Implantable sling systems and methods

Information

  • Patent Grant
  • 9345473
  • Patent Number
    9,345,473
  • Date Filed
    Thursday, December 30, 2010
    14 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
Various embodiments of sling or implant systems are provided. The sling or implant systems can be employed to treat incontinence, prolapse, and like conditions. A needle delivery device can be included, wherein the delivery device includes a needle and a rotatable sheath. The rotatable sheath can rotate upon actuation relative to the needle to selectively deploy or disengage an implant anchor from the distal end of the needle.
Description
FIELD OF THE INVENTION

The present invention relates generally to surgical methods and apparatus and, more specifically, to surgically implantable mesh or sling devices and methods for using and deploying the same.


BACKGROUND OF THE INVENTION

Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population. Examples of common pelvic ailments include incontinence (e.g., fecal and urinary), pelvic tissue prolapse (e.g., female vaginal prolapse), and conditions of the pelvic floor.


Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others. Other pelvic floor disorders include cystocele, rectocele, enterocele, and prolapse such as anal, uterine and vaginal vault prolapse. A cystocele is a hernia of the bladder, usually into the vagina and introitus. Pelvic disorders such as these can result from weakness or damage to normal pelvic support systems.


Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.


In its severest forms, vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons. These procedures often involve lengthy surgical procedure times.


Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) occurs when the patient is physically stressed.


There is a desire to obtain a minimally invasive yet highly effective implantable mesh that can be used to treat incontinence, and/or pelvic organ prolapse and other conditions.


SUMMARY OF THE INVENTION

The present invention describes pelvic mesh implants and methods for treating pelvic conditions such as incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), and other conditions caused by muscle and ligament weakness.


Embodiments of the systems can include one or more needle delivery devices and an implant. The implants can be elongate sling devices, or pelvic prolapse implants. Each implant can generally include a support portion, one or more extension or arm portions, and one or more end anchors. One or more portions of the slings or implants can be constructed of a mesh material.


Various embodiments of the systems can include a needle delivery device having an actuation mechanism and rotatable sheath. The rotatable sheath can shroud or otherwise be provided along at least a portion of the curved or straight needle of the delivery device, and in operable communication with the actuation mechanism. Engagement or activation of the actuation mechanism rotates the sheath to selectively disengage or deploy the anchors of the implant from a distal tip of the needle device.


Certain embodiments of the implant and delivery device can include tube, sheath or like docking or re-docking features to facilitate selective engagement and deployment of the anchor and implant from the device. The anchors can be adapted to penetrate and engage in selected target tissue within the pelvis proximate, at, adjacent, or lateral the urethra, vagina, obturator foramen, endopelvic fascia, bladder, pelvic floor, elevator muscles, and the like.


Embodiments of the present invention may be incorporated into or provided with various commercial products marketed by American Medical Systems of Minnetonka, Minn., e.g., the MiniArc® or MiniArc® Precise Sling Systems.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a needle delivery device with a rotatable sheath in accordance with embodiments of the present invention.



FIG. 2 is a schematic close-up cross-sectional view of a portion of a needle delivery device handle and actuation mechanism in accordance with embodiments of the present invention.



FIG. 3 is a schematic close-up cross-sectional view of a portion of a needle delivery device distal end, anchor and rotatable sheath in accordance with embodiments of the present invention.



FIGS. 4-6 are schematic cross-sectional partial views of an anchor, distal needle tip, and retention feature in accordance with embodiments of the present invention.



FIG. 7 is a top view of a mesh sling implant in accordance with embodiments of the present invention.



FIGS. 8-9 are schematic views of a sling implant, and tube docking/re-docking features or portions in accordance with embodiments of the present invention.



FIG. 10 is a top view of sling implant having a mesh support portion, and extension portions or arms in accordance with embodiments of the present invention.



FIG. 11 is a close-up partial schematic view of a tube or sheath extending substantially around a sling implant and anchor in accordance with embodiments of the present invention.



FIGS. 12-15 show a sling implant and delivery system having multiple needle delivery devices in accordance with embodiments of the present invention.



FIG. 16 is a close-up partial cross-sectional schematic view of a slidable tube or sheath, implant and anchor in accordance with embodiments of the present invention.



FIG. 17 shows a sling implant system having a slidable or displaceable tube or sheath in accordance with embodiments of the present invention.



FIG. 18 shows a sling implant system having a sling implant, sliding yoke, and needle delivery device in accordance with embodiments of the present invention.



FIG. 19 is shows a needle delivery device and distal needle tip configuration in accordance with embodiments of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention generally provides a sling or implant system 10 adapted for insertion to selectively deploy one or more implants or slings to treat various pelvic conditions, including incontinence (e.g., fecal or urinary), pelvic organ prolapse (e.g., rectal or vaginal), or other like conditions. The systems 10 of the present invention can include delivery devices, implants, docking/re-docking features and like configurations, features and devices to facilitate deployment and sling implantation.


The various systems, features and methods detailed herein are envisioned for use with or can incorporate devices, portions or methods of known pelvic implants, tissue or organ repair systems (e.g., for male and female), including those disclosed in U.S. Pat. Nos. 7,500,945, 7,407,480, 7,351,197, 7,347,812, 7,303,525, 7,025,063, 6,691,711, 6,648,921, and 6,612,977, International Patent Publication Nos. WO 2008/057261 and WO 2007/097994, and U.S. Patent Publication Nos. 2010/0105979 2010/0261955, 2002/151762 and 2002/147382. Accordingly, the above-identified disclosures are fully incorporated herein by reference in their entirety.


