCP 610 is positioned. For example, when the LCP 610 is positioned within the right ventricle, the pressure sensor(s) 640 may detect pressure changes in the right atrium (e.g. atrial kick) in addition to pressure changes in the right ventricle.
In some cases, sensing atrial pressure events may allow the device 610 to detect an atrial contraction, resulting in for example an atrial kick. Such a change in atrial pressure event may be used by an LCP in the right ventricle to time a pacing pulse for the ventricle in support of treating bradycardia events. In some cases, the timing of the ventricle pacing pulse may be adjusted to maximize the amount of blood entering the right ventricle through passive filling. In some instances, this may include adjusting an AV delay relative to the atrial fiducial (e.g. atrial kick). In some cases, a measured pressure change over time may be used to support management of a CRT cardiac therapy (if placed in the left ventricle), patient health status monitoring and/or any other suitable goal. It is contemplated measuring pressure events in both the ventricle and atrium using a single LCP may replicate a dual chamber system with a single device. For example, such a system may enable a device to be positioned in the ventricle while listening to both the ventricle and the atrium and pacing accordingly (e.g., a VDD device).
The pressure sensor(s) 640 may be configured (either alone or in combination with other circuitry in the LCP 610) to derive a change in pressure over time and may be used to adjust atrium to ventricle (AV) pacing delay to optimize pacing for treating bradycardia events. In some cases, the pressure sensor(s) 640 may be configured to detect a-waves (e.g. atrial kick) and change the pacing timing of the LCP 610 for ventricular pacing in relation to the contraction of the right atrium. It is further contemplated that sensing pressure could be used during the implant procedure to optimize the placement of the LCP 610 in the chamber (e.g., RV by sampling at different implant locations and using the best location). In some cases, frequent pressure monitoring may be beneficial for management of heart failure patients. Frequent pressure monitoring may also be useful for patients with chronic heart disease, hypertension, regurgitation, valve issues, atrial contraction detection, and to aid in addressing other problems. It is further contemplated that the pressure sensor(s) 640 may be used for monitoring respiration and associated diseases (e.g., chronic obstructive pulmonary disease (COPD), etc.). These are just examples.
In some cases, pressure readings may be taken in combination with a cardiac chamber volume measurement such an impedance measurement (e.g., the impedance between electrodes 620 and 622) to generate a pressure-impedance loop for one or more cardiac cycles. The impedance may be a surrogate for chamber volume, and thus the pressure-impedance loop may be representative of a pressure-volume loop for the heart H.
In some cases, the processing module and/or other control circuitry may capture, at a time point within each of one or more cardiac cycles, one or more pressures within the heart (e.g., right ventricle and/or right atrium), resulting in one or more pressure data points. These one or more data points may be used, in combination with other pressure data points taken at different times during the one or more cardiac cycles, to generate a pressure curve. In some cases, one or more parameters may be extracted or derived from the pressure curve. The pressure curve may be used to facilitate cardiac resynchronization therapy (CRT), patient health status monitoring, and/or the management of a non-CRT cardiac therapy.
In one example, the heart sound signals can be recorded using acoustic sensors, (for example, a microphone), which capture the acoustic waves resulted from heart sounds. In another example, the heart sound signals can be recorded using accelerometers or pressure sensors that capture the accelerations or pressure waves caused by heart sounds. The heart sound signals can be recorded within or outside the heart. These are just examples.
In some cases, the LCP 900 may include a pulse generator (e.g., electrical circuitry) 910 and a power source (e.g., a battery) 912 within the housing 902 to provide and/or receive electrical signals via the first and second electrodes. While not explicitly shown in
In the example shown, the LCP 900 further includes a fixation mechanism 914 proximate the distal end 906 of the housing 902. The fixation mechanism 914 is configured to attach the LCP 900 to a wall of the heart H, or otherwise anchor the LCP 900 to the anatomy of the patient. As shown in
The housing 902 may include a proximal end surface 918 facing proximally (e.g., in a generally opposite direction from the distal end surface. In some instances, the proximal end surface 918 of the housing 902 may form a diaphragm 920. In some cases, the diaphragm 920 may be formed from the housing material itself. When so provided, the wall thickness of the housing in the region of the diaphragm 920 may be thinned to increase the flexibility of the diaphragm 920 to as to be responsive (e.g. sufficiently deformable) to a pressure range of interest. In other cases, the diaphragm 920 may be formed from another material, such as but not limited to titanium, titanium foil, silicone, polyimides, etc. to form a deformable or movable diaphragm 920 that is responsive to a pressure of interest applied to the diaphragm 920. In some instances, the diaphragm 920 may be titanium or titanium foil on polyvinylidene fluoride (PVDF). In some instances, the diaphragm 920 may be formed from a piezoelectric material and/or may include a piezoelectric layer.
A piezoelectric material may exhibit the piezoelectric effect, or the ability to generate a voltage (and/or current) when the material is subjected to a mechanical stress or vibration. Some illustrative piezoelectric materials may include, but are not limited to some naturally occurring crystals (e.g., quartz, sucrose, Rochelle salt, topaz, lead titanate, etc.), synthetic crystals, ceramics (e.g., barium titanate, lead zirconate titanate (PZT), zinc oxide, etc.), polymers (e.g., polyvinylidene fluoride (PVDF)), etc. This list is not intended to be exhaustive of all types of piezoelectric materials, but rather illustrative of some example materials. When used as part of the hermetic seal around the LCP, it is contemplated that the material (piezoelectric or otherwise) selected for the diaphragm 920 may be hermetic. For example, the material should be capable of preventing blood from diffusing through the diaphragm and into the interior or the LCP.
In any event, the diaphragm 920 may be fabricated to flex or deform as the pressure (external to the housing 902) in the heart (e.g., right ventricle and/or right atrium) changes, as will be described in more detail herein. While the entire proximal end surface 918 may form the diaphragm 920, it is contemplated that only a portion of the end surface 918 may form the diaphragm 920. In some cases, the diaphragm 920 may be 1 millimeter in diameter or less. In other cases, the diaphragm 920 may be greater than 1 millimeter in diameter. In some cases, the diaphragm 920 may have a round shape. In other cases, the diaphragm 920 may have a square, rectangular or any other suitable shape. In some cases, the diaphragm 920 may not have a uniform thickness. In some cases, the diaphragm 920 may have thicker bossed regions that provide support to, for example, increase the linearity of the deformation of the diaphragm 920 with pressure.
