The present invention relates generally to orthopedic medicine and surgery. More particularly, the present invention relates to methods and apparatus for delivery and fixation of sheet-like implants, such as for treating articulating joints.
Injuries to soft tissue, including, for example, musculoskeletal tissue, may require repair by surgical intervention, depending upon factors such as the severity and type of injury. Such surgical repairs can be effected by using a number of conventional surgical procedures, for example, by suturing the damaged tissue, and/or by mounting an implant to the damaged tissue. It is known that an implant may provide structural support to the damaged tissue, and it may also serve as a substrate upon which cells can grow, thus facilitating more rapid healing.
One example of a fairly common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. The rotator cuff facilitates circular motion of the humerus relative to the scapula. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyperextension, from an acute traumatic tear or from overuse of the joint. The most common injury associated with the rotator cuff region is a strain or tear involving the supraspinatus tendon. A tear at the insertion site of the tendon with the humerus, may result in the detachment of the tendon from the bone. This detachment may be partial or full, depending upon the severity of the injury. Additionally, the strain or tear can occur within the tendon itself. Treatment for a strained tendon usually involves physical cessation from use of the tendon, i.e., rest. However, depending upon the severity of the injury, a torn tendon might require surgical intervention as in the case of a full tear or detachment of the supraspinatus tendon from the humerus. Such surgical interventions include debridement, acromioplasty, and various procedures for reconnecting tendons to bone or strengthening damaged tendon to bone connections. Damage to the rotator cuff may also include degeneration. This is a common situation that arises in elderly patients. In degenerative cases there is loss of the superior portion of the rotator cuff with complete loss of the supraspinatus tendon. Similar soft tissue pathologies include tears in the Achilles' tendon, the anterior cruciate ligament and other tendons or ligaments of the knee, wrist, hand, and hip, spine, etc.
Some studies suggest that 85% of people over the age of 65 have some degree of shoulder tendon damage. Well-established procedures exist for repairing fully torn tendons, such as rotator cuff tendons, as previously mentioned. However, adequate treatments do not currently exist for partially torn tendons. There is a large need for less invasive surgical techniques and systems for effecting tendon repair, particularly for the supraspinatus tendon.
In accordance with aspects of the disclosure, an implantable tendon protection system is provided which comprises a body adapted to be implanted within a bursa overlying a tendon of a patient. The body comprising a tendon engaging surface configured to attach to the tendon. The body may further comprise a sliding surface adapted to slide with respect to the bursa. In some embodiments, the tendon engaging surface comprises adhesive. The body may be configured to be movable between a collapsed state in which the body may be received within a cannula cavity, and a deployed state in which the body may extend across an interior portion of the bursa. In some embodiments, the body is configured to attach to a partially torn tendon. The body may comprise a middle portion that is less flexible than an edge portion.
In some of the above embodiments, the body is constructed from individual layers. A first layer may comprise a sliding surface and a second layer may comprise a tendon engaging surface, a mesh material, a plurality of fibers, and/or a bioabsorbable material. One or more intermediate layers may be located at least partially between the first and second layers. In some embodiments, a cushioning layer is interposed between the first and second layers. An intermediate layer may comprise at least one channel which may fluidly communicate with the tendon engaging surface. In some embodiments the sliding surface has a lower coefficient of friction than that of the tendon engaging surface.
In accordance with other aspects of the disclosure, a surgical kit is provided which comprises a system such as described above and an insertion cannula. The insertion cannula may include a portion configured to enter a body of a patient. This portion includes a cavity for receiving the system when in a collapsed state. The insertion cannula may further comprise a mechanism configured to remove the system from the cavity when the insertion cannula portion is within the body of the patient. The removal mechanism may comprise a push rod at least partially located within the insertion cannula and movable along a longitudinal axis of the insertion cannula.
In accordance with other aspects of the disclosure, methods of protecting a tendon of a patient are disclosed. In some embodiments, the method includes the steps of inserting a device into an at least partially viable bursa of the patient to a position overlying the tendon, and engaging a first surface of the implant with the tendon. The method may further include the step of attaching the device to the tendon. In some embodiments, the attaching step comprises the use of an adhesive. The adhesive may be urged through a channel in the device when the device is positioned within the body of the patient. In some embodiments, the inserting step comprises at least partially receiving the device within a portion of an insertion instrument, inserting the portion of the insertion instrument into the body of the patient, and removing the device from the insertion instrument while the portion is within the body. The device may be caused to assume the deployed state at least partially by introducing a fluid into an inflatable portion of the device.
