This invention relates to implantable medical devices, and methods of delivering the same.
The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprosthesis include stents and covered stents, sometimes called “stent-grafts”.
An endoprosthesis can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen.
In some cases, passageways can become re-occluded, a phenomenon often called “restenosis.” After restenosis, often another endoprosthesis is deployed within the first endoprosthesis to re-open the passageway.
This invention relates to implantable medical devices, and methods of delivering the same.
Generally, an endoprosthesis is described that can be deployed into a cavity or lumen in a collapsed position, and then reverted to a first expanded position larger than the collapsed position to support the cavity or lumen. At a later time, e.g., after restenosis of the cavity or lumen, the endoprosthesis can be further expanded.
In one aspect, the invention features a tubular endoprosthesis, e.g., a stent, that includes a polymeric material. The endoprosthesis has at least one longitudinal element embedded in a wall of the endoprosthesis. The endoprosthesis has a collapsed position that can be reverted to a first expanded position larger than the collapsed position by heating to a first temperature subsequent to insertion of the endoprosthesis into a cavity or lumen, e.g., a vascular or a non-vascular lumen, in a mammal. The endoprosthesis can be further expanded from the first expanded position to a second expanded position within the cavity or lumen by heating to a second temperature higher than the first temperature.
In some embodiments, the endoprosthesis is substantially circular in transverse cross-section.
In some embodiments, the longitudinal element includes a metal, e.g., stainless steel. Longitudinal elements can be, e.g., monofilaments and/or multifilament. In embodiments in which the longitudinal elements are monofilaments, the monofilaments can have a circular transverse cross-section, e.g., having a diameter of from about 0.0005 inch to about 0.010 inch. The endoprosthesis can include, e.g., from about two to about twelve longitudinal elements. In some implementations, the longitudinal element extends substantially along an entire longitudinal length of the endoprosthesis.
In some embodiments, the wall includes an aperture or many apertures. The aperture or apertures can be, e.g., circular in transverse cross-section. In some implementations, the longitudinal elements are disposed longitudinally across apertures.
In some embodiments, the tubular endoprosthesis includes a coating that includes a therapeutic agent. In some embodiments, the coating is on an outer surface of the endoprosthesis. In specific embodiments, the coating is an outer surface of the endoprosthesis, and the therapeutic agent also is dispersed generally throughout the polymeric material. The therapeutic agent can be chosen, e.g., to prevent restenosis. For example, the therapeutic agent can be paclitaxel. The polymeric material can also include a radio-opaque agent and/or a thermal conductor, e.g., boron nitride.
In some embodiments, the polymeric material includes a natural polymer, e.g., zein, casein, gelatin, gluten, serum albumin, collagen, polysaccharides, polyhyaluronic acid, poly(3-hydroxyalkanoate)s, alginate, dextran, cellulose, collagen or mixtures of these polymers. In some implementations, the polymeric material includes a synthetic polymer, e.g., chemical derivatives of collagen, chemical derivatives of cellulose, polyphosphazenes, poly(vinyl alcohols), polyamides, polyacrylates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyesters, degradable polymers, polyester amides, polyanhydrides, polycarbonates, polyorthoesters, polylactides, polyglycolides, polysiloxanes, polyurethanes, cellulose derivatives or mixtures of these polymers. In some embodiments, polymeric material includes mixtures of natural and synthetic polymers. In some embodiments, the polymeric material is cross-linked.
In specific embodiments, the tubular endoprosthesis has a collapsed transverse dimension and a collapsed longitudinal length, both measured at the collapsed position. The first expanded position has a first expanded transverse dimension that is at least fifty percent larger than the collapsed transverse dimension and a first expanded longitudinal length that is at least fifty percent of the collapsed longitudinal length.
In other specific embodiments, the endoprosthesis has a first expanded transverse dimension and a first expanded longitudinal length, both measured at the first expanded position. The second expanded position has a second expanded transverse dimension that is at least twenty-five percent larger than the first expanded transverse dimension and a second expanded longitudinal length that is at least fifty percent of the first expanded longitudinal length.
