The invention relates generally to fault tolerant coupling of implantable sensors to an active implantable medical device (AIMD).
Implantable medical devices are used to monitor, diagnose, and/or deliver therapies to patients suffering from a variety of conditions. Exemplary AIMDs include implantable pulse generators (IPGs) including pacemakers, gastric, nerve, brain and muscle stimulators, implantable drug pumps, implantable cardioverter-defibrillators (ICDs) and the like.
Due in part to the fact that an AIMD resides in a difficult environment and can be exposed to vibratory, tensile stresses, forces and caustic materials, there exists a need for a modicum of fault tolerance against a variety of possible device, component and system failures and improper operation. Among other things, certain forms, aspects and embodiments of the present invention provide improved and more predictable performance of an AIMD when subjected to a variety of failure modes.
There are many situations in which a patient requires long-term monitoring and when it may be desirable to implant a sensor for monitoring within the body of the patient. One such monitor is a pressure monitor, which can measure the pressure at a site in the body, such as a blood vessel or a chamber of the heart. When implanted in a vessel or a heart chamber, the sensor responds to changes in blood pressure at that site. To facilitate measurement of physical parameters in the body, a circuit can be placed at a point along a lead within a vessel or chamber in the body that is used to sense the parameter and communicate a measurement to an implanted AIMD. In order to operate said circuit, electrical energy can be transmitted to the circuit from the AIMD. If the electrical energy to operate the circuit is transmitted to the body of the patient instead of the sensor, such as in the case of a breach of the insulation protecting the conductors carrying the electrical energy to the sensor, this electrical energy has the potential to cause harm to the patient. As an example of the potential harm, an electrical stimulation of myocardial tissue can cause one of many things to occur, such as an erroneous pace of the myocardium or even initiation of fibrillation in the myocardium.
The present invention provides one or more structures, techniques, components and/or methods for avoiding or positively resolving one or more possible failure modes for a chronically implanted medical device that couples to one or more sensors.
In one embodiment of the invention, a possible fault scenario includes a breach of an inner layer of insulation on an elongated medical electrical lead which couples signals from sensor disposed within a sensor capsule to circuitry operatively disposed within an active AIMD having a substantially hermetic housing. In this embodiment the AIMD provides only physiological sensing of a patient parameter, such as endocardial pressure. In one form of the invention, the sensor comprises an absolute pressure sensor adapted for chronic implantation within a portion of a right ventricle (RV) of a patient. The portion could include the RV outflow tract (RVOT) which is a region of relatively high-rate blood flow which correspondingly requires a robust sensor capsule and coupling to a medical electrical lead coupled thereto.
On type of mitigation for this embodiment involves monitoring on a continuous or non-continuous basis the electrical current or drain of the sensor. Specifically, the inner sensor-signal bearing conduit is monitored for excessive current drain (e.g., due to an insulation breach to the subject's body or conductive bodily fluids). In the event that a relative increase in electrical current the power supply to said sensor is disengaged. As a result no electrical current can flow from the sensor to the patient, albeit without maintaining the functionality of the sensor in vivo.
In another embodiment, an AIMD is configured to sense a physiologic parameter of a patient (e.g., blood pressures, acceleration, pH levels, lactate, saturated oxygen, blood sugar, calcium, potassium, sodium, etc.) and provide a therapy such as cardiac pacing, high-energy cardioversion/defibrillation therapy and/or a drug or substance delivery regimen or the like. For example, in an AIMD configured to chronically measure blood pressure, provide cardiac pacing therapy and, as appropriate, deliver high-energy defibrillation therapy, an inner insulation breach of a medical electrical lead that provides electrical communication require explant of the AIMD, in particular if chronic sensing of the physiologic parameter were highly desirable or required to maintain the patient's health. The methods and structures of the invention are equally applicable to those AIMDs adapted to deliver therapy (e.g., diverse electrical stimulation therapies, including relatively low and high-energy therapies, delivery of substances, and the like) as well as those dedicated to physiologic monitoring and/or diagnostics.
In one form of the invention the AIMD 12 receives analog signals from the implanted pressure sensor 20 via lead 14 although digital sensors and/or circuitry can be utilized in conjunction with the invention. As noted, in the depicted embodiment the signals are a function of the pressure sensed by implanted pressure sensor 20 at the monitoring site (e.g. RV 16) which can of course include myriad different locations on or about the heart and other muscles, circulatory system, nervous system, digestive system, skeleton, brain, diverse organs, and the like. In the depicted embodiment, patient 10 carries or otherwise provides or maintains access to an external pressure sensor or reference 22 which is used to correct the readings of the implanted absolute-type pressure sensor 20.
