The present invention relates to an implantable medical system and to a probe adapted to be connected to an implantable device comprised in the implantable medical system.
Deep brain stimulation (DBS) is used to treat a variety of disabling neurological symptoms, e.g. symptoms of Parkinson's disease (PD), such as tremor, rigidity, stiffness, slowed movement, and walking problems. The procedure is also used to treat essential tremor, a common neurological movement disorder.
In DBS, a long thin probe, 8-10 cm long, is planted deep within the brain, through a burrhole in the top of the skull. The distal end of the probe contains electrodes and is positioned within the targeted brain. These electrodes are connected by a cable to an implantable device with electrical components and a battery. This implantable device contains capacitors, which might be needed for capacitive voltage conversion of the battery voltage into a programmable lower or higher voltage needed to generate electrical pulses. Once the probe and implantable device is in place, the electrical pulses are sent from the implantable device to the electrodes into the targeted brain tissue. These current pulses interfere with the neural activity of the targeted brain tissue, which leads to a reduction or even an elimination of tremor and PD symptoms.
The problem with current DBS systems and other similar systems such as heart pacemaker systems is that the electrical components include various bulky capacitors for a.o. voltage conversion, levels shifters, charge balancing and frequency tuning. In case of DBS systems, the implantable device contains electrical components and a battery. The capacitors in the implantable device consume precious space in the implantable, which effectively reduce the size of the (rechargeable) battery and/or the available functionality of the DBS stimulator.
The object of the present invention is to improve prior art implantable medical systems by making them among other things more compact and user friendly.
According to the first aspect, the present invention relates to an implantable medical system, comprising:
an implantable device comprising a power source operable connected to electrical components adapted to generate electrical pulses, and
a probe having a distal-end and a proximal-end, the distal-end comprising one or more electrodes adapted to be in electrical contact with a target tissue and wires for connecting the one or more electrodes to the implantable device, where the wires conduct the electrical pulses from the implantable device to the one or more electrodes and into the target tissue,
wherein the probe comprises at least one capacitor and wires for connecting the at least one capacitor to the electrical components comprised in the implantable device such that the at least one capacitor forms a part of the electrical components of the implantable device.
Therefore, some or all of the capacitors that are needed to perform various functions of the implantable device are moved from the implantable device into the probe. This means that more space is available in the implantable device for other purposes, or that the implantable device can be made smaller.
Further, the battery lifetime of the implantable medical system may be increased because by moving capacitors from the implantable device and into the probe more space will be available in the implantable device for increasing the size of the battery. Also, by making the battery larger the percentage discharge becomes smaller, assuming the time between charging and the power consumption of the device does not change. In general, the smaller the discharge levels of a battery becomes, the more often can it be charged, i.e. the number of charge cycles goes up and the same battery can be used longer before it needs to be replaced with a new one.
In one embodiment, the shape of the at least one capacitor comprised in the probe is adapted to geometrical shape of the probe. In that way, the size of the capacitor and the use of the space in the probe maximized.
In one embodiment, the electrical components comprised in the implantable device include at least one further capacitor in addition to said at least one capacitor.
In one embodiment, the geometrical shape of the probe is cylindrical.
In one embodiment, the capacitor is partitioned into multiple sub-capacitors connected in parallel and/or in series. In one embodiment, the probe is partitioned into multiple segments interlinked by a bendable separation portion, where the segments comprise at least of said sub-capacitors. Thus, the mechanical flexibility and bendability of the probe is enhanced.
In one embodiment, the capacitor is formed by layered structures comprising at least a first and a second conducting layer separated by a dielectric layer.
In one embodiment, the dielectric constant of the dielectric layer is higher than 5.
In one embodiment, the thickness of the dielectric layer is less than 25 nm.
In one embodiment, the layered structures are microstructured so as to increase the thickness of the dielectric layer.
In one embodiment, the layered structures comprise an interdigitated capacitor design so as to increase the effective surface area of the layered structures.
Accordingly, by increasing the capacitance and/or reducing the thickness of the dielectric layer and/or increase the thickness of the dielectric layer capacitance may be increased such that it contributes to the electrical components in the implantable device.