Referring generally to FIGS. 1-3, embodiments of an implant delivery system 10 are shown. The implant delivery system 10 can include a delivery tool 12, having a handle 14 and a needle portion 16. The handle portion 14 can include an actuation mechanism 20. The needle portion 16 can include a needle 18, a rotatable sheath or tube 22 and a distal end portion 24. In various embodiments, the needle 18 can be hollow, solid, curved, straight, helical, or can take on a myriad of other like and compatible configurations. The sheath 22 generally shrouds a length of the needle portion 16. The distal end portion 24 can include an anchor retention and deployment tip 26.


The actuation mechanism 20 can include a button, slider or like actuator 28 in operable communication with at least the sheath 22 such that engagement or activation of the button 28 will cause the sheath 22 to rotate about the needle 16. FIGS. 2-3 show an embodiment of the handle 14 and distal end portion 24 of the needle 16, wherein pressing on or actuation of the button 28 rotates the sheath 22 to correspondingly deploy, push or release a tissue anchor 30 from the needle portion 16. For retention (e.g., snap engagement) of the anchor 30 on the distal tip 26 of the needle portion, embodiments of the anchor 30 can include small protrusions, ribs, ridges, indents or other features 32 within the lumen 30a of the anchor 30. Corresponding, reversed or mirrored features 34 can be included at the end of the engaged distal tip 26. Snap engagement of the anchor 30 to the tip 26 is provided with the features 32, 34 such that the anchor 30 is retained on the needle portion 16 until the time of selective disengagement during final deployment within the patient's soft tissue. This configuration further allows for audible and tactile feedback of engagement of the anchor 30 to the tip 26. The level of force needed to snap engage anchor 30 and needle 16 can vary greatly, depending on the materials used for the components, and the construct of the features 32, 34. As depicted in FIG. 3, the anchor 30 is initially keyed to the needle body (e.g., tip 26) such that the anchor 30 cannot rotate, but can slide longitudinally. The sheath 22 can include a barb guard 22a at the end proximate or at the distal end 24. The barb guard 22a and anchor 30 interface can be angled, straight, undulating, or take on various other configurations to facilitate the described snap engagement or retention. The anchor 30 can include one or more tines 31 adapted to mateably or abuttably engage corresponding surfaces or extensions in the barb guard 22a.


The actuation mechanism 20 within the handle 14 can include a cam or follower mechanism 38 causing the sheath 22 to rotate around the needle shaft, such that the anchor 30 is caused to move longitudinally in a distal direction off of the end of the tip 26. This longitudinal distal force on the anchor 30 by the cam mechanism 38 can be sufficient to overcome the retention force of the anchor 30 with the needle in accordance with the anchor retention features described herein. As such, once the retention features are disengaged, the anchor 30 slides freely from its distal position on the needle tip 26 and is thereby deployed.


Referring to FIG. 2, actuation mechanism 20 within the handle can include a barrel 40 adapted for longitudinal displacement within the handle 14 housing. In general, the barrel 40 is restricted from rotational movement. A proximal end of the sheath 22 is constrained within a housing boundary 41 such that it can rotate, but does not move longitudinally. As such, longitudinal movement of the button 28 and barrel 40 causes the sheath 22 to rotate. For example, the sheath 22 can include one or more cam mechanisms or features 38, generally opposed by 180 degrees. The barrel 40 can further include one or more cams, generally opposed by 180 degrees. Compression springs 44 are included and provide a resetting feature.


Various advantages of the embodiments depicted in FIGS. 1-3 include, a self-resetting handle mechanism 20, a convenient handle actuator 28, anchor tines 31 retained until deployment, minimization of tissue disruption by anchor tines 31 during anchor deployment, repeatable and secure engagement and disengagement of the anchor 30 and the needle 16, as well as tactile and audible feedback with the anchor 30 engagement. The various features and mechanisms, or portions thereof, can be constructed of known and compatible metals and polymers.


Referring generally to FIGS. 4-6, selective engagement and retention of the anchor 30 to the needle tip 26 for various embodiments are shown. Such embodiments can include a selectively extendable and retractable fixation member 50. The fixation member 50 is adapted to traverse, generally longitudinally, within or along the lumen of the hollow needle body 16. The fixation member 50 can be a shape memory wire or member, such as a Nitinol or other like wire materials, adapted to move in and out of the distal tip portion 26 of the needle 16 upon actuation by an end user (e.g., button or actuator in the handle 14). Various handle 14 and actuation members 28 can be included in operable communication with the member 50 to facilitate displacement of the member 50.


While traversing within the needle 16, or along an outer portion of the needle in alternative embodiments, the member 50 is retained in a generally longitudinal configuration or shape (FIG. 4). As a portion of the member 50 is deployed out of the distal tip 26 of the needle 16, at least a portion of the member 50 is generally free to resume its default shape, such as a curved or angled configuration. As such, the tip or end portion of the member 50 will tend to move or curve around the distal tip 26 to engage or otherwise retain the anchor 30 attached or provided at the distal tip 26 (FIG. 5). This will, in turn, secure the anchor 30 to the distal tip 26 such that the anchor 30 can be inserted, positioned and ultimately fixated within a target tissue site (FIG. 6).


Upon reaching the desired target tissue site, the anchor 30 can be released from the distal tip 26 of the needle 16. Namely, the user can retract or otherwise activate the member 50 such that the member 50 retreats or retracts back toward or into the needle tip 26. At this point, the needle 16 can be retracted, leaving the tissue anchor 30 in place or fixated to the target tissue site.


Referring generally to FIGS. 7-19, various embodiments of implantable sling or implant systems 54 are provided. In general, the implant 54 can be a mesh or patterned strut construct having extending portions 56 and a support portion 58. One or more anchors 30 can be included at the end portions of the extension portions 56. Various portions of the implants 54 can be constructed of polymer materials, such as a film or sheet material of polypropylene, polyethylene, fluoropolymers or like compatible materials.


