The present invention relates generally to surgical methods and apparatus and, more specifically, to surgically implantable mesh or sling devices and methods for using and deploying the same.
Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population. Examples of common pelvic ailments include incontinence (e.g., fecal and urinary), pelvic tissue prolapse (e.g., female vaginal prolapse), and conditions of the pelvic floor.
Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others. Other pelvic floor disorders include cystocele, rectocele, enterocele, and prolapse such as anal, uterine and vaginal vault prolapse. A cystocele is a hernia of the bladder, usually into the vagina and introitus. Pelvic disorders such as these can result from weakness or damage to normal pelvic support systems.
Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.
In its severest forms, vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons. These procedures often involve lengthy surgical procedure times.
Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) occurs when the patient is physically stressed.
There is a desire to obtain a minimally invasive yet highly effective implantable mesh that can be used to treat incontinence, and/or pelvic organ prolapse and other conditions.
The present invention describes pelvic mesh implants and methods for treating pelvic conditions such as incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), and other conditions caused by muscle and ligament weakness.
Embodiments of the systems can include one or more needle delivery devices and an implant. The implants can be elongate sling devices, or pelvic prolapse implants. Each implant can generally include a support portion, one or more extension or arm portions, and one or more end anchors. One or more portions of the slings or implants can be constructed of a mesh material.
Various embodiments of the systems can include a needle delivery device having an actuation mechanism and rotatable sheath. The rotatable sheath can shroud or otherwise be provided along at least a portion of the curved or straight needle of the delivery device, and in operable communication with the actuation mechanism. Engagement or activation of the actuation mechanism rotates the sheath to selectively disengage or deploy the anchors of the implant from a distal tip of the needle device.
Certain embodiments of the implant and delivery device can include tube, sheath or like docking or re-docking features to facilitate selective engagement and deployment of the anchor and implant from the device. The anchors can be adapted to penetrate and engage in selected target tissue within the pelvis proximate, at, adjacent, or lateral the urethra, vagina, obturator foramen, endopelvic fascia, bladder, pelvic floor, elevator muscles, and the like.
Embodiments of the present invention may be incorporated into or provided with various commercial products marketed by American Medical Systems of Minnetonka, Minn., e.g., the MiniArc® or MiniArc® Precise Sling Systems.
The present invention generally provides a sling or implant system 10 adapted for insertion to selectively deploy one or more implants or slings to treat various pelvic conditions, including incontinence (e.g., fecal or urinary), pelvic organ prolapse (e.g., rectal or vaginal), or other like conditions. The systems 10 of the present invention can include delivery devices, implants, docking/re-docking features and like configurations, features and devices to facilitate deployment and sling implantation.
The various systems, features and methods detailed herein are envisioned for use with or can incorporate devices, portions or methods of known pelvic implants, tissue or organ repair systems (e.g., for male and female), including those disclosed in U.S. Pat. Nos. 7,500,945, 7,407,480, 7,351,197, 7,347,812, 7,303,525, 7,025,063, 6,691,711, 6,648,921, and 6,612,977, International Patent Publication Nos. WO 2008/057261 and WO 2007/097994, and U.S. Patent Publication Nos. 2010/0105979 2010/0261955, 2002/151762 and 2002/147382. Accordingly, the above-identified disclosures are fully incorporated herein by reference in their entirety.
Referring generally to
The actuation mechanism 20 can include a button, slider or like actuator 28 in operable communication with at least the sheath 22 such that engagement or activation of the button 28 will cause the sheath 22 to rotate about the needle 16.
The actuation mechanism 20 within the handle 14 can include a cam or follower mechanism 38 causing the sheath 22 to rotate around the needle shaft, such that the anchor 30 is caused to move longitudinally in a distal direction off of the end of the tip 26. This longitudinal distal force on the anchor 30 by the cam mechanism 38 can be sufficient to overcome the retention force of the anchor 30 with the needle in accordance with the anchor retention features described herein. As such, once the retention features are disengaged, the anchor 30 slides freely from its distal position on the needle tip 26 and is thereby deployed.
