Implantable medical devices constructed of shape memory material

Information

  • Patent Grant
  • 9526638
  • Patent Number
    9,526,638
  • Date Filed
    Thursday, February 2, 2012
    13 years ago
  • Date Issued
    Tuesday, December 27, 2016
    8 years ago
Abstract
Medical apparatus (100) is provided for insertion into a mammalian body. The apparatus (100) includes structural stent elements (110), at least a portion of which are shaped so as to define (a) at least one generally circumferential band (112), and (b) a plurality of engagement members (114) that are joined to and extend radially inwardly from the band (112). The apparatus (100) further includes an elongated latch member (118) which is threaded through the engagement members (114), thereby physically latching the engagement members (114). The band (112) and the engagement members (114) are configured such that (a) when the latch member (118) is threaded through and thus physically latches the engagement members (114), the engagement members (114) retain the band (112) in a radially-compressed state, and (b) when the latch member (118) is removed from the engagement members (114), the band (112) assumes a radially-expanded state. Other embodiments are also described.
Description
FIELD OF THE APPLICATION

The present invention relates generally to implantable medical devices, and specifically to delivery tools and implantable medical devices comprising a shape memory material.


BACKGROUND OF THE APPLICATION

Some materials, both organic and metallic, have shape memory. An article made of such materials when deformed “remembers” its original, cold-forged shape, and returns to its pre-deformed shape when heated. The three main shape memory alloys are copper-zinc-aluminum-nickel, copper-aluminum-nickel, and nickel-titanium (NiTi). NiTi shape memory alloys have two different temperature-dependent crystal structures (phases) called “martensite” (lower temperature) and austenite (higher temperature or parent phase). Several properties of austenite NiTi and martensite NiTi are notably different.


When heated, martensite NiTi begins to transform into austenite at a temperature called the austenite start temperature (As), and completes the transformation at a temperature called the austenite finish temperature (Af). When cooled, austenite NiTi begins to transform into martensite at a temperature that is called the martensite start temperature (Ms), and is again completely reverted at a temperature called the martensite finish temperature (Mf).


Composition and metallurgical treatments have dramatic impacts on the above-mentioned transition temperatures. For practical applications, NiTi can have three different forms: martensite, stress-induced martensite (superelastic), and austenite. When the material is in its martensite form, it is soft and ductile and can be easily deformed (somewhat like soft pewter). Superelastic NiTi is highly elastic (rubber-like), while austenitic NiTi is quite strong and hard (similar to titanium).


NiTi has all of these properties, and their specific expression depends on the temperature in which the NiTi is used.


The temperature range for the martensite-to-austenite transformation, i.e., soft-to-hard transition, that takes place upon heating is somewhat higher than that for the reverse transformation upon cooling. The difference between the transition temperatures upon heating and cooling is called hysteresis (denoted as H). Hysteresis is generally defined as the difference between the temperatures at which the material is 50% transformed to austenite upon heating and 50% transformed to martensite upon cooling. This difference can be up to 20-30 degrees C. In practice, this means that an alloy designed to be completely transformed by body temperature upon heating (Af<37 degrees C.) would require cooling to about +5 degrees C. to fully retransform into martensite (Mf).


One of the commercial uses of shape memory alloy exploits the pseudo-elastic properties of the metal during the high-temperature (austenitic) phase. This is the result of pseudoelasticity; the martensitic phase is generated by stressing the metal in the austenitic state and this martensite phase is capable of large strains. With the removal of the load, the martensite transforms back into the austenite phase and resumes its original shape. This allows the metal to be bent, twisted and pulled, before reforming its shape when released. This means the frames of shape memory alloy glasses are claimed to be “nearly indestructible” because it appears no amount of bending results in permanent plastic deformation.


The martensite temperature of shape memory alloys is dependent on a number of factors including alloy chemistry. Shape memory alloys with transformation temperatures in the range of 60-1450 K have been made.


Many shape memory alloys (SMAs) are known to display stress-induced martensite (SIM). When an SMA sample exhibiting stress-induced martensite is stressed at a temperature above Ms (so that the austenitic state is initially stable), but below Md (the maximum temperature at which martensite formation can occur even under stress) it first deforms elastically and then, at a critical stress, begins to transform by the formation of stress-induced martensite. Depending on whether the temperature is above or below As, the behavior when the deforming stress is released differs. If the temperature is below As, the stress-induced martensite is stable; but if the temperature is above As, the martensite is unstable and transforms back to austenite, with the sample returning (or attempting to return) to its original shape. The effect is seen in almost all alloys which exhibit a thermoelastic martensitic transformation, along with the shape memory effect. However, the extent of the temperature range over which SIM is seen and the stress and strain ranges for the effect vary greatly with the alloy.


Ryhänen J, in “Biocompatibility evaluation of nickel-titanium shape memory metal alloy,” Academic Dissertation, Faculty of Medicine, Department of Surgery, University of Oulu, Finland (May 1999), which is incorporated herein by reference, describes the shape memory effect, superelasticity, and good damping properties that make the nickel-titanium shape memory metal alloy (Nitinol or NiTi) a fascinating material for surgical applications. Among other things, the dissertation describes the mechanical properties of NiTi in Section 2.3.8, including Table I thereof.


SUMMARY OF THE APPLICATION

Some applications of the present invention provide medical apparatus comprising a hollow placement device and a stent body restrained therein. The placement device comprises a restraining member, which is configured to rotatively release the stent body therefrom. Unlike in some conventional techniques for deploying a stent body, in some applications of the present invention an outer tube need not be axially withdrawn in order to release the stent body. Therefore, in some applications of the present invention a proximal stopper is not needed to prevent the stent body from being withdrawn proximally as the outer tube is withdrawn. The stent body thus is less likely to fold or otherwise become distorted during deployment.


The medical apparatus comprises structural stent elements, at least a portion of which define the stent body. The stent body is configured to assume radially-compressed and radially-expanded states. For some applications, the medical apparatus further comprises an implantable-grade fabric securely attached to and at least partially covering the stent body.


At least a portion of stent body is initially disposed, while in the radially-compressed state, in the restraining member. The restraining member is configured to assume at least (a) a first rotational state, in which the restraining member restrains the at least a portion of the stent body in the radially-compressed state, and (b) a second rotational state, in which the restraining member releases the at least a portion of the stent body, thereby allowing the at least a portion of the stent body to transition to the radially-expanded state.


For some applications, the restraining member comprises at least two generally arcuate sections, which together define at least a circumferential portion of a generally tubular structure. The restraining member is configured such that (a) when the restraining member is in the first rotational state, the arcuate sections are rotationally disposed with respect to each other around a central longitudinal axis of the restraining member so as to restrain the at least a portion of the stent body in the radially-compressed state; and (b) when the restraining member is in the second rotational state, the arcuate sections are rotationally disposed with respect to each other around the axis so as to not restrain the stent body within the restraining member, thereby releasing the stent body from the restraining member and allowing the at least a portion of the stent body to transition to the radially-expanded state.


Some applications of the present invention provide another medical apparatus comprising structural stent elements, at least a portion of which are shaped so as to define (a) one or more generally circumferential bands, and (b) a plurality of engagement members that are joined to and extend radially inwardly from each of the bands. For some applications, the structural stent elements, including the at least a portion that defines the one or more bands, are shaped so as to define a generally tubular structure. For some applications, the medical apparatus further comprises an implantable-grade fabric securely attached to and at least partially covering the generally tubular structure.


The medical apparatus further comprises an elongated latch member which is threaded through the engagement members, thereby physically latching engagement members. Typically, the elongated latch member comprises a wire or a hollow tube. The engagement members and each of the one or more bands are configured such that (a) when the latch member is threaded through and thus physically latching the engagement members, the engagement members retain the band in a radially-compressed state; and (b) when the latch member is removed from the engagement members, the band assumes a radially-expanded state.


For some applications, the engagement members have (a) respective first ends, which are joined to and extend from one of one or more bands, (b) respective second ends, which are joined to and extend from the band at respective junctions, and (c) respective curved portions between the respective first and the respective second ends. When the latch member is threaded through the engagement members, the curved portions pass around the latch member. As a result, the latch member holds the curved portions near a central longitudinal axis of the band. The engagement members thus prevent the band from expanding radially.


For some of the applications described above, the structural stent elements comprise a shape memory alloy. For example, the shape memory alloy may comprise a nickel and titanium, and, optionally, additionally cobalt. The shape memory element may comprise any shape memory alloy known in the art that is characterized by a stress-induced martensitic state and an unstressed austenitic state. For some applications, suitable alloys are those that display stress-induced martensite at temperatures near mammalian (e.g., human) body temperature (35-40 degrees C.).


There is therefore provided, in accordance with an application of the present invention, medical apparatus for insertion into a mammalian body, the apparatus including:


structural stent elements, at least a portion of which are shaped so as to define:

    • at least one generally circumferential band, and
    • a plurality of engagement members that are joined to and extend radially inwardly from the band; and


an elongated latch member which is threaded through the engagement members, thereby physically latching the engagement members,


wherein the band and the engagement members are configured such that:

    • when the latch member is threaded through and thus physically latches the engagement members, the engagement members retain the band in a radially-compressed state, and
    • when the latch member is removed from the engagement members, the band assumes a radially-expanded state.


For some applications, the elongated latch member includes an element selected from the group consisting of: a wire and a hollow tube.


For some applications, the engagement members have (a) respective first ends, which are joined to and extend from the band, (b) respective second ends, which are joined to and extend from the band at respective junctions, and (c) respective curved portions between the respective first and the respective second ends. For some applications, the circumferential band has distal and proximal ends, and all of the engagement members are shaped such that the curved portions are disposed more proximally than the junctions, when the latch member physically latches the engagement members. Alternatively, for some applications, the circumferential band has distal and proximal ends, and wherein, when the latch member physically latches the engagement members: a first subset of the engagement members are shaped such that the curved portions thereof are disposed more distally than the junctions thereof, a second subset of the engagement members are shaped such that the curved portions thereof are disposed more proximally than the junctions thereof, and the first and the second subsets do not include any common engagement members.