Referring generally to FIGS. 8-19, various embodiments of the mesh or sling implant 54 are shown with various docking or re-docking features. Such re-docking features facilitate repositioning of the anchor 30 with the introducer needle 16, in or out of the patient's body. In one embodiment, a tube or sheath 60 is provided such that the introducer needle 16 is insertable within the tube 60. The tube 60 may encircle the needle 16, it may be integral with the sling or implant 54, or even made from the mesh or other portion of the implant 54. In other instances, the tube 60 can be a separate component, and may be semi-circular, v-shaped, or u-shaped rather than completely encircling the needle 16, to at least partially guide the needle 16 along the tube 60. The tube 60 can be removed with an axial tensile pull or with relative rotation (e.g., similar to a plastic bottle cap). As shown in FIG. 8, the tear away portion can include a thin tab 61 adapted to break the anchor 30 away from the needle 16 and/or tube 60 with a twisting motion.


The needle 16 can generally provide a counter force to the twist or rotation to ensure the anchor 30 position is not changed. Further, a barb guard can be included at a distal portion of the tube 60. The barb guard can provide a guard to prevent the tines 31 of the anchor 30 from engaging tissue until the moment of deployment, and can further serve to abut or provide a slight press fit with the anchor 30. The tube 60 provides a convenient, consistent and stable means of engagement or docking the needle 16 with the anchors 30 or sling 54.


The tube or sheath 60 can be torn away after positioning of the anchor 30 and deployment within target tissue. This can be done bilaterally for the two tubes 60, e.g., both extension portions 56 or end anchors 30. Perforations, slots, grooves, and like configurations can be included with the tube 60 to facilitate this tear away feature. The needle 16, or a portion thereof, can be inserted into an end of the hollow tube 60, or can be guided along an external surface or portion of the tube 60 (both shown in FIG. 9)


As detailed, the guide sheath or tube 60 can extend from the implant 54 to provide a channel or groove path for the needle to engage the anchors 30. The guide tube 60 can be constructed in a c-shaped, u-shaped, v-shaped or similar configuration to facilitate guidance of the needle. The tube 60 can be weakly attached (e.g., tear away bonds or welds) to the mesh implant 54 such that the tube 60 can be selectively torn away or otherwise removed from the implant.


The embodiment of FIG. 10 can include an implant 54 having the center mesh support portion 58, with lateral arms or extension portions 56 extending therefrom. The lateral arms 56 can be included with the tube 60 to again facilitate engagement and guidance of a needle 16 to the anchors 30. The lateral arms 56 can be constructed of wrapped mesh, hollow tube material, or take on a myriad of other configurations and material constructs. The arms 56 can further include one or more ports 63 adapted to facilitate entry and exit of the needle 16 or tip 26 for engagement and deployment of the anchor 30.


As shown in FIG. 11, various sheath or tube 60 embodiments can extend above or around at least a portion of the anchors 30. As such, the tube 60 can be longitudinally moved to slide away from the anchors 30 at deployment or implantation. The tube 60 can be perforated or scored to further facilitate removal. Again, the tube 60 can protect the barbs or tines 31 of the anchor 30 from engaging tissue until final implantation.


Referring to FIGS. 12-15, the sling or implant system 10 can include two needle delivery devices 12 rather than a single needle device. The needle device 12 can be adapted to engage and manipulate a corresponding anchor 30 of the implant 54. As such, deployment, manipulation, and tensioning can be applied to the implant 54 by one or both of the needle devices. In one embodiment, as shown in FIGS. 11-15, one of the needle devices 12a can include a barb guard 26a, with the other device 12b not having a barb guard. The needle device 12a can be used to anchor the sling on a second target tissue location, thus facilitating tensioning (advancing and retracting needle/anchor) without engaging the barbs 31 of the anchor 30 with the tissue until the desired tension is obtained.


In various embodiments, the anchors 30 can include pivotable, moveable, expandable or collapsible tines 31. In an initial insertion stage, the tines 31 lay generally flat or substantially angled toward the implant 54 or anchor 30 body to prevent engagement of the tines 31 with tissue. Upon deployment, the tines 31 can be forceably or automatically extended out to facilitate engagement with the target tissue location. Expansion and retraction of the tines 31 can be achieved by suture releases, or mechanical or manual means. The anchor 30 or tines 31 can be constructed of acceptable or known materials (e.g., shape memory) and constructs to facilitate such moveable or collapsible functionality.


Referring to FIGS. 16-17, the tube or sheath 60 can be free floating or adapted to split along a length thereof to facilitate guidance of the needle 16 and moveability of the tube 60. The tube 60 can be constructed of flexible, rigid, or semi-rigid materials known by those of skill in the art. As such, the tube 60 can selectively engage and disengage with the tines 31 of the anchors 30. The moveability of the tube 60 allows it to slide along a length of the sling 54 as shown in FIG. 17, thus facilitating easy removal and optimal positioning during deployment.


As shown in FIG. 18, the implant system 10 can include a yoke 65 adapted to slide or move along a length of the implant 54 or sheath 60. Again, the implant 54 can be constructed of mesh, solid material, hollow polymer, and the like. The needle device 12 is adapted to engage the yoke 65 to facilitate attachment with the implant 54 and guidance along the implant 54 and needle 16 during insertion and deployment.


A distal tip 26 of the needle 16 for various embodiments can be elongated to a level that promotes extending out from the lumen in the anchor 30, for holding or securing sutures, and the like. Sutures can be used for docking and alignment of the mesh ends 56 of the implant 54, and can be constructed of a relatively stiff material (e.g., wire, coated suture, semi-rigid polymer, etc.). Parts of the suture may need to remain flexible, portions of the suture can be flexible, while others are rigid or semi-rigid.


