1. Technical Field Text
The present invention relates to an implantable medical device, such as a stent graft. In the preferred embodiment, the device includes a plurality of bridging elements coupled at a proximal and/or distal end of the medical device.
2. Background
In the medical field it is now commonplace to use stent grafts and other implantable medical devices to treat a variety of medical conditions such as aneurysms, dissections, occlusions and the like. Stent grafts are generally formed of a tubular member of graft material (which may or may not be bifurcated or have side branches) and one or more stents provided on the graft member to retain this in an open position. The stents may be located on the inside or the outside of the graft member, or both, as desired in connection with the particular medical device or medical application. Some vena cava filters are also in the form of a stent graft, that is have a graft element which is supported by a stent structure. The teachings herein apply equally to such vena cava filters.
Stents used in stent grafts come in a variety of forms, the most common of which is a stent ring formed of a series of strut elements arranged in a zig-zag or sinusoidal manner. The advantage of a zig-zag or sinusoidal stent is that this can be readily compressed onto an introducer for endoluminal deployment of the stent graft. Furthermore, this arrangement of the strut elements gives the stent a good expansion strength, that is the enable the stent to expand and press against a vessel wall in so doing to support the graft member in an open configuration and to hold the medical device in position.
Zig-zag stents of such a nature can be considered to be formed of a plurality of stent struts which are coupled to one another at their ends to provide a structure having a plurality of peaks and valleys at the junctions between adjacent stent struts.
Greater compressibility and flexibility of the medical device can be achieved with a zig-zag structure which is more open (that is, where the angle between adjacent and connected stent struts is relatively greater). This is particularly useful for stent grafts which need to be compressed to a very small diameter for introduction and implantation into a patient, as well as in cases where the stent graft needs to remain flexible as a result of the physiology of the lumen into which the stent graft is to be implanted.
There is typically provided an end stent located at the proximal end of the stent graft (that is the end which is located upstream or closer to the heart relative to the remainder of the stent graft), in order to keep this end open. There is commonly also provided a stent at least at the distal end of the stent graft and generally also one or more stents in intermediate positions along the graft member.
The proximal end of the stent graft needs to be retained fully open so as to ensure that this properly seals against the internal walls of the patient's vessel and must also be retained in the correct position in the vessel, both during and after deployment. Where the end most stent is of a zig-zag or sinusoidal structure, particularly a relatively open structure to increase the flexibility and compressibility of the stent graft, this can lead to unsupported flaps of graft material between adjacent peaks of the stent. These flaps of graft material will tend to be urged radially inwardly towards the centre of the lumen as a result of blood flow impinging upon the proximal end of the stent graft. This will result in an incomplete seal of the graft material to the inner vessel wall. When this endoleak, blood leakage occurs, there is the risk of: a) an endoleak, in which blood can flow passed the device and the lumen wall; b) migration of the stent graft with the patient's lumen; and c) also premature wear and tear of the stent graft caused by the flapping of the graft material.
It is known to locate at the proximal end of the graft member one or more bare stents which extend beyond the extremity of the graft member and which can support the proximal end of the graft member, particularly those portions not supported by the other stents of the stent graft to urge these portions against the vessel walls. Bare stents of this nature can also be provided with barbs which anchor into the vessel wall.
Although bare stents have particular uses in some medical applications, they are not suitable in a number of circumstances as they can cause erosion of the vessel wall. Bare stents are generally not ideal in very tortuous anatomies. They can in some circumstances also reduce the flexibility of the stent graft assembly.
Other forms of stent located at the proximal end of the stent graft and specifically designed to overcome the problem of support of its proximal end will impair the compressibility of the stent graft as well as, in some circumstances, its flexibility in situ.
The present invention seeks to provide an improved implantable medical device.
According to an aspect of the present invention, there is provided an implantable medical device including a tubular graft member; at least one stent provided on the graft member proximate an end thereof, wherein the stent is formed from a plurality of struts coupled together at their ends in the form of a stent ring having peaks and valleys, the struts of the stent being formed of a flexible material to allow the stent to be compressed and to expand, wherein the struts have a first flexibility; and a plurality of bridging elements located between adjacent peaks formed by the struts of said stent, said bridging elements being coupled to the struts and extending towards and proximate said end of said graft element; said bridging elements having a second flexibility, wherein second flexibility is greater than said first flexibility; wherein said bridging elements produce in use an expansion force urging graft material of said graft element in a graft opening direction, wherein the opening force produced by said bridging elements is less than an opening force produced by said stent ring.