Referring to
Various advantages of the embodiments depicted in
Referring generally to
While traversing within the needle 16, or along an outer portion of the needle in alternative embodiments, the member 50 is retained in a generally longitudinal configuration or shape (
Upon reaching the desired target tissue site, the anchor 30 can be released from the distal tip 26 of the needle 16. Namely, the user can retract or otherwise activate the member 50 such that the member 50 retreats or retracts back toward or into the needle tip 26. At this point, the needle 16 can be retracted, leaving the tissue anchor 30 in place or fixated to the target tissue site.
Referring generally to
Referring generally to
The needle 16 can generally provide a counter force to the twist or rotation to ensure the anchor 30 position is not changed. Further, a barb guard can be included at a distal portion of the tube 60. The barb guard can provide a guard to prevent the tines 31 of the anchor 30 from engaging tissue until the moment of deployment, and can further serve to abut or provide a slight press fit with the anchor 30. The tube 60 provides a convenient, consistent and stable means of engagement or docking the needle 16 with the anchors 30 or sling 54.
The tube or sheath 60 can be torn away after positioning of the anchor 30 and deployment within target tissue. This can be done bilaterally for the two tubes 60, e.g., both extension portions 56 or end anchors 30. Perforations, slots, grooves, and like configurations can be included with the tube 60 to facilitate this tear away feature. The needle 16, or a portion thereof, can be inserted into an end of the hollow tube 60, or can be guided along an external surface or portion of the tube 60 (both shown in
As detailed, the guide sheath or tube 60 can extend from the implant 54 to provide a channel or groove path for the needle to engage the anchors 30. The guide tube 60 can be constructed in a c-shaped, u-shaped, v-shaped or similar configuration to facilitate guidance of the needle. The tube 60 can be weakly attached (e.g., tear away bonds or welds) to the mesh implant 54 such that the tube 60 can be selectively torn away or otherwise removed from the implant.
The embodiment of
As shown in
Referring to
In various embodiments, the anchors 30 can include pivotable, moveable, expandable or collapsible tines 31. In an initial insertion stage, the tines 31 lay generally flat or substantially angled toward the implant 54 or anchor 30 body to prevent engagement of the tines 31 with tissue. Upon deployment, the tines 31 can be forceably or automatically extended out to facilitate engagement with the target tissue location. Expansion and retraction of the tines 31 can be achieved by suture releases, or mechanical or manual means. The anchor 30 or tines 31 can be constructed of acceptable or known materials (e.g., shape memory) and constructs to facilitate such moveable or collapsible functionality.
Referring to
As shown in
A distal tip 26 of the needle 16 for various embodiments can be elongated to a level that promotes extending out from the lumen in the anchor 30, for holding or securing sutures, and the like. Sutures can be used for docking and alignment of the mesh ends 56 of the implant 54, and can be constructed of a relatively stiff material (e.g., wire, coated suture, semi-rigid polymer, etc.). Parts of the suture may need to remain flexible, portions of the suture can be flexible, while others are rigid or semi-rigid.
Further, the anchors 30 of the implant system 10 can include threading (e.g., female) adapted for twisting/rotating engagement with corresponding threads (e.g., male) in the distal tip 26 of the needle device 12. An actuator, rod, or similar mechanism, in the device 12 can facilitate selective threadable engagement and disengagement of the needle tip 26 with the anchors 30.
The needle device of
As detailed herein, the anchors 30 can include pivotable or otherwise collapsible tines 31. The tines 31 can be in communication with the inner lumen 30a of the anchor 30, such that when the needle tip 26 is inserted into the lumen, the tines 31 pivot or collapse to facilitate insertion of the implant 54. At the point of deployment, the needle and tip 26 is removed, thereby causing the tines 31 to return or spring back to their extended position to facilitate fixation and tissue engagement. Pin, rod, or other flexibility or pivot features can be provided with the anchor tines 31 and anchor 30 in general to facilitate the described and depicted collapsibility and expandability.