The AIMD 12 optionally includes a digital processor. Thus, the analog signals from implanted pressure sensor 20 are converted to digital signals for processing. Referring briefly to
The sensitivity of AIMD 12 to changes in pressure is a function of the range of pressures that map to a single binary value. The smaller the pressure change represented by consecutive binary values, the more sensitive implanted medical device 12 is to changes in pressure. For example, an 8-bit A/D converter may be configured to map pressures between a minimum site pressure of 760 mm Hg and a maximum site pressure of 860 mm Hg to discrete binary values. In this example, a one-bit increase represents a pressure increase of about 0.4 mm Hg.
In a conventional implanted medical device, there may be a tradeoff between range and sensitivity. When the number of possible discrete binary values is fixed, expanding the range of site pressures that are represented by the binary values results in a decrease in sensitivity, because a one-bit change represents a larger pressure change. Similarly, decreasing the range results in an increase in sensitivity because a one-bit change represents a smaller pressure change.
In an illustrative example, an 8-bit A/D converter may be configured to map pressures between 760 mm Hg and 860 mm Hg to discrete binary values, with a one-bit increase representing a pressure increase of about 0.4 mm Hg. When the same 8-bit A/D converter is configured to map pressures between 746 mm Hg and 874 mm Hg to discrete binary values, the overall range of site pressures that can be mapped to binary values expands by 128 mm Hg. The sensitivity, however, decreases. A one-bit increase represents a pressure increase of 0.5 mm Hg.
Not all changes to range affect sensitivity. In some circumstances, a range may be offset without affecting sensitivity. In an offset, the minimum site pressure and the maximum site pressure are increased or decreased by the same amount. For example, a 8-bit A/D converter may be configured to map pressures between 760 mm Hg and 860 mm Hg to discrete binary values, with a one-bit increase representing a pressure increase of about 0.4 mm Hg. When the pressure range is shifted downward to pressures between 740 mm Hg and 840 mm Hg, the range is offset but not expanded. When the range is offset, sensitivity is not affected. A one-bit increase still represents a pressure increase of about 0.4 mm Hg.
Implanted medical device 12 implements techniques for automatically adjusting mapping parameters in response to changes in pressure conditions.
In particular, implanted medical device 12 periodically evaluates the digital pressure data to determine whether pressure data may be going out of range, and expands and/or offsets the range to avoid having data go out of range. In addition, implanted medical device 12 determines whether the range can be decreased so that sensitivity can be enhanced.
Amplifier 32 supplies the amplified analog signal to A/D converter 34. The range and resolution of pressure signals supplied to A/D converter 34 is a function of the gain of amplifier 32 and the offset of amplifier 32. By adjusting the gain and/or offset of amplifier 32, microprocessor 36 regulates the mapping parameters; that is, the correspondence between site pressures and binary values. A/D converter 34 samples the pressure signals from amplifier 32 and converts the samples into discrete binary values, which are supplied to microprocessor 36. In this way, microprocessor 36, amplifier 32 and A/D converter 34 cooperate to map the site pressures to binary values.
The number of possible discrete binary values that can be generated by A/D converter 34 is fixed. When there is a risk of data out of range, it is not feasible to increase the number of binary values that represent the site pressures. As will be described in more detail below, microprocessor 36 adjusts the gain and/or the offset of amplifier 32 so that the data remain in range and so that the digital pressure data generated by A/D converter 34 accurately reflect the site pressures sensed with pressure sensor 20.
Microprocessor 36 processes the digital pressure data according to algorithms embodied as instructions stored in memory units such as read-only memory (ROM) 38 or random access memory (RAM) 40. Microprocessor 36 may, for example, control a therapy delivery system (not shown in
Microprocessor 36 may further compile statistical information pertaining to the digital pressure data. In one embodiment, microprocessor 36 generates a histogram of the digital pressure data. The histogram, which may be stored in RAM 40, reflects the distribution of pressures sensed by pressure sensor 20.
The histogram includes a plurality of “bins,” i.e., a plurality of numbers of digital data samples of comparable magnitude. For example, a histogram that stores the number of digital values corresponding to pressures between 760 mm Hg and 860 mm Hg may include twenty bins, with each bin recording the number of data samples that fall in a 5 mm Hg span. The first bin holds the number of values between 760 mm Hg and 765 mm Hg, while the second bin holds the number of values between 765 mm Hg and 770 mm Hg, and so on. More or fewer bins may be used.