For any of the applications described above, the at least a portion of the structural stent elements may be shaped so as to define a plurality of generally circumferential bands, and respective subsets of the engagement members are joined to and extend radially inwardly from the bands.


For any of the applications described above, at least a portion of the structural stent elements of the band may be arranged as a plurality of pairs of two respective generally straight, adjacently disposed structural stent elements joined by respective peaks, and each of the engagement members may have (a) a first end, which is joined to and extends from one of the generally straight structural stent elements of one of the pairs, (b) a second end, which is joined to and extends from the other of the generally straight structural stent elements of the one of the pairs, and (c) a curved portion between the first and the second ends of the engagement member. For some applications, the latch member, when physically latching the engagement members, rests against an inner surface of the curved portion.


For any of the applications described above, the structural stent elements, including the at least a portion that defines the at least one band, may be shaped so as to define a generally tubular structure, and the medical apparatus further includes an implantable-grade fabric securely attached to and at least partially covering the generally tubular structure.


For any of the applications described above, the apparatus may further include a hollow, elongated delivery shaft, in which the at least one band is initially positioned, with the latch member threaded through the engagement members. For some applications, the delivery shaft and the at least one band are configured such that the at least one band, when retained by the latch member in the radially-compressed state, is slidably positioned in the delivery shaft. Alternatively, for some applications, the radially-compressed state is a first radially-compressed state, and the delivery shaft and the at least one band are configured such that the delivery shaft holds the at least one band in a second radially-compressed state that is more radially compressed than the first radially-compressed state.


For any of the applications described above, the structural stent elements may include a shape memory alloy. For some applications, the shape memory alloy includes nickel and titanium, and, optionally, further includes cobalt.


For some applications, (a) the shape memory alloy includes a pseudoelastic shape-memory alloy, the alloy displaying reversible stress-induced martensite at between 35 and 40 degrees C. such that it has a stress-induced martensitic state and an austenitic state; (b) when the alloy is in the stress-induced martensitic state, the band has a deformed shape that provides the radially-compressed state; and (c) when the alloy is in the austenitic state, the band has a different unstressed shape that provides the radially-expanded state.


For some applications, the band and the engagement members are configured such that:


when the latch member physically latches the engagement members and the shape memory alloy is at a temperature greater than an austenite start temperature of the shape memory alloy, the latch member retains the shape memory alloy of the band so that at least a portion of the alloy is in at least a partially stress-induced martensitic state and the band is in the deformed shape, and


when the latch member is removed from the plurality of engagement members and the shape memory alloy is at a temperature greater than the austenite start temperature, at least a portion of the shape memory alloy at least partially transitions to an austenitic state from the stress-induced martensitic state, thereby causing a transformation of the band from the deformed shape to the unstressed shape.


For some applications, the shape memory alloy is realized such that the transformation occurs without any change in temperature of the latch member or the shape memory alloy. Alternatively, for some applications, the shape memory alloy is realized such that the transformation occurs with a change in temperature of at least one element selected from group consisting of: the latch member and the shape memory alloy.


For some applications, the latch member is configured to function as a heat dissipation element, which is in physical contact with the shape memory alloy at least when the latch member physically latches the engagement members. For some applications, the latch member, when physically latching the engagement members, is disposed adjacent to at least a portion of the shape memory alloy. For some applications, the latch member, when physically latching the engagement members, is in direct physical contact with at least a portion of the shape memory alloy.


For some applications, the apparatus further includes a heat dissipation element, which is in thermal contact with the shape memory alloy at least when the band is in the radially-compressed state. For some applications, the apparatus further includes a hollow, elongated delivery shaft, in which the at least one band is initially positioned, retained by the latch member in the radially-compressed state, and the elongated delivery shaft includes the heat dissipation element.


For some applications, the heat dissipation element is disposed adjacent to at least part of the shape memory alloy while the shape memory alloy is in the stress-induced martensitic state.


For some applications, the heat dissipation element includes a plurality of heat dissipation elements.


For some applications, the heat dissipation element is adapted to lose thermal energy at a rate faster than the rate of change of thermal energy caused by the change in temperature.


There is further provided, in accordance with an application of the present invention, a method including:


providing (a) structural stent elements, at least a portion of which are shaped so as to define (i) at least one generally circumferential band, and (ii) a plurality of engagement members that are joined to and extend radially inwardly from the band, and (b) an elongated latch member which is threaded through the engagement members, thereby physically latching the engagement members;


transvascularly introducing the at least one band into a blood vessel of a mammalian subject while the latch member is threaded through and thus physically latches the engagement members, such that the engagement members retain the band in a radially-compressed state; and


thereafter, removing the latch member from the engagement members, thereby transitioning the band to a radially-expanded state.


For some applications, providing the latch member includes providing a latch member that includes an element selected from the group consisting of: a wire and a hollow tube.


For some applications, providing the engagement members includes providing engagement members that have (a) respective first ends, which are joined to and extend from the band, (b) respective second ends, which are joined to and extend from the band at respective junctions, and (c) respective curved portions between the respective first and the respective second ends.


For some applications, the structural stent elements, including the at least a portion that defines the at least one band, are shaped so as to define a generally tubular structure, and further including providing an implantable-grade fabric securely attached to and at least partially covering the generally tubular structure.


For some applications, transvascularly introducing includes transvascularly introducing the at least one band while the at least one band is positioned in a hollow, elongated delivery shaft, with the latch member threaded through the engagement members.


For some applications, transvascularly introducing includes advancing the delivery shaft to a target site in the blood vessel, and thereafter sliding the at least one band through at least a portion of the delivery shaft while the at least one band is retained by the latch member in the radially-compressed state.


For some applications, the radially-compressed state is a first radially-compressed state, and transvascularly introducing includes:


transvascularly introducing delivery shaft while the delivery shaft holds the at least one band in a second radially-compressed state that is more radially compressed than the first radially-compressed state; and


thereafter, withdrawing the delivery shaft so as to release the at least one band from the delivery shaft, thereby causing the at least one band to radially expand to the first radially-compressed state.


For some applications, providing the structural stent elements includes providing structural stent elements that include a shape memory alloy.


There is still further provided, in accordance with an application of the present invention, medical apparatus for insertion into a mammalian body, the apparatus including:


structural stent elements, at least a portion of which define a stent body that is configured to assume radially-compressed and radially-expanded states; and


a restraining member, in which at least a portion of the stent body is disposed in the radially-compressed state, and which restraining member is configured to assume at least:

    • a first rotational state, in which the restraining member restrains the at least a portion of the stent body in the radially-compressed state, and
    • a second rotational state, in which the restraining member releases the at least a portion of the stent body, thereby allowing the at least a portion of the stent body to transition to the radially-expanded state.


For some applications, the restraining member includes at least two generally arcuate sections, which together define at least a circumferential portion of a generally tubular structure, and wherein:


when the restraining member is in the first rotational state, the arcuate sections are rotationally disposed with respect to each other around a central longitudinal axis of the restraining member so as to restrain the at least a portion of the stent body in the radially-compressed state, and


when the restraining member is in the second rotational state, the arcuate sections are rotationally disposed with respect to each other around the axis so as to not restrain the stent body within the restraining member, thereby releasing the stent body from the restraining member and allowing the at least a portion of the stent body to transition to the radially-expanded state.


For some applications, when the restraining member is in the first rotational state, circumferentially-adjacent ones of the arcuate sections partially circumferentially overlap one another along at least portions of respective axial lengths of the arcuate sections. For some applications, when the restraining member is in the first rotational state, the circumferentially-adjacent ones of the arcuate sections circumferentially overlap one another along less than respective entire axial lengths of portions of the arcuate sections that restrain the at least a portion of the stent body.


For some applications, when the restraining member is in the second rotational state, the arcuate sections circumferentially overlap one another to a greater extent than when in the first rotational state. For some applications, when the restraining member is in the first rotational state, the arcuate sections do not circumferentially overlap one another.


For some applications, when the restraining member is in the first rotational state, a greatest arc between circumferentially-adjacent ones of the arcuate sections, along respective entire axial lengths of portions of the arcuate sections that restrain the at least a portion of the stent body, is no more than 150 degrees. For some applications, when the restraining member is in the first rotational state, the greatest arc between circumferentially-adjacent ones of the arcuate sections is no more than 120 degrees.


For some applications, the restraining member includes exactly three generally arcuate sections. For some applications, the restraining member includes between two and six generally arcuate sections.


For some applications, when the restraining member is in the first rotational state, the arcuate sections collectively circumscribe one or more arcs having an angular sum of at least 220 degrees. For some applications, the angular sum equals 360 degrees.


For some applications, when the restraining member is in the second rotational state, the arcuate sections collectively circumscribe one or more arcs having an angular sum of no more than 150 degrees, such as no more than 90 degrees.


For some applications, the arcuate sections are shaped so as to define (a) respective longitudinal base strips, and (b) respective pluralities of circumferential tabs that extend circumferentially from the respective longitudinal base strips, and wherein, when the restraining member is in the first rotational state, the longitudinal base strips of circumferentially-adjacent ones of the arcuate sections do not circumferentially overlap one another, and the circumferential tabs overlap the longitudinal base strips of circumferentially-adjacent ones of the arcuate sections. For some applications, when the restraining member is the second rotational state, the longitudinal base strips of at least some of the arcuate sections at least partially overlap one another. For some applications, when the restraining member is the second rotational state, the longitudinal base strips of all of the arcuate sections at least partially overlap one another.


For some applications, portions of the arcuate sections that restrain the at least a portion of the stent body in the radially-compressed state have respective lengths along the axis, and an average of the lengths is at least 30% of an average length of the at least a portion of the stent body when in the radially-compressed state.


For any of the applications described above, a portion of the restraining element that restrains the at least a portion of stent body 20 in the radially-compressed state may have a length along the axis of at least 30% of an average length of the at least a portion of the stent body when in the radially-compressed state.