The implant systems 10, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references. Various methods and tools for introducing, deploying, anchoring and manipulating implants to treat incontinence and prolapse as disclosed in the previously-incorporated references are envisioned for use with the present invention as well. Further, the system and its components or structures can be constructed of known and compatible materials know to those skilled in the art, including metals, polymers, and the like.
All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated, and include those references incorporated within the identified patents, patent applications and publications.
Obviously, numerous modifications and variations of the present invention are possible in light of the teachings herein. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
This application claims priority to and the benefit of U.S. Provisional Application Nos. 61/291,210, filed Dec. 30, 2009, 61/291,372, filed Dec. 31, 2009, and 61/291,363, filed Dec. 31, 2009; wherein each of the referenced applications are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/062546 | 12/30/2010 | WO | 00 | 9/13/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/082330 | 7/7/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2738790 | Todt et al. | Mar 1956 | A |
3472232 | Earl | Oct 1969 | A |
3580313 | McKnight | May 1971 | A |
3763860 | Clarke | Oct 1973 | A |
3858783 | Kapitanov et al. | Jan 1975 | A |
3995619 | Glatzer | Dec 1976 | A |
4172458 | Pereyra | Oct 1979 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4441497 | Paudler | Apr 1984 | A |
4509516 | Richmond | Apr 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4632100 | Somers et al. | Dec 1986 | A |
4873976 | Schreiber | Oct 1989 | A |
4932962 | Yoon et al. | Jun 1990 | A |
4938760 | Burton et al. | Jul 1990 | A |
4969892 | Burton et al. | Nov 1990 | A |
4979956 | Silvestrini | Dec 1990 | A |
5013292 | Lemay | May 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5149329 | Richardson | Sep 1992 | A |
5167665 | McKinney | Dec 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5203864 | Phillips | Apr 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5234438 | Semrad | Aug 1993 | A |
5256133 | Spitz | Oct 1993 | A |
5268001 | Nicholson et al. | Dec 1993 | A |
5269783 | Sander | Dec 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5328077 | Lou | Jul 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5354292 | Braeuer et al. | Oct 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5370650 | Tovey et al. | Dec 1994 | A |
5370662 | Stone et al. | Dec 1994 | A |
5376097 | Phillips | Dec 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5474518 | Velazquez | Dec 1995 | A |
5474543 | McKay | Dec 1995 | A |
5520700 | Beyar et al. | May 1996 | A |
5520703 | Essig | May 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5544664 | Benderev et al. | Aug 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5582188 | Benderev et al. | Dec 1996 | A |
5584860 | Goble et al. | Dec 1996 | A |
5591163 | Thompson | Jan 1997 | A |
5591206 | Moufarrege | Jan 1997 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5643320 | Lower et al. | Jul 1997 | A |