In another aspect, the invention features a method of treating a cavity or lumen in a mammal. The method includes inserting, into the cavity or lumen in the mammal, a tubular endoprosthesis that includes a polymeric material. The endoprosthesis has at least one longitudinal element embedded in a wall of the endoprosthesis and has a collapsed position that can be reverted to a first expanded position larger than the collapsed position by heating to a first temperature subsequent to insertion of the endoprosthesis into a cavity or lumen in a mammal. The endoprosthesis can be further expanded from the first expanded position to a second expanded position within the cavity or lumen in the mammal by heating to a second temperature higher than the first temperature. The inserted endoprosthesis is heated to the first temperature to revert the collapsed position to the first expanded position.
In some embodiments, the method further includes heating the inserted endoprosthesis to the second temperature to further expand the endoprosthesis to the second expanded position. The heating can be performed, e.g., with a liquid. For example, heating can be performed by a delivery tube, e.g., a balloon catheter, that includes a warmed liquid.
In some embodiments, the first temperature is, e.g., from about 37° C. to about 55° C. and the second temperature is, e.g., from about 40° C. to about 75° C.
In some embodiments, the lumen is a vascular lumen.
In another aspect, the invention features a method of treating a cavity or lumen in a mammal. The method include inserting, into the cavity or lumen in the mammal, a tubular endoprosthesis that includes a polymeric material. The endoprosthesis has a collapsed position that can be reverted to a first expanded position larger than the collapsed position by heating to a first temperature subsequent to insertion of the endoprosthesis into a cavity or lumen in a mammal. The endoprosthesis can be further expanded from the first expanded position to a second expanded position within the cavity or lumen in the mammal by heating to a second temperature higher than the first temperature. The inserted endoprosthesis is heated to the first temperature to revert the collapsed position to the first expanded position, and then the inserted endoprosthesis is heated to the second temperature to further expand the endoprosthesis to the second expanded position.
In another aspect, the invention features an endoprosthesis that includes a polymeric material having at least one longitudinal element embedded in a wall of the endoprosthesis.
In some embodiments, the endoprosthesis includes from about two to twelve longitudinal elements.
Embodiments may have one or more of the following advantages. The endoprotheses described herein can be deployed into a cavity or lumen in a collapsed position, and then reverted to a first expanded position larger than the collapsed position to support the cavity or lumen. At a later time, e.g., after restenosis of the cavity or lumen, the endoprosthesis can be further expanded, often without the need for secondary angioplasty. In some implementations, the endoprosthesis can be further expanded from outside the body. Many of the embodiments also show a reduced foreshortening and improved radio-opacity which can, e.g., improve placement of the endoprosthesis within a cavity or lumen.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, and advantages of the invention will be apparent from the description and drawings and from the claims.
Generally, an endoprosthesis is described herein that can be deployed into a cavity or lumen of a mammal in a collapsed position at onset of stenosis, and then reverted to a first expanded position larger than the collapsed position to support an occluded cavity or lumen. After onset of restenosis, the endoprosthesis can be further expanded to a second expanded position larger than the first expanded position within the cavity or lumen to further support the cavity or lumen.
Referring to
Longitudinal elements 20 can reduce endoprosthesis foreshortening during expansion from collapsed position 30 to first expanded position 32 or second expanded position 36. In addition, longitudinal elements 20 can serve as markers to aid in the delivery of endoprosthesis 10 when the elements include a radio-opaque material.
Referring now to
Endoprosthesis 10 having collapsed position 30 is then reverted to a first expanded position 32 larger than the collapsed position 30 by heating to a first temperature subsequent to insertion of the endoprosthesis 10 into the cavity 42 or lumen 42′. Outer member 140, inner member 120 and guide wire 200 are removed from cavity 42 or lumen 42′, leaving endoprosthesis 10 in first expanded position 32 engaged with constricted site 43 (
In some implementations, heating to the first or second temperature is performed by a liquid in a tube, e.g., a balloon catheter. Heating can also be performed with radiation, e.g., infrared radiation, or radio-frequency radiation. In addition, heating can be performed using magnetic induction. In some embodiments, the first temperature is, e.g., from about 37° C. to about 55° C., and the second temperature is, e.g., 40° C. to about 75° C.