In some embodiments, the above methods may further comprise the step of delivering a therapeutic or diagnostic agent to tissue adjacent the device. The therapeutic or diagnostic agent may include a drug, anti-inflammatory agent, painkiller, antibiotic, protein, and/or a hormone.
In some embodiments, a second surface of the device is deployed to slide relative to the bursa. The device may serve to protect a damaged portion of the tendons. In some embodiments, the device does not substantially reinforce the engaged tendons by transmitting a significant load of the tendons. The device may serve to remove a stimulus from nerves in the engaged tendons. The removed stimulus may include one or more of pressure, temperature, chemical, electrical and inflammation stimulus. In some embodiments the device is not sutured to the tendons or other tissue. The inserting step may comprise the use of an arthroscopic instrument. In some embodiments the tendon comprises a partially torn tendon. The attaching step may comprise securing the device to the tendon using a plurality of anchors.
In accordance with other aspects of the disclosure, a method is provided which comprises identifying a partially torn portion of a tendon and covering the partially torn portion of the tendon. In some embodiments a device may be positioned over the partially torn portion of the tendon and fixed to the tendon. The device may be fixed to the tendon with adhesive, sutures, staples, and/or anchors. Covering the partially torn portion of the tendon may spread impinging forces across a surface area of the device. In some embodiments a therapeutic agent that promotes growth of tissue into pores defined by the device may be delivered. The therapeutic agent may promote encapsulation of the device within a cellular encapsulation layer. The therapeutic agent may induce the growth of synovial cells on an outer surface of the device. The therapeutic agent may induce the growth of bursa cells on an outer surface of the device. The therapeutic agent may desensitize stimulated nerve receptors proximate the partially torn portion of the tendon. The therapeutic agent may promote the growth of a cellular encapsulation barrier over the partially torn portion of the tendon.
In some embodiments, covering the partially torn portion of the tendon inhibits the partially torn portion of the tendon from becoming a tear extending through a total thickness of the tendon. Covering the partially torn portion of the tendon may inhibit physical stimulus of the partially torn portion by adjacent tissues. Covering the partially torn portion of the tendon may protect damaged tendon fibers from mechanical agitation by adjoining tissues. Covering the partially torn portion of the tendon may alleviate pain, which in turn may restore shoulder function. In some embodiments, covering the partially torn portion of the tendon protects the partially torn portion of the tendon. Covering the partially torn portion of the tendon may prevent abrasion of the partially torn portion of the tendon. Covering the partially torn portion of the tendon may reduce friction between the partially torn portion of the tendon and adjacent tissues. Covering the partially torn portion of the tendon may cushion forces applied to the partially torn portion of the tendon by adjacent tissues.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
A distal tendon 22 of supraspinatus 30 meets humerus 24 at an insertion point 32. In the embodiment of
Scapula 23 includes an acromium 21. In
In
In the exemplary embodiment of
In
It is to be appreciated that the length of delivery system 170 may vary from that shown in
Some exemplary methods in accordance with the present detailed description include injecting an adhesive into channels defined by a device so that the adhesive exits a plurality of apertures defined by a tissue engaging layer of the device. The adhesive may elute over a large area to affix the device to a tendon. Delivery system 170 may be withdrawn from shoulder 26 after the delivery of device 4 is complete.
When device 304 is overlaying tendon 22, first layer 372 of device 304 provides a sliding surface 356 facing away from the tendon. In the exemplary embodiment of
In some useful embodiments, second layer 374 comprises one or more bioabsorbable materials. Examples of bioabsorbable materials that may be suitable in some applications include those in the following list, which is not exhaustive: polylactide, poly-L-lactide (PLLA), poly-D-lactide (PDLA), polyglycolide (PGA), polydioxanone, polycaprolactone, polygluconate, polylactic acid-polyethylene oxide copolymers, modified cellulose, collagen, poly(hydroxybutyrate), polyanhydride, polyphosphoester; poly(amino acids), poly(alpha-hydroxy acid) or related copolymers materials.