5647836 | Blake et al. | Jul 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5674247 | Sohn | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5690655 | Hart et al. | Nov 1997 | A |
5697931 | Thompson | Dec 1997 | A |
5709708 | Thal | Jan 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5725541 | Anspach, III et al. | Mar 1998 | A |
5741282 | Anspach, III et al. | Apr 1998 | A |
5782862 | Bonuttie | Jul 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5873891 | Sohn | Feb 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5904692 | Steckel et al. | May 1999 | A |
5922026 | Chin | Jul 1999 | A |
5925047 | Errico et al. | Jul 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5980558 | Wiley | Nov 1999 | A |
5984927 | Wenstrom, Jr. | Nov 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
5997554 | Thompson | Dec 1999 | A |
6007539 | Kirsch et al. | Dec 1999 | A |
6019768 | Wenstrom et al. | Feb 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6030393 | Corlew | Feb 2000 | A |
6036701 | Rosenman | Mar 2000 | A |
6042583 | Thompson et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6099538 | Moses | Aug 2000 | A |
6099551 | gabby | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6168611 | Risvi | Jan 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6241736 | Sater et al. | Jun 2001 | B1 |
6245082 | Gellman et al. | Jun 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6319272 | Brenneman | Nov 2001 | B1 |
6322492 | Kovac | Nov 2001 | B1 |
6328744 | Harari et al. | Dec 2001 | B1 |
6334446 | Beyar | Jan 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6406480 | Beyar et al. | Jun 2002 | B1 |
6423072 | Zappala | Jul 2002 | B1 |
6423080 | Gellman et al. | Jul 2002 | B1 |
6440154 | gellman et al. | Aug 2002 | B2 |
6451024 | Thompson et al. | Sep 2002 | B1 |
6454778 | Kortenbach | Sep 2002 | B2 |
6475139 | Miller | Nov 2002 | B1 |
6478727 | Scetbon | Nov 2002 | B2 |
6491703 | Ulmsten | Dec 2002 | B1 |
6502578 | Raz et al. | Jan 2003 | B2 |
6506190 | Walshe | Jan 2003 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6544273 | Harari et al. | Apr 2003 | B1 |
6555017 | Rushford et al. | Apr 2003 | B1 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6592515 | Thierfelder | Jul 2003 | B2 |
6592610 | Beyar | Jul 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6602260 | Harari et al. | Aug 2003 | B2 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6635058 | Beyar et al. | Oct 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6641525 | Rocheleau | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6673010 | Skiba et al. | Jan 2004 | B2 |
6685629 | Therin | Feb 2004 | B2 |
6689047 | Gellman et al. | Feb 2004 | B2 |
6691711 | Raz et al. | Feb 2004 | B2 |
6730110 | Harari et al. | May 2004 | B1 |
6736829 | Li et al. | May 2004 | B1 |
6746455 | Beyar et al. | Jun 2004 | B2 |
6752814 | Gellman et al. | Jun 2004 | B2 |
6802807 | Anderson | Oct 2004 | B2 |
6884212 | Thierfelder et al. | Apr 2005 | B2 |
6908425 | Luscombe | Jun 2005 | B2 |
6908473 | Skiba et al. | Jun 2005 | B2 |
6911002 | Fierro | Jun 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6932759 | Kammerer | Aug 2005 | B2 |
6936052 | Gellman et al. | Aug 2005 | B2 |
6971986 | Staskin et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6981983 | Rosenblatt et al. | Jan 2006 | B1 |
6991597 | Gellman et al. | Jan 2006 | B2 |