For any of the applications described above, the apparatus may further include an implantable-grade fabric securely attached to and at least partially covering the stent body.


For any of the applications described above, the structural stent elements may include a shape memory alloy. For some applications, the shape memory alloy includes nickel and titanium, and, optionally further includes cobalt.


For some applications, (a) the shape memory alloy includes a pseudoelastic shape-memory alloy, the alloy displaying reversible stress-induced martensite at between 35 and 40 degrees C. such that it has a stress-induced martensitic state and an austenitic state, (b) when the alloy is in the stress-induced martensitic state, the stent body has a deformed shape that provides the radially-compressed state, and (c) when the alloy is in the austenitic state, the stent body has a different unstressed shape that provides the radially-expanded state. For some applications, when the restraining member is in the first rotational state and the shape memory alloy is at a temperature greater than an austenite start temperature of the shape memory alloy, the restraining member confines and stresses the memory alloy element so that the at least a portion of the stent body is retained in a stress-induced martensite state. For some applications, when the at least a portion of the stent body is released and transitions to the radially-expanded state, the transformation of the stent body occurs with a change in the temperature of at least one element from the group consisting of: the restraining member, the structural stent elements including the shape memory alloy, and the mammalian body. For some applications, the apparatus further includes a heat dissipation element in thermal contact with at least one element selected from the group consisting of: the restraining member and the structural stent elements.


There is additionally provided, in accordance with an application of the present invention, a method including:


providing (a) structural stent elements, at least a portion of which define a stent body that is configured to assume radially-compressed and radially-expanded states, and (b) a restraining member, in which at least a portion of the stent body is disposed in the radially-compressed state;


transvascularly introducing the stent body into a blood vessel of a mammalian subject while the restraining member is in a first rotational state, in which the restraining member restrains the at least a portion of the stent body in the radially-compressed state; and


thereafter, causing the restraining member to assume a second rotational state, so that the restraining member releases the at least a portion of the stent body, thereby allowing the at least a portion of the stent body to transition to the radially-expanded state.


For some applications, providing the restraining member includes providing a restraining member that includes at least two generally arcuate sections, which together define at least a circumferential portion of a generally tubular structure, and (a) when the restraining member is in the first rotational state, the arcuate sections are rotationally disposed with respect to each other around a central longitudinal axis of the restraining member so as to restrain the at least a portion of the stent body in the radially-compressed state, and (b) when the restraining member is in the second rotational state, the arcuate sections are rotationally disposed with respect to each other around the axis so as to not restrain the stent body within the restraining member, thereby releasing the stent body from the restraining member and allowing the at least a portion of the stent body to transition to the radially-expanded state.


For some applications, when the restraining member is in the first rotational state, circumferentially-adjacent ones of the arcuate sections partially circumferentially overlap one another along at least portions of respective axial lengths of the arcuate sections. For some applications, when the restraining member is in the first rotational state, the circumferentially-adjacent ones of the arcuate sections circumferentially overlap one another along less than respective entire axial lengths of portions of the arcuate sections that restrain the at least a portion of the stent body.


For some applications, when the restraining member is in the second rotational state, the arcuate sections circumferentially overlap one another to a greater extent than when in the first rotational state. For some applications, when the restraining member is in the first rotational state, the arcuate sections do not circumferentially overlap one another.


For some applications, the method further includes providing an implantable-grade fabric securely attached to and at least partially covering the stent body.


For some applications, providing the structural stent elements includes providing structural stent elements that include a shape memory alloy.


The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic illustrations of medical apparatus comprising a hollow placement device and a stent body restrained therein, in accordance with an application of the present invention;



FIG. 1B shows the hollow placement device of FIG. 1A without the stent body restrained therein, in accordance with an application of the present invention;



FIGS. 1C and 1D are schematic illustrations of the restraining member of FIGS. 1A and 1B viewed from one end of the restraining member, in accordance with an application of the present invention;



FIGS. 2A-C are schematic illustrations of the medical apparatus of FIGS. 1A and 1B in several respective rotational states, in accordance with an application of the present invention;



FIGS. 3A and 3B are schematic illustrations of another medical apparatus, in accordance with respective applications of the present invention;



FIG. 4 is a schematic illustration of the medical apparatus of FIGS. 3A and 3B in a partially radially-expanded state, in accordance with an application of the present invention; and



FIGS. 5A and 5B are schematic illustrations of yet another medical apparatus, in accordance with respective applications of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS


FIG. 1A is a schematic illustrations of medical apparatus 10 comprising a hollow placement device 12 and a stent body 20 restrained therein, in accordance with an application of the present invention. FIG. 1B shows hollow placement device 12 without stent body 20 restrained therein, in accordance with an application of the present invention. Medical apparatus 10 is configured for insertion into a mammalian body, such as a human body. Placement device 12 comprises a restraining member 30, which is configured to rotatively release stent body 20 therefrom, as described hereinbelow.


As shown in FIG. 1A, medical apparatus 10 comprises structural stent elements 32, at least a portion of which define stent body 20. Stent body 20 is configured to assume radially-compressed and radially-expanded states. Stent body 20 is shown in the radially-compressed state in FIG. 1A (as well as in FIGS. 2A-B, described hereinbelow). For some applications, medical apparatus 10 further comprises an implantable-grade fabric 34 securely attached to and at least partially covering stent body 20 (an inner and/or an outer surface of the stent body). The fabric typically defines a fluid flow guide through the body of the stent. The fabric is biologically-compatible and substantially blood-impervious, and may comprise, for example, a polyester, a polyethylene (e.g., a poly-ethylene-terephthalate), a polymeric film material (e.g., polytetrafluoroethylene), a polymeric textile material (e.g., woven polyethylene terephthalate (PET)), natural tissue graft (e.g., saphenous vein or collagen), or a combination thereof.


Also as shown in FIG. 1A, at least a portion of stent body 20 is initially disposed, while in the radially-compressed state, in restraining member 30.


Restraining member 30 is configured to assume at least:

    • a first rotational state, in which restraining member 30 restrains the at least a portion of stent body 20 in the radially-compressed state, and
    • a second rotational state, in which restraining member 30 releases the at least a portion of stent body 20, thereby allowing the at least a portion of stent body 20 to transition to the radially-expanded state.


Restraining member 30 typically can assume many additional rotational states, some of which restrain the stent body, some of which do not, and, optionally, some of which partially restrain the stent body. By way of example, restraining member 30 is shown in one first rotational state in FIGS. 1A and 1B, and two other first rotational states in FIGS. 2A and 2B. Also by way of example, restraining member 30 is shown in one second rotational state in FIG. 2C.


For some applications, restraining member 30 comprises at least two generally arcuate sections 34, which together define at least a circumferential portion of a generally tubular structure 36. Typically, restraining member 30 comprises between two and six generally arcuate sections 34, such as exactly three generally arcuate sections 34A, 34B, and 34C, as shown. Restraining member 30 is configured such that:

    • when restraining member 30 is in the first rotational state, arcuate sections 34 are rotationally disposed with respect to each other around a central longitudinal axis 40 of restraining member 30 so as to restrain the at least a portion of stent body 20 in the radially-compressed state, such as shown in FIG. 1A; and
    • when restraining member 30 is in the second rotational state, arcuate sections 34 are rotationally disposed with respect to each other around axis 40 so as to not restrain stent body 20 within restraining member 30, thereby releasing stent body 20 from restraining member 30 and allowing the at least a portion of stent body 20 to transition to the radially-expanded state, such as shown in FIG. 2C, described hereinbelow.


As used in the present application, including in the claims, “tubular” means having the form of an elongated hollow object that defines a conduit therethrough. A “tubular” structure may have varied cross-sections therealong, and the cross-sections are not necessarily circular. For example, one or more of the cross-sections may be generally circular, or generally elliptical but not circular, or circular.


Reference is additionally made to FIGS. 1C and 1D, which are schematic illustrations of restraining member 30 viewed from one end of the restraining member, in accordance with an application of the present invention. FIG. 1C shows the restraining member in one first rotational state, while FIG. 1D shows the restraining member in one second rotational state.


For some applications, when restraining member 30 is in the first rotational state, circumferentially-adjacent ones of arcuate sections 34 partially circumferentially overlap one another along at least portions of respective axial lengths of the arcuate sections, such as shown in FIGS. 1A and 1B (and in FIG. 1D, except that the axial lengths are not shown). For some applications, when restraining member 30 is in the first rotational state, the circumferentially adjacent ones of the arcuate sections circumferentially overlap one another along less than respective entire axial lengths of portions of the arcuate sections that restrain the at least a portion of stent body 20, as shown in FIG. 1A. For example, as shown in FIG. 1A, circumferentially-adjacent arcuate sections 34A and 34C circumferentially overlap one another at points A and B along the axial lengths of arcuate sections 34A and 34C, but not at point C along these axial lengths.


Alternatively, for other applications, when restraining member 30 is in the first rotational state, arcuate sections 34 do not circumferentially overlap one another (configuration not shown); in this configuration, the arcuate sections are nevertheless distributed around axis 40 so as to restrain the at least a portion of stent body 20 in the radially-compressed state. For these latter applications, when restraining member 30 is in the first rotational state, a greatest arc between circumferentially-adjacent ones of the arcuate sections, along respective entire axial lengths of portions of the arcuate sections that restrain the at least a portion of the stent body (i.e., between the most circumferentially extreme portions of each arcuate section, at which circumferential locations no portion of any arcuate section is disposed), is no more than 150 degrees, such as no more than 120 degrees, in order to restrain the at least a portion of stent body 20 in the radially-compressed state.


For some applications, when restraining member 30 is in the second rotational state, such as shown in FIGS. 1D and 2C, arcuate sections 34 circumferentially overlap one another to a greater extent than when in the first rotational state, such as shown in FIGS. 1A, 1B, and 1D. For example, when restraining member 30 is in the second rotational state, arcuate sections 34 may be arranged to have maximal overlap with one another, as shown in FIG. 1D.