In some cases, the diaphragm 920 may be formed from a piezoelectric material. As the diaphragm flexes or deforms in response to an external pressure, a voltage (and/or current) may be generated by the piezoelectric material between sensor electrodes on opposing sides of the piezoelectric material. The generated voltage (and/or current) may be transferred via one or more electrical conductors 924 to the electrical circuitry 910, which may identify a pressure event and/or pressure value. In some cases, the generated voltage (and/or current) may reflect a change in pressure over time as opposed to an absolute or gauge pressure. When so provided, a reference pressure may not be required. In any event, the change in pressure over time may be sufficient to identify events such as the atrial contraction (e.g., atrial kick), ventricular filling, ventricular ejection, etc. In some instances, the electrical circuitry 910 may be configured to obtain pressure measurements at a sample rate of greater than 100 Hertz (Hz), but this is not required. This may allow for pressure measurements to be used to determine characteristics of the cardiac cycle including, but not limited to, dP/dT, dicrotic notch, etc.
In some cases, the one or more electrical conductors 924 may include a first electrical conductor coupled to a first electrode on a first side of the piezoelectric material, and a second electrical conductor coupled a second electrode on a second opposite side of the piezoelectric material, such that the voltage (and/or current) generated is transmitted to the electrical circuitry 910.
The diaphragm 920 need not be placed on the proximal end surface 918 of the housing 902 such as shown in
In the example of
In some cases, the electrical circuitry 910 may be configured to obtain pressure measurements at predetermined intervals over one or more cardiac cycles. In other instances, the electrical circuitry 910 may be configured to obtain a pressure measurement in response to a specific cardiac event or at a specific time in a cardiac cycle. For example, the circuitry 910 may be configured to use one or more cardiac signals sensed by the first electrode 908 and/or second electrode to determine when the patient's heart is in a first phase of a cardiac cycle. The circuitry 910 may be configured to determine a pressure exterior to the housing 902 based at least in part on the pressure obtained during the first phase of the cardiac cycle. In some cases, the first phase may be systole and in other cases the first phase may be diastole. The circuitry 910 may also be configured to determine a pressure exterior to the housing 902 based at least in part on the pressure taken during a second phase of the cardiac cycle. It is contemplated that the circuitry 910 may be further configured to detect heart sounds of the patient's heart based at least in part on the pressure sensor output signal. For example, the first heart sound may be a timing fiducial for a sudden increase in pressure while the second heart sound may be a timing fiducial for a sudden decrease in pressure.
In some cases, the circuitry 910 of the LCP 900 may be configured to obtain a plurality of pressure readings over one or more cardiac cycles. The pressure readings may be plotted (either by the circuitry 910 or an external device) to form a graph similar to the one shown in
In some cases, the diaphragm 920 may be formed of the same material and of the same thickness as the remaining portion of the housing 902. For example, the housing 902 may flex or deform to transfer a pressure external to the housing 902 to a layer of piezoelectric material located within the housing 612. For example, the housing 902 may have a compliance such that the relative movement of the housing 902 in response to the external pressure may be operatively coupled to a piezoelectric material. The resulting voltage (and/or current) generated by the piezoelectric material may be calibrated relative to external pressures prior to implantation of the LCP 900 in a patient. The calibration data may be stored in the memory and/or electrical circuitry of the LCP 900. In some cases, there may be some pressure loss (e.g., in the range of 1-20% or more) between the pressure exerted on the housing 902 and the pressure applied to the piezoelectric material, depending on the placement of the piezoelectric material. This pressure loss may be compensated for (e.g., nullified) by adjusting the algorithm that converts the voltage (and/or current) generated by the piezoelectric material to a pressure using the calibration data stored in the LCP 900.
The illustrative LCP 950 may include a shell or housing 952 having a proximal end portion 954 and a distal end (not explicitly shown). The housing 952 may include a proximal end surface 956 facing proximally (e.g., in a generally opposite direction from the distal end surface). In some instances, the proximal end surface 956 of the housing 952 may form a diaphragm 960. In some cases, the diaphragm 960 may be formed from the housing material itself, but this is not required. When so provided, the wall thickness of the housing in the region of the diaphragm 960 may be thinned to increase the flexibility of the diaphragm 960, although this is not required. In some cases, the diaphragm 960 may be formed from another material, such as but not limited to titanium, titanium foil, silicone, polyimides, etc. to form a deformable or movable diaphragm 960 that is responsive to a desired pressure range applied to the diaphragm 960.
In the example shown, the diaphragm 960 may flex or deform and transfer a pressure applied from external to the housing 952 to a layer of piezoelectric material 962 located within the housing 952. For example, the housing 952 may have a compliance such that the relative movement of the housing 952 and/or diaphragm 960 in response to the external pressure may deform or otherwise apply a corresponding stress to a piezoelectric material or membrane 962. In some embodiments, the piezoelectric membrane 962 may be coupled to or positioned on an interior surface of the diaphragm 960, although this is not required.
As the diaphragm 960 flexes in response an external pressure, the piezoelectric membrane 962 may also flex. The applied stress to the piezoelectric membrane 962 may generate a voltage (and/or a current) between a first sensor electrode on one side of the piezoelectric membrane 962 and a second sensor electrode on the opposing side of the piezoelectric membrane 962. The voltage (and/or current) may be transferred via one or more electrical conductors 964 to the electrical circuitry of the LCP 950 where it may be converted from a voltage (and/or current) to a pressure reading. In some cases, the one or more electrical conductors 964 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 962 and a second electrical conductor coupled a second side, opposite of the first side such that the voltage (and/or current) generated is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to the first and second sensor electrodes generally shown at 968.
The voltage (and/or current) generated by the piezoelectric material may be calibrated relative to external pressures applied prior to implantation of the LCP 950 in a patient. The calibration data may be stored in the memory and/or electrical circuitry of the LCP 950. In some cases, there may be some pressure loss (e.g., in the range of 1-20% or more) between the pressure exerted on the housing 952 and the pressure applied to the piezoelectric membrane 962. This pressure loss may be compensated for (e.g., nullified) by adjusting the algorithm that converts the voltage (and/or current) generated by the piezoelectric membrane 962 to a pressure using the calibration data stored in the LCP 950.
In the example of
The illustrative LCP 1000 may include a shell or housing 1002 having a proximal end portion 1004 and a distal end (not explicitly shown). The housing 1002 may include a proximal end surface 1018 facing proximally (e.g., in a generally opposite direction from the distal end surface). In some instances, the proximal end surface 1018 of the housing 1002 may form a diaphragm 1006. In some cases, the diaphragm 1006 may be formed from the housing material itself, although this is not required. When so provided, the wall thickness of the housing in the region of the diaphragm 1006 may be thinned to increase the flexibility of the diaphragm 1006, although this is not required. In some cases, the diaphragm 1006 may be formed from another material, such as but not limited to titanium, titanium foil, silicone, polyimides, etc. to form a deformable or movable diaphragm 1006 that is responsive to a desired pressure range applied to the diaphragm 1006.