7014607 | Gellman | Mar 2006 | B2 |
7025063 | Snitkin et al. | Apr 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7037255 | Inman | May 2006 | B2 |
7048682 | Neisz et al. | May 2006 | B2 |
7056333 | Walshe | Jun 2006 | B2 |
7070556 | Anderson | Jul 2006 | B2 |
7083637 | Tannhauser | Aug 2006 | B1 |
7087059 | Harari et al. | Aug 2006 | B2 |
7112171 | Rocheleau et al. | Sep 2006 | B2 |
7121997 | Kammerer et al. | Oct 2006 | B2 |
7131943 | Kammerer | Nov 2006 | B2 |
7189251 | Kay | Mar 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7226407 | Kammerer | Jun 2007 | B2 |
7226408 | Harari et al. | Jun 2007 | B2 |
7229404 | Bouffier | Jun 2007 | B2 |
7229453 | Anderson | Jun 2007 | B2 |
7235043 | Gellman et al. | Jun 2007 | B2 |
7261723 | Smith et al. | Aug 2007 | B2 |
7267645 | Anderson et al. | Sep 2007 | B2 |
7291104 | Neisz et al. | Nov 2007 | B2 |
7297102 | Smith et al. | Nov 2007 | B2 |
7303525 | Watschke et al. | Dec 2007 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7347812 | Mellier | Mar 2008 | B2 |
7351196 | Goldmann et al. | Apr 2008 | B2 |
7351197 | Montpetit et al. | Apr 2008 | B2 |
7357773 | Watschke et al. | Apr 2008 | B2 |
7364541 | Chu et al. | Apr 2008 | B2 |
7371245 | Evans et al. | May 2008 | B2 |
7387634 | Benderev | Jun 2008 | B2 |
7393320 | Montpetit et al. | Jul 2008 | B2 |
7407480 | Staskin et al. | Aug 2008 | B2 |
7410460 | Benderev | Aug 2008 | B2 |
7413540 | Gellman et al. | Aug 2008 | B2 |
7422557 | Arnal | Sep 2008 | B2 |
7494495 | Delorme et al. | Feb 2009 | B2 |
7500945 | Coxt et al. | Mar 2009 | B2 |
7517313 | Thierfelder et al. | Apr 2009 | B2 |
7527588 | Zaddem et al. | May 2009 | B2 |
7527633 | Rioux | May 2009 | B2 |
7547316 | Priewe et al. | Jun 2009 | B2 |
7588598 | Delorme et al. | Sep 2009 | B2 |
7601118 | Smith et al. | Oct 2009 | B2 |
7614999 | Gellman et al. | Nov 2009 | B2 |
7621865 | Gellman et al. | Nov 2009 | B2 |
7637860 | MacLean | Dec 2009 | B2 |
7686759 | Sater | Mar 2010 | B2 |
7686760 | Anderson et al. | Mar 2010 | B2 |
7691050 | Gellman et al. | Apr 2010 | B2 |
7691052 | Gellman et al. | Apr 2010 | B2 |
7740576 | Hodroff | Jun 2010 | B2 |
7753839 | Siegel et al. | Jul 2010 | B2 |
7762942 | Neisz et al. | Jul 2010 | B2 |
7828715 | Haverfield | Nov 2010 | B2 |
20010000533 | Kovac | Apr 2001 | A1 |
20010018549 | Scetbon | Aug 2001 | A1 |
20010027321 | Gellman et al. | Oct 2001 | A1 |
20010041895 | Beyar et al. | Nov 2001 | A1 |
20010049467 | Lehe et al. | Dec 2001 | A1 |
20010053916 | Rioux | Dec 2001 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020035369 | Beyar et al. | Mar 2002 | A1 |
20020038119 | Weber et al. | Mar 2002 | A1 |
20020038132 | Abrams | Mar 2002 | A1 |
20020050277 | Beyar | May 2002 | A1 |
20020055748 | Gellman et al. | May 2002 | A1 |
20020058959 | Gellman et al. | May 2002 | A1 |
20020068948 | Stormby et al. | Jun 2002 | A1 |
20020077526 | Kammerer et al. | Jun 2002 | A1 |
20020082619 | Cabak et al. | Jun 2002 | A1 |
20020091373 | Berger | Jul 2002 | A1 |
20020095064 | Beyar | Jul 2002 | A1 |
20020095163 | Beyer et al. | Jul 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020107525 | harari et al. | Aug 2002 | A1 |
20020128681 | Broome et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151762 | Rocheleau et al. | Oct 2002 | A1 |
20020151909 | Gellman et al. | Oct 2002 | A1 |