For some applications, when restraining member 30 is in the first rotational state, arcuate sections 34 collectively circumscribe (i.e., without double-counting the arcs of any circumferentially-overlapping portions) a complete circle, i.e., exactly one 360-degree arc, as shown in FIGS. 1A, 1B, and 1C. Alternatively, when restraining member 30 is in the first rotational state, arcuate sections 34 collectively circumscribe one or more arcs having an angular sum of at least 220 degrees (the configuration in which the sum is less than 360 degrees is not shown).


For some applications, when restraining member 30 is in the second rotational state, such as shown in FIGS. 1D and 2C, arcuate sections 34 collectively circumscribe (i.e., without double-counting the arcs of any circumferentially-overlapping portions) one or more arcs having an angular sum of no more than 150 degrees, as is approximately shown in FIG. 1D, e.g., no more than 90 degrees.


Reference is still made to FIG. 1B. For some applications, arcuate sections 34 are shaped so as to define (a) respective longitudinal base strips 42, and (b) respective pluralities of circumferential tabs 44 that extend circumferentially from respective longitudinal base strips 42. For some applications, as shown in FIG. 1B, a first subset of circumferential tabs 44 extend circumferentially clockwise from each of longitudinal base strips 42, and a second subset of circumferential tabs 44 extend circumferentially counterclockwise from the longitudinal base strip. When restraining member 30 is in the first rotational state, longitudinal base strips 42 of circumferentially-adjacent ones of arcuate sections 34 do not overlap one another, and circumferential tabs 44 overlap longitudinal base strips 42 of circumferentially-adjacent ones of arcuate sections 34. For example, as shown in FIG. 1B, the circumferential tabs 44A that extend circumferentially counterclockwise (as viewed from the top of the figure) from longitudinal base strip 42A of arcuate section 34A circumferentially overlap longitudinal base strip 42C of circumferentially-adjacent arcuate section 34C, and longitudinal base strips 42A and 42C of circumferentially-adjacent arcuate sections 34A and 34C do not circumferentially overlap one another.


Typically, longitudinal base strips 42 extend along an entire axial length of their respective arcuate sections 34, as shown in FIG. 1B. For some applications, at least one of arcuate sections 34 is shaped such that longitudinal base strip 42 thereof extends axially beyond the end-most circumferential tab(s) 44 thereof, such as shown in FIG. 1B for arcuate sections 34A and 34B (but not arcuate section 34C).


For some applications, when restraining member 30 is the second rotational state, longitudinal base strips 42 of at least some of (e.g., all of) arcuate sections 34 at least partially overlap one another.


For some applications, portions of arcuate sections 34 that restrain the at least a portion of stent body 20 in the radially-compressed state have respective lengths along the axis 40, and an average of the lengths is at least 30% of an average length of the at least a portion of stent body 20 when in the radially-compressed state. For some applications, a portion of restraining element 30 that restrains the at least a portion of stent body 20 in the radially-compressed state has a length along the axis of at least 30% of an average length of the at least a portion of stent body 20 when in the radially-compressed state.


For some applications, structural stent elements 32 comprise a shape memory alloy. For example, the shape memory alloy may comprise a nickel and titanium, and, optionally, additionally cobalt. The shape memory element may comprise any shape memory alloy known in the art that is characterized by a stress-induced martensitic state and an unstressed austenitic state. For some applications, suitable alloys are those that display stress-induced martensite at temperatures near mammalian (e.g., human) body temperature (35-40 degrees C.). For example, one such alloy is the nickel/titanium/vanadium alloy described in U.S. Pat. No. 4,505,767 to Quin, which is incorporated herein by reference. The shape memory alloy is typically configured such that stent body 20 is self-expanding when not radially restrained.


For some applications, the shape memory alloy comprises a pseudoelastic shape-memory alloy, the alloy displaying reversible stress-induced martensite at between 35 and 40 degrees C. such that it has a stress-induced martensitic state and an austenitic state. When the alloy is in the stress-induced martensitic state, stent body 20 has a deformed shape that provides the radially-compressed state. When the alloy is in the austenitic state, the stent body has a different unstressed shape that provides the radially-expanded state.


For some applications, when restraining member 30 is in the first rotational state and the shape memory alloy is at a temperature greater than an austenite start temperature of the shape memory alloy, restraining member 30 confines and stresses the memory alloy element so that the at least a portion of stent body 20 is retained in a stress-induced martensite state.


For some applications, when the at least a portion of stent body 20 is released and transitions to the radially-expanded state, the transformation of stent body 20 occurs with a change in the temperature of at least one element from the group consisting of: restraining member 30 (typically, arcuate sections 34 thereof), structural stent elements 32 comprising the shape memory alloy, and the mammalian body.


For some applications, medical apparatus 10 further comprises a heat dissipation element in thermal contact with at least one element selected from the group consisting of: restraining member 30 and structural stent elements 32. The heat dissipation element dissipates at least a portion of any heat that may be released by the stent body as it radially expands.


Reference is made again to FIG. 1A, and additionally to FIGS. 2A-C, which are schematic illustrations of medical apparatus 10 in several respective rotational states, in accordance with an application of the present invention. FIGS. 1A, 2A, 2B, and 2C show restraining member 30 in successively more open, i.e., less restraining, rotational states. As described above, FIG. 1A shows restraining member 30 in a first rotational state, in which restraining member 30 restrains the at least a portion of stent body 20 in the radially-compressed state. For some applications, this rotational state is the rotational state in which restraining member 30 is initially disposed, and may, for example, be delivered to a surgeon in this state. FIGS. 2A and 2B show restraining member 30 in a subsequent, different first rotational states that are successively less restraining, as arcuate members 34 are rotated toward one another into a more circumferentially dense disposition.



FIG. 2C shows restraining member 30 in the second rotational state, releasing the at least a portion of stent body 20. The stent body, as it is released, transitions to the radially-expanded state, because of the memory properties of the shape memory alloy, as discussed above.


The rotational state of restraining member 30 is typically controlled using a handle located external to the patient's body. Typically, the surgeon manually actuates (e.g., by rotating a handle, pressing on a knob, advancing a lever, etc.) one or more knobs that transmit the rotation to the arcuate sections, such as via one or more wires, shafts, and/or another gearing mechanism. Alternatively, the handle comprises one or more motors that are actuated to rotate the arcuate sections.


Reference is now made to FIGS. 3A and 3B, which are schematic illustrations of medical apparatus 100, in accordance with respective applications of the present invention. Medical apparatus 100 is configured for insertion into a mammalian body, such as a human body. Medical apparatus 100 comprises structural stent elements 110, at least a portion of which are shaped so as to define (a) one or more generally circumferential bands 112, such as a plurality of generally circumferential bands 112, and (b) a plurality of engagement members 114 that are joined to and extend radially inwardly from each of bands 112.


For some applications, structural stent elements 110, including the at least a portion that defines the one or more bands 112, are shaped so as to define a generally tubular structure. For some applications, as shown in FIG. 3B, medical apparatus 100 further comprises an implantable-grade fabric 116 securely attached to and at least partially covering the generally tubular structure (an inner and/or an outer surface of the structure). Fabric 116 may have the properties of fabric 34, described hereinabove with reference to FIG. 1A.


Medical apparatus 100 further comprises an elongated latch member 118 which is threaded through engagement members 114, thereby physically latching engagement members 114. Typically, elongated latch member 118 comprises a wire (typically comprising a metal, such as a metal alloy, e.g., any of the alloys described herein) or a hollow tube (which may comprise a metal, such as a metal alloy, e.g., any of the alloys described herein, or plastic).


Engagement members 114 and each of one or more bands 112 are configured such that:

    • when latch member 118 is threaded through and thus physically latches engagement members 114, engagement members 114 retain the band in a radially-compressed state, as shown in FIGS. 3A and 3B; and
    • when latch member 118 is removed from engagement members 114, the band assumes a radially-expanded state, as described hereinbelow with reference to FIG. 4.


Reference is still made to FIG. 3A. For some applications, engagement members 114 have (a) respective first ends 130, which are joined to and extend from one of one or more bands 112, (b) respective second ends 132, which are joined to and extend from the band at respective junctions 134, and (c) respective curved portions 136 between respective first and respective second ends 130 and 132. When latch member 118 is threaded through engagement members 114, curved portions 136 pass around latch member 118. As a result, latch member 118 holds the curved portions near a central longitudinal axis of band 112. The engagement members thus prevent the band from expanding radially.


For some applications, each of the one or more bands 118 has distal and proximal ends 140 and 142. All of engagement members 114 of a given circumferential band are shaped such that curved portions 136 thereof are disposed more proximally than junctions 134, when latch member 118 physically latches the engagement members. In other words, all of these curved portions generally extend in the same, proximal direction.


For some applications, at least a portion of the structural stent elements of each of one or more bands 112 are arranged as a plurality of pairs 150 of two respective generally straight, adjacently disposed structural stent elements 152A and 152B joined by respective peaks 154.


First end 130 of each of engagement members 114 is joined to and extends from one of the generally straight structural stent elements 152A of one of pairs 150. Second end 132 of the engagement member is joined to and extends from the other 152B of the generally straight structural stent elements of the one of pairs 150. Typically, latch member 118, when physically latching engagement members 114, rests against an inner surface of curved portion 136 of each of engagement member 114. Optionally, circumferentially-adjacent pairs 150 are connected by secondary peaks 156 at an end of the band opposite to the end at which peaks 154 are disposed.