The diaphragm 1006 may flex or deform to transfer a pressure external to the housing 1002 to a layer of piezoelectric material or a piezoelectric membrane 1010 located within the housing 1002. For example, the housing 1002 may have a compliance such that the relative movement of the housing 1002 and/or diaphragm 1006 in response to the external pressure may be mechanically coupled to a piezoelectric material or membrane 1010. In some embodiments, the piezoelectric membrane 1010 may be coupled to the diaphragm 1006 via a mechanical linkage or arm 1008. This may allow the piezoelectric membrane 1010 to be spaced a distance from the housing 1002 while still flexing in response to an externally applied pressure 1016. In some cases, it may be desirable for a more rigid piezoelectric material to be used, and the mechanical leverage provide by the mechanical linkage or arm 1008 may allow a more modest external pressure applied to the diaphragm 1006 to suitable stress the piezoelectric membrane 1010 to produce a desired voltage (and/or current). In the example shown, as the diaphragm 1006 flexes in response the external pressure 1016, the linkage 1008 also moves and transfers the force to the piezoelectric membrane 1010. The force applied to the piezoelectric membrane 1010 generates an voltage (and/or a current), which may be transferred via one or more electrical conductors 1012 to the electrical circuitry of the LCP 1000 where it is converted from an voltage (and/or current) to a pressure reading. In some cases, the one or more electrical conductors 1012 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 1010 and a second electrical conductor coupled a second side, opposite of the first side of the piezoelectric membrane 1010, such that the voltage (and/or current) generated across the piezoelectric membrane 1010 is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to first and second pressure sensor electrodes positioned on opposite sides of the piezoelectric membrane 1010.
The voltage generated by the piezoelectric membrane 1010 may be calibrated relative to external pressures prior to implantation of the LCP 1000 in a patient. The calibration data may be stored in the memory and/or electrical circuitry of the LCP 1000. In some cases, there may be some pressure loss (e.g., in the range of 1-20% or more) between the pressure exerted on the housing 1002 and the pressure applied to the piezoelectric membrane 1010, depending on the linkage or arm 1008. This pressure loss may be compensated for (e.g., nullified) by adjusting the algorithm that converts the voltage (and/or current) generated by the piezoelectric material to a pressure using the calibration data stored in the LCP 1000.
In the example shown in
The illustrative LCP 1050 may include a shell or housing 1052 having a proximal end portion 1054 and a distal end (not explicitly shown). The housing 1052 may include a proximal end surface 1066 facing proximally (e.g., in a generally opposite direction from the distal end surface). In some instances, the proximal end surface 1066 of the housing 1052 may form a diaphragm 1056. In some cases, the diaphragm 1056 may be formed from the housing material itself, but this is not required. When so provided, the wall thickness of the housing in the region of the diaphragm 1056 may be thinned to increase the flexibility of the diaphragm 1056, although this is not required. In other cases, the diaphragm 1056 may be formed from another material, such as but not limited to titanium, titanium foil, silicone, polyimides, etc. to form a deformable or movable diaphragm 1056 that is responsive to a desired pressure range applied to the diaphragm 1056.
The diaphragm 1056 may flex or deform to transfer a pressure external to the housing 1052 to a layer of piezoelectric material or a piezoelectric membrane 1062 located within the housing 1052. In the example shown, a cavity 1064 filled with a fluid 1068 may be positioned between the external diaphragm 1056 and an internal diaphragm 1058. The fluid filled cavity 1064 may be in fluid communication with the diaphragm(s) 1056, 1058 such that the fluid filled cavity 1064 may communicate a measure related to the pressure 1070 applied by the environment to the diaphragm 1056 of the housing 1052 ultimately to piezoelectric membrane 1062. The fluid filled cavity 1064 may be filled with an incompressible fluid 1068. In some cases, the fluid filled cavity 1064 may be filled with a non-conductive fluid 1068. In some cases, the fluid 1068 may be highly soluble to gases that may arise inside of the housing, particularly at body temperature (e.g., 37° C.). For example, the fluid 1068 may be highly soluble to hydrogen, helium, nitrogen, argon, water, and/or other gases or liquids that might arise inside of the housing as a result of, for example, outgassing of internal components of the LCP 1050.
The diaphragms 1056, 1058 may have a compliance such that the relative movement of the housing 1052 and/or diaphragm 1056 in response to the external pressure may be coupled to the piezoelectric material or membrane 1062, sometimes through a mechanical linkage or arm 1060. In
As the diaphragm 1056 flexes in response the external pressure 1070, force is transferred 1072 through the fluid filled cavity 1064 to the inner diaphragm 1058. The inner diaphragm 1058 then transfers the force to the piezoelectric material or membrane 1062, sometimes through a mechanical linkage or arm 1060. The force applied to the piezoelectric membrane 1062 generates an voltage (and/or s current). The voltage (and/or current) may be transferred via one or more electrical conductors 1074 to the electrical circuitry of the LCP 1050 where it is converted from a voltage (and/or a current) to a pressure reading.
In some cases, the one or more electrical conductors 1024 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 1062 and a second electrical conductor coupled a second side, opposite of the first side of the piezoelectric membrane 1062, such that the voltage (and/or current) generated across the piezoelectric membrane 1062 is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to first and second pressure sensor electrodes positioned on opposite sides of the piezoelectric membrane 1062.
The voltage generated by the piezoelectric material may be calibrated relative to external pressures applied prior to implantation of the LCP 1050 in a patient. The calibration data may be stored in the memory and/or electrical circuitry of the LCP 1050. In some cases, there may be some pressure loss (e.g., in the range of 1-20% or more) between the pressure exerted on the housing 1052 and the pressure applied to the piezoelectric membrane 1062. This pressure loss may be compensated for (e.g., nullified) by adjusting the algorithm that converts the voltage (and/or current) generated by the piezoelectric material to a pressure using the calibration data stored in the LCP 1050.
In the example of
The LCP 1100 may include a shell or housing 1102 having a proximal end portion 1104 and a distal end (not explicitly shown). The housing 1102 may include a proximal end surface 1110 facing proximally (e.g., in a generally opposite direction from the distal end surface). In some instances, the proximal end surface 1110 of the housing 1102 may form a diaphragm 1106. In some cases, the diaphragm 1106 may be formed from the housing material itself, but this is not required. When so provided, the wall thickness of the housing in the region of the diaphragm 1106 may be thinned to increase the flexibility of the diaphragm 1106, although this is not required. In some cases, the diaphragm 1106 may be formed from another material, such as but not limited to titanium, titanium foil, silicone, polyimides, etc. to form a deformable or movable diaphragm 1106 that is responsive to a desired pressure range applied to the diaphragm 1106.