In specific implementations, heating to the second temperature is performed from outside the body of the mammal, e.g., using magnetic induction.
Longitudinal element 22 can be made of, e.g., a metal (e.g., stainless steel), a plastic (e.g., a polyamide), or a composite material. When radio-opacity is desirable, longitudinal element 22 can be radio-opaque. Longitudinal element 22 can be, e.g., in the form of a monofilament, e.g., a circular transverse cross-section monofilament that has a diameter of from about 0.0005 inch to about 0.010 inch, e.g., from about 0.001 inch to about 0.008 inch, or from about 0.002 inch to about 0.005 inch. Longitudinal element 22 can be, e.g., in the form of a multifilament, e.g., a melt-spun multifilament, having, e.g., from about 3 threads to about 250 threads, e.g., from about 5 threads to about 144 threads. The threads making up the multifilament can include a single type of material, e.g., nylon, or can include a variety of different materials, e.g., threads of nylon and stainless steel, or threads of nylon and polyester.
In some implementations, tubular endoprosthesis 10 includes from about 1 to about 50 longitudinal elements 22, e.g., from about 4 to about 30 longitudinal elements, or from about six to about 24 longitudinal elements.
In some implementations, longitudinal element(s) 22 extend(s) substantially along an entire longitudinal length of endoprosthesis 10.
Materials, e.g., polymeric materials, that can be used to make endoprosthesis 10 having a collapsed position that can be reverted to a first expanded position, and then expanded further to a second expanded position are known. Suitable polymeric materials, e.g., homopolymers, block copolymers, and blends thereof, have been described by Langer, U.S. Pat. Nos. 6,388,043 and 6,720,402, the contents of each of which is hereby incorporated by reference herein in its entirety. The polymeric materials described therein are shape memory polymers that can hold two or more shapes in memory.
In some embodiments, the polymeric material used to make endoprosthesis 10 can include a hard segment (H) and two distinct soft segments (S1 and S2).
In other embodiments, a polymer blend of a first multiblock copolymer and a second multiblock copolymer is utilized to make endoprosthesis 10 . The first multiblock copolymer includes a hard segment (H1) with a relatively high transition temperature (Ttrans), e.g., glass transition temperature or melting temperature, and a soft segment (S′1) with a relatively low Ttrans. The second multiblock copolymer includes a different hard segment (H2) with a relatively low Ttrans and the same soft segment (S′1) as in the first multiblock copolymer. Since the soft segments (S′1) in both the first and second multiblock copolymers are identical, the polymers are miscible in each other. The resulting blend has three transition temperatures, one for the hard segment (H1) of the a first multiblock copolymer, one for hard segment (H2) of the second multiblock copolymer, and one for the soft segment (S′1).
In a specific embodiment, endoprosthesis 10 can be fashioned from a polymer composition having a hard segment (H′), a first soft segment (S″1), and a second soft segment (S″2). The first soft segment (S″1) has a Ttrans at least 10° C. lower than Ttrans of the hard segment (H′), and at least 10° C. above Ttrans of the second soft segment (S″2). The composition is shaped, e.g., extruded or molded, into the form of the second expanded position 36 (
Suitable polymers can have an elastic modulus of about 60,000 or 70,000 psi or more at 25° C. (ASTM D638M), e.g., from about 100,000 to about 250,000 or more, e.g., from about 250,000 to about 500,000 or more, e.g., from about 500,000 to about 1,000,000 or more.
The polymers can be thermoplastic, thermoset, crystalline or amorphous. The polymers or portions of the polymers, e.g., a polymer segment or block, can be degradable, natural, or synthetic.
Natural polymers or polymer portions include, for example, zein, casein, gelatin, gluten, serum albumin, collagen, polysaccharides, polyhyaluronic acid, poly(3-hydroxyalkanoate)s, alginate, dextran, cellulose and collagen. Synthetic polymers or polymer portions include, for example, chemical derivatives of collagen, chemical derivatives of cellulose, polyphosphazenes, poly(vinyl alcohols), polyamides, polyacrylates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters and polyvinyl halides, polyvinylpyrrolidone, polyesters. Degradable polymers or polymer portions include, for example, polyester amides, polyanhydrides, polycarbonates, polyorthoesters, polylactides, polyglycolides, polysiloxanes, polyurethanes and cellulose derivatives.