For some applications, as shown in FIG. 3B, medical apparatus 100 further comprises a hollow, elongated delivery shaft 160, in which one or more bands 112 are initially positioned, retained by latch member 118 in the radially-compressed state. For some applications, delivery shaft 160 and one or more bands 112 are configured such that the bands, when retained by latch member 118 in the radially-compressed state, are slidably positioned in the delivery shaft. (In contrast, conventional self-expanding stents apply a radially-outwardly-directed force against the inner wall of the delivery shaft, such that such conventional stents slide in the delivery shaft while applying significant frictional force.) In this configuration of the present invention, a rapid exchange technique can be performed in which the delivery shaft can be advanced to a target site in a body lumen (typically a blood vessel), and thereafter bands 112 (typically as part of a medical device, such as a stent-graft) are advanced through the delivery shaft. Because latch member 118 holds the bands in a radially-compressed state, the bands do not apply outward force again the inner wall of the delivery shaft, and thus the bands can slide through the delivery shaft. After the desired site is reached, the delivery shaft is withdrawn, leaving the bands in place. The bands are then allowed to radially expand by removal of the latch member 118, as described herein.


Alternatively, for some applications, delivery shaft 160 and one or more bands 112 are configured such that the shaft snugly (non-slidably) holds the bands in a second radially-compressed state that is more radially compressed than the radially-compressed state in which latch member 118 restrains the bands. Proximal withdrawal of the delivery shaft with respect to the bands releases the bands to a partial deployment state, in which the bands are in the radially-compressed state in which latch member 118 restrains the bands. When the latch member is removed from the engagement members, the bands assume the radially-expanded state, thereby completing deployment. This two-stage deployment approach may be useful in cases where deployment accuracy—axial and/or orientational—is of high importance, such as when deploying a main stent-graft module that has side-branch fenestrations, which fenestrations should be positioned as accurately as possible relative to the anatomical side branches.


For some applications, structural stent elements 110 comprise a shape memory alloy. For example, the shape memory alloy may comprise a nickel and titanium, and, optionally, additionally cobalt. The shape memory element may comprise any shape memory alloy known in the art that is characterized by a stress-induced martensitic state and an unstressed austenitic state. For some applications, suitable alloys are those that display stress-induced martensite at temperatures near mammalian (e.g., human) body temperature (35-40 degrees C.). For example, one such alloy is the nickel/titanium/vanadium alloy described in U.S. Pat. No. 4,505,767 to Quin, which is incorporated herein by reference. The shape memory alloy is typically configured such that bands 112 are self-expanding when not radially restrained.


For some applications, the shape memory alloy comprises a pseudoelastic shape-memory alloy, the alloy displaying reversible stress-induced martensite at between 35 and 40 degrees C. such that it has a stress-induced martensitic state and an austenitic state. When the alloy is in the stress-induced martensitic state, each of one or more bands 112 has a deformed shape that provides the radially-compressed state. When the alloy is in the austenitic state, each of the bands has a different unstressed shape that provides the radially-expanded state.


For some applications, one or more bands 112 and engagement members 114 are configured such that:

    • when latch member 118 physically latches engagement members 114 and the shape memory alloy is at a temperature greater than an austenite start temperature of the shape memory alloy, the latch member retains the shape memory alloy of the one or more bands so that at least a portion of the alloy is in at least a partially stress-induced martensitic state and the one or more bands are in the deformed shape, and
    • when latch member 118 is removed from the plurality of engagement members 114 and the shape memory alloy is at a temperature greater than the austenite start temperature, at least a portion of the shape memory alloy at least partially transitions to an austenitic state from the stress-induced martensitic state, thereby causing a transformation of the one or more bands from the deformed shape to the unstressed shape.


For some applications, the shape memory alloy is realized such that the transformation occurs without any change in temperature of the latch member or the shape memory alloy. Alternatively, the shape memory alloy is realized such that the transformation occurs with a change in temperature of at least one element selected from group consisting of: the latch member and the shape memory alloy.


For some applications, latch member 118 is configured to function as a heat dissipation element, which is in physical contact with the shape memory alloy at least when the latch member physically latches engagement members 114. For some applications, latch member 118, when physically latching engagement members 114, is disposed adjacent to at least a portion of the shape memory alloy. Alternatively or additionally, for some applications, latch member 118, when physically latching engagement members 114, is in direct physical contact with at least a portion of the shape memory alloy. The latch member, functioning as the heat dissipation element, dissipates at least a portion of any heat that may be released by bands 112 as they radially expand.


For some applications, latch member 118 is configured to function as a heat application element, which is in thermal contact with the shape memory alloy at least when the latch member physically latches engagement members 114. For some applications, latch member 118, when physically latching engagement members 114, is disposed adjacent to at least a portion of the shape memory alloy. Alternatively or additionally, for some applications, latch member 118, when physically latching engagement members 114, is in direct physical contact with at least a portion of the shape memory alloy. The latch member, functioning as the heat application element, applies at least a portion of any heat that may be absorbed by bands 112 as they radially expand.


For some applications, medical apparatus 100 further comprises a heat dissipation element, which is in thermal contact with the shape memory alloy at least when one or more bands 112 are in the radially-compressed state. For some applications in which elongated delivery shaft 160 is provided, the elongated delivery shaft comprises the heat dissipation element. The heat dissipation element dissipates at least a portion of any heat that may be released by bands 112 as they radially expand.


For some applications, the heat dissipation element is disposed adjacent to at least part of the shape memory alloy while the shape memory alloy is in the stress-induced martensitic state.


For some applications, the heat dissipation element comprises a plurality of heat dissipation elements. For some applications, the heat dissipation element is adapted to lose thermal energy at a rate faster than the rate of change of thermal energy caused by the change in temperature.


For some applications, medical apparatus 100 further comprises a heat application element, which is in thermal contact with the shape memory alloy at least when one or more bands 112 are in the radially-compressed state. For some applications in which elongated delivery shaft 160 is provided, the elongated delivery shaft comprises the heat dissipation element. The heat application element applies at least a portion of any heat that may be absorbed by bands 112 as they radially expand.


For some applications, the heat application element is disposed adjacent to at least part of the shape memory alloy while the shape memory alloy is in the stress-induced martensitic state.


For some applications, the heat application element comprises a plurality of heat application elements.


Reference is made to FIG. 4, which is a schematic illustration of medical apparatus 100 in a partially radially-expanded state, in accordance with an application of the present invention. In this configuration, medical apparatus 100 comprises fabric 116, as described hereinabove with reference to FIG. 3B, and a plurality of bands 112. Latch member 118 has been partially withdrawn. In particular, latch member 118 has been withdrawn from engagement members 114 of the uppermost band 112 in the figure, but is still threaded through and physically latching engagement members 114 of the middle and lowermost bands 112. As a result, uppermost band 112 has assumed the radially-expanded state, while middle and lowermost bands 112 are still restrained by latch member 118 in the radially-compressed state.


Reference is now made to FIGS. 5A and 5B, which are schematic illustrations of medical apparatus 200, in accordance with respective applications of the present invention. Medical apparatus 200 is configured for insertion into a mammalian body, such as a human body. Medical apparatus 200 is similar in some respects to medical apparatus 100, described hereinabove with reference to FIGS. 3A-4, and may implement any of the configurations in the applications described hereinabove for medical apparatus 100. Medical apparatus comprises structural stent elements 210, at least a portion of which are shaped so as to define (a) one or more generally circumferential bands 212, such as a plurality of generally circumferential bands 112, and (b) a plurality of engagement members 214 that are joined to and extend radially inwardly from each of bands 212.


For some applications, structural stent elements 210, including the at least a portion that defines the one or more bands 212, are shaped so as to define a generally tubular structure. For some applications, as shown in FIG. 5B, medical apparatus 200 further comprises an implantable-grade fabric 216 securely attached to and at least partially covering the generally tubular structure (an inner and/or an outer surface of the structure). Fabric 216 may have the properties of fabric 34, described hereinabove with reference to FIG. 1A.


Medical apparatus 200 further comprises an elongated latch member 218 which is threaded through engagement members 214, thereby physically latching engagement members 214. Typically, elongated latch member 218 comprises a wire or a hollow tube.


Engagement members 214 and each of one or more bands 212 are configured such that:

    • when latch member 218 is threaded through and thus physically latches engagement members 214, engagement members 214 retain the band in a radially-compressed state, as shown in FIG. 5A, and for the lower two bands 218 shown in FIG. 5B; and
    • when latch member 218 is removed from engagement members 214, the band assumes a radially-expanded state, as shown in the uppermost band 218 shown in FIG. 5B.


Reference is still made to FIG. 5A. For some applications, engagement members 214 have (a) respective first ends 230, which are joined to and extend from one of one or more bands 212, (b) respective second ends 232, which are joined to and extend from the band at respective junctions 234, and (c) respective curved portions 236 between respective first and respective second ends 230 and 232. When latch member 218 is threaded through engagement members 214, curved portions 236 pass around latch member 218. As a result, latch member 218 holds the curved portions near a central longitudinal axis of band 212. The engagement members thus prevent the band from expanding radially.


For some applications, each of the one or more bands 218 has distal and proximal ends 240 and 242. A first subset 244 of engagement members 214 are shaped such that curved portions 236 thereof are disposed more distally than junctions 234 thereof, and a second subset 246 of engagement members 214 are shaped such that curved portions 236 thereof are disposed more proximally than junctions 234 thereof. In other words, the curved portions of first subset 244 generally extend in the opposite direction as the curved portions of second subset 246. First and second subsets 244 and 246 do not include any common engagement members 214, i.e., are non-overlapping sets. This configuration may prevent engagement members 214 from giving band 218 a biased shape.


For some applications, structural stent elements 210 comprise a shape memory alloy, such as described regarding structural stent elements 110 hereinabove with reference to FIGS. 3A-4.


Reference is still made to FIG. 5B, which shows medical apparatus 200 in a partially radially-expanded state. Latch member 218 has been partially withdrawn. In particular, latch member 218 has been withdrawn from engagement members 214 of the uppermost band 212 in the figure, but is still threaded through and physically latching engagement members 214 of the middle and lowermost bands 212. As a result, uppermost band 212 has assumed the radially-expanded state, while middle and lowermost bands 212 are still restrained by latch member 218 in the radially-compressed state.