In the exemplary embodiment of
A second inlet 386 is visible in
In the exemplary embodiment of
In the embodiment of
Some exemplary methods in accordance with the present detailed description may include the step of delivering a therapeutic or diagnostic agent to tissue adjacent a device such as, for example, device 504 of
In the embodiment of
In the embodiment of
In the embodiment of
As best seen in
As shown in
In some useful embodiments, sheet 724 comprises a material defining a plurality of pores that encourage tissue growth therein. A coating that encourages tissue growth or ingrowth may be applied to the surfaces of sheet 724. It will be appreciated that sheet 724 may comprise various pore defining structures without deviating from the spirit and scope of the present description. In some embodiments, the sheet 724 has a pore size in the range of 150 to 200 microns. The porosity may be about 50 percent. Examples of pore defining structures that may be suitable in some applications include open cell foam structures, mesh structures, and structures comprising a plurality of fibers. In some embodiments, the fibers may be interlinked with one another. Various processes may be used to interlink the fibers with one another. Examples of processes that may be suitable in some applications include weaving, knitting, and braiding.
Device 700 includes a plurality of anchors 730. In the exemplary embodiment shown, each anchor comprises a coil 732. It will be appreciated that anchors 730 may comprise other elements without deviating from the spirit and scope of the present description. Examples of anchoring elements that may be suitable in some applications include: coils, barbs, hooks, stables, suture pads, and sutures. In the embodiment of FIG. 13, each anchor is disposed in a lumen 734 defined by base 702. Some methods in accordance with the present description may include the step of rotating anchors 730 to screw the anchors into tissue (e.g., tendon tissue) for fixing device 700 to that tissue. A flexible catheter or other suitable driver may used to rotate anchors 730. For example, a catheter (not shown) may be removably inserted into each of the lumens 734 in turn, accessing each lumen through a central recess 735 located in second major side 706 of base 702. In some embodiments, anchors 730 threadably engage with interior surfaces of lumens 734 to facilitate advancement of the anchor into tissue.
In
In the embodiment of
In other embodiments (not shown), a device may be provided with lumens having a steeper or shallower angle relative to tendon 736. While the exemplary device 700 shown in
An implantable device such as previously described may be placed over a partial tear in a tendon. In some embodiments, the device may be implanted over a tendon having micro-tear(s), abrasions and/or inflammation. Left untreated, minor or partial tendon tears may progress into larger or full tears. According to aspects of the present invention, a small or partial tear may be treated by protecting it with an implantable device as described above. Such early treatment can promote healing and prevent more extensive damage from occurring to the tendon, thereby averting the need for a more involved surgical procedure.
The implanted device may serve to protect a tendon from a stimulus. The stimulus may comprise one or more of the following: pressure, friction, temperature, electrical or chemical stimulus. In some embodiments, the device does not supplant or share any substantial load borne by a tendon, but serves to protect the tendon to facilitate healing.
In some embodiments, a bursa overlying a tendon is left substantially intact as the device is implanted over the tendon. This may be accomplished by creating a small incision or puncture through one wall of the bursa through which the device delivery cannula may be placed. The bursa may be filled with saline or similar fluid during the procedure to keep it inflated, thereby providing sufficient operating space for deploying and attaching the implantable device. After the device is implanted and the delivery cannula is removed, the opening in the bursa may be closed, such as with one or more sutures. Alternatively, it is believed that the bursa may form closure tissue by itself post-operatively. Such bursa growth may be stimulated by movement of the tendon and/or bursa relative to surrounding tissue.
In other embodiments, a portion or all of the bursa may be removed during the implantation procedure. In these embodiments, the implantable device may be sized and positioned to facilitate the bursa reforming naturally in its original location after the procedure.
As previously indicated, the implantable device may comprise an absorbable material. In some embodiments, the purpose of the device is to protect an injured portion of a tendon during healing, provide a scaffolding for new tissue growth, and/or temporarily share some of the tendon loads. The device may induce additional tendon tissue formation, thereby adding strength and reducing pain, micro strains and inflammation. When the device is applied to a structurally intact, partially torn tendon, the initial loading of the device may be carried by native tendon tissue until collagen is formed during the healing process. In some embodiments, organized collagen fibers are created that remodel to neo tendon with cell vitality and vascularity. Initial stiffness of the device may be less than that of the native tendon so as to not overload the fixation while tendon tissue is being generated.
The implantable device may be configured to allow loading and retention of biologic growth factors. The device and/or the growth factors may be configured to controllably release the growth factors. The device may be configured to allow transmission of body fluid to remove any degradation bi-products in conjunction with a potential elution profile of biologics. The device should degrade over time with minimal inflammatory response. For example, particulate matter that may result from degradation should not generate synovitus in the joint.