The structure of implantable medical device taught herein retains the advantages of a relatively open stent structure to maintain flexibility and compressibility of the medical device and yet provides a mechanism for urging all of the portions of the proximal end of the graft member properly against a vessel wall to maintain patency with the vessel wall and to prevent any parts of the graft member from falling into the lumen of the vessel and thereby to lose the seal against the vessel wall. This can be achieved without compromising in any significant way the flexibility and compressibility of the implantable medical device.
Preferably, the bridging elements are located within the extent of the graft member. In other words, the bridging elements do not extend beyond the graft member, as does a bare stent. Such a structure is advantageous when the device is to be deployed in a very tortuous vessel. With this particular arrangement, it is also possible to protect the vessel wall by ensuring that the metal or metallic components of the device are covered by graft material, thus avoiding the risk of trauma and/or erosion of the vessel wall of the type which can occur with devices provided with bare stents.
In a preferred embodiment, the opening force produced by the bridging elements is between around 10% to around 75%, more preferably, around 10% to around 50% or around 10% to around 40%, of the opening force produced by the stent ring. The purpose of the bridging elements is not to provide an expansion force against the vessel walls of the type produced by the stent but simply to maintain the otherwise loose parts of the graft material open. Therefore, in the preferred embodiment, the majority of the expansion force is generated by the stent, with the bridging elements contributing only a minor part of the opening force.
In the preferred embodiment, the bridging elements produce an opening force which is in the region of 50% of the opening force produced by the stent ring, in other embodiments the force may be around 20% or around 30%.
In the preferred embodiment, the bridging elements are formed from a length of wire. Advantageously, the bridging elements are coupled to the stent by wrapping the wire around the struts. Most preferably, the bridging elements include at least one barb element, this advantageously being formed by an end of the wire or wire-like element forming the bridging elements.
It is preferred that the bridging elements are formed of a shape memory material such as Nitinol. It is also preferred that the stent or stents of the stent graft are formed of a self-expandable material. It is envisaged, nevertheless, that the bridging elements and/or stent or stents of the stent graft could be formed of a balloon expandable material.
Embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which:
Referring to
Referring to
The formation of the flaps 68 prevents a proper seal being formed between the proximal end 62 of the stent graft 50 and the vessel walls 70. Moreover, the constant vibration or movement of the flaps will result in premature wear of the graft material 52.
As explained above, providing an end stent 58 with a tighter strut structure will reduce the compressibility of the stent 58 and the flexibility of the stent graft 50 in situ. Any other form of stent structure will again compromise the compressibility and flexibility of the stent graft 50. Similarly, providing bare stents at the proximal end 62 of the stent graft is disadvantageous in some applications.
Referring to
Located in each region 19 between adjacent peaks 18 there is provided a bridging element 28. The bridging elements 28 can be seen in enlarged form in
In the preferred embodiment the bridging elements are made of a wire or wire-like material and are curved, as shown, to extend into the gap 19 between adjacent peaks 18 of the struts forming the stent ring 22. The bridging elements 28 may be coupled to the graft material 12 by a suture, bonding or any other suitable coupling mechanism, so as to be able to apply pressure on the graft material in the zone 19. In embodiments in which the bridging elements 28 are located in the inside of the graft element 12, they need not be specifically coupled to the graft material 12 as the expansion of the bridging elements 28 will push against the graft material 12 from the inside and thus push the portions of graft material in the zones 19 outwardly, in practice against the vessel wall. In applications where the bridging elements 28 are positioned on the outside of the graft material 12 they would typically be connected to the graft material, for instance by bonding or suturing.
The bridging elements in the embodiment of
It is envisaged that in some embodiments the bridging elements 28 would also or in the alternative be sutured to the struts 16 and/or to the graft member 12 in a location adjacent the strut 16 of the stent 22.
It will be seen in
In the embodiment of
The bridging elements 28 are preferably substantially more flexible than the stent 22. By more flexible, it is meant that the bridging elements 28 will generate a substantially lower contraction resistance and expansion force relative to those generated by the stent 22. In the preferred embodiment, the bridging elements 28 produce an expansion force which is between around 10% to around 75% of the expansion force produced by the stent 22, more preferably between around 10% to around 50% or around 10% to around 40%. In the preferred embodiment, these forces generated by the bridging elements 28 are around 50% (or around 20% or around 30%) of the equivalent forces produced by the stent 22. Making the bridging elements 18 weaker can be achieved by using a more flexible material for the bridging elements 28 compared to the material of the stent 22 and/or by using a material of smaller cross sectional area. In some embodiments, the bridging elements 28 could be made of the same material as the material of the stent 22 (for example Nitinol or other shape memory material) but have a cross-sectional area which is substantially less than the cross-sectional area of the strut 16 of the stent 22. This cross sectional area could be between around 10% to around 75% (or around 10% to around 50% or around 10% to around 40%) of the cross sectional area of the strut 16 but preferably in the region of 50%, 20% or 30% or so.