Although the techniques described herein have been generally described for implanting a stent-graft in a blood vessel, the techniques maybe used to implant other implantable medical devices that are introduced into the body in a relatively compact state and used within the body in a relatively expanded state. Non-limiting examples of such implantable medical devices include stents, coil stents and filters, catheters, cannulas, intrauterine contraceptive devices (IUDs), bone plates, marrow nails, dental arch wires, filters, bone staples, heart valves, and clips.


The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following patent applications are combined with techniques and apparatus described herein. In particular, the techniques with reference to FIGS. 1-2C, the techniques described herein with reference to FIGS. 3A-4, and the techniques described herein with reference to FIGS. 5A-B, may be used to deliver any of the radially-compressible stent-grafts and stents described in the following patent applications.

  • PCT Application PCT/IL2008/000287, filed Mar. 5, 2008, which published as PCT Publication WO 2008/107885 to Shalev et al., and U.S. application Ser. No. 12/529,936 in the national stage thereof, which published as US Patent Application Publication 2010/0063575 to Shalev et al.
  • U.S. Provisional Application 60/892,885, filed Mar. 5, 2007
  • U.S. Provisional Application 60/991,726, filed Dec. 2, 2007
  • PCT Application PCT/IL2008/001621, filed Dec. 15, 2008, which published as PCT Publication WO 2009/078010
  • U.S. Provisional Application 61/219,758, filed Jun. 23, 2009
  • U.S. Provisional Application 61/221,074, filed Jun. 28, 2009
  • PCT Application PCT/IB2010/052861, filed Jun. 23, 2010, which published as PCT Publication WO 2010/150208
  • PCT Application PCT/IL2010/000549, filed Jul. 8, 2010, which published as PCT Publication WO 2011/004374
  • PCT Application PCT/IL2010/000564, filed Jul. 14, 2010, which published as PCT Publication WO 2011/007354
  • PCT Application PCT/IL2010/000917, filed Nov. 4, 2010, which published as PCT Publication WO 2011/055364
  • PCT Application PCT/IL2010/000999, filed Nov. 30, 2010, which published as PCT Publication WO 2011/064782
  • PCT Application PCT/IL2010/001018, filed Dec. 2, 2010, which published as PCT Publication WO 2011/067764
  • PCT Application PCT/IL2010/001037, filed Dec. 8, 2010, which published as PCT Publication WO 2011/070576
  • PCT Application PCT/IL2011/000135, filed Feb. 8, 2011, which published as PCT Publication WO 2011/095979
  • U.S. application Ser. No. 13/031,871, filed Feb. 22, 2011, which published as US Patent Application Publication 2011/0208289