In one exemplary embodiment, the implantable device has a diameter of about 22 mm, and has directionally specific mechanical properties. In another embodiment, the device is generally rectangular with a width of about 20 mm, a length of about 40 mm, and a thickness of about 1 mm. In another embodiment, the device has a length of about 30 mm. These latter two arrangements provide a 20 mm2 cross-sectional area transverse to the load direction.
It is desirable in some situations to generate as much tissue as possible within anatomical constraints. In some cases where a tendon is degenerated or partially torn, tendon loads are relatively low during early weeks of rehabilitation. For example, the load may be about 100 N. The strain in the tendon due to the load during rehabilitation can be about 2%. In some of these cases, the implantable device can be designed to have an ultimate tensile strength of at least about 5 MPa. The tensile modulus can be designed to be no more than about 50 MPa and no less than about 20 MPa. The compressive modulus can be designed to be at least about 0.5 MPa. With a tensile modulus of 50 MPa, in order for the scaffold to strain 2% in conjunction with the degenerated tendon, the stress on the scaffold will be about 1.0 MPa. With an ultimate tensile strength of 5 MPa, the strength of the scaffolding of the implantable device when first implanted will be about five times the expected loads. With a cross-sectional area of 20 mm2, the load on the scaffold will be 20 N. Thus, from a load sharing perspective, the scaffold will carry about 20% of the load to experience 2% strain.
A published value for the compressive modulus of the supraspinatus tendon is in the range of 0.02-0.09 MPa (J Biomech Eng 2001, 123:47-51). The scaffold provided by the implantable device should have a higher compressive modulus than the tendon to prevent collapse of pores in the scaffold. A compressive modulus of 0.5 MPa would be about five times greater than the tendon.
The tissue within the device scaffold will typically be developing and organizing during the first one to three months after implantation, so load sharing with the scaffold is desired in some embodiments. After three months the tissue will typically be remodeling, so the mechanical properties of the scaffold should gradually decline to zero to enable the new tissue to be subjected to load without the scaffold bearing any of the load. If the scaffold loses modulus faster than it loses strength, then the relative loads on the scaffold will be less at three months than when first implanted. For example, if the modulus of the scaffold drops 50% to 25 MPa at three months, then 2% strain of the scaffold would require a stress of only about 0.5 MPa. At the same time, if the strength of the scaffold drops about 30% to 3.5 MPa, then the strength of the scaffold will be about seven times the anticipated loads at three months, compared to about five times when first implanted. Therefore, with the design criteria provided above, tensile failure of the scaffold during the first three months should be unlikely. Accordingly, the following specifications for degradation rate are recommended in some embodiments: an ultimate tensile strength of at least 70% strength retention at three months; tensile and compressive modulus of at least 50% strength retention at three months; and no minimum specification for strength and modulus at 6 months. The device may be designed to have a degradation profile such that it is at least 85% degraded in less than 1 to 2 years after implantation.
Cyclic creep is another design constraint to be considered in some embodiments. A strain of about 2% with a 40 mm long scaffold will result in an elongation of about only 0.8 mm. Therefore, very little cyclic creep can be tolerated in these embodiments to ensure that the scaffold will undergo strain with each load cycle. A test where a proposed scaffold design is cyclically strained to 2% at 0.5 Hz for 1 day provides 43,200 cycles, which likely exceeds the number of cycles experienced in three months of rehabilitation of a patient's joint. Incorporation of relaxation times should be considered in such testing. In some embodiments, a maximum of about 0.5% creep is an acceptable specification.
Material(s) used in the implanted device should be able to withstand the compression and shear loads consistent with accepted post surgical shoulder motions. The perimeter of the device may have different mechanical properties than the interior of the device, such as for facilitating better retention of sutures, staples or other fastening mechanisms. The material(s) may be chosen to be compatible with visual, radiographic, magnetic, ultrasonic, or other common imaging techniques. The material(s) may be capable of absorbing and retaining growth factors with the possibility of hydrophilic coatings to promote retention of additives.
While the systems, kits and methods disclosed above have been discussed relative to protecting tendons in shoulder joints, they may also be utilized to protect tendons in other articulating joints such as the knee, elbow and ankle.
While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.