The diaphragm 1106 may flex or deform to transfer a pressure external to the housing 1102 to a layer of piezoelectric material or a piezoelectric membrane 1108 located within the housing 1102. In some embodiments, a cavity 1112 filled with a fluid 1114 may be positioned between the diaphragm 1106 and the piezoelectric membrane 1108. The fluid filled cavity 1112 is shown in fluid communication with the diaphragm 1106 such that the fluid filled cavity 1112 may communicate a measure related to the pressure 1116 applied by the environment to the piezoelectric membrane 1108. The fluid filled cavity 1112 may be filled with an incompressible fluid 1114. In some cases, the fluid filled cavity 1112 may be filled with a non-conductive fluid 1114. In some cases, the fluid 1114 may be highly soluble to gases that may be inside of the housing, particularly at body temperature (e.g., 37° C.). For example, the fluid 1114 may be highly soluble to hydrogen, helium, nitrogen, argon, water, and/or other gases or liquids that might arise inside of the housing as a result of, for example, outgassing of internal components of the LCP 1100.
The diaphragm 1106 may have a compliance such that the relative movement of the housing 1102 and/or diaphragm 1106 in response to a desired range of external pressures is coupled 1118 to the piezoelectric material or membrane 1108 though the fluid 1114. The force 1118 applied to the piezoelectric membrane 1108 may generate a voltage (and/or a current). The voltage (and/or current) may be transferred via one or more electrical conductors 1120 to the electrical circuitry of the LCP 1100 where it may be converted from a voltage (and/or current) to a pressure reading. It is contemplated that in some instances, the piezoelectric membrane 1108 may be formed from a piezoelectric material or have a piezoelectric material formed on a surface of another flexible material as described with respect to, for example,
In some cases, the one or more electrical conductors 1120 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 1108 and a second electrical conductor coupled a second side, opposite of the first side of the piezoelectric membrane 1108, such that the voltage (and/or current) generated by the piezoelectric material or membrane 1108 is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to first and second pressure sensor electrodes positioned on opposite sides of the piezoelectric membrane 1108.
The voltage (and/or current) generated by piezoelectric membrane 1108 may be calibrated relative to external pressures applied prior to implantation of the LCP 1100 in a patient. The calibration data may be stored in the memory and/or electrical circuitry of the LCP 1100. In some cases, there may be some pressure loss (e.g., in the range of 1-20% or more) between the pressure exerted on the housing 1102 and the pressure applied to the piezoelectric membrane 1108. This pressure loss may be compensated for (e.g., nullified) by adjusting the algorithm that converts the voltage (and/or current) generated by the piezoelectric membrane 1108 to a pressure using the calibration data stored in the LCP 1100.
In the example of
The LCP 1150 may include a shell or housing 1152 having a proximal end portion 1154 and a distal end (not explicitly shown). In this example, the housing 1152 includes a docking member 1160 extending proximally from the proximal end portion 1154. The docking member 1160 may be configured to facilitate delivery and/or retrieval of the LCP 1150. For example, the docking member 1160 may extend from the proximal end portion 1154 of the housing 1152 along a longitudinal axis of the housing 1152. The docking member 1160 may include a head portion 1162 and a neck portion 1164 extending between the housing 1152 and the head portion 1162. The head portion 1162 may be an enlarged portion relative to the neck portion 1164. An access port 1166 may extend through the head portion 1162 and the neck portion 1164 to fluidly couple the diaphragm 1156 with the blood in the heart. The diaphragm 1156 may be constructed using any of the materials and/or configurations described herein. In some cases, the diaphragm 1156 may be positioned at the proximal opening 1168 of the access port 1166.
It is contemplated that the docking member 1160 may be formed as a separate structure from the housing 1152 and subsequently attached to the housing 1152. For example, the docking member 1160 may be 3-D metal structure that is welded (or otherwise coupled or secured) to the housing 1152. In other embodiments, the docking member 1160 and the housing 1152 may be formed as a single monolithic structure.
A piezoelectric membrane 1158 may be positioned adjacent to, but not necessarily in direct contact with the diaphragm 1156. In some cases, the piezoelectric membrane 1158 may be positioned directly on an inner surface of the diaphragm 1156, such as described with respect to
In some cases, the one or more electrical conductors 1170 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 1158 and a second electrical conductor coupled a second side, opposite of the first side of the piezoelectric membrane 1158, such that the voltage (and/or current) generated across the piezoelectric membrane 1158 is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to first and second pressure sensor electrodes positioned on opposite sides of the piezoelectric membrane 1158.
The LCP 1200 may include a shell or housing 1202 having a proximal end portion 1204 and a distal end (not explicitly shown). The housing 1202 may include a docking member 1210 extending proximally from the proximal end portion 1204. The docking member 1210 may be configured to facilitate delivery and/or retrieval of the LCP 1200. For example, the docking member 1210 may extend from the proximal end portion 1204 of the housing 1202 along a longitudinal axis of the housing 1202. The docking member 1210 may include a head portion 1212 and a neck portion 1214 extending between the housing 1202 and the head portion 1212. The head portion 1212 may be an enlarged portion relative to the neck portion 1214. An access port 1216 may extend through the head portion 1212 and the neck portion 1214 to fluidly couple the diaphragm 1206 with the blood in the heart. The diaphragm 1206 may be constructed using any of the materials and/or configurations described herein. In some cases, the diaphragm 1206 may be positioned at the proximal opening 1168 of the access port 1216.
It is contemplated that the docking member 1210 may be formed as a separate structure from the housing 1202 and subsequently attached to the housing 1202. For example, the docking member 1210 may be 3-D metal structure that is welded (or otherwise coupled or secured) to the housing 1202. In other embodiments, the docking member 1210 and the housing 1202 may be formed as a single monolithic structure.
A piezoelectric membrane 1208 may be positioned adjacent to, but not necessarily in direct contact with the diaphragm 1206. In some embodiments, the piezoelectric membrane 1208 may be coupled to the diaphragm 1206 via a mechanical linkage or arm 1218. At least part of the piezoelectric membrane 1208 may be held in place relative to the housing 1202 such that movement of the diaphragm 1206 and mechanical linkage or arm 1218 relative to the piezoelectric membrane 1208 induces a stress in the piezoelectric membrane 1208. As the diaphragm 1206 flexes in response the external pressure 1220, the linkage 1218 moves and transfers the force to the piezoelectric membrane 1208. The force applied to the piezoelectric membrane 1208 generates a voltage (and/or current). The voltage (and/or current) may be transferred via one or more electrical conductors 1222 to the electrical circuitry of the LCP 1000 where it is converted from a voltage (and/or current) to a pressure reading.