Generally, any of the above polymers can be cross-linked during their polymerization, or after their polymerization in a secondary step. The polymers can be cross-linked by application of radiation such as e-beam, UV, gamma, x-ray radiation or by heat-activated chemical crosslinking techniques, utilizing azo compounds or peroxides, e.g., organic peroxides, e.g., benzoyl peroxide. Radiation techniques provide the advantage that the polymer typically does not have to be substantially heated to achieve crosslinking. For e-beam radiation, an exposure of about 200-300, e.g. 250 kilograys, typically provides sufficient crosslinking.
Tubular endoprosthesis 10 can include a coating, e.g., a polymeric coating applied to an exterior surface of endoprosthesis 10, that includes a therapeutic agent. In some embodiments, the polymeric material from which endoprosthesis 10 is made includes a therapeutic agent dispersed therein. The therapeutic agent can, for example, prevent restenosis. In a specific embodiment, the medicament is paclitaxel.
In general, a therapeutic agent can be a genetic therapeutic agent, a non-genetic therapeutic agent, or cells. Therapeutic agents can be used singularly, or in combination. Therapeutic agents can be, for example, nonionic, or they may be anionic and/or cationic in nature.
Exemplary non-genetic therapeutic agents include: (a) anti-thrombotic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); (b) anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine and mesalamine; (c) anti-neoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin, angiopeptin, monoclonal antibodies capable of blocking smooth muscle cell proliferation, and thymidine kinase inhibitors; (d) anesthetic agents such as lidocaine, bupivacaine and ropivacaine; (e) anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, hirudin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; (f) vascular cell growth promoters such as growth factors, transcriptional activators, and translational promotors; (g) vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; (h) protein kinase and tyrosine kinase inhibitors (e.g., tyrphostins, genistein, quinoxalines); (i) prostacyclin analogs; (j) cholesterol-lowering agents; (k) angiopoietins; (l) antimicrobial agents such as triclosan, cephalosporins, aminoglycosides and nitrofurantoin; (m) cytotoxic agents, cytostatic agents and cell proliferation affectors; (n) vasodilating agents; (o) agents that interfere with endogenous vasoactive mechanisms; (p) inhibitors of leukocyte recruitment, such as monoclonal antibodies; (q) cytokines, and (r) hormones.
Exemplary genetic therapeutic agents include anti-sense DNA and RNA as well as DNA coding for: (a) anti-sense RNA, (b) tRNA or rRNA to replace defective or deficient endogenous molecules, (c) angiogenic factors including growth factors such as acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor and insulin-like growth factor, (d) cell cycle inhibitors including CD inhibitors, and (e) thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation. Also of interest is DNA encoding for the family of bone morphogenic proteins (“BMP's”), including BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Currently preferred BMP's are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively, or in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.
Vectors for delivery of genetic therapeutic agents include viral vectors such as adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus (Semliki Forest, Sindbis, etc.), lentiviruses, herpes simplex virus, replication competent viruses (e.g., ONYX-015) and hybrid vectors; and non-viral vectors such as artificial chromosomes and mini-chromosomes, plasmid DNA vectors (e.g., PCOR), cationic polymers (e.g., polyethyleneimine, polyethyleneimine (PEI)), graft copolymers (e.g., polyether-PEI and polyethylene oxide-PEI), neutral polymers PVP, SP1017 (SUPRATEK), lipids such as cationic lipids, liposomes, lipoplexes, nanoparticles, or microparticles, with and without targeting sequences such as the protein transduction domain (PTD).
Cells for use include cells of human origin (autologous or allogeneic), including whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progenitor cells), stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, skeletal myocytes or macrophage, or from an animal, bacterial or fungal source (xenogeneic), which can be genetically engineered, if desired, to deliver proteins of interest.