Further, the anchors 30 of the implant system 10 can include threading (e.g., female) adapted for twisting/rotating engagement with corresponding threads (e.g., male) in the distal tip 26 of the needle device 12. An actuator, rod, or similar mechanism, in the device 12 can facilitate selective threadable engagement and disengagement of the needle tip 26 with the anchors 30.


The needle device of FIG. 19 can include a distal portion having a bulbous or generally mushroom-shaped element 70 to selectively retain the anchor 30 on the needle tip 26. As such, an actuator 29 in the handle 14 can be activated or engaged to retract or withdraw the element 70 into the needle 16 lumen to release the anchor 30 from the needle tip during deployment. The element 70 can be generally deformable to permit retraction into and extension from the anchor 30 or other device.


As detailed herein, the anchors 30 can include pivotable or otherwise collapsible tines 31. The tines 31 can be in communication with the inner lumen 30a of the anchor 30, such that when the needle tip 26 is inserted into the lumen, the tines 31 pivot or collapse to facilitate insertion of the implant 54. At the point of deployment, the needle and tip 26 is removed, thereby causing the tines 31 to return or spring back to their extended position to facilitate fixation and tissue engagement. Pin, rod, or other flexibility or pivot features can be provided with the anchor tines 31 and anchor 30 in general to facilitate the described and depicted collapsibility and expandability.


The implant systems 10, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references. Various methods and tools for introducing, deploying, anchoring and manipulating implants to treat incontinence and prolapse as disclosed in the previously-incorporated references are envisioned for use with the present invention as well. Further, the system and its components or structures can be constructed of known and compatible materials know to those skilled in the art, including metals, polymers, and the like.


All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated, and include those references incorporated within the identified patents, patent applications and publications.


Obviously, numerous modifications and variations of the present invention are possible in light of the teachings herein. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described herein.

Claims
  • 1. A sling implant system for treating a pelvic condition, comprising: a sling implant having a support portion and one or more end anchors;a needle delivery device having a handle body and a needle, wherein the needle includes a distal end portion adapted for selective engagement with the one or more end anchors of the sling implant;an elongate sheath having a proximal end and a distal end, and adapted to at least partially shroud a length of the needle, with the proximal end housed within the handle body; andan actuation mechanism having an actuator and at least one cam mechanism housed within the handle body and in operable communication with the elongate sheath, with the actuator including a barrel portion moveable in and out of the handle body such that activation of the actuator operably rotates the sheath about the needle such that the sheath does not move distally, such that the distal end of the elongate sheath rotatably abuts the one or more anchors to deploy the one or more anchors from the distal end portion.
  • 2. The system of claim 1, wherein the one or more end anchors include an end anchor on each end of the sling implant.
  • 3. The system of claim 1, wherein the one or more end anchors include extending anchor tines.
  • 4. The system of claim 3, wherein the elongate sheath includes a barb guard adapted to abut against the extending anchor tines.
  • 5. The system of claim 1, wherein the elongate sheath includes an angled end surface adapted to engage with the one or more anchors such that rotation of the elongate sheath forces the one or more anchors from the distal end portion of the needle.
  • 6. The system of claim 1, wherein the actuator is a pushable button in operable communication with the at least one cam mechanism and rotatable sheath.
  • 7. The system of claim 1, wherein the needle is curved.
  • 8. The system of claim 1, wherein the needle is straight.
  • 9. The system of claim 1, wherein the one or more anchors include at least one internal lumen protrusion and the distal end portion of the needle includes a corresponding mating feature to facilitate snap engagement of the one or more anchors with the distal end portion.
  • 10. The system of claim 9, wherein the at least one internal lumen protrusion includes two opposing internal lumen protrusions.
  • 11. An implant system for treating a pelvic condition, comprising: sling implant having a support portion and end tissue anchors;a needle delivery device having a handle housing and a needle, wherein the needle includes a distal tip adapted for selective engagement with at least one of the end tissue anchors;an elongate sheath having a proximal tip shrouded and rotatable within the handle housing, a distal tip, and adapted to at least partially shroud a length of the needle; andan actuation mechanism shrouded within the handle housing and having an actuator in operable communication with the elongate sheath, and including a shaft adapted to traverse in and out of the handle housing, such that activation of the actuator operably rotates the sheath about the needle without moving the sheath distally, such that the distal tip of the elongate sheath rotatably abuts at least one of the end tissue anchors to facilitate deployment.
  • 12. The system of claim 11, wherein the end tissue anchors each include extending anchor tines.
  • 13. The system of claim 12, wherein the elongate sheath includes a barb guard adapted to abut against the extending anchor tines.
  • 14. The system of claim 11, wherein the elongate sheath includes an angled end surface adapted to engage with at least one of the end anchors such that rotation of the elongate sheath forces at least one of the end anchors from the distal tip of the needle.
  • 15. The system of claim 11, wherein the actuator is a pushable button in operable communication with the rotatable sheath.
  • 16. The system of claim 11, wherein the needle is curved.
  • 17. The system of claim 11, wherein the needle is straight.
  • 18. The system of claim 11, wherein at least one of the end anchors includes at least one internal lumen protrusion and the distal tip of the needle includes a corresponding mating feature to facilitate snap engagement of the at least one end anchor with the distal tip.
  • 19. The system of claim 11, further including a second needle delivery device adapted to engage with one of the end anchors.
  • 20. The system of claim 11, wherein the actuation mechanism further includes a cam mechanism adapted to operably facilitate the rotation of the rotatable sheath about the needle.
PRIORITY

