Claims
- 1. An implantable medical system comprising:an implantable medical device housed in an hermetically-sealed case; electronic circuitry housed in said sealed case that performs a desired circuit function; a first rechargeable battery housed within said sealed case that provides operating power for said electronic circuitry, wherein said first rechargeable battery comprises a lithium-ion battery configured to permit a discharge to zero volts without damage to the battery; battery charging circuitry housed within said sealed case that includes a coil, a rectifier circuit coupled to the coil, and a charge controller circuit coupled to the rectifier circuit, wherein said battery charging circuitry is adapted to inductively receive power from an external source through said coil, rectify said received power with said rectifier circuit, and direct said rectified received power as controlled by said charge controller circuit to the first rechargeable battery for the purpose of recharging said battery; battery protection circuitry housed within said sealed case that monitors and controls the manner in which the battery charging circuitry recharges said first rechargeable battery; and an external charger, including a power source and a transmission circuit for transmitting power from the power source to the battery charging circuitry housed within the sealed case of the implantable medical device.
- 2. The implantable medical system of claim 1 wherein said battery charging circuitry includes means for generating a charging current, and wherein said battery protection circuitry includes means for monitoring the voltage across the rechargeable battery and means for controlling how much charging current is applied to said first rechargeable battery based on how much voltage is present across said rechargeable battery.
- 3. The implantable medical system of claim 2 wherein said battery protection circuitry allows a first charge current to be applied to said first rechargeable battery when the battery voltage is between zero volts and a first voltage V1, allows a second charge current to be applied to said rechargeable battery when the battery voltage is between the first voltage V1 and a second voltage V2, and allows a third charge current to be applied to said rechargeable battery when the battery voltage is between the second voltage V2 and a full charged voltage V3; wherein the first charge current is a trickle charge current that is much less than the second charge current, and wherein the third charge current is less than the second charge current.
- 4. The implantable medical system of claim 3 wherein the first rechargeable battery is configured to discharge to zero volts without suffering irreversible damage and to operate without damage over a range of battery voltages ranging from the first voltage V1 to the fully charged battery voltage V3, which voltage V3 is about 4.1 V, wherein the first voltage V1 is about 2.5 V, and the second voltage V2 is about 4.0 V, and wherein the first charge current comprises a current of about C/25 or less, where C is the battery capacity, and wherein the second charge current comprises a current of about C/2, and wherein the third charge current comprises a current of about C/10 or less.
- 5. The implantable medical system of claim 4 wherein the battery protection circuitry further charges the battery with a trickle charge current of about C/50 or less when the battery voltage is less than about 1.0 V.
- 6. The implantable medical system of claim 2 wherein said battery protection circuitry further protects said first rechargeable battery from overvoltage conditions.
- 7. The implantable medical system of claim 1 wherein said battery protection circuitry modulates the rectifier circuit whenever the battery voltage and the battery charging current are at prescribed levels, indicating a fully-charged battery condition; and wherein said external charger detects a change in reflected impedance when the rectifier circuit of the implanted medical device is modulated, and in response thereto generates a signal indicating that the first rechargeable battery is fully charged.
- 8. The implantable medical system of claim 1 further including an external hand held programmer adapted to be placed in telecommunicative contact with said implantable medical device for the purpose of sending programming and control signals to the implantable medical device, and wherein said implantable medical device further includes a back telemetry transmitter circuit that transmits selected data, including battery status data, through the coil of the battery charging circuitry to the hand held programmer, and wherein the hand held programmer includes means for receiving and displaying the battery status data from the implantable medical device whenever the hand held programmer is placed in telecommunicative contact with the implantable medical device.
- 9. The implantable medical system of claim 1 wherein said external charger includes a mis-alignment detection circuit adapted to detect when the external charger is mis-aligned with the coil of the battery charging circuitry so as to prevent optimum power transfer from the external charger to the implantable medical device.
- 10. The implantable medical system of claim 9 wherein the external charger further includes an audible alarm that emits a specified tone when a misaligned condition exists between the external charger and the implantable medical device, and wherein the specified tone ceases to be emitted when an aligned condition exists between the external charger and the implantable medical device.
- 11. The implantable medical system of claim 10 further including means for securing the external charger in an aligned location relative to the implantable medical device while the rechargeable battery of the implantable medical device is being recharged.
- 12. The implantable medical system of claim 11 wherein the securing means comprises a disposable adhesive pouch adapted to be affixed to a skin surface of a person using the implantable medical device.
- 13. The implantable medical system of claim 11 wherein the securing means comprises a patch adapted to be removably affixed to a skin surface of a person using the implantable medical device, the patch having securing means thereon for holding the external charger thereto.