In some cases, the one or more electrical conductors 1222 may include a first electrical conductor coupled to a first side of the piezoelectric membrane 1208 and a second electrical conductor coupled a second opposite side of the piezoelectric membrane 1208 such that the voltage (and/or current) generated across the piezoelectric membrane 1208 is transmitted to the electrical circuitry. In some instances, the electrical conductors may be coupled to first and second pressure sensor electrodes positioned on opposite sides of the piezoelectric membrane 1208.
It is contemplated that any of the embodiments described herein may be modified to include a plurality (e.g., two or more) diaphragms and/or piezoelectric membranes to improve the sensitivity of the pressure readings. For example, it may be desirable for the diaphragm(s) to have the largest surface area possible. This may be accomplished through a single, large diaphragm or a plurality of smaller diaphragms. It should also be understood that the placement of the diaphragm and/or piezoelectric membrane is not limited to the proximal end region of the LCP. In some cases, the diaphragm and/or piezoelectric membrane may be positioned in or adjacent to a sidewall and/or near the distal end region.
In some cases, the diaphragms and/or piezoelectric membranes may include contours configured to increase the sensitivity and/or linearity of the diaphragms and/or piezoelectric membranes. Some illustrative contours may include, but are not limited to, a concave surface, a convex surface, an undulating surface, a generally convex surface having a generally concave central region, etc. It is contemplated that the contours may be tuned for the application and/or placement of the device.
Regardless of the placement location of the LCP, some static pressure may be applied to the diaphragm and/or piezoelectric membrane upon implantation of the device. This may cause the diaphragm and/or piezoelectric membrane to flex from its un-implanted configuration. The LCP may be configured to detect changes in pressure over time which are indicated by a movement of the diaphragm. As such, and in some cases, it may be desirable to pre-tune the diaphragm and/or piezoelectric membrane to optimize the pressure range of the diaphragm and/or piezoelectric membrane when the LCP is implanted. This may be accomplished by deforming the diaphragm and/or piezoelectric membrane during manufacture in a direction opposite to the static pressure exerted by the chamber of the heart such that the diaphragm and/or piezoelectric membrane are in a neutral configuration after implantation (as opposed to flexed inwards under the static pressure of the implantation chamber).
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific examples described and contemplated herein. For instance, as described herein, various examples include one or more modules described as performing various functions. However, other examples may include additional modules that split the described functions up over more modules than that described herein. Additionally, other examples may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.
This is a continuation of co-pending U.S. patent application Ser. No. 16/104,370, filed Aug. 17, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/547,458 filed on Aug. 18, 2017, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3943936 | Rasor et al. | Mar 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4243045 | Maas | Jan 1981 | A |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4440173 | Dudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4537200 | Widrow | Aug 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4593702 | Kepski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4776338 | Lekholm et al. | Oct 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4887609 | Cole | Dec 1989 | A |
4928688 | Mower | May 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5012806 | De Bellis | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5259387 | DePinto | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5305760 | McKown et al. | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5370667 | Alt | Dec 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458622 | Alt | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5472453 | Alt | Dec 1995 | A |
5522866 | Fernald | Jun 1996 | A |
5535752 | Halperin et al. | Jul 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5571146 | Jones et al. | Nov 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5649968 | Alt et al. | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5702427 | Ecker et al. | Dec 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5709215 | Perttu et al. | Jan 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5792202 | Rueter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Rostami et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5941906 | Barreras, Sr. et al. | Aug 1999 | A |
5944744 | Paul et al. | Aug 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6016445 | Baura | Jan 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6029085 | Olson et al. | Feb 2000 | A |
6041250 | DePinto | Mar 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077236 | Cunningham | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6223081 | Kerver | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6273856 | Sun et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6314323 | Ekwall | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6408208 | Sun | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardy | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6505077 | Kast et al. | Jan 2003 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6666844 | Igo et al. | Dec 2003 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694189 | Begemann | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6746797 | Benson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6807442 | Myklebust et al. | Oct 2004 | B1 |
6847844 | Sun et al. | Jan 2005 | B2 |
6871088 | Chinchoy | Mar 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990375 | Kloss et al. | Jan 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092758 | Sun et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149575 | Ostroff et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7189204 | Ni et al. | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209785 | Kim et al. | Apr 2007 | B2 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7211884 | Davis et al. | May 2007 | B1 |
7212861 | Park et al. | May 2007 | B1 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7286875 | Park et al. | Oct 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7310556 | Bulkes | Dec 2007 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7321798 | Muhlenberg et al. | Jan 2008 | B2 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7376458 | Palreddy et al. | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7418868 | Karicherla et al. | Sep 2008 | B1 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7477935 | Palreddy et al. | Jan 2009 | B2 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7580746 | Gilkerson et al. | Aug 2009 | B2 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7596412 | Kroll | Sep 2009 | B1 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630763 | Kwok et al. | Dec 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7676266 | Kroll | Mar 2010 | B1 |