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A method comprising: providing (a) structural stent elements, at least a portion of which are shaped so as to define (i) a generally circumferential band, and (ii) a plurality of engagement members that (x) are joined to and extend radially inwardly from the band, and (y) have respective curved portions, wherein the curved portion of each of the engagement members joins respective ends of two stent element portions of the engagement member, and (b) an elongated latch member which is threaded through the engagement members, thereby physically latching the engagement members;transvascularly introducing the band into a blood vessel of a mammalian subject while the band is positioned in a hollow, elongated delivery shaft, with the latch member threaded through and thus physically latching the engagement members, such that the curved portions pass around the latch member, the latch member holds the curved portions radially centered within the band at a central longitudinal axis of the band, and the engagement members retain the band in a radially-compressed state; andthereafter, transitioning the band to a radially-expanded state by removing the latch member from the engagement members,wherein transvascularly introducing comprises advancing the delivery shaft to a target site in the blood vessel, and thereafter sliding the band through at least a portion of the delivery shaft while the band is retained by the latch member in the radially-compressed state.
  • 2. The method according to claim 1, wherein providing the latch member comprises providing a latch member that includes an element selected from the group consisting of: a wire and a hollow tube.
  • 3. The method according to claim 1, wherein the structural stent elements, including the at least a portion that defines the band, are shaped so as to define a generally tubular structure, andfurther comprising providing a main stent-graft that includes the structural stent elements and an implantable-grade fabric securely attached to and at least partially covering the generally tubular structure, wherein the main stent-graft module has side-branch fenestrations, andwherein the method further comprises positioning the fenestrations relative to anatomical side branches of the blood vessel.
  • 4. The method according to claim 1, wherein providing the structural stent elements comprises providing structural stent elements that comprise a shape memory alloy.
  • 5. The method according to claim 1, wherein the generally circumferential band includes a plurality of generally circumferential bands, and wherein respective sets of the plurality of engagement members are joined to respective ones of the bands.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present patent application claims priority from U.S. Provisional Application 61/438,977, filed Feb. 3, 2011, which is assigned to the assignee of the present application and is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IL2012/000060 2/2/2012 WO 00 2/8/2013
Publishing Document Publishing Date Country Kind
WO2012/104842 8/9/2012 WO A
US Referenced Citations (390)
Number Name Date Kind
4355426 MacGregor Oct 1982 A
4505767 Quin Mar 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4617932 Kornberg Oct 1986 A
4665906 Jervis May 1987 A
4739762 Palmaz Apr 1988 A
4787899 Lazarus Nov 1988 A
4878906 Lindemann et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4938740 Melbin Jul 1990 A
4969458 Wiktor Nov 1990 A
5042707 Taheri Aug 1991 A
5064435 Porter Nov 1991 A
5104404 Wolff Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5133732 Wiktor Jul 1992 A
5192286 Phan et al. Mar 1993 A
5234448 Wholey et al. Aug 1993 A
5425739 Jessen Jun 1995 A
5439446 Barry Aug 1995 A
5456694 Marin et al. Oct 1995 A
5486183 Middleman et al. Jan 1996 A
5507769 Marin et al. Apr 1996 A
5509923 Middleman et al. Apr 1996 A
5522880 Barone et al. Jun 1996 A
5527322 Klein et al. Jun 1996 A
5549662 Fordenbacher Aug 1996 A
5554181 Das Sep 1996 A
5556413 Lam Sep 1996 A
5562724 Vorwerk et al. Oct 1996 A
5575818 Pinchuk Nov 1996 A
5607445 Summers Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5632746 Middleman et al. May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653743 Martin Aug 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5693084 Chuter Dec 1997 A
5728134 Barak Mar 1998 A
5749879 Middleman et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755774 Pinchuk May 1998 A
5755777 Chuter May 1998 A
5755781 Jayaraman May 1998 A
5769882 Fogarty et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5782903 Wiktor Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5792172 Fischell et al. Aug 1998 A
5824040 Cox et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5843170 Ahn Dec 1998 A
5855600 Alt Jan 1999 A
5860991 Klein et al. Jan 1999 A
5876432 Lau et al. Mar 1999 A
5906641 Thompson et al. May 1999 A
5921994 Andreas et al. Jul 1999 A
5925076 Inoue Jul 1999 A
5944750 Tanner et al. Aug 1999 A
5976178 Goldsteen et al. Nov 1999 A
5980552 Pinchasik et al. Nov 1999 A
6015431 Thornton et al. Jan 2000 A
6016810 Ravenscroft Jan 2000 A
6030414 Taheri Feb 2000 A
6033435 Penn et al. Mar 2000 A
6036725 Avellanet Mar 2000 A
6059824 Taheri May 2000 A
6077298 Tu Jun 2000 A
6099497 Adams et al. Aug 2000 A
6117145 Wood et al. Sep 2000 A
6156064 Chouinard Dec 2000 A
6168615 Ken Jan 2001 B1
6200339 Leschinsky et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6270524 Kim Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6290720 Khosravi et al. Sep 2001 B1
6312458 Golds Nov 2001 B1
6319287 Frimberger Nov 2001 B1
6325823 Horzewski et al. Dec 2001 B1
6344056 Dehdashtian Feb 2002 B1
6428565 Wisselink Aug 2002 B1
6451048 Berg et al. Sep 2002 B1
6506211 Skubitz et al. Jan 2003 B1
6520988 Colombo et al. Feb 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6565597 Fearnot et al. May 2003 B1
6613075 Healy et al. Sep 2003 B1
6613078 Barone Sep 2003 B1
6635083 Cheng et al. Oct 2003 B1
6648901 Fleischman et al. Nov 2003 B2
6652567 Deaton Nov 2003 B1
6652571 White et al. Nov 2003 B1
6656214 Fogarty et al. Dec 2003 B1
6692520 Gambale et al. Feb 2004 B1
6695833 Frantzen Feb 2004 B1
6695875 Stelter et al. Feb 2004 B2
6730117 Tseng et al. May 2004 B1
6743195 Zucker Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6776794 Hong et al. Aug 2004 B1
6808534 Escano Oct 2004 B1
6814749 Cox et al. Nov 2004 B2
6814752 Chuter Nov 2004 B1
6824560 Pelton Nov 2004 B2
6846321 Zucker Jan 2005 B2
6907285 Denker et al. Jun 2005 B2
6908477 McGuckin, Jr. et al. Jun 2005 B2
6929660 Ainsworth et al. Aug 2005 B1
6942691 Chuter Sep 2005 B1
6953469 Ryan Oct 2005 B2
6964679 Marcade et al. Nov 2005 B1
6986774 Middleman et al. Jan 2006 B2
7008441 Zucker Mar 2006 B2
7044962 Elliott May 2006 B2
7105020 Greenberg et al. Sep 2006 B2
7112217 Kugler et al. Sep 2006 B1
7115127 Lindenbaum et al. Oct 2006 B2
7144421 Carpenter et al. Dec 2006 B2
7198638 Dong Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7223266 Lindenbaum et al. May 2007 B2
7261733 Brown Aug 2007 B1
7279003 Berra et al. Oct 2007 B2
7294145 Ward Nov 2007 B2
7306623 Watson Dec 2007 B2
7341598 Davidson et al. Mar 2008 B2
7393357 Stelter et al. Jul 2008 B2
7399313 Brown Jul 2008 B2
7407509 Greenberg et al. Aug 2008 B2
7413573 Hartley et al. Aug 2008 B2
7429269 Schwammenthal Sep 2008 B2
7442204 Schwammenthal Oct 2008 B2
7473272 Pryor Jan 2009 B2
7537609 Davidson et al. May 2009 B2
7540881 Meyer et al. Jun 2009 B2
7544160 Gross Jun 2009 B2
7616997 Kieval Nov 2009 B2
7637939 Tischler Dec 2009 B2
7662161 Briganti et al. Feb 2010 B2
7662168 McGuckin, Jr. et al. Feb 2010 B2
7678141 Greenan et al. Mar 2010 B2
7722626 Middleman et al. May 2010 B2
7731732 Ken Jun 2010 B2
7803178 Whirley et al. Sep 2010 B2
7815673 Bloom et al. Oct 2010 B2
7887575 Kujawski Feb 2011 B2
7955373 Sowinski et al. Jun 2011 B2
7959662 Erbel et al. Jun 2011 B2
7998186 Hartley Aug 2011 B2
8016853 Griffen et al. Sep 2011 B2
8021419 Hartley et al. Sep 2011 B2
8048147 Adams Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8066755 Zacharias et al. Nov 2011 B2
8080026 Konstantino Dec 2011 B2
8080053 Satasiya et al. Dec 2011 B2
8133267 Leonhardt et al. Mar 2012 B2
8157852 Bloom et al. Apr 2012 B2
8167926 Hartley et al. May 2012 B2
8172892 Chuter et al. May 2012 B2
8172895 Anderson et al. May 2012 B2
8226706 Hartley et al. Jul 2012 B2
8236040 Mayberry et al. Aug 2012 B2
8292951 Muzslay Oct 2012 B2
8333800 Bruszewski et al. Dec 2012 B2
8337546 Bruszewski Dec 2012 B2
8470018 Hartley et al. Jun 2013 B2
8491646 Schreck Jul 2013 B2
20010000188 Lenker et al. Apr 2001 A1
20010004705 Killion et al. Jun 2001 A1
20010010006 Bachinski et al. Jul 2001 A1
20010014823 Resseman et al. Aug 2001 A1
20010034550 Buirge et al. Oct 2001 A1
20010044651 Steinke et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010047198 Drasler et al. Nov 2001 A1
20010049550 Martin et al. Dec 2001 A1
20010053930 Kugler et al. Dec 2001 A1
20020040236 Lau et al. Apr 2002 A1
20020099438 Furst Jul 2002 A1
20020099441 Dehdashtian Jul 2002 A1
20020107564 Cox et al. Aug 2002 A1
20020111667 Girton et al. Aug 2002 A1
20020123791 Harrison Sep 2002 A1
20020156495 Brenneman et al. Oct 2002 A1
20020173809 Fleischman et al. Nov 2002 A1
20020183783 Shadduck Dec 2002 A1
20020193864 Khosravi et al. Dec 2002 A1
20030040791 Oktay Feb 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030074055 Haverkost Apr 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030130720 DePalma et al. Jul 2003 A1
20030144725 Lombardi Jul 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163187 Weber Aug 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030191523 Hojeibane Oct 2003 A1
20030199967 Hartley et al. Oct 2003 A1
20030199968 Ainsworth et al. Oct 2003 A1
20030208192 Truckai et al. Nov 2003 A1
20030212449 Cox Nov 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236567 Elliot Dec 2003 A1
20040015227 Vardi et al. Jan 2004 A1
20040015229 Fulkerson et al. Jan 2004 A1
20040098091 Erbel et al. May 2004 A1
20040106972 Deaton Jun 2004 A1
20040106978 Greenberg et al. Jun 2004 A1
20040117003 Ouriel et al. Jun 2004 A1
20040133266 Clerc et al. Jul 2004 A1
20040162606 Thompson Aug 2004 A1
20040171978 Shalaby Sep 2004 A1
20040176832 Hartley et al. Sep 2004 A1
20040181149 Langlotz et al. Sep 2004 A1
20040215320 MacHek Oct 2004 A1
20040215327 Doig et al. Oct 2004 A1
20050010246 Streeter et al. Jan 2005 A1
20050033406 Barnhart et al. Feb 2005 A1
20050049678 Cocks et al. Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050070995 Zilla et al. Mar 2005 A1
20050085900 Case et al. Apr 2005 A1
20050102018 Carpenter et al. May 2005 A1
20050102021 Osborne May 2005 A1
20050131512 Vonderwalde Jun 2005 A1
20050131517 Hartley et al. Jun 2005 A1
20050143802 Soykan Jun 2005 A1
20050149166 Schaeffer et al. Jul 2005 A1
20050154448 Cully et al. Jul 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050203606 VanCamp Sep 2005 A1
20050222649 Capuano Oct 2005 A1
20050222667 Hunt Oct 2005 A1
20050222668 Schaeffer et al. Oct 2005 A1
20050222669 Purdy Oct 2005 A1
20050266042 Tseng Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060015170 Jones et al. Jan 2006 A1
20060030911 Letort Feb 2006 A1
20060052799 Middleman et al. Mar 2006 A1
20060069426 Weinberger Mar 2006 A1
20060095104 Magers May 2006 A1
20060100684 Elliott May 2006 A1
20060106406 Weinberger May 2006 A1
20060149360 Schwammenthal Jul 2006 A1
20060155358 LaDuca et al. Jul 2006 A1
20060155366 LaDuca et al. Jul 2006 A1
20060167476 Burdulis, Jr. et al. Jul 2006 A1
20060173530 Das Aug 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060193892 Furst et al. Aug 2006 A1
20060212113 Shaolian et al. Sep 2006 A1
20060229709 Morris et al. Oct 2006 A1
20060241740 Vardi et al. Oct 2006 A1
20060281966 Peacock, III Dec 2006 A1
20070016281 Melsheimer Jan 2007 A1
20070021822 Boatman Jan 2007 A1
20070027526 Demetriades et al. Feb 2007 A1
20070043425 Hartley et al. Feb 2007 A1
20070050011 Klein et al. Mar 2007 A1
20070055326 Farley et al. Mar 2007 A1
20070055350 Erickson et al. Mar 2007 A1
20070055358 Krolik et al. Mar 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070061002 Paul, Jr. et al. Mar 2007 A1
20070073373 Bonsignore Mar 2007 A1
20070088425 Schaeffer Apr 2007 A1
20070112344 Keilman May 2007 A1
20070135677 Miller et al. Jun 2007 A1
20070142896 Anderson et al. Jun 2007 A1