This application claims priority to and the benefit of U.S. Provisional Application Nos. 61/291,210, filed Dec. 30, 2009, 61/291,372, filed Dec. 31, 2009, and 61/291,363, filed Dec. 31, 2009; wherein each of the referenced applications are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/062546 12/30/2010 WO 00 9/13/2012
Publishing Document Publishing Date Country Kind
WO2011/082330 7/7/2011 WO A
US Referenced Citations (307)
Number Name Date Kind
2738790 Todt et al. Mar 1956 A
3472232 Earl Oct 1969 A
3580313 McKnight May 1971 A
3763860 Clarke Oct 1973 A
3858783 Kapitanov et al. Jan 1975 A
3995619 Glatzer Dec 1976 A
4172458 Pereyra Oct 1979 A
4235238 Ogiu et al. Nov 1980 A
4441497 Paudler Apr 1984 A
4509516 Richmond Apr 1985 A
4548202 Duncan Oct 1985 A
4632100 Somers et al. Dec 1986 A
4873976 Schreiber Oct 1989 A
4932962 Yoon et al. Jun 1990 A
4938760 Burton et al. Jul 1990 A
4969892 Burton et al. Nov 1990 A
4979956 Silvestrini Dec 1990 A
5013292 Lemay May 1991 A
5013316 Goble et al. May 1991 A
5053043 Gottesman et al. Oct 1991 A
5085661 Moss Feb 1992 A
5112344 Petros May 1992 A
5141520 Goble et al. Aug 1992 A
5149329 Richardson Sep 1992 A
5167665 McKinney Dec 1992 A
5188636 Fedotov Feb 1993 A
5203864 Phillips Apr 1993 A
5209756 Seedhom et al. May 1993 A
5234438 Semrad Aug 1993 A
5256133 Spitz Oct 1993 A
5268001 Nicholson et al. Dec 1993 A
5269783 Sander Dec 1993 A
5281237 Gimpelson Jan 1994 A
5328077 Lou Jul 1994 A
5337736 Reddy Aug 1994 A
5354292 Braeuer et al. Oct 1994 A
5368595 Lewis Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5370662 Stone et al. Dec 1994 A
5376097 Phillips Dec 1994 A
5383904 Totakura et al. Jan 1995 A
5403328 Shallman Apr 1995 A
5439467 Benderev et al. Aug 1995 A
5474518 Velazquez Dec 1995 A
5474543 McKay Dec 1995 A
5520700 Beyar et al. May 1996 A
5520703 Essig May 1996 A
5527342 Pietrzak et al. Jun 1996 A
5544664 Benderev et al. Aug 1996 A
5562689 Green et al. Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5582188 Benderev et al. Dec 1996 A
5584860 Goble et al. Dec 1996 A
5591163 Thompson Jan 1997 A
5591206 Moufarrege Jan 1997 A
5611515 Benderev et al. Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5643320 Lower et al. Jul 1997 A
5647836 Blake et al. Jul 1997 A
5669935 Rosenman et al. Sep 1997 A
5674247 Sohn Oct 1997 A
5683349 Makower et al. Nov 1997 A
5690655 Hart et al. Nov 1997 A
5697931 Thompson Dec 1997 A
5709708 Thal Jan 1998 A
5725529 Nicholson et al. Mar 1998 A
5725541 Anspach, III et al. Mar 1998 A
5741282 Anspach, III et al. Apr 1998 A
5782862 Bonuttie Jul 1998 A
5842478 Benderev et al. Dec 1998 A
5873891 Sohn Feb 1999 A
5899909 Claren et al. May 1999 A
5904692 Steckel et al. May 1999 A
5922026 Chin Jul 1999 A
5925047 Errico et al. Jul 1999 A
5944732 Raulerson et al. Aug 1999 A
5954057 Li Sep 1999 A
5972000 Beyar et al. Oct 1999 A
5980558 Wiley Nov 1999 A
5984927 Wenstrom, Jr. Nov 1999 A
5988171 Sohn et al. Nov 1999 A
5997554 Thompson Dec 1999 A
6007539 Kirsch et al. Dec 1999 A
6019768 Wenstrom et al. Feb 2000 A
6027523 Schmieding Feb 2000 A
6030393 Corlew Feb 2000 A
6036701 Rosenman Mar 2000 A
6042583 Thompson et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6099538 Moses Aug 2000 A
6099551 gabby Aug 2000 A
6099552 Adams Aug 2000 A
6127597 Beyar et al. Oct 2000 A
6168611 Risvi Jan 2001 B1
6200330 Benderev et al. Mar 2001 B1
6241736 Sater et al. Jun 2001 B1
6245082 Gellman et al. Jun 2001 B1
6264676 Gellman et al. Jul 2001 B1
6273852 Lehe et al. Aug 2001 B1
6319272 Brenneman Nov 2001 B1
6322492 Kovac Nov 2001 B1
6328744 Harari et al. Dec 2001 B1
6334446 Beyar Jan 2002 B1
6382214 Raz et al. May 2002 B1
6387041 Harari et al. May 2002 B1
6406423 Scetbon Jun 2002 B1
6406480 Beyar et al. Jun 2002 B1
6423072 Zappala Jul 2002 B1
6423080 Gellman et al. Jul 2002 B1
6440154 gellman et al. Aug 2002 B2
6451024 Thompson et al. Sep 2002 B1
6454778 Kortenbach Sep 2002 B2
6475139 Miller Nov 2002 B1
6478727 Scetbon Nov 2002 B2
6491703 Ulmsten Dec 2002 B1
6502578 Raz et al. Jan 2003 B2
6506190 Walshe Jan 2003 B1
6530943 Hoepffner et al. Mar 2003 B1
6544273 Harari et al. Apr 2003 B1
6555017 Rushford et al. Apr 2003 B1
6582443 Cabak et al. Jun 2003 B2
6592515 Thierfelder Jul 2003 B2