7682316 | Anderson et al. | Mar 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702389 | Czygan et al. | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7783340 | Sanghera et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7809441 | Kane et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844331 | Li et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7881786 | Jackson | Feb 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzene et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894885 | Bartal et al. | Feb 2011 | B2 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930022 | Zhang et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hübinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953486 | Daum et al. | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046079 | Bange et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | DelMain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8079959 | Sanghera et al. | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8116867 | Ostroff | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8157813 | Ko et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8195293 | Limousin et al. | Jun 2012 | B2 |
8195308 | Frank et al. | Jun 2012 | B2 |
8200341 | Sanghera et al. | Jun 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8229556 | Li | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8262578 | Bharmi et al. | Sep 2012 | B1 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8306621 | Kim et al. | Nov 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332034 | Patangay et al. | Dec 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364261 | Stubbs et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406879 | Shuros et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457744 | Janzig et al. | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8478399 | Degroot et al. | Jul 2013 | B2 |
8478400 | Hettrick et al. | Jul 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8483843 | Sanghera et al. | Jul 2013 | B2 |
8494632 | Sun et al. | Jul 2013 | B2 |
8521265 | Volkron et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8538526 | Stahmann et al. | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565878 | Allavatam et al. | Oct 2013 | B2 |
8565882 | Matos | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8626280 | Allavatam et al. | Jan 2014 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8626310 | Barror et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | dal Molin et al. | Apr 2014 | B2 |
8718766 | Wahlberg | May 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8725260 | Shuros et al. | May 2014 | B2 |
8738133 | Shuros et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744555 | Allavatam et al. | Jun 2014 | B2 |
8744572 | Greenhut et al. | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8768483 | Schmitt et al. | Jul 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndorf | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8827913 | Havel et al. | Sep 2014 | B2 |
8831721 | Hettrick et al. | Sep 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8843198 | Lian et al. | Sep 2014 | B2 |
8855789 | Jacobson | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886325 | Boling et al. | Nov 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903473 | Rogers et al. | Dec 2014 | B2 |
8903500 | Smith et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8909336 | Navarro-Paredes et al. | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9072914 | Greenhut et al. | Jul 2015 | B2 |
9079035 | Sanghera et al. | Jul 2015 | B2 |
9155479 | Solem | Oct 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson | Oct 2015 | B2 |
9174062 | Stadler et al. | Nov 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9199086 | Zielinski et al. | Dec 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265954 | Ghosh | Feb 2016 | B2 |
9265955 | Ghosh | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9272155 | Ostroff | Mar 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashvili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9358387 | Suwito et al. | Jun 2016 | B2 |
9358400 | Jacobson | Jun 2016 | B2 |
9364675 | Deterre et al. | Jun 2016 | B2 |
9370663 | Moulder | Jun 2016 | B2 |
9375580 | Bonner et al. | Jun 2016 | B2 |
9375581 | Baru et al. | Jun 2016 | B2 |
9381365 | Kibler et al. | Jul 2016 | B2 |
9393424 | Demmer et al. | Jul 2016 | B2 |
9393436 | Doerr | Jul 2016 | B2 |
9399139 | Demmer et al. | Jul 2016 | B2 |
9399140 | Cho et al. | Jul 2016 | B2 |
9409033 | Jacobson | Aug 2016 | B2 |
9427594 | Bornzin et al. | Aug 2016 | B1 |
9433368 | Stahmann et al. | Sep 2016 | B2 |
9433780 | Régnier et al. | Sep 2016 | B2 |
9457193 | Klimovitch et al. | Oct 2016 | B2 |
9492668 | Sheldon et al. | Nov 2016 | B2 |
9492669 | Demmer et al. | Nov 2016 | B2 |
9492674 | Schmidt et al. | Nov 2016 | B2 |
9492677 | Greenhut et al. | Nov 2016 | B2 |
9511233 | Sambelashvili | Dec 2016 | B2 |
9511236 | Varady et al. | Dec 2016 | B2 |
9511237 | Deterre et al. | Dec 2016 | B2 |
9522276 | Shen et al. | Dec 2016 | B2 |
9522280 | Fishler et al. | Dec 2016 | B2 |
9526522 | Wood et al. | Dec 2016 | B2 |
9526891 | Eggen et al. | Dec 2016 | B2 |
9526909 | Stahmann et al. | Dec 2016 | B2 |
9533163 | Klimovitch et al. | Jan 2017 | B2 |
9561382 | Persson et al. | Feb 2017 | B2 |
9566012 | Greenhut et al. | Feb 2017 | B2 |
9636511 | Carney et al. | May 2017 | B2 |
9669223 | Auricchio et al. | Jun 2017 | B2 |
9687654 | Sheldon et al. | Jun 2017 | B2 |
9687655 | Pertijs et al. | Jun 2017 | B2 |
9687659 | Von Arx et al. | Jun 2017 | B2 |
9694186 | Carney et al. | Jul 2017 | B2 |
9782594 | Stahmann et al. | Oct 2017 | B2 |
9782601 | Ludwig | Oct 2017 | B2 |
9789317 | Greenhut et al. | Oct 2017 | B2 |
9789319 | Sambelashvili | Oct 2017 | B2 |
9808617 | Ostroff et al. | Nov 2017 | B2 |
9808628 | Sheldon et al. | Nov 2017 | B2 |
9808631 | Maile et al. | Nov 2017 | B2 |
9808632 | Reinke et al. | Nov 2017 | B2 |
9808633 | Bonner et al. | Nov 2017 | B2 |
9808637 | Sharma et al. | Nov 2017 | B2 |
9855414 | Marshall et al. | Jan 2018 | B2 |
9855430 | Ghosh et al. | Jan 2018 | B2 |
9855435 | Sahabi et al. | Jan 2018 | B2 |
9861815 | Tran et al. | Jan 2018 | B2 |
10080887 | Schmidt et al. | Sep 2018 | B2 |
10080888 | Kelly et al. | Sep 2018 | B2 |
10080900 | Ghosh et al. | Sep 2018 | B2 |
10080903 | Willis et al. | Sep 2018 | B2 |
10086206 | Sambelashvili | Oct 2018 | B2 |
10118026 | Grubac et al. | Nov 2018 | B2 |
10124163 | Ollivier et al. | Nov 2018 | B2 |
10124175 | Berthiaume et al. | Nov 2018 | B2 |
10130821 | Grubac et al. | Nov 2018 | B2 |
10137305 | Kane et al. | Nov 2018 | B2 |
10201710 | Jackson et al. | Feb 2019 | B2 |
10207115 | Echt et al. | Feb 2019 | B2 |
10207116 | Sheldon et al. | Feb 2019 | B2 |
10226197 | Reinke et al. | Mar 2019 | B2 |
10226639 | Zhang | Mar 2019 | B2 |
10232182 | Hareland et al. | Mar 2019 | B2 |
10265503 | Schmidt et al. | Apr 2019 | B2 |
10265534 | Greenhut et al. | Apr 2019 | B2 |