20020156487 | Gellman et al. | Oct 2002 | A1 |
20020156488 | Gellman et al. | Oct 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020188169 | Kammerer et al. | Dec 2002 | A1 |
20030004395 | Therin | Jan 2003 | A1 |
20030009181 | Gellman et al. | Jan 2003 | A1 |
20030023136 | Raz | Jan 2003 | A1 |
20030023138 | Luscombe | Jan 2003 | A1 |
20030036676 | Scetbon | Feb 2003 | A1 |
20030045774 | Staskin et al. | Mar 2003 | A1 |
20030050530 | Neisz et al. | Mar 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030176875 | Anderson | Sep 2003 | A1 |
20030191360 | Browning | Oct 2003 | A1 |
20030225424 | Benderev | Dec 2003 | A1 |
20040015057 | Rocheleau et al. | Jan 2004 | A1 |
20040039453 | Anderson et al. | Feb 2004 | A1 |
20040172063 | Li et al. | Sep 2004 | A1 |
20040193215 | Harari et al. | Sep 2004 | A1 |
20040225181 | Chu et al. | Nov 2004 | A1 |
20040267088 | Kammerer | Dec 2004 | A1 |
20050000523 | Beraud | Jan 2005 | A1 |
20050004426 | Raz et al. | Jan 2005 | A1 |
20050004576 | Benderev | Jan 2005 | A1 |
20050065395 | Mellier | Mar 2005 | A1 |
20050131391 | Chu et al. | Jun 2005 | A1 |
20050131393 | Chu et al. | Jun 2005 | A1 |
20050143618 | Anderson et al. | Jun 2005 | A1 |
20050199249 | Karram | Sep 2005 | A1 |
20050245787 | Cox et al. | Nov 2005 | A1 |
20050256530 | Petros | Nov 2005 | A1 |
20050277806 | Cristalli | Dec 2005 | A1 |
20050278037 | Delorme et al. | Dec 2005 | A1 |
20050283189 | Rosenblatt et al. | Dec 2005 | A1 |
20050283246 | Cauthen, III et al. | Dec 2005 | A1 |
20060004364 | Green et al. | Jan 2006 | A1 |
20060058578 | Browning | Mar 2006 | A1 |
20060089524 | Chu | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060173524 | Salahieh et al. | Aug 2006 | A1 |
20060195007 | Anderson | Aug 2006 | A1 |
20060217589 | Wam et al. | Sep 2006 | A1 |
20060229493 | Weiser et al. | Oct 2006 | A1 |
20060229596 | Weiser et al. | Oct 2006 | A1 |
20060252980 | Arnal et al. | Nov 2006 | A1 |
20060260618 | Hodroff et al. | Nov 2006 | A1 |
20060271074 | Ewers et al. | Nov 2006 | A1 |
20060287571 | Gozzi | Dec 2006 | A1 |
20070015953 | MacLean | Jan 2007 | A1 |
20070078295 | landgrebe | Apr 2007 | A1 |
20070173864 | Chu | Jul 2007 | A1 |
20080039678 | Montpetit et al. | Feb 2008 | A1 |
20080132753 | Goddard | Jun 2008 | A1 |
20080300607 | Meade et al. | Dec 2008 | A1 |
20090012353 | Beyer | Jan 2009 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090137864 | Cox et al. | May 2009 | A1 |
20090156891 | Heys et al. | Jun 2009 | A1 |
20090182190 | Dann | Jul 2009 | A1 |
20090221867 | Ogdahl et al. | Sep 2009 | A1 |
20090221868 | Evans | Sep 2009 | A1 |
20090287229 | Ogdahl et al. | Nov 2009 | A1 |
20100010631 | Otte et al. | Jan 2010 | A1 |
20100094079 | Inman | Apr 2010 | A1 |
20100105979 | Hamel et al. | Apr 2010 | A1 |
20100152528 | Chapmenan et al. | Jun 2010 | A1 |
20100168595 | Inman et al. | Jul 2010 | A1 |
20100261952 | Montpetit et al. | Oct 2010 | A1 |
20100261955 | O'Hern et al. | Oct 2010 | A1 |
20110082328 | Gozzi et al. | Apr 2011 | A1 |
20110160529 | Crawford | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2002241673 AU | Nov 2005 | AU |
2404459 | Aug 2005 | CA |
2305815 | Feb 1973 | DE |
4220283 | May 1994 | DE |
10211360 | Sep 2003 | DE |
20016866 | Mar 2007 | DE |
0650703 | Jun 1994 | EP |
0643945 | Jul 1994 | EP |