The distribution of values in the bins provides useful information about the pressures in right ventricle 16. Data accumulates in the histogram over a period of time called a “storage interval,” which may last a few seconds, a few hours or a few days. At the end of the storage interval, microprocessor 36 stores in RAM 40 information about the distribution of pressures, such as the mean, the standard deviation, or pressure values at selected percentiles. Microprocessor 36 may then clear data from the histogram and begin generating a new histogram.
When microprocessor 36 adjusts the mapping parameters, the new histogram may be different from the preceding histogram. In particular, the new histogram may record the distribution of an expanded range of pressure data, or a reduced range of pressure data, or a range that has been offset up or down. In general, the adjustments to the mapping parameters tend to center the distribution in the histogram, and tends to reduce the number of values in the highest and lowest bins. Microprocessor 36 adjusts the mapping parameters based upon the distribution of digital pressure data in the preceding histogram. Microprocessor 36 may make the adjustments to avoid data out of range, to avoid having unused range, or both.
In one embodiment of the invention, microprocessor 36 senses the possibility of out-of-range data or unused range by sensing the contents of the boundary bins of the histogram, for example by checking whether the data distribution has assigned values to the bins that accumulate the lowest values and the highest values of the histogram. As a result of checking the bins, microprocessor 36 may automatically adjust the gain, or the offset, or both of amplifier 32.
In a further embodiment, AIMD 100 comprises any device that is capable of sensing a pressure signal and providing pacing and/or defibrillation or other electrical stimulation therapies to the heart. Another example of an AIMD capable of sensing pressure-related parameters is described in commonly assigned U.S. Pat. No. 6,438,408B1 issued to Mulligan et al. on Aug. 20, 2002.
Processor 102 may be implemented with any type of microprocessor, digital signal processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other integrated or discrete logic circuitry programmed or otherwise configured to provide functionality as described herein. Processor 102 executes instructions stored in digital memory 104 to provide functionality as described below. Instructions provided to processor 102 may be executed in any manner, using any data structures, architecture, programming language and/or other techniques. Digital memory 104 is any storage medium capable of maintaining digital data and instructions provided to processor 102 such as a static or dynamic random access memory (RAM), or any other electronic, magnetic, optical or other storage medium.
As further shown in
In operation, AIMD 100 obtains data about heart 120 via leads 118,120,122, and/or other sources. This data is provided to processor 102, which suitably analyzes the data, stores appropriate data in memory 104, and/or provides a response or report as appropriate. Any identified cardiac episodes (e.g. an arrhythmia or heart failure decompensation) can be treated by intervention of a physician or in an automated manner. In various embodiments, AIMD 100 activates an alarm upon detection of a cardiac event or a detected malfunction of the AIMD. Alternatively or in addition to alarm activation, AIMD 100 selects or adjusts a therapy and coordinates the delivery of the therapy by AIMD 100 or another appropriate device. Optional therapies that may be applied in various embodiments may include drug delivery or electrical stimulation therapies such as cardiac pacing, resynchronization therapy, extra systolic stimulation, neurostimulation.
The exemplary modules and blocks shown in
Pressure sensor 210 may be deployed in an artery for measuring an arterial pressure signal or in the left or right ventricle for measuring a ventricular pressure signal. In some embodiments, pressure sensor 210 may include multiple pressure sensors deployed at different arterial and/or ventricular sites. Pressure sensor 210 may be embodied as the pressure sensor disclosed in commonly assigned U.S. Pat. No. 5,564,434, issued to Halperin et al., hereby incorporated herein in its entirety.
Data sources 207 may include other sensors 212 for acquiring physiological signals useful in monitoring a cardiac condition such as an accelerometer or wall motion sensor, a blood flow sensor, a blood gas sensor such as an oxygen sensor, a pH sensor, or impedance sensors for monitoring respiration, lung wetness, or cardiac chamber volumes. The various data sources 207 may be provided alone or in combination with each other, and may vary from embodiment to embodiment.
Data collection module 206 receives data from each of the data sources 207 by polling each of the sources 207, by responding to interrupts or other signals generated by the sources 207, by receiving data at regular time intervals, or according to any other temporal scheme. Data may be received at data collection module 206 in digital or analog format according to any protocol. If any of the data sources generate analog data, data collection module 206 translates the analog signals to digital equivalents using an analog-to-digital conversion scheme. Data collection module 206 may also convert data from protocols used by data sources 207 to data formats acceptable to data processing module 202, as appropriate.