In addition to therapeutic agents, any of the polymers mentioned may be filled with a non-therapeutic agent, for example, nanoparticles of clay and silica to, for example, increase the modulus of the plastic. Dispersing agents and/or compatibilizing agents may be used, for example, to improve the blending of polymers and the blending of polymers with fillers. Dispersing agents and/or compatibilizing agents include, for example, ACRAWAX® (ethylene bis-stearamide), polyurethanes and ELVALOY® (acrylic-functionalized polyethylene).
In specific embodiments, the filler is a radio-opaque agent, e.g., bismuth carbonate or barium sulfate. In other specific embodiments, the polymeric material includes a thermal conductor, e.g., a boron nitride.
Endoprosthesis 10 can be bio-absorbable or non-bioabsorbable, and can be used in, e.g., a vascular or a non-vascular lumen or cavity. Examples of non-vascular lumens include the esophagus, the prostate, a ureteral lumen or a lumen in the biliary system.
Referring back now to
In specific embodiments, a coronary endoprosthesis can, e.g., have a first expanded diameter of from about 2 mm to about 6 mm, a peripheral endoprosthesis can, e.g., have a first expanded diameter of from about 5 mm to about 24 mm and a gastrointestinal and/or urological endoprosthesis can, e.g., have a first expanded diameter of from about 6 mm to about 30 mm. In other specific embodiments, a neurological endoprosthesis can, e.g., have a first expanded diameter of from about 1 mm to about 12 mm, an abdominal aortic aneurysm (AAA) endoprosthesis or a thoracic aortic aneurysm (TAA) endoprosthesis can, e.g., have a first expanded diameter of from about 20 mm to about 46 mm, and a renal endoprosthesis can, e.g., have a first expanded diameter of from about 8 mm to about 12 mm.
When it is desirable, endoprosthesis 10 can be configured for reduced foreshortening. For example, endoprosthesis 10 in collapsed position 30 can have a collapsed transverse dimension OD1 and a collapsed longitudinal length L1, such that after heating above the first temperature and expansion to the first expanded position 32, that is at least about fifty percent larger than the collapsed transverse dimension, a first expanded longitudinal length L2, decreases by less than about fifty percent, measured relative to the collapsed longitudinal length. In addition, after heating above the second temperature and expansion to the second expanded position 36 having a second expanded transverse dimension OD3 that is at least about twenty-five percent larger than the first expanded transverse dimension OD2, a second expanded longitudinal length L3, measured at the second expanded position, decreases by less than about twenty-five percent, measured relative to the first expanded longitudinal length.
Referring now to
The endoprosthesis described herein can be formed by a variety of techniques known in the art. For example, some embodiments are desirably formed by extrusion or co-extrusion, while other embodiments are desirably formed by molding, e.g., injection molding, co-molding, compression molding, or casting. For molded embodiments, longitudinal elements are embedded in a wall by placing the elements on a mold insert. Apertures can be formed by laser ablation or by forming the apertures in the wall of the endoprosthesis as the endoprosthesis is molded.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
For example, while in some embodiments tubular endoprosthesis 10 has a transverse cross-section that is circular, in some embodiments its transverse cross-section is non-circular. For example, it can be elliptical or polygonal, e.g., square, pentagonal, hexagonal or octagonal.
While
While in some embodiments, the collapsed position is substantially an entire longitudinal length of the endoprosthesis, in other embodiments, only a portion of the endoprosthesis is in a collapsed position, e.g., 10 percent, 20 percent or 40 percent of the overall length of the endoprosthesis.