In one embodiment, the layered structures comprise a repetition of metal-dielectric-metal layers or a repetition of the interdigitated capacitor design.
In one embodiment, the capacitors are connected in parallel.
In one embodiment, the layered structure further includes an interconnect layer with said wires embedded therein for connecting the at least one capacitor and said electrical components comprised in the implantable device together.
According to a second aspect, the present invention relates to a probe adapted to connected to an implantable device, where the implantable device comprises a power source operable connected to electrical components adapted to generate electrical pulses, where the probe has a distal-end and a proximal-end, the distal-end comprising one or more electrodes adapted to be in electrical contact with a target tissue and wires extending from the one or more electrodes to the proximal-end adapted to connect the electrodes to the implantable device for conducting the electrical pulses from the implantable device to the one or more electrodes and into the target tissue,
wherein the probe comprises at least one capacitor and wires extending from the at least one capacitor to the proximal-end adapted for connecting the at least one capacitor to the electrical components comprised in the implantable device such that the at least one capacitor forms a part of the electrical components of the implantable device.
The probe may be manufactured by use of standard techniques where a conducting layer and a dielectric layer are deposited alternately onto a substrate used for a probe.
The alternate deposition of the conducting layer and the dielectric layer may be repeated two or more times thus forming a multilayer capacitor.
The conducting layer may be deposited by use of physical vapor deposition. Physical vapor deposition includes, but is not limited to, such techniques as evaporation, electron beam evaporation and sputtering.
The depositing of the conducting layer may also be performed by electroplating.
The depositing of the dielectric layer may be performed by chemical or a physical vapor deposition.
The substrate may have the same geometrical shape as the probe, or it may be a flat substrate which is subsequently shaped after the deposition is completed.
The substrate may be patterned with micro or nanostructures using micro or nanofabrication techniques, such as lithography and etching.
The substrate may be coated with materials consisting of micro or nanostructures, such as nanotubes or nanoparticles.
The aspects of the present invention may each be combined with any of the other aspects. These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which
It should be noted that although the capacitor 106 shown here is divided into at least one capacitor comprised in the implantable device 104 and at least one capacitor comprised in the probe 106b, the whole capacitor 106 may just as well be comprised in the probe 101.
As will be discussed in more detail in
By moving a part of (or the whole) capacitor 106b from the implantable device 104 and into the probe 101 space is freed in the implantable device, which may advantageously be used to reduce the dimensions and/or form factor of the implantable device.
The embodiment shown in
The capacitor 106a,b can be applied for a variety of functions, for example, in a capacitive voltage converter. The efficiency of a capacitive voltage converter goes up if the applied capacitors are made larger but this leads to reduced space for other components in the implant, including the battery. Therefore, it is advantageous to move the (larger) capacitors to the probe, because it both leads to higher conversion efficiency and the possibility to install a larger battery in the implant.
Although the medical system 100 is shown here as a DBS device, it may also be a heart pacemaker, or a spinal cord stimulator, or a bladder stimulator, or a gastric stimulator, or a medical system including the probe for stimulation and the like.
The layered structure shown on the left side in
The center of the probe has in this embodiment a cavity 202 which leaves space for a stiff guiding wire needed to insert the probe into the brain; this guiding is removed once the probe is in place (see
In one embodiment, the probe 101 comprising said capacitor 106b embedded therein may be fabricated by direct deposition of metal and dielectric layers on a substrate (not shown), where the substrate may be a cylindrical (e.g. a hollow cylinder) or a flat substrate which is subsequently bent into the final shape. For example, the substrate may already contain the interconnect layer 204 embedded in dielectrics (see
The capacitance that can be integrated in a cylindrical probe can be approximated by the equation:
where εr is the dielectric constant of the material, d is the thickness of the dielectric layer, D is the diameter of the probe 101, L is the length of the probe 101. As an example, if D=1.27 mm, L=10 cm, εr=3 (for parylene-C), d=1 μm, then the resulting capacitance C becomes 0.01 μF.