0632999 | Jan 1995 | EP |
0643945 | Mar 1995 | EP |
1093758 | Apr 2001 | EP |
1342450 | Sep 2003 | EP |
2852813 | Jan 2004 | FR |
285217 | Oct 2004 | FR |
2268690 | Jan 1994 | GB |
2353220 | Oct 2000 | GB |
1225547 | Apr 1986 | SU |
1342486 | Oct 1987 | SU |
WO9310715 | Jun 1993 | WO |
WO9319678 | Oct 1993 | WO |
WO9511631 | May 1995 | WO |
WO9525469 | Sep 1995 | WO |
WO9716121 | May 1997 | WO |
WO9730638 | Aug 1997 | WO |
WO9747244 | Dec 1997 | WO |
WO9819606 | May 1998 | WO |
WO9835606 | Aug 1998 | WO |
WO9835616 | Aug 1998 | WO |
WO9842261 | Oct 1998 | WO |
WO9853746 | Dec 1998 | WO |
WO9937216 | Jul 1999 | WO |
WO9937217 | Jul 1999 | WO |
WO9952450 | Oct 1999 | WO |
WO9953844 | Oct 1999 | WO |
WO9958074 | Nov 1999 | WO |
WO9959477 | Nov 1999 | WO |
WO0013601 | Mar 2000 | WO |
WO0030556 | Jun 2000 | WO |
WO0040158 | Jul 2000 | WO |
WO0057796 | Oct 2000 | WO |
WO0074594 | Dec 2000 | WO |
WO0074613 | Dec 2000 | WO |
WO0074633 | Dec 2000 | WO |
WO0230293 | Apr 2002 | WO |
WO0232284 | Apr 2002 | WO |
WO0234124 | May 2002 | WO |
WO0239890 | May 2002 | WO |
WO02058563 | Aug 2002 | WO |
WO02062237 | Aug 2002 | WO |
WO02069781 | Sep 2002 | WO |
WO02071953 | Sep 2002 | WO |
WO03013392 | Feb 2003 | WO |
WO03017848 | Mar 2003 | WO |
WO03034891 | May 2003 | WO |
WO03034939 | May 2003 | WO |
WO03047435 | Jun 2003 | WO |
WO03068107 | Aug 2003 | WO |
WO03075792 | Sep 2003 | WO |
WO03086205 | Oct 2003 | WO |
WO03092546 | Nov 2003 | WO |
WO03096928 | Nov 2003 | WO |
WO03096929 | Nov 2003 | WO |
WO2004016196 | Feb 2004 | WO |
WO2004034912 | Apr 2004 | WO |
WO2005004727 | Jan 2005 | WO |
WO2005046511 | May 2005 | WO |
WO2005048850 | Jun 2005 | WO |
WO2005079702 | Sep 2005 | WO |
WO2005122954 | Dec 2005 | WO |
WO2006007189 | Jan 2006 | WO |
WO2006007190 | Jan 2006 | WO |
WO2006031879 | Mar 2006 | WO |
WO2006069078 | Jun 2006 | WO |
WO2006108145 | Oct 2006 | WO |
WO2007002012 | Jan 2007 | WO |
WO2007002071 | Jan 2007 | WO |
WO2007014241 | Feb 2007 | WO |
WO2007016083 | Feb 2007 | WO |
WO2007016698 | Feb 2007 | WO |
WO2007027592 | Mar 2007 | WO |
WO2007059199 | May 2007 | WO |
2007097994 | Aug 2007 | WO |
WO2007097994 | Aug 2007 | WO |
WO2007137226 | Nov 2007 | WO |
WO2007146784 | Dec 2007 | WO |
WO2007149348 | Dec 2007 | WO |
2008057261 | May 2008 | WO |
WO2008057261 | May 2008 | WO |
WO2008124056 | Oct 2008 | WO |
WO2009005714 | Jan 2009 | WO |
2009017680 | Feb 2009 | WO |
WO2009017680 | Feb 2009 | WO |
WO 2009038781 | Mar 2009 | WO |
Entry |
---|
“We're staying ahead of the curve” Introducing the IVS Tunneller Device for Tension Free Procedures, Tyco Healthcare, 3 pages (2002). |
Advantage A/T™, Surgical Mesh Sling Kit, Boston Scientific, 6 pages (2002). |
Benderev, Theodore V., MD, A Modified Percutaneous Outpatient Bladder Neck Suspension System, Journal of Urology, vol. 152, pp. 2316-2320 (Dec. 1994). |
Benderev, Theodore V., MD, Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension, Urology, vol. 40, No. 5, pp. 409-418 (Nov. 1992). |
Capio™ CL—Transvaginal Suture Capturing Device—Transvaginal Suture Fixation to Cooper's Ligament for Sling Procedures, Boston Scientific, Microvasive®, 8 pages, (2002). |
Cook/Ob Gyn®, Urogynecology, Copyright Cook Urological Inc., pp. 1-36 (1996). |
Dargent, D. et al., Insertion of a Suburethral Sling Through the Obturator Membrane in the Treatment of Female Urinary Incontinence, Gynecol Obstet Fertil, vol. 30, pp. 576-582 (2002). |