10271752 | Regnier et al. | Apr 2019 | B2 |
10278601 | Greenhut et al. | May 2019 | B2 |
10279165 | Seifert et al. | May 2019 | B2 |
10286221 | Sawchuk | May 2019 | B2 |
10307598 | Ciciarelli et al. | Jun 2019 | B2 |
10328274 | Zhang et al. | Jun 2019 | B2 |
10342981 | Ghosh et al. | Jul 2019 | B2 |
10765871 | Kane | Sep 2020 | B2 |
11065459 | Maile | Jul 2021 | B2 |
20010012953 | Molin et al. | Aug 2001 | A1 |
20010021864 | Molin | Sep 2001 | A1 |
20010031995 | Molin | Oct 2001 | A1 |
20010034540 | Molin | Oct 2001 | A1 |
20010049543 | Kroll | Dec 2001 | A1 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020087089 | Ben Haim | Jul 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20030009203 | Ebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030040779 | Engmark et al. | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030045805 | Sheldon et al. | Mar 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20030204212 | Burnes et al. | Oct 2003 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040032957 | Mansy et al. | Feb 2004 | A1 |
20040068302 | Rodgers et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040230283 | Prinzen et al. | Nov 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040260348 | Bakken et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050038481 | Chinchoy et al. | Feb 2005 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182447 | Schecter | Aug 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050283208 | Von Arx et al. | Dec 2005 | A1 |
20050288743 | Ahn et al. | Dec 2005 | A1 |
20060041281 | Von Arx et al. | Feb 2006 | A1 |
20060042830 | Maghribi et al. | Mar 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060247707 | Meyer et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20060271119 | Ni et al. | Nov 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070016098 | Kim et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070049977 | Von Arx et al. | Mar 2007 | A1 |
20070055170 | Lippert et al. | Mar 2007 | A1 |
20070060961 | Echt | Mar 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jacobson | Apr 2007 | A1 |
20070093874 | Chirife et al. | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070156194 | Wang | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154139 | Shuros et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080195167 | Ryan | Aug 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269816 | Prakash et al. | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080275522 | Dong et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080294229 | Friedman et al. | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090118783 | Pantangay et al. | May 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171404 | Irani et al. | Jul 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | M. | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090264949 | Dong et al. | Oct 2009 | A1 |
20090266573 | Engmark et al. | Oct 2009 | A1 |
20090270937 | Yonce et al. | Oct 2009 | A1 |
20090275843 | Karamanoglu | Nov 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100056871 | Govari et al. | Mar 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100069768 | Min et al. | Mar 2010 | A1 |
20100069983 | Peacock, III et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100106213 | Hilpisch et al. | Apr 2010 | A1 |
20100113944 | Min et al. | May 2010 | A1 |
20100113945 | Ryan | May 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100114214 | Morelli et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100298841 | Prinzen et al. | Nov 2010 | A1 |
20100305635 | Liu | Dec 2010 | A1 |
20100305646 | Schulte et al. | Dec 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20100317978 | Maile | Dec 2010 | A1 |
20100331905 | Li et al. | Dec 2010 | A1 |
20110022113 | Zdeblick et al. | Jan 2011 | A1 |
20110022127 | Averina et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110125208 | Karst et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160558 | Rassatt et al. | Jun 2011 | A1 |
20110160565 | Stubbs et al. | Jun 2011 | A1 |
20110160787 | Greenhut et al. | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110178567 | Pei et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110270341 | Ruben et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120029335 | Sudam et al. | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120065500 | Rogers et al. | Mar 2012 | A1 |
20120078322 | Dal Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120136406 | Min | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165692 | Hollmark et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120245665 | Friedman et al. | Sep 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120289776 | Keast et al. | Nov 2012 | A1 |
20120289815 | Keast et al. | Nov 2012 | A1 |
20120290021 | Saurkar et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296381 | Matos | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20120330392 | Regnier et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130030484 | Zhang et al. | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130060298 | Splett et al. | Mar 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079839 | Lian et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourget et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130138006 | Bornzin et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130150911 | Perschbacher et al. | Jun 2013 | A1 |
20130150912 | Perschbacher et al. | Jun 2013 | A1 |
20130184776 | Shuros et al. | Jul 2013 | A1 |
20130192611 | Taepke, II et al. | Aug 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130245709 | Bohn et al. | Sep 2013 | A1 |
20130253309 | Allan et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130296727 | Sullivan et al. | Nov 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130310890 | Sweeney | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039570 | Carroll et al. | Feb 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100624 | Ellingson | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140163631 | Maskara et al. | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207013 | Lian et al. | Jul 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140213916 | Doan et al. | Jul 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
20140222015 | Keast et al. | Aug 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222099 | Sweeney | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140236253 | Ghosh et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140255298 | Cole et al. | Sep 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140257422 | Herken | Sep 2014 | A1 |
20140257444 | Cole et al. | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140277240 | Maskara et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140343348 | Kaplan et al. | Nov 2014 | A1 |
20140371818 | Bond et al. | Dec 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150032173 | Ghosh | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150045868 | Bonner et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Stahmann et al. | Mar 2015 | A1 |
20150091415 | Deterre et al. | Apr 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150126854 | Keast et al. | May 2015 | A1 |