The equation already indicates how larger capacitance can be achieved, i.e. by increasing the material's dielectric constant, reducing the thickness of the dielectric layer and/or increasing the capacitor's effective area. This is explained in more detail in the three examples below:
1. Using High εr Dielectric:
Most biocompatible polymers have a low dielectric constant of approx 3.0. However, silicon nitride has a higher εr (6.0-8.0). The layered structure (such as the one shown in
In this example, the upmost layer 401 may be parylene-C, the second layer 402 may be metal 1, the third layer 403 may be silicon nitride, the fourth layer 404 may be metal 2 (which may be identical to metal 1), the fifth layer 405 may be polyimide, and the bottom layer 406 said silicon wafer.
2. Reducing Dielectric Layer Thickness:
In addition, the dielectric layer thickness can be easily reduced using thin-film technology. Ceramic layers (such as silicon oxide) thinner than 10 nm are routinely deposited in CMOS fabrication. That already gives a 100-fold increase in the capacitance (C≈1 μF with a 10 nm-thick dielectric layer).
3. Increasing Effective Surface Area.
Thin-film technology can also be used to introduce microstructures in the layers and in that way increase the effective surface area.
The arrangement of the layers in
This interdigitated structure is advantageous if the intra-metal lateral capacitance has a higher specific areal capacitance than the vertical inter-metal capacitance in the chosen process technology. This occurs if the metal thickness becomes sufficiently larger than the minimum allowable spacing between two tracks in the same metal layer.
Certain specific details of the disclosed embodiments are set forth for purposes of explanation rather than limitation, so as to provide a clear and thorough understanding of the present invention. However, it should be understood by those skilled in this art, that the present invention might be practiced in other embodiments that do not conform exactly to the details set forth herein, without departing significantly from the spirit and scope of this disclosure. Further, in this context, and for the purposes of brevity and clarity, detailed descriptions of well-known apparatuses, circuits and methodologies have been omitted so as to avoid unnecessary detail and possible confusion.
Reference signs are included in the claims, however the inclusion of the reference signs is only for clarity reasons and should not be construed as limiting the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
08169166 | Nov 2008 | EP | regional |
09151234 | Jan 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/054894 | 11/4/2009 | WO | 00 | 5/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/055442 | 5/20/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7190569 | O'Phelan | Mar 2007 | B2 |
7844344 | Wahlstrand | Nov 2010 | B2 |
20020116028 | Greatbatch | Aug 2002 | A1 |
20060271138 | MacDonald | Nov 2006 | A1 |
20070112398 | Stevenson | May 2007 | A1 |
20080154348 | Atalar et al. | Jun 2008 | A1 |
20080161886 | Stevenson | Jul 2008 | A1 |
20080161887 | Hagen | Jul 2008 | A1 |
20090088812 | Wulfman | Apr 2009 | A1 |
20100174349 | Stevenson | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
2007047966 | Apr 2007 | WO |
2008051913 | May 2008 | WO |
Entry |
---|
International Search Report from International Application No. PCT/IB2009/054894, dated Feb. 5, 2010, 8 pp. |
International Preliminary Report from International Application No. PCT/IB2009/054894, dated May 17, 2011, 6 pp. |
Communication pursuant to Article 94(3) EPC from counterpart European Application No. 09759797.5, dated Jul. 22, 2013, 4 pp. |
Response to Communication dated Jul. 22, 2013, from counterpart European Application No. 09759797.5, filed on Nov. 29, 2013, 9 pp. |
Communication pursuant to Article 94(3) EPC from counterpart European Application No. 09759797.5, dated Apr. 13, 2015, 4 pp. |
Response to Communication dated Apr. 13, 2015, from counterpart European Application No. 09759797.5, filed on Aug. 13, 2015,13 pp. |
Response to Communication dated Apr. 13, 2015, from counterpart European Application No. 09759797.5, filed on Aug. 14, 2015, 13 pp. |
Intention to Grant from counterpart European Application No. 09759797.5, dated Jun. 3, 2016, 44 pp. |
Number | Date | Country | |
---|---|---|---|
20110224766 A1 | Sep 2011 | US |