While in some embodiments, the expanded position is substantially an entire longitudinal length of the endoprosthesis, in other embodiments, only a portion of the endoprosthesis is in an expanded position. Referring to
While in some embodiments the wall of the tubular endoprosthesis includes only a single layer, in some embodiments, the wall includes more than one layer, e.g., 2, 3, 5 or 7 layers. For example, referring to
While some endoprotheses have been shown that have a longitudinally constant wall thickness, in some embodiments, the wall thickness is longitudinally non-constant. In addition, while some endoprotheses have been shown that have a constant outer diameter, in some embodiments the outer diameter is non-constant. Referring to
While some endoprotheses have been shown that have a transversely constant wall thickness, in some embodiments, the wall thickness is transversely non-constant. Referring to
A number of embodiments of have been described. Still other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3383336 | Kuyama et al. | May 1968 | A |
3459725 | Natta et al. | Aug 1969 | A |
3563973 | Arditti et al. | Feb 1971 | A |
4080357 | Gergen et al. | Mar 1978 | A |
4503569 | Dotter | Mar 1985 | A |
4531933 | Norton et al. | Jul 1985 | A |
4612241 | Howard, Jr. | Sep 1986 | A |
4893623 | Rosenbluth | Jan 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4990155 | Wilkoff | Feb 1991 | A |
5007926 | Derbyshire | Apr 1991 | A |
5037427 | Harada et al. | Aug 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5064435 | Porter | Nov 1991 | A |
5089005 | Harada | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5145935 | Hayashi | Sep 1992 | A |
5147385 | Beck et al. | Sep 1992 | A |
5163952 | Froix | Nov 1992 | A |
5189110 | Ikematu et al. | Feb 1993 | A |
5258020 | Froix | Nov 1993 | A |
5282854 | Yagi et al. | Feb 1994 | A |
5395882 | Siol et al. | Mar 1995 | A |
5421955 | Lau et al. | Jun 1995 | A |
5466242 | Mori | Nov 1995 | A |
5496311 | Abele et al. | Mar 1996 | A |
5506300 | Ward et al. | Apr 1996 | A |
5601593 | Freitag | Feb 1997 | A |
5603722 | Phan et al. | Feb 1997 | A |
5607467 | Froix | Mar 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5665822 | Bitler et al. | Sep 1997 | A |
5674241 | Bley et al. | Oct 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5716410 | Wang et al. | Feb 1998 | A |
5741333 | Frid | Apr 1998 | A |
5755769 | Richard et al. | May 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5776162 | Kleshinksi | Jul 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5849037 | Frid | Dec 1998 | A |
5876432 | Lau et al. | Mar 1999 | A |
5880240 | Tsuno | Mar 1999 | A |
5889118 | Delgado et al. | Mar 1999 | A |
5908918 | Chen et al. | Jun 1999 | A |
5910357 | Hachisuka et al. | Jun 1999 | A |
5928217 | Mikus et al. | Jul 1999 | A |
5955559 | Handlin, Jr. et al. | Sep 1999 | A |
5964744 | Balbierz et al. | Oct 1999 | A |
5968070 | Bley et al. | Oct 1999 | A |
5997563 | Kretzers | Dec 1999 | A |
6024764 | Schroeppel | Feb 2000 | A |
6033413 | Mikus et al. | Mar 2000 | A |
6086204 | Magnante | Jul 2000 | A |
6086610 | Duerig et al. | Jul 2000 | A |
6099533 | Shah | Aug 2000 | A |
6139536 | Mikus et al. | Oct 2000 | A |
6156842 | Hoenig et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6174305 | Mikus et al. | Jan 2001 | B1 |
6179878 | Duerig et al. | Jan 2001 | B1 |
6217609 | Haverkost | Apr 2001 | B1 |
6241691 | Ferrera et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6283992 | Hankh et al. | Sep 2001 | B1 |
6287326 | Pecor | Sep 2001 | B1 |