- 14. The implantable medical system of claim 1 wherein the external charger comprises a base station and a mobile charger unit, the base station including means for holding the mobile charger unit in electrical contact therewith whenever the mobile charger unit is detachably engaged therewith, and wherein the mobile charger unit has a second rechargeable battery housed within it, wherein the second rechargeable battery within the mobile charger unit comprises the power source through which power is inductively coupled into the implantable medical device when recharging the rechargeable battery housed within the sealed cased of the implantable medical device.
- 15. The implantable medical system of claim 14 wherein the base station includes a primary power source, and wherein the mobile charger unit includes battery charging and protection circuitry that directs power from the primarily power source of the base station to the second rechargeable battery for the purpose of recharging the second rechargeable battery when the mobile charger unit is detachably engaged with the base station.
- 16. The implantable medical system of claim 15 wherein the second rechargeable battery comprises a Lithium-ion battery.
- 17. An implantable medical system comprising:an implantable medical device housed in an hermetically-sealed case; electronic circuitry housed in said sealed case that performs a desired circuit function; a rechargeable battery housed within said sealed case that provides operating power for said electronic circuitry, wherein said rechargeable battery comprises a Lithium-ion battery configured to permit a discharge to zero volts without damage to the battery; and battery charging and protection circuitry housed within said sealed case that includes means for inductively receiving power from an external source, means for monitoring the voltage across said rechargeable battery, and means for recharging said rechargeable battery with the power received from the external source at a rate controlled by the monitored voltage across the rechargeable battery; an external charger having a power source and a transmission circuit for transmitting power from the power source to the battery charging and protection circuitry housed within the sealed case of the implantable medical device.
- 18. The implantable medical system of claim 17 wherein the recharging means comprises means for recharging the rechargeable battery at a first recharging rate when the battery voltage is between zero volts and a first voltage V1, at a second recharging rate when the battery voltage is between the first voltage V1 and a second voltage V2, and a third recharging rate when the battery voltage is between the second voltage V2 and a full charged voltage V3, wherein the first recharging rate comprises a trickle charge rate that is much less than the second recharging rate, and wherein the third recharging rate is less than the second recharging rate and greater than the first recharging rate.
- 19. The implantable medical system of claim 17 wherein the recharging means comprises means for recharging the rechargeable battery with a first charging current when the battery voltage is between zero volts and a first voltage V1, a second charging current when the battery voltage is between the first voltage V1 and a second voltage V2, and a third charging current when the battery voltage is between the second voltage V2 and a full charged voltage V3, wherein the first charging current comprises a trickle charge current that is much less than the second charging current, and wherein the third charging current is less than the second charging current and greater than the first charging current.
- 20. The implantable medical system of claim 17 wherein the first voltage V1 is about 2.5 V, the second voltage V2 is about 4.0 V, and the third voltage V3 is about 4.1 V, and wherein the first charging current comprises a current of about C/25 or less, where C is the battery capacity, and wherein the second charging current comprises a current of about C/2, and wherein the third charging current comprises a current of about C/10 or less.
- 21. An implantable medical system comprising:an implantable medical device housed in an hermetically-sealed case; electronic circuitry housed in said sealed case that performs a desired circuit function; a Lithium-ion rechargeable battery housed within said sealed case that provides operating power for said electronic circuitry, wherein said Lithium-ion rechargeable battery comprises a zero-volt technology Lithium-ion battery that includes an anode electrode substrate made from titanium or a titanium alloy, wherein the zero-volt technology Lithium-ion battery is configured to permit a discharge to zero volts without damage to the battery; battery charging and protection circuitry housed within said sealed case that includes means for receiving power from an external source, means for monitoring the voltage across the zero-volt technology Lithium-ion battery, and means for recharging the zero-volt technology Lithium-ion battery with the power received from the external source at a recharging rate controlled by the monitored voltage across the zero-volt technology Lithium-ion battery; and an external charger having a power source and a transmission circuit, wherein power from the power source is transmitted to the battery charging and protection circuitry housed within the implantable medical device through the transmission circuit.
Parent Case Info
This application claims the benefit of U.S. Provisional Application Ser. No. 60/146,571, filed Jul. 30, 1999, which application is incorporated herein by reference.
US Referenced Citations (29)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0209808 |
Jul 2002 |
WO |
Non-Patent Literature Citations (1)
Entry |
Tsukamoto, Hisashi, Kishiyama, Clay inventors for Q111-PRO; U.S. Provisional Patent Application Serial No. 60/199,895; Filed Apr. 26, 2000; entitled “Zero Volt Capability for Lithium-Ion Batteries”. |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/146571 |
Jul 1999 |
US |