This application is a continuation of U.S. application Ser. No. 14/798,921, filed on Jul. 14, 2015, which is a continuation of U.S. application Ser. No. 13/763,414, filed on Feb. 8, 2013, which is a continuation of U.S. application Ser. No. 12/684,774, filed on Jan. 8, 2010, which claims the benefit of U.S. Provisional Application No. 61/253,800, filed on Oct. 21, 2009; 61/184,198 filed on Jun. 4, 2009; 61/162,234 filed Mar. 20, 2009; 61/153,592 filed on Feb. 18, 2009, and 61/143,267 filed on Jan. 8, 2009, the disclosures of each incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
511238 | Hieatzman et al. | Dec 1893 | A |
765793 | Ruckel | Jul 1904 | A |
1728316 | von Wachenfeldt et al. | Sep 1929 | A |
1855546 | File | Apr 1932 | A |
1868100 | Goodstein | Jul 1932 | A |
1910688 | Goodstein | May 1933 | A |
1940351 | Howard | Dec 1933 | A |
2034785 | Wappler | Mar 1936 | A |
2075508 | Davidson | Mar 1937 | A |
2131321 | Hart | Sep 1938 | A |
2158242 | Maynard | May 1939 | A |
2199025 | Conn | Apr 1940 | A |
2201610 | Dawson, Jr. | May 1940 | A |
2254620 | Miller | Sep 1941 | A |
2277931 | Moe | Mar 1942 | A |
2283814 | La Place | May 1942 | A |
2316297 | Southerland et al. | Apr 1943 | A |
2421193 | Gardner | May 1947 | A |
2571813 | Austin | Oct 1951 | A |
2630316 | Foster | Mar 1953 | A |
2684070 | Kelsey | Jul 1954 | A |
2744251 | Vollmer | May 1956 | A |
2790341 | Keep et al. | Apr 1957 | A |
2817339 | Sullivan | Dec 1957 | A |
2825162 | Flood | Mar 1958 | A |
2881762 | Lowrie | Apr 1959 | A |
2910067 | White | Oct 1959 | A |
3068870 | Levin | Dec 1962 | A |
3077812 | Dietrich | Feb 1963 | A |
3103666 | Bone | Sep 1963 | A |
3123077 | Alcamo | Mar 1964 | A |
3209754 | Brown | Oct 1965 | A |
3221746 | Noble | Dec 1965 | A |
3470834 | Bone | Oct 1969 | A |
3527223 | Shein | Sep 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3577837 | Bader, Jr. | May 1971 | A |
3579831 | Stevens et al. | May 1971 | A |
3643851 | Green et al. | Feb 1972 | A |
3687138 | Jarvik | Aug 1972 | A |
3716058 | Tanner, Jr. | Feb 1973 | A |
3717294 | Green | Feb 1973 | A |
3757629 | Schneider | Sep 1973 | A |
3777538 | Weatherly et al. | Dec 1973 | A |
3837555 | Green | Sep 1974 | A |
3845772 | Smith | Nov 1974 | A |
3875648 | Bone | Apr 1975 | A |
3960147 | Murray | Jun 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4014492 | Rothfuss | Mar 1977 | A |
4127227 | Green | Nov 1978 | A |
4259959 | Walker | Apr 1981 | A |
4263903 | Griggs | Apr 1981 | A |
4265226 | Cassimally | May 1981 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4400833 | Kurland | Aug 1983 | A |
4422567 | Haynes | Dec 1983 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4480641 | Failla et al. | Nov 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4526174 | Froehlich | Jul 1985 | A |
4549545 | Levy | Oct 1985 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4627437 | Bedi et al. | Dec 1986 | A |
4632100 | Somers et al. | Dec 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4696300 | Anderson | Sep 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4738255 | Goble et al. | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4762260 | Richards et al. | Aug 1988 | A |
4799495 | Hawkins et al. | Jan 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4851005 | Hunt et al. | Jul 1989 | A |
4858608 | McQuilkin | Aug 1989 | A |
4884572 | Bays et al. | Dec 1989 | A |
4887601 | Richards | Dec 1989 | A |
4924866 | Yoon | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
4968315 | Gattuma | Nov 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4994073 | Green | Feb 1991 | A |
4997436 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gattuma et al. | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5059206 | Winters | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5100417 | Cerier et al. | Mar 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5141515 | Eberbach | Aug 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5167665 | McKinney | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5174295 | Christian et al. | Dec 1992 | A |