6592610 Beyar Jul 2003 B2
6596001 Stormby et al. Jul 2003 B2
6599235 Kovac Jul 2003 B2
6602260 Harari et al. Aug 2003 B2
6612977 Staskin et al. Sep 2003 B2
6635058 Beyar et al. Oct 2003 B2
6638210 Berger Oct 2003 B2
6641525 Rocheleau Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6673010 Skiba et al. Jan 2004 B2
6685629 Therin Feb 2004 B2
6689047 Gellman et al. Feb 2004 B2
6691711 Raz et al. Feb 2004 B2
6730110 Harari et al. May 2004 B1
6736829 Li et al. May 2004 B1
6746455 Beyar et al. Jun 2004 B2
6752814 Gellman et al. Jun 2004 B2
6802807 Anderson Oct 2004 B2
6884212 Thierfelder et al. Apr 2005 B2
6908425 Luscombe Jun 2005 B2
6908473 Skiba et al. Jun 2005 B2
6911002 Fierro Jun 2005 B2
6911003 Anderson et al. Jun 2005 B2
6932759 Kammerer Aug 2005 B2
6936052 Gellman et al. Aug 2005 B2
6971986 Staskin et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6981983 Rosenblatt et al. Jan 2006 B1
6991597 Gellman et al. Jan 2006 B2
7014607 Gellman Mar 2006 B2
7025063 Snitkin et al. Apr 2006 B2
7025772 Gellman et al. Apr 2006 B2
7037255 Inman May 2006 B2
7048682 Neisz et al. May 2006 B2
7056333 Walshe Jun 2006 B2
7070556 Anderson Jul 2006 B2
7083637 Tannhauser Aug 2006 B1
7087059 Harari et al. Aug 2006 B2
7112171 Rocheleau et al. Sep 2006 B2
7121997 Kammerer et al. Oct 2006 B2
7131943 Kammerer Nov 2006 B2
7189251 Kay Mar 2007 B2
7223229 Inman et al. May 2007 B2
7226407 Kammerer Jun 2007 B2
7226408 Harari et al. Jun 2007 B2
7229404 Bouffier Jun 2007 B2
7229453 Anderson Jun 2007 B2
7235043 Gellman et al. Jun 2007 B2
7261723 Smith et al. Aug 2007 B2
7267645 Anderson et al. Sep 2007 B2
7291104 Neisz et al. Nov 2007 B2
7297102 Smith et al. Nov 2007 B2
7303525 Watschke et al. Dec 2007 B2
7326213 Benderev et al. Feb 2008 B2
7347812 Mellier Mar 2008 B2
7351196 Goldmann et al. Apr 2008 B2
7351197 Montpetit et al. Apr 2008 B2
7357773 Watschke et al. Apr 2008 B2
7364541 Chu et al. Apr 2008 B2
7371245 Evans et al. May 2008 B2
7387634 Benderev Jun 2008 B2
7393320 Montpetit et al. Jul 2008 B2
7407480 Staskin et al. Aug 2008 B2
7410460 Benderev Aug 2008 B2
7413540 Gellman et al. Aug 2008 B2
7422557 Arnal Sep 2008 B2
7494495 Delorme et al. Feb 2009 B2
7500945 Coxt et al. Mar 2009 B2
7517313 Thierfelder et al. Apr 2009 B2
7527588 Zaddem et al. May 2009 B2
7527633 Rioux May 2009 B2
7547316 Priewe et al. Jun 2009 B2
7588598 Delorme et al. Sep 2009 B2
7601118 Smith et al. Oct 2009 B2
7614999 Gellman et al. Nov 2009 B2
7621865 Gellman et al. Nov 2009 B2
7637860 MacLean Dec 2009 B2
7686759 Sater Mar 2010 B2
7686760 Anderson et al. Mar 2010 B2
7691050 Gellman et al. Apr 2010 B2
7691052 Gellman et al. Apr 2010 B2
7740576 Hodroff Jun 2010 B2
7753839 Siegel et al. Jul 2010 B2
7762942 Neisz et al. Jul 2010 B2
7828715 Haverfield Nov 2010 B2
20010000533 Kovac Apr 2001 A1
20010018549 Scetbon Aug 2001 A1
20010027321 Gellman et al. Oct 2001 A1
20010041895 Beyar et al. Nov 2001 A1
20010049467 Lehe et al. Dec 2001 A1
20010053916 Rioux Dec 2001 A1
20020007222 Desai Jan 2002 A1
20020028980 Thierfelder et al. Mar 2002 A1
20020035369 Beyar et al. Mar 2002 A1
20020038119 Weber et al. Mar 2002 A1
20020038132 Abrams Mar 2002 A1
20020050277 Beyar May 2002 A1
20020055748 Gellman et al. May 2002 A1
20020058959 Gellman et al. May 2002 A1
20020068948 Stormby et al. Jun 2002 A1
20020077526 Kammerer et al. Jun 2002 A1
20020082619 Cabak et al. Jun 2002 A1
20020091373 Berger Jul 2002 A1
20020095064 Beyar Jul 2002 A1
20020095163 Beyer et al. Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020107525 harari et al. Aug 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020147382 Neisz et al. Oct 2002 A1
20020151762 Rocheleau et al. Oct 2002 A1
20020151909 Gellman et al. Oct 2002 A1
20020156487 Gellman et al. Oct 2002 A1
20020156488 Gellman et al. Oct 2002 A1
20020161382 Neisz et al. Oct 2002 A1
20020188169 Kammerer et al. Dec 2002 A1
20030004395 Therin Jan 2003 A1
20030009181 Gellman et al. Jan 2003 A1
20030023136 Raz Jan 2003 A1
20030023138 Luscombe Jan 2003 A1
20030036676 Scetbon Feb 2003 A1
20030045774 Staskin et al. Mar 2003 A1
20030050530 Neisz et al. Mar 2003 A1
20030065402 Anderson et al. Apr 2003 A1
20030171644 Anderson et al. Sep 2003 A1
20030176875 Anderson Sep 2003 A1