6315791 | Gingras et al. | Nov 2001 | B1 |
6323459 | Maynard | Nov 2001 | B1 |
6348065 | Brown et al. | Feb 2002 | B1 |
6364904 | Smith | Apr 2002 | B1 |
6368346 | Jadhav | Apr 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395038 | Schroeppel | May 2002 | B1 |
6413273 | Baum et al. | Jul 2002 | B1 |
6416545 | Mikus et al. | Jul 2002 | B1 |
6478773 | Gandhi et al. | Nov 2002 | B1 |
6485507 | Walak et al. | Nov 2002 | B1 |
6517569 | Mikus et al. | Feb 2003 | B2 |
6517570 | Lau et al. | Feb 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6538089 | Samra et al. | Mar 2003 | B1 |
6679605 | Zhou et al. | Jan 2004 | B2 |
6720402 | Langer et al. | Apr 2004 | B2 |
6852825 | Lendlein et al. | Feb 2005 | B2 |
20010029398 | Jadhav | Oct 2001 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020015519 | Tokas et al. | Feb 2002 | A1 |
20020055787 | Lennox et al. | May 2002 | A1 |
20020128706 | Osypka | Sep 2002 | A1 |
20020151967 | Mikus et al. | Oct 2002 | A1 |
20020156523 | Lau et al. | Oct 2002 | A1 |
20020198584 | Unsworth et al. | Dec 2002 | A1 |
20030033003 | Harrison et al. | Feb 2003 | A1 |
20030040803 | Rioux et al. | Feb 2003 | A1 |
20030045923 | Bashiri | Mar 2003 | A1 |
20030055198 | Langer et al. | Mar 2003 | A1 |
20030060530 | Topolkaraev et al. | Mar 2003 | A1 |
20030060793 | Topolkaraev et al. | Mar 2003 | A1 |
20030074052 | Besselink | Apr 2003 | A1 |
20030191276 | Lendlein et al. | Oct 2003 | A1 |
20040014929 | Lendlein et al. | Jan 2004 | A1 |
20040015187 | Lendlein et al. | Jan 2004 | A1 |
20040015261 | Hoffman et al. | Jan 2004 | A1 |
20040024143 | Lendlein et al. | Feb 2004 | A1 |
20050010275 | Sahatjian et al. | Jan 2005 | A1 |
20050216074 | Sahatjian et al. | Sep 2005 | A1 |
20060287710 | Lendlein et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
102 28 120 | Jan 2004 | DE |
0 277 816 | Aug 1988 | EP |
0 324 946 | Jul 1989 | EP |
0 343 442 | Nov 1989 | EP |
0 368 274 | May 1990 | EP |
0 385 443 | Sep 1990 | EP |
0 422 693 | Jun 1995 | EP |
1 000 958 | May 2000 | EP |
0 100 958 | Jul 2003 | EP |
612301051 | Oct 1986 | JP |
62192440 | Aug 1987 | JP |
63145325 | Jun 1988 | JP |
2274526 | Aug 1990 | JP |
2232212 | Sep 1990 | JP |
2255830 | Oct 1990 | JP |
2258817 | Oct 1990 | JP |
3068610 | Mar 1991 | JP |
3068611 | Mar 1991 | JP |
4100831 | Apr 1992 | JP |
8301952 | Nov 1996 | JP |
9235329 | Sep 1997 | JP |
11-154420 | Aug 1999 | JP |
11302493 | Nov 1999 | JP |
2000319423 | Nov 2000 | JP |
WO 9414890 | Jul 1994 | WO |
WO 9526762 | Oct 1995 | WO |
WO 9746633 | Dec 1997 | WO |
WO 9825544 | Jun 1998 | WO |
WO 9942147 | Aug 1999 | WO |
WO 9942528 | Aug 1999 | WO |
WO 9942548 | Aug 1999 | WO |
WO 0010485 | Mar 2000 | WO |
WO 0033770 | Jun 2000 | WO |
WO 0046262 | Aug 2000 | WO |
WO 0071554 | Nov 2000 | WO |
WO 0078246 | Dec 2000 | WO |
WO 0107499 | Feb 2001 | WO |
WO 0156641 | Aug 2001 | WO |
WO 0180936 | Nov 2001 | WO |
WO 0191822 | Dec 2001 | WO |
WO 0239875 | May 2002 | WO |
WO 02083786 | Oct 2002 | WO |
WO 0193783 | Dec 2002 | WO |
WO 03015663 | Feb 2003 | WO |
WO 2004015840 | Feb 2003 | WO |
WO 03035743 | May 2003 | WO |
WO 03084490 | Oct 2003 | WO |
WO 03084491 | Oct 2003 | WO |
WO 03088818 | Oct 2003 | WO |
WO 2004006885 | Jan 2004 | WO |
WO 2004032799 | Apr 2004 | WO |
WO 2004033515 | Apr 2004 | WO |
WO 2004033539 | Apr 2004 | WO |
WO 2004033553 | Apr 2004 | WO |
WO 2004073690 | Sep 2004 | WO |
WO 2004110515 | Dec 2004 | WO |
WO 2005009523 | Feb 2005 | WO |
WO 2005070988 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060129232 A1 | Jun 2006 | US |