20070150051 Menardiere et al. Jun 2007 A1
20070156167 Connors et al. Jul 2007 A1
20070167898 Peters et al. Jul 2007 A1
20070167955 Menardiere et al. Jul 2007 A1
20070168018 Amplatz et al. Jul 2007 A1
20070179598 Duerig Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208410 Berra et al. Sep 2007 A1
20070213805 Schaeffer et al. Sep 2007 A1
20070213807 Roubin et al. Sep 2007 A1
20070219610 Israel Sep 2007 A1
20070219627 Chu Sep 2007 A1
20070233229 Berra et al. Oct 2007 A1
20070237973 Purdy et al. Oct 2007 A1
20070239256 Weber Oct 2007 A1
20070244542 Greenan et al. Oct 2007 A1
20070244543 Mitchell Oct 2007 A1
20070244547 Greenan Oct 2007 A1
20070250154 Greenberg et al. Oct 2007 A1
20070255388 Rudakov et al. Nov 2007 A1
20080002871 Gunzert-Marx et al. Jan 2008 A1
20080015673 Chuter Jan 2008 A1
20080033527 Nunez Feb 2008 A1
20080058918 Watson Mar 2008 A1
20080064957 Spence Mar 2008 A1
20080086193 Thramann Apr 2008 A1
20080097578 Erickson et al. Apr 2008 A1
20080109066 Quinn May 2008 A1
20080114444 Yu May 2008 A1
20080114445 Melsheimer et al. May 2008 A1
20080140178 Rasmussen Jun 2008 A1
20080147173 McIff et al. Jun 2008 A1
20080167704 Wright et al. Jul 2008 A1
20080176271 Silver Jul 2008 A1
20080195190 Bland et al. Aug 2008 A1
20080195191 Luo et al. Aug 2008 A1
20080215134 Lawrence-Brown Sep 2008 A1
20080249598 Sherry Oct 2008 A1
20080262595 Chu et al. Oct 2008 A1
20080269789 Eli Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080275542 LaDuca et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080300665 Lootz et al. Dec 2008 A1
20080312732 Hartley et al. Dec 2008 A1
20080319528 Yribarren et al. Dec 2008 A1
20090012597 Doig et al. Jan 2009 A1
20090012602 Quadri Jan 2009 A1
20090030497 Metcalf et al. Jan 2009 A1
20090030502 Sun et al. Jan 2009 A1
20090048663 Greenberg Feb 2009 A1
20090054967 Das Feb 2009 A1
20090062899 Dang et al. Mar 2009 A1
20090069882 Venturelli et al. Mar 2009 A1
20090082841 Zacharias et al. Mar 2009 A1
20090099640 Weng Apr 2009 A1
20090099647 Glimsdale et al. Apr 2009 A1
20090099648 Yu Apr 2009 A1
20090099649 Chobotov et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105809 Lee et al. Apr 2009 A1
20090112233 Xiao Apr 2009 A1
20090125096 Chu et al. May 2009 A1
20090138067 Pinchuk et al. May 2009 A1
20090149877 Hanson et al. Jun 2009 A1
20090227997 Wang et al. Sep 2009 A1
20090240316 Bruszewski Sep 2009 A1
20090248134 Dierking et al. Oct 2009 A1
20090254170 Hartley et al. Oct 2009 A1
20090259290 Bruszewski et al. Oct 2009 A1
20090287145 Cragg et al. Nov 2009 A1
20100004728 Rao et al. Jan 2010 A1
20100029608 Finley et al. Feb 2010 A1
20100063575 Shalev Mar 2010 A1
20100070019 Shalev Mar 2010 A1
20100082091 Berez et al. Apr 2010 A1
20100161025 Kuppurathanam et al. Jun 2010 A1
20100161026 Brocker et al. Jun 2010 A1
20100168838 Hartley et al. Jul 2010 A1
20100211159 Schmid et al. Aug 2010 A1
20100256725 Rasmussen Oct 2010 A1
20100274187 Argentine Oct 2010 A1
20100274345 Rust Oct 2010 A1
20100292774 Shalev Nov 2010 A1
20100318171 Porter et al. Dec 2010 A1
20100318180 Porter Dec 2010 A1
20110022149 Cox Jan 2011 A1
20110022153 Schreck et al. Jan 2011 A1
20110040366 Goetz et al. Feb 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110125251 Cottone et al. May 2011 A1
20110208289 Shalev Aug 2011 A1
20110208296 Duffy et al. Aug 2011 A1
20110208297 Tuval Aug 2011 A1
20110208298 Tuval Aug 2011 A1
20110218607 Arbefeuille et al. Sep 2011 A1
20110218609 Chobotov et al. Sep 2011 A1
20110218617 Nguyen et al. Sep 2011 A1
20110257725 Argentine Oct 2011 A1
20110262684 Wintsch Oct 2011 A1
20110264184 Heltai Oct 2011 A1
20110288622 Chan et al. Nov 2011 A1
20120143317 Cam Jun 2012 A1
20120158038 Leschinsky Jun 2012 A1
20130116773 Roeder et al. May 2013 A1
20130158646 Roeder Jun 2013 A1
20130274866 Cox Oct 2013 A1
20130338753 Geusen Dec 2013 A1
20140316510 Berra Oct 2014 A1
20140364930 Strauss Dec 2014 A1
Foreign Referenced Citations (72)
Number Date Country
2 497 704 Mar 2004 CA
101045022 Oct 2007 CN
201058061 May 2008 CN
101980670 Feb 2011 CN
101998845 Mar 2011 CN
0893108 Jan 1999 EP
1 177 779 Feb 2002 EP
1177780 Feb 2002 EP
1325716 Jul 2003 EP
2 266 509 Dec 2010 EP
2298248 Mar 2011 EP
2000-279533 Oct 2000 JP
2002-253682 Sep 2002 JP
9639104 Dec 1996 WO
9925273 May 1999 WO
9951165 Oct 1999 WO
02083038 Oct 2002 WO
03034948 May 2003 WO
2004017868 Mar 2004 WO
2005002466 Jan 2005 WO
2005037138 Apr 2005 WO
2005041781 May 2005 WO
2005041783 May 2005 WO
2005046524 May 2005 WO
2006007389 Jan 2006 WO
2006028925 Mar 2006 WO
2006070372 Jul 2006 WO
2006088905 Aug 2006 WO
2006130755 Dec 2006 WO
2007084547 Jul 2007 WO
2007115017 Oct 2007 WO
2007144782 Dec 2007 WO
2008008291 Jan 2008 WO
2008021557 Feb 2008 WO
2008035337 Mar 2008 WO
2008042266 Apr 2008 WO
2008047092 Apr 2008 WO
2008047354 Apr 2008 WO
2008051704 May 2008 WO
2008053469 May 2008 WO
2008066923 Jun 2008 WO
2008107885 Sep 2008 WO
2008140796 Nov 2008 WO
2009078010 Jun 2009 WO
2009116041 Sep 2009 WO
2009116042 Sep 2009 WO
2009118733 Oct 2009 WO
2010024869 Mar 2010 WO
2010024879 Mar 2010 WO
2010031060 Mar 2010 WO
2010042210 Apr 2010 WO
2010045238 Apr 2010 WO
2010062355 Jun 2010 WO
2010088776 Aug 2010 WO
2010128162 Nov 2010 WO
2010150208 Dec 2010 WO
2011004374 Jan 2011 WO
2011007354 Jan 2011 WO
2011055364 May 2011 WO
2011064782 Jun 2011 WO
2011067764 Jun 2011 WO
2011070576 Jun 2011 WO
2011080738 Jul 2011 WO
2011095979 Aug 2011 WO
2011106532 Sep 2011 WO
2011106533 Sep 2011 WO
2011106544 Sep 2011 WO
2011136930 Nov 2011 WO
2012049679 Apr 2012 WO
2012104842 Aug 2012 WO
2012111006 Aug 2012 WO
2012117395 Sep 2012 WO
Non-Patent Literature Citations (58)
Entry
“E-vita® open plus” product brochure (JOTEC GmbH, Hechingen, Germany) (2010).
An English Translation of an Office Action dated Aug. 25, 2011, which issued during the prosecution of Chinese Patent Application No. 200880014919.9.
Fonseca A et al., “Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions,” J Invasive Cardiol 20(1):21-7 (Jan. 2008).
An International Search Report and a Written Opinion both dated Sep. 24, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000060.
Khlif H et al., “Contribution to the Improvement of Textile Vascular Prostheses Crimping,” Trends in Applied Sciences Research 6(9):1019-1027 (2011).
An International Search Report and a Written Opinion both dated Jul. 13, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000083.
An International Search Report and a Written Opinion both dated Jul. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000095.
An International Search Report and a Written Opinion both dated Aug. 31, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000148.
An International Search Report and a Written Opinion both dated Sep. 6, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000190.
An International Search Report and a Written Opinion both dated Jun. 19, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000241.
An International Search Report and a Written Opinion both dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000300.
An International Search Report and a Written Opinion both dated Feb. 4, 2011, which issued during the prosecution of Applicant's PCT/IB2010/052861.
An International Search Report and a Written Opinion both dated Sep. 29, 2008, which issued during the prosecution of Applicant's PCT/IL08/000287.
An International Search Report and a Written Opinion both dated Mar. 11, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001312.
An International Search Report and a Written Opinion both dated Jun. 30, 2009, which issued during the prosecution of Applicant's PCT/IL2008/001621.
An International Search Report and a Written Opinion both dated Nov. 5, 2010, which issued during the prosecution of Applicant's PCTIL2010000549.
An International Search Report and a Written Opinion both dated Dec. 3, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000564.
An International Search Report and a Written Opinion both dated Mar. 10, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000917.
An International Search Report and a Written Opinion both dated Aug. 4, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000999.
An International Search Report and a Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001018.
An International Search Report and a Written Opinion both dated Apr. 18, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001037.
An International Search Report and a Written Opinion both dated May 23, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001087.
An International Search Report and a Written Opinion both dated Jun. 28, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000135.
An International Search Report dated Oct. 4, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000269.
An Office Action dated Apr. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/447,684.
An Office Action dated Nov. 12, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684.
An Office Action dated Mar. 24, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936.
An Office Action dated Oct. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936.
An Office Action dated Jun. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037.
An Office Action dated Oct. 11, 2012, which issued during the prosecution of U.S. Appl. No. 13/031,871.
Ryhänen J., in “Biocompatibility evaluation of nickel-titanium shape memory metal alloy,” Academic Dissertation, Faculty of Medicine, Department of Surgery, University of Oulu, Finland (May 1999).
International Search Report and Written Opinion dated Jun. 14, 2013 issued in PCT/IL2012/050506.
EP Search in Appl. No. 12855964.8, dated Jun. 12, 2014.
Non-final office action in U.S. Appl. No. 14/240,600, dated Jul. 30, 2014.
Non-final office action in U.S. Appl. No. 13/513,397, dated Aug. 12, 2015.
Final office action in U.S. Appl. No. 13/384,075, dated Sep. 23, 2015.
Non-final OA in U.S. Appl. No. 13/577,161, dated Oct. 2, 2015.
An International Search Report and Written Opinion issued on Nov. 26, 2013 in PCT/IL2013/050656.
A non-final Office Action issued on Feb. 28, 2014 in U.S. Appl. No. 13/512,778.
An International Search Report and a Written Opinion both dated Mar. 18, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050973.
European Search Report for European Patent Application No. 12741804.4 dated Jun. 30, 2014.
Communication dated Sep. 4, 2014, from the U.S. Patent and Trademark Office in counterpart U.S. Appl. No. 13/519,971.
An Office Action dated Dec. 9, 2015, which issued during the prosecution of U.S. Appl. No. 14/416,236.
European Search Report dated Jan. 18, 2016 which issued during the prosecution of Applicant's European App No. 10799521.9.
An Office Action dated Feb. 1, 2016, which issued during the prosecution of U.S. Appl. No. 14/241,793.
An International Search Report and a Written Opinion both dated Feb. 17, 2016, which issued during the prosecution of Applicant's PCT/IL2015/051221.
An Office Action dated Feb. 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/416,236.
An Office Action dated Mar. 7, 2016, which issued during the prosecution of U.S. Appl. No. 14/240,600.
European Search Report dated Mar. 11, 2016 which issued during the prosecution of Applicant's European App No. 11739497.3.
An Invitation to pay additional fees dated Apr. 12, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050014.
European Search Report dated Mar. 15, 2016 which issued during the prosecution of Applicant's European App No. 13825456.0.
An Office Action dated Mar. 28, 2016, which issued during the prosecution of U.S. Appl. No. 14/362,194.
Scurr et al., “Fenestrated Aortic Stent Grafts,” Semin Intervent Radiol. Jun. 2007; 24(2): 211-220.
An Office Action dated Apr. 14, 2016, which issued during the prosecution of Canadian Patent Application No. 2,766,347.
European Search Report dated May 23, 2016 which issued during the prosecution of Applicant's European App No. 10832752.9.
An International Search Report and a Written Opinion both dated Jun. 21, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050014.
An Office Action dated Jul. 22, 2016, which issued during the prosecution of Chinese Patent Application No. 201480012648.9.
An Office Action dated Aug. 3, 2016, which issued during the prosecution of U.S. Appl. No. 14/241,793.
Related Publications (1)
Number Date Country
20130131783 A1 May 2013 US
Provisional Applications (1)
Number Date Country
61438977 Feb 2011 US