Having bridging elements 28 which are substantially more flexible than the stent 22 ensures that the bridging elements 28 provide at most only a minimal effect on the compressibility and flexibility of the stent graft 10 and most preferably only a minimal variation of that compressibility and flexibility compared to an assembly 10 having no bridging elements 28 and no other mechanism for supporting the graft material in the zone 19. Thus, the bridging elements 28, in the preferred embodiment, do not impair these characteristics of the stent graft 10 but have the function of ensuring that the proximal end 24 of the graft member 12 is properly pressed against the walls of the vessel 70 and thus provides a proper seal and patency of the stent graft 10 to the vessel wall. Thus, a stent graft with improved compressibility and improved flexibility can be provided while still ensuring proper sealing of the proximal end 24 of the stent graft to the vessel.
The embodiment of
Although the bridging elements 28 are shown to be wrapped around the strut 16 of the endmost stent 22, they could be fixed to the stent 22 in other ways, such as by bonding, soldering, welding or the like. Similarly, the bridging elements 28 could be coupled to the graft material, for example by suturing.
Number | Date | Country | Kind |
---|---|---|---|
0914045.0 | Aug 2009 | GB | national |
The present patent document is a continuation of application Ser. No. 12/849,470, filed Aug. 3, 2010, which claims the benefit of priority to United Kingdom Patent Application No. 0914045.0, filed Aug. 11, 2009, and entitled “IMPLANTABLE MEDICAL DEVICE,” the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5282824 | Gianturco | Feb 1994 | A |
5897589 | Cottenceau et al. | Apr 1999 | A |
5964798 | Imran | Oct 1999 | A |
6004347 | McNamara et al. | Dec 1999 | A |
6231598 | Berry et al. | May 2001 | B1 |
6331191 | Chobotov | Dec 2001 | B1 |
6395019 | Chobotov | May 2002 | B2 |
6454799 | Schreck | Sep 2002 | B1 |
6464723 | Callol | Oct 2002 | B1 |
6773455 | Allen et al. | Aug 2004 | B2 |
7022132 | Kocur | Apr 2006 | B2 |
7175652 | Cook et al. | Feb 2007 | B2 |
7354450 | Bicek et al. | Apr 2008 | B2 |
7413573 | Hartley | Aug 2008 | B2 |
7462192 | Norton | Dec 2008 | B2 |
7758626 | Kim | Jul 2010 | B2 |
8691321 | Cottone | Apr 2014 | B2 |
20010032010 | Sandock | Oct 2001 | A1 |
20040098092 | Butaric et al. | May 2004 | A1 |
20040111146 | McCullagh | Jun 2004 | A1 |
20050131525 | Hartley | Jun 2005 | A1 |
20050143801 | Aboul-Hosn | Jun 2005 | A1 |
20050267560 | Bates | Dec 2005 | A1 |
20070043432 | Perouse | Feb 2007 | A1 |
20070067016 | Jung | Mar 2007 | A1 |
20070100432 | Case et al. | May 2007 | A1 |
20070179591 | Baker et al. | Aug 2007 | A1 |
20070191929 | Osborne et al. | Aug 2007 | A1 |
20080051868 | Cottone | Feb 2008 | A1 |
20080262593 | Ryan et al. | Oct 2008 | A1 |
20100057195 | Roeder et al. | Mar 2010 | A1 |
20100211155 | Swanson et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
0857471 | Aug 1998 | EP |
WO 9944535 | Sep 1999 | WO |
WO 0189421 | Nov 2001 | WO |
WO 02060344 | Aug 2002 | WO |
WO 2004105853 | Dec 2004 | WO |
Entry |
---|
http://dictionary.reference.com/browse/coiled printed Jun. 8, 2011. |
International Search Report and Written Opinion for PCT/US2010/044244, dated Oct. 6, 2010, 7 pages. |
Examination Report for EP 10742670.2 dated Jul. 15, 2014, 4 pages. |
Combined Search and Examination Report for GB 0914045.0 dated Dec. 14, 2009, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160256257 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12849470 | Aug 2010 | US |
Child | 15150987 | US |