20030191360 Browning Oct 2003 A1
20030225424 Benderev Dec 2003 A1
20040015057 Rocheleau et al. Jan 2004 A1
20040039453 Anderson et al. Feb 2004 A1
20040172063 Li et al. Sep 2004 A1
20040193215 Harari et al. Sep 2004 A1
20040225181 Chu et al. Nov 2004 A1
20040267088 Kammerer Dec 2004 A1
20050000523 Beraud Jan 2005 A1
20050004426 Raz et al. Jan 2005 A1
20050004576 Benderev Jan 2005 A1
20050065395 Mellier Mar 2005 A1
20050131391 Chu et al. Jun 2005 A1
20050131393 Chu et al. Jun 2005 A1
20050143618 Anderson et al. Jun 2005 A1
20050199249 Karram Sep 2005 A1
20050245787 Cox et al. Nov 2005 A1
20050256530 Petros Nov 2005 A1
20050277806 Cristalli Dec 2005 A1
20050278037 Delorme et al. Dec 2005 A1
20050283189 Rosenblatt et al. Dec 2005 A1
20050283246 Cauthen, III et al. Dec 2005 A1
20060004364 Green et al. Jan 2006 A1
20060058578 Browning Mar 2006 A1
20060089524 Chu Apr 2006 A1
20060089525 Mamo et al. Apr 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195007 Anderson Aug 2006 A1
20060217589 Wam et al. Sep 2006 A1
20060229493 Weiser et al. Oct 2006 A1
20060229596 Weiser et al. Oct 2006 A1
20060252980 Arnal et al. Nov 2006 A1
20060260618 Hodroff et al. Nov 2006 A1
20060271074 Ewers et al. Nov 2006 A1
20060287571 Gozzi Dec 2006 A1
20070015953 MacLean Jan 2007 A1
20070078295 landgrebe Apr 2007 A1
20070173864 Chu Jul 2007 A1
20080039678 Montpetit et al. Feb 2008 A1
20080132753 Goddard Jun 2008 A1
20080300607 Meade et al. Dec 2008 A1
20090012353 Beyer Jan 2009 A1
20090036903 Ino et al. Feb 2009 A1
20090137864 Cox et al. May 2009 A1
20090156891 Heys et al. Jun 2009 A1
20090182190 Dann Jul 2009 A1
20090221867 Ogdahl et al. Sep 2009 A1
20090221868 Evans Sep 2009 A1
20090287229 Ogdahl et al. Nov 2009 A1
20100010631 Otte et al. Jan 2010 A1
20100094079 Inman Apr 2010 A1
20100105979 Hamel et al. Apr 2010 A1
20100152528 Chapmenan et al. Jun 2010 A1
20100168595 Inman et al. Jul 2010 A1
20100261952 Montpetit et al. Oct 2010 A1
20100261955 O'Hern et al. Oct 2010 A1
20110082328 Gozzi et al. Apr 2011 A1
20110160529 Crawford Jun 2011 A1
Foreign Referenced Citations (93)
Number Date Country
2002241673 AU Nov 2005 AU
2404459 Aug 2005 CA
2305815 Feb 1973 DE
4220283 May 1994 DE
10211360 Sep 2003 DE
20016866 Mar 2007 DE
0650703 Jun 1994 EP
0643945 Jul 1994 EP
0632999 Jan 1995 EP
0643945 Mar 1995 EP
1093758 Apr 2001 EP
1342450 Sep 2003 EP
2852813 Jan 2004 FR
285217 Oct 2004 FR
2268690 Jan 1994 GB
2353220 Oct 2000 GB
1225547 Apr 1986 SU
1342486 Oct 1987 SU
WO9310715 Jun 1993 WO
WO9319678 Oct 1993 WO
WO9511631 May 1995 WO
WO9525469 Sep 1995 WO
WO9716121 May 1997 WO
WO9730638 Aug 1997 WO
WO9747244 Dec 1997 WO
WO9819606 May 1998 WO
WO9835606 Aug 1998 WO
WO9835616 Aug 1998 WO
WO9842261 Oct 1998 WO
WO9853746 Dec 1998 WO
WO9937216 Jul 1999 WO
WO9937217 Jul 1999 WO
WO9952450 Oct 1999 WO
WO9953844 Oct 1999 WO
WO9958074 Nov 1999 WO
WO9959477 Nov 1999 WO
WO0013601 Mar 2000 WO
WO0030556 Jun 2000 WO
WO0040158 Jul 2000 WO
WO0057796 Oct 2000 WO
WO0074594 Dec 2000 WO
WO0074613 Dec 2000 WO
WO0074633 Dec 2000 WO
WO0230293 Apr 2002 WO
WO0232284 Apr 2002 WO
WO0234124 May 2002 WO
WO0239890 May 2002 WO
WO02058563 Aug 2002 WO
WO02062237 Aug 2002 WO
WO02069781 Sep 2002 WO
WO02071953 Sep 2002 WO
WO03013392 Feb 2003 WO
WO03017848 Mar 2003 WO
WO03034891 May 2003 WO
WO03034939 May 2003 WO
WO03047435 Jun 2003 WO
WO03068107 Aug 2003 WO
WO03075792 Sep 2003 WO
WO03086205 Oct 2003 WO
WO03092546 Nov 2003 WO
WO03096928 Nov 2003 WO
WO03096929 Nov 2003 WO
WO2004016196 Feb 2004 WO
WO2004034912 Apr 2004 WO
WO2005004727 Jan 2005 WO
WO2005046511 May 2005 WO
WO2005048850 Jun 2005 WO
WO2005079702 Sep 2005 WO
WO2005122954 Dec 2005 WO
WO2006007189 Jan 2006 WO
WO2006007190 Jan 2006 WO
WO2006031879 Mar 2006 WO
WO2006069078 Jun 2006 WO
WO2006108145 Oct 2006 WO
WO2007002012 Jan 2007 WO
WO2007002071 Jan 2007 WO
WO2007014241 Feb 2007 WO
WO2007016083 Feb 2007 WO
WO2007016698 Feb 2007 WO
WO2007027592 Mar 2007 WO
WO2007059199 May 2007 WO
2007097994 Aug 2007 WO
WO2007097994 Aug 2007 WO
WO2007137226 Nov 2007 WO
WO2007146784 Dec 2007 WO
WO2007149348 Dec 2007 WO
2008057261 May 2008 WO
WO2008057261 May 2008 WO
WO2008124056 Oct 2008 WO
WO2009005714 Jan 2009 WO
2009017680 Feb 2009 WO
WO2009017680 Feb 2009 WO
WO 2009038781 Mar 2009 WO