5174487 | Rothfuss et al. | Dec 1992 | A |
5176682 | Chow | Jan 1993 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5203787 | Noblitt et al. | Apr 1993 | A |
5217472 | Green et al. | Jun 1993 | A |
5224946 | Hayhurst et al. | Jul 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246441 | Ross et al. | Sep 1993 | A |
5251642 | Handlos | Nov 1993 | A |
5261914 | Warren | Dec 1993 | A |
5269753 | Wilk | Dec 1993 | A |
5269783 | Sander | Dec 1993 | A |
5279570 | Dombrowski et al. | Jan 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290217 | Campos | Mar 1994 | A |
5304187 | Green et al. | Apr 1994 | A |
5333624 | Tovey | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5354292 | Braeuer et al. | Oct 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5366460 | Eberbach | Nov 1994 | A |
5370650 | Tovey et al. | Dec 1994 | A |
5372604 | Trott | Dec 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5383477 | Dematteis | Jan 1995 | A |
5397332 | Kammerer et al. | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5411522 | Trott | May 1995 | A |
5411523 | Goble | May 1995 | A |
5417691 | Hayhurst | May 1995 | A |
5417712 | Whittaker et al. | May 1995 | A |
5425490 | Goble et al. | Jun 1995 | A |
5441502 | Bartlett | Aug 1995 | A |
5441508 | Gazielly et al. | Aug 1995 | A |
5456720 | Schultz et al. | Oct 1995 | A |
5464403 | Kieturakis et al. | Nov 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5486197 | Le et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5501695 | Anspach, Jr. et al. | Mar 1996 | A |
5503623 | Tilton, Jr. | Apr 1996 | A |
5505735 | Li | Apr 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5545180 | Le et al. | Aug 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5569306 | Thal | Oct 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5618314 | Harwin et al. | Apr 1997 | A |
5622257 | Deschenes et al. | Apr 1997 | A |
5628751 | Sander et al. | May 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5647874 | Hayhurst | Jul 1997 | A |
5649963 | McDevitt | Jul 1997 | A |
5662683 | Kay | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5674245 | Ilgen | Oct 1997 | A |
5681342 | Benchetrit | Oct 1997 | A |
5702215 | Li | Dec 1997 | A |
5713903 | Sander et al. | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725541 | Anspach, III et al. | Mar 1998 | A |
5741282 | Anspach, III et al. | Apr 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5782864 | Lizardi | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5797931 | Bito et al. | Aug 1998 | A |
5797963 | McDevitt | Aug 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5836961 | Kieturakis et al. | Nov 1998 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5873891 | Sohn | Feb 1999 | A |
5885258 | Sachdeva et al. | Mar 1999 | A |
5885294 | Pedlick et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5904696 | Rosenman | May 1999 | A |
5919184 | Tilton, Jr. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5928244 | Tovey et al. | Jul 1999 | A |
5948000 | Larsen et al. | Sep 1999 | A |
5957939 | Heaven et al. | Sep 1999 | A |
5957953 | Dipoto et al. | Sep 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5980557 | Iserin et al. | Nov 1999 | A |
5989265 | Bouquet De La Joliniere et al. | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6063088 | Winslow | May 2000 | A |
6156045 | Ulbrich et al. | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6193731 | Oppelt et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6245072 | Zdeblick et al. | Jun 2001 | B1 |
6302885 | Essiger | Oct 2001 | B1 |
6312442 | Kieturakis et al. | Nov 2001 | B1 |
6315789 | Cragg | Nov 2001 | B1 |
6318616 | Pasqualucci et al. | Nov 2001 | B1 |
6322563 | Cummings et al. | Nov 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6391333 | Li et al. | May 2002 | B1 |
6413274 | Pedros | Jul 2002 | B1 |
6425900 | Knodel et al. | Jul 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6447522 | Grambale et al. | Sep 2002 | B2 |
6447524 | Knodel et al. | Sep 2002 | B1 |
6478803 | Kapec et al. | Nov 2002 | B1 |
6482178 | Andrews et al. | Nov 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6506190 | Walshe | Jan 2003 | B1 |
6511499 | Schmieding et al. | Jan 2003 | B2 |
6517564 | Grafton et al. | Feb 2003 | B1 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527795 | Lizardi | Mar 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6540769 | Miller, III | Apr 2003 | B1 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554852 | Oberlander | Apr 2003 | B1 |
6569186 | Winters et al. | May 2003 | B1 |
6575976 | Grafton | Jun 2003 | B2 |
6599289 | Bojarski et al. | Jul 2003 | B1 |
6620185 | Harvie et al. | Sep 2003 | B1 |
6629988 | Weadock | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
6648893 | Dudasik | Nov 2003 | B2 |
6666872 | Barreiro et al. | Dec 2003 | B2 |
6673094 | McDevitt et al. | Jan 2004 | B1 |
6685728 | Sinnott et al. | Feb 2004 | B2 |
6692506 | Ory et al. | Feb 2004 | B1 |
6723099 | Goshert | Apr 2004 | B1 |
6726704 | Loshakove et al. | Apr 2004 | B1 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6740100 | Demopulos et al. | May 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6764500 | Van De Moer et al. | Jul 2004 | B1 |
6770073 | McDevitt et al. | Aug 2004 | B2 |
6779701 | Bailly et al. | Aug 2004 | B2 |
6800081 | Parodi | Oct 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6849078 | Durgin et al. | Feb 2005 | B2 |
6887259 | Lizardi | May 2005 | B2 |
6926723 | Mulhauser et al. | Aug 2005 | B1 |
6932834 | Lizardi et al. | Aug 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6946003 | Wolowacz et al. | Sep 2005 | B1 |
6949117 | Gambale et al. | Sep 2005 | B2 |
6964685 | Murray et al. | Nov 2005 | B2 |
6966916 | Kumar | Nov 2005 | B2 |
6972027 | Fallin et al. | Dec 2005 | B2 |
6984241 | Lubbers et al. | Jan 2006 | B2 |
6991597 | Gellman et al. | Jan 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7021316 | Leiboff | Apr 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7033379 | Peterson | Apr 2006 | B2 |
7037324 | Martinek | May 2006 | B2 |
7048171 | Thornton et al. | May 2006 | B2 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7083638 | Foerster | Aug 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7112214 | Peterson et al. | Aug 2006 | B2 |
7118581 | Fridén | Oct 2006 | B2 |
7144413 | Wilford et al. | Dec 2006 | B2 |
7144414 | Harvie et al. | Dec 2006 | B2 |
7150750 | Damarati | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7160314 | Sgro et al. | Jan 2007 | B2 |
7160326 | Ball | Jan 2007 | B2 |
7163551 | Anthony et al. | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7169157 | Kayan | Jan 2007 | B2 |
7189251 | Kay | Mar 2007 | B2 |
7201754 | Stewart et al. | Apr 2007 | B2 |
7214232 | Bowman et al. | May 2007 | B2 |
7226469 | Benavitz et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7247164 | Ritchart et al. | Jul 2007 | B1 |
7303577 | Dean | Dec 2007 | B1 |
7309337 | Colleran et al. | Dec 2007 | B2 |
7320692 | Bender et al. | Jan 2008 | B1 |
7320701 | Haut et al. | Jan 2008 | B2 |
7322935 | Palmer et al. | Jan 2008 | B2 |
7326231 | Phillips et al. | Feb 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7368124 | Chun et al. | May 2008 | B2 |
7377934 | Lin et al. | May 2008 | B2 |
7381213 | Lizardi | Jun 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7399304 | Gambale et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7452368 | Liberatore et al. | Nov 2008 | B2 |
7460913 | Kuzma et al. | Dec 2008 | B2 |
7463933 | Wahlstrom et al. | Dec 2008 | B2 |
7465308 | Sikoma et al. | Dec 2008 | B2 |
7481832 | Meridew et al. | Jan 2009 | B1 |
7485124 | Kuhns et al. | Feb 2009 | B2 |
7497854 | Gill et al. | Mar 2009 | B2 |
7500972 | Voegele et al. | Mar 2009 | B2 |
7500980 | Gill et al. | Mar 2009 | B2 |
7500983 | Kaiser et al. | Mar 2009 | B1 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7559941 | Zannis et al. | Jul 2009 | B2 |
7572276 | Lim et al. | Aug 2009 | B2 |
7585311 | Green et al. | Sep 2009 | B2 |
7766208 | Epperly et al. | Aug 2010 | B2 |
7771440 | Oritz et al. | Aug 2010 | B2 |
7776057 | Laufer et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7785255 | Malkani | Aug 2010 | B2 |
7807192 | Li et al. | Oct 2010 | B2 |
7819880 | Zannis et al. | Oct 2010 | B2 |
7846171 | Kullas et al. | Dec 2010 | B2 |
7918879 | Yeung et al. | Apr 2011 | B2 |
8080260 | Derwin et al. | Dec 2011 | B2 |
8114101 | Criscuolo et al. | Feb 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
20020077687 | Ahn | Jun 2002 | A1 |
20020090725 | Simpson et al. | Jul 2002 | A1 |
20020123767 | Prestel | Sep 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030125748 | Li et al. | Jul 2003 | A1 |
20030212456 | Lipchitz et al. | Nov 2003 | A1 |
20040059416 | Murray et al. | Mar 2004 | A1 |
20040138705 | Heino et al. | Jul 2004 | A1 |
20040167519 | Weiner et al. | Aug 2004 | A1 |
20040267277 | Zannis | Dec 2004 | A1 |
20050015021 | Shiber | Jan 2005 | A1 |
20050049618 | Masuda et al. | Mar 2005 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050060033 | Vacanti et al. | Mar 2005 | A1 |
20050107807 | Nakao | May 2005 | A1 |
20050113736 | Orr et al. | May 2005 | A1 |
20050113938 | Jamiolkowski | May 2005 | A1 |
20050171569 | Girard et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20060074423 | Alleyne et al. | Apr 2006 | A1 |
20060178743 | Carter | Aug 2006 | A1 |
20060235442 | Huitema | Oct 2006 | A1 |
20060293760 | Dedeyne | Dec 2006 | A1 |
20070078477 | Heneveld, Sr. et al. | Apr 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070112361 | Schonholz et al. | May 2007 | A1 |
20070179531 | Thornes | Aug 2007 | A1 |
20070185506 | Jackson | Aug 2007 | A1 |
20070190108 | Datta et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070270804 | Chudik | Nov 2007 | A1 |
20070288023 | Pellegrino et al. | Dec 2007 | A1 |
20080027470 | Hart et al. | Jan 2008 | A1 |
20080051888 | Ratcliffe et al. | Feb 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080090936 | Fujimura et al. | Apr 2008 | A1 |
20080125869 | Paz et al. | May 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080173691 | Mas et al. | Jul 2008 | A1 |
20080188874 | Henderson | Aug 2008 | A1 |
20080188936 | Ball et al. | Aug 2008 | A1 |
20080195119 | Ferree | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080241213 | Chun et al. | Oct 2008 | A1 |
20080272173 | Coleman et al. | Nov 2008 | A1 |
20080306408 | Lo | Dec 2008 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090012521 | Axelson, Jr. et al. | Jan 2009 | A1 |
20090030434 | Paz et al. | Jan 2009 | A1 |
20090069806 | De La Mona Levy et al. | Mar 2009 | A1 |
20090076541 | Chin et al. | Mar 2009 | A1 |
20090105535 | Green et al. | Apr 2009 | A1 |
20090112085 | Eby | Apr 2009 | A1 |
20090134198 | Knodel et al. | May 2009 | A1 |
20090156986 | Trenhaile | Jun 2009 | A1 |
20090156997 | Trenhaile | Jun 2009 | A1 |
20090182245 | Zambelli | Jul 2009 | A1 |
20090242609 | Kanner | Oct 2009 | A1 |
20100145367 | Ratcliffe | Jun 2010 | A1 |
20100147922 | Olsen | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100191332 | Euteneuer et al. | Jul 2010 | A1 |
20100241227 | Euteneuer et al. | Sep 2010 | A1 |
20100249801 | Sengun et al. | Sep 2010 | A1 |
20100256675 | Romans | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100292715 | Nering et al. | Nov 2010 | A1 |
20100292791 | Lu et al. | Nov 2010 | A1 |
20100312250 | Euteneuer et al. | Dec 2010 | A1 |
20100312275 | Euteneuer et al. | Dec 2010 | A1 |
20100327042 | Amid et al. | Dec 2010 | A1 |
20110000950 | Euteneuer et al. | Jan 2011 | A1 |
20110004221 | Euteneuer et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110034942 | Levin et al. | Feb 2011 | A1 |
20110040310 | Levin et al. | Feb 2011 | A1 |
20110040311 | Levin et al. | Feb 2011 | A1 |
20110066166 | Levin et al. | Mar 2011 | A1 |
20110106154 | DiMatteo et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110224702 