Gynecare TVT Tension-Free Support for Incontinence, the tension-free solution to female Incontinence, Gynecare Worldwide,6 pages, (2002). |
IVS Tunneller—A Universal instrument for anterior and posterior intra-vaginal tape placement, Tyco Healthcare, 4 pages (Aug. 2002). |
IVS Tunneller—ein universelles Instrument fur die Intra Vaginal Schlingenplastik, Tyco Healthcare, 4 pages (2001). |
IVS Tunneller, Australian Medical Design Breakthrough for GSI, mixed incontinence and vault prolapse, AMA Medical Products, 4 pages (no date). |
Karram, Mickey M. et al., Chapter 19 Surgical Treatment of Vaginal Vault Prolapse, Urogynecology and Reconstructive Pelvic Surgery, (Walters & Karram eds.) pp. 235-256 (Mosby 1999). |
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling: A Long Term Cure for SUI?, Contemporary OB/GYN, 10 pages (Feb. 1998). |
Mitek Brochure, Therapy of Urinary Stess Incontinence in Women Using Mitek GIII Anchors, by Valenzio C. Mascio, MD. |
Pelosi, Marco Antonio III et al., Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence, Journal of Laparoendoscopic & Advaned Surgical Techniques, vol. 9, No. 1 p. |
Readjustable REMEEX® system, Neomedic International, 8 pages (no date). |
SABRE™ Bioabsorbable Sling, Generation Now, Mentor, 4 pages (May 2002). |
SABRE™ Surgical Procedure, Mentor, 6 pages (Aug. 2002). |
Sanz, Luis E. et al., Modification of Abdominal Sacrocolpopexy Using a Suture Anchor System, The Journal of Reproductive Medicine, vol. 48, n. 7, pp. 496-500 (Jul. 2003). |
Ulmsten, U. et al., An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 7, pp. 81-86 (May 1996). |
Ulmsten, Ulf et al., A Three Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 345-350 (1999). |
UroMed Access Instrument System for the Sub-urethral Sling Procedure Catalog No. 120235, Directions for Use, (3 pages). |
Vesica® Percutaneous Bladder Neck Stabilization Kit, a New Approach to Bladder Neck Suspenison, Microvasive® Boston Scientific Corporation, 4 pages (1995). |
Precision Twist, Low Profile design for Precise Anchor Placement, Boston Scientific Microvasive, 2001 2 pp. |
Vesica Sling Kit, Microvasive Boston Scientific, 1997, 6pp. |
Precision Tack, The Precise Approach to Transvaginal Sling Procedures, Boston Scientific, 1998, 4pp. |
International Search Report and the Written Opinion rendered by the International Searching Authority on Mar. 7, 2011, 11 pages. |
Office Action to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Dec. 5, 2014, 1 page. |
Office Action to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Aug. 14, 2015, 4 pages. |
Office Action (Patent Exam Report No. 1) to the corresponding AU Patent Application No. 2010339416 rendered by the Australian Patent Office on Mar. 28, 2013, 4 pages. |
Extended European Search Report to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Nov. 18, 2014, 6 pages. |
Office Action (Patent Exam Report No. 1) to the corresponding AU Patent Application No. 2013224689 rendered by the Australian Patent Office on Dec. 16, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20130006048 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61291210 | Dec 2009 | US | |
61291372 | Dec 2009 | US | |
61291363 | Dec 2009 | US |