Data processing module 202 is any circuit, programming routine, application or other hardware/software module that is capable of processing data received from data collection module 206. In various embodiments, data processing module 202 is a software application executing on processor 102 of
Reporting module 220 is any circuit or routine capable of producing appropriate feedback from the AIMD to the patient or to a physician. In various embodiments, suitable reports might include storing data in memory 204, generating an audible or visible alarm 228, producing a wireless message transmitted from a telemetry circuit 230.
In a further embodiment, the particular response provided by reporting module 220 may vary depending upon the severity of the hemodynamic change. Minor episodes may result in no alarm at all, for example, or a relatively non-obtrusive visual or audible alarm. More severe episodes might result in a more noticeable alarm and/or an automatic therapy response.
When the functionality diagramed in
Response module 218 comprises any circuit, software application or other component that interacts with any type of therapy-providing system 224, which may include any type of therapy delivery mechanisms such as a drug delivery system, neurostimulation, and/or cardiac stimulation. In some embodiments, response module 218 may alternatively or additionally interact with an electrical stimulation therapy device that may be integrated with an AIMD to deliver pacing, extra systolic stimulation, cardioversion, defibrillation and/or any other therapy. Accordingly, the various responses that may be provided by the system vary from simple storage and analysis of data to actual provision of therapy in various embodiments.
The various components and processing modules shown in
Referring now to
According to alternate embodiments of the present invention, sensor 17 is selected from a group of physiological sensors, which should be positioned in high flow regions of a circulatory system in order to assure proper function and long term implant viability of the sensor; examples from this group are well known to those skilled in the art and include, but are not limited to oxygen sensors, pressure sensors, flow sensors and temperature sensors. Commonly assigned U.S. Pat. No. 5,564,434 describes the construction of a pressure and temperature sensor and means for integrating the sensor into an implantable lead body. Commonly assigned U.S. Pat. No. 4,791,935 describes the construction of an oxygen sensor and means for integrating the sensor into an implantable lead body. The teachings U.S. Pat. Nos. 5,564,434 and 4,791,935, which provide means for constructing some embodiments of the present invention, are incorporated by reference herein. These drawings illustrate lead body 11 joined to connector legs 2 via a first transition sleeve 3 and a second transition sleeve 4; connector legs 2 are adapted to electrically couple electrodes 15, 16, 19 and 20 and sensor 17 to an IMD in a manner well known to those skilled in the art. Insulated electrical conductors, not shown, coupling each electrode 15, 16, 19 and 20 and sensor 17 to connector legs 2, extend within lead body 11. Arrangements of the conductors within lead body 11 include coaxial positioning (at least up to the sensor capsule 17), non-coaxial positioning and a combination thereof; according to one exemplary embodiment, lead body 11 is formed in part by a silicone or polyurethane multilumen tube, wherein each lumen carries one or more conductors.
In one embodiment, an AIMD configured to chronically monitor venous pressure in the RV continuously applies 2.2 volts to the pressure sensor via the lead and monitors the resulting current pulse waveform to determine the pressure and temperature of the sensor in the RV. If an increase in electrical current appears, the pressure sensor is switched off to prevent the possibility of DC current flowing to the heart. This particular AIMD is adapted to detect R waves and monitor pressure and temperature (used to calibrate the pressure sensor). The R wave detector indicates the beginning of each cardiac cycle, which is used in the algorithm to determine various parameters from the pressure waveform throughout the cardiac cycle.
Thus, a system and method have been described which provide methods and apparatus for mitigating possible failure mechanisms for AIMDs coupled to chronically implantable sensors. Aspects of the present invention have been illustrated by the exemplary embodiments described herein. Numerous variations for providing such robust structures and methods can be readily appreciated by one having skill in the art having the benefit of the teachings provided herein. The described embodiments are intended to be illustrative of methods for practicing the invention and, therefore, should not be considered limiting with regard to the following claims.
While exemplary embodiments have been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that these exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide a convenient road map for implementing an exemplary embodiment of the invention. Various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.
This patent disclosure relates to provisional patent application filed on even date hereof; namely, application Ser. No. 60/745,789 (Atty Dkt. P-24201.00) entitled, “FAULT TOLERANT SENSORS AND METHODS FOR IMPLEMENTING FAULT TOLERANCE IN IMPLANTABLE MEDICAL DEVICES,” the entire contents, including exhibits appended thereto, are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60745789 | Apr 2006 | US |