20150142069 | Sambelashvili | May 2015 | A1 |
20150142070 | Sambelashvili | May 2015 | A1 |
20150157861 | Aghassian | Jun 2015 | A1 |
20150157866 | Demmer et al. | Jun 2015 | A1 |
20150165199 | Karst et al. | Jun 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150182751 | Ghosh et al. | Jul 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann et al. | Jul 2015 | A1 |
20150202443 | Zielinski et al. | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150217123 | Deterre et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150230699 | Berul et al. | Aug 2015 | A1 |
20150238769 | Demmer et al. | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297902 | Stahmann et al. | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306401 | Demmer et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20150335884 | Khairkhahan et al. | Nov 2015 | A1 |
20150360036 | Kane et al. | Dec 2015 | A1 |
20150367135 | Whittington et al. | Dec 2015 | A1 |
20160007873 | Huelskamp et al. | Jan 2016 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160033177 | Barot et al. | Feb 2016 | A1 |
20160038742 | Stahmann et al. | Feb 2016 | A1 |
20160045131 | Siejko | Feb 2016 | A1 |
20160045132 | Siejko | Feb 2016 | A1 |
20160045136 | Siejko et al. | Feb 2016 | A1 |
20160059007 | Koop | Mar 2016 | A1 |
20160059022 | Stahmann et al. | Mar 2016 | A1 |
20160059024 | Stahmann et al. | Mar 2016 | A1 |
20160059025 | Stahmann et al. | Mar 2016 | A1 |
20160067486 | Brown et al. | Mar 2016 | A1 |
20160067490 | Carney et al. | Mar 2016 | A1 |
20160089539 | Gilkerson et al. | Mar 2016 | A1 |
20160121127 | Klimovitch | May 2016 | A1 |
20160121128 | Fishler et al. | May 2016 | A1 |
20160121129 | Persson et al. | May 2016 | A1 |
20160129262 | Sheldon et al. | May 2016 | A1 |
20160144190 | Cao et al. | May 2016 | A1 |
20160151621 | Maile et al. | Jun 2016 | A1 |
20160175601 | Nabutovsky et al. | Jun 2016 | A1 |
20160213919 | Suwito et al. | Jul 2016 | A1 |
20160213937 | Reinke et al. | Jul 2016 | A1 |
20160213939 | Carney et al. | Jul 2016 | A1 |
20160228026 | Jackson | Aug 2016 | A1 |
20160256694 | Shuros | Sep 2016 | A1 |
20160271406 | Maile et al. | Sep 2016 | A1 |
20160277097 | Ludwig et al. | Sep 2016 | A1 |
20160296131 | An et al. | Oct 2016 | A1 |
20160310723 | Eggen et al. | Oct 2016 | A1 |
20160317825 | Jacobson | Nov 2016 | A1 |
20160367823 | Cowan et al. | Dec 2016 | A1 |
20170014629 | Ghosh et al. | Jan 2017 | A1 |
20170021159 | Reddy et al. | Jan 2017 | A1 |
20170035315 | Jackson | Feb 2017 | A1 |
20170043173 | Sharma et al. | Feb 2017 | A1 |
20170043174 | Greenhut et al. | Feb 2017 | A1 |
20170056665 | Kane | Mar 2017 | A1 |
20170056666 | Kane et al. | Mar 2017 | A1 |
20170105635 | Cho | Apr 2017 | A1 |
20170112390 | Cho et al. | Apr 2017 | A1 |
20170112399 | Brisben et al. | Apr 2017 | A1 |
20170113040 | Brisben et al. | Apr 2017 | A1 |
20170113050 | Brisben et al. | Apr 2017 | A1 |
20170113053 | Brisben et al. | Apr 2017 | A1 |
20170156617 | Allavatan et al. | Jun 2017 | A1 |
20170189681 | Anderson | Jul 2017 | A1 |
20170281261 | Shuros et al. | Oct 2017 | A1 |
20170281952 | Shuros et al. | Oct 2017 | A1 |
20170281953 | Min et al. | Oct 2017 | A1 |
20170281955 | Maile et al. | Oct 2017 | A1 |
20170312531 | Sawchuk | Nov 2017 | A1 |
20170368360 | Hahn et al. | Dec 2017 | A1 |
20180008829 | An et al. | Jan 2018 | A1 |
20180008831 | An et al. | Jan 2018 | A1 |
20180021567 | An et al. | Jan 2018 | A1 |
20180021581 | An et al. | Jan 2018 | A1 |
20180021582 | An et al. | Jan 2018 | A1 |
20180021584 | An et al. | Jan 2018 | A1 |
20180036527 | Reddy et al. | Feb 2018 | A1 |
20180056075 | Hahn et al. | Mar 2018 | A1 |
20180056079 | Hahn et al. | Mar 2018 | A1 |
20180078773 | Thakur et al. | Mar 2018 | A1 |
20180116593 | An et al. | May 2018 | A1 |
20180256902 | Toy et al. | Sep 2018 | A1 |
20180256909 | Smith et al. | Sep 2018 | A1 |
20180264262 | Haasl et al. | Sep 2018 | A1 |
20180264270 | Koop et al. | Sep 2018 | A1 |
20180264272 | Haasl et al. | Sep 2018 | A1 |
20180264273 | Haasl et al. | Sep 2018 | A1 |
20180264274 | Haasl et al. | Sep 2018 | A1 |
20180339160 | Carroll | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
1003904 | Jan 1977 | CA |
202933393 | May 2013 | CN |
0362611 | Apr 1990 | EP |
503823 | Sep 1992 | EP |
1702648 | Sep 2006 | EP |
1904166 | Jun 2011 | EP |
2471449 | Jul 2012 | EP |
2471452 | Jul 2012 | EP |
2433675 | Jan 2013 | EP |
2441491 | Jan 2013 | EP |
2452721 | Nov 2013 | EP |
2662113 | Nov 2013 | EP |
1948296 | Jan 2014 | EP |
2280759 | May 2015 | EP |
2760541 | May 2016 | EP |
2833966 | May 2016 | EP |
2000051373 | Feb 2000 | JP |
2002502640 | Jan 2002 | JP |
2004512105 | Apr 2004 | JP |
2005508208 | Mar 2005 | JP |
2005245215 | Sep 2005 | JP |
2008540040 | Nov 2008 | JP |
5199867 | Feb 2013 | JP |
9407567 | Apr 1994 | WO |
9500202 | Jan 1995 | WO |
9636134 | Nov 1996 | WO |
9724981 | Jul 1997 | WO |
9826840 | Jun 1998 | WO |
9939767 | Aug 1999 | WO |
0234330 | May 2002 | WO |
02098282 | Dec 2002 | WO |
2003051457 | Jun 2003 | WO |
2004078254 | Sep 2004 | WO |
2005000206 | Jan 2005 | WO |
2005018740 | Mar 2005 | WO |
2005042089 | May 2005 | WO |
2006065394 | Jun 2006 | WO |
2006069215 | Jun 2006 | WO |
2006086435 | Aug 2006 | WO |
2006113659 | Oct 2006 | WO |
2006124833 | Nov 2006 | WO |
2007073435 | Jun 2007 | WO |
2007075974 | Jul 2007 | WO |
2007033094 | Oct 2007 | WO |
2008034005 | Mar 2008 | WO |
2009006531 | Jan 2009 | WO |
2009025734 | Feb 2009 | WO |
2009131768 | Oct 2009 | WO |
2010088687 | Aug 2010 | WO |
2012054102 | Apr 2012 | WO |
2013003754 | Jan 2013 | WO |
2013080038 | Jun 2013 | WO |
2013098644 | Jul 2013 | WO |
2013184787 | Dec 2013 | WO |
2014120769 | Aug 2014 | WO |
2014178035 | Nov 2014 | WO |
2016022397 | Feb 2016 | WO |
2016118735 | Jul 2016 | WO |
Entry |
---|
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) |
International Search Report and Written Opinion dated Sep. 6, 2017 for International Application No. PCT/US2017/039726. |
Liang, “Piezoelectric Pressure Sensors Based on Flexible PZT Thick Film Composite Device,” University of Pittsburgh, 2014, 97 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/057929, 12 pages, date mailed Jan. 26, 2018. |
International Search Report and Written Opinion dated Oct. 5, 2017 for International Application No. PCT/US2017/037961. |
International Search Report and Written Opinion for Application No. PCT/US2017/041562, 12 pages, date mailed Nov. 30, 2017. |
Ginks et al; “Relationship between intracardiac impedance and left Ventricular contactility in patients undergoing cardiac resynchronization,” Europace, vol. 13, 984-991, 2001. |
MPVS Ultra, “Complete PV Loop Analysis”, Pressure-Volume Loop Systems, Millar, downloaded Nov. 2017. |
Roest et al; Prediction of long-term outcome of cardiac resynchronization therapy by acute pressure-vol. loop measurements, European Journal of Heart Failure, 15, 299-307, 2013. |
“Complete PV Loop Analysis,” Millar, pp. 1-4, 2014. |
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Number | Date | Country | |
---|---|---|---|
20210308467 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62547458 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16104370 | Aug 2018 | US |
Child | 17348957 | US |