Non-Patent Literature Citations (32)
Entry
“We're staying ahead of the curve” Introducing the IVS Tunneller Device for Tension Free Procedures, Tyco Healthcare, 3 pages (2002).
Advantage A/T™, Surgical Mesh Sling Kit, Boston Scientific, 6 pages (2002).
Benderev, Theodore V., MD, A Modified Percutaneous Outpatient Bladder Neck Suspension System, Journal of Urology, vol. 152, pp. 2316-2320 (Dec. 1994).
Benderev, Theodore V., MD, Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension, Urology, vol. 40, No. 5, pp. 409-418 (Nov. 1992).
Capio™ CL—Transvaginal Suture Capturing Device—Transvaginal Suture Fixation to Cooper's Ligament for Sling Procedures, Boston Scientific, Microvasive®, 8 pages, (2002).
Cook/Ob Gyn®, Urogynecology, Copyright Cook Urological Inc., pp. 1-36 (1996).
Dargent, D. et al., Insertion of a Suburethral Sling Through the Obturator Membrane in the Treatment of Female Urinary Incontinence, Gynecol Obstet Fertil, vol. 30, pp. 576-582 (2002).
Gynecare TVT Tension-Free Support for Incontinence, the tension-free solution to female Incontinence, Gynecare Worldwide,6 pages, (2002).
IVS Tunneller—A Universal instrument for anterior and posterior intra-vaginal tape placement, Tyco Healthcare, 4 pages (Aug. 2002).
IVS Tunneller—ein universelles Instrument fur die Intra Vaginal Schlingenplastik, Tyco Healthcare, 4 pages (2001).
IVS Tunneller, Australian Medical Design Breakthrough for GSI, mixed incontinence and vault prolapse, AMA Medical Products, 4 pages (no date).
Karram, Mickey M. et al., Chapter 19 Surgical Treatment of Vaginal Vault Prolapse, Urogynecology and Reconstructive Pelvic Surgery, (Walters & Karram eds.) pp. 235-256 (Mosby 1999).
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling: A Long Term Cure for SUI?, Contemporary OB/GYN, 10 pages (Feb. 1998).
Mitek Brochure, Therapy of Urinary Stess Incontinence in Women Using Mitek GIII Anchors, by Valenzio C. Mascio, MD.
Pelosi, Marco Antonio III et al., Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence, Journal of Laparoendoscopic & Advaned Surgical Techniques, vol. 9, No. 1 p.
Readjustable REMEEX® system, Neomedic International, 8 pages (no date).
SABRE™ Bioabsorbable Sling, Generation Now, Mentor, 4 pages (May 2002).
SABRE™ Surgical Procedure, Mentor, 6 pages (Aug. 2002).
Sanz, Luis E. et al., Modification of Abdominal Sacrocolpopexy Using a Suture Anchor System, The Journal of Reproductive Medicine, vol. 48, n. 7, pp. 496-500 (Jul. 2003).
Ulmsten, U. et al., An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 7, pp. 81-86 (May 1996).
Ulmsten, Ulf et al., A Three Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 345-350 (1999).
UroMed Access Instrument System for the Sub-urethral Sling Procedure Catalog No. 120235, Directions for Use, (3 pages).
Vesica® Percutaneous Bladder Neck Stabilization Kit, a New Approach to Bladder Neck Suspenison, Microvasive® Boston Scientific Corporation, 4 pages (1995).
Precision Twist, Low Profile design for Precise Anchor Placement, Boston Scientific Microvasive, 2001 2 pp.
Vesica Sling Kit, Microvasive Boston Scientific, 1997, 6pp.
Precision Tack, The Precise Approach to Transvaginal Sling Procedures, Boston Scientific, 1998, 4pp.
International Search Report and the Written Opinion rendered by the International Searching Authority on Mar. 7, 2011, 11 pages.
Office Action to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Dec. 5, 2014, 1 page.
Office Action to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Aug. 14, 2015, 4 pages.
Office Action (Patent Exam Report No. 1) to the corresponding AU Patent Application No. 2010339416 rendered by the Australian Patent Office on Mar. 28, 2013, 4 pages.
Extended European Search Report to the corresponding EP Patent Application No. 10841735.3 rendered by the European Patent Office on Nov. 18, 2014, 6 pages.
Office Action (Patent Exam Report No. 1) to the corresponding AU Patent Application No. 2013224689 rendered by the Australian Patent Office on Dec. 16, 2014, 2 pages.
Related Publications (1)
Number Date Country
20130006048 A1 Jan 2013 US
Provisional Applications (3)
Number Date Country
61291210 Dec 2009 US
61291372 Dec 2009 US
61291363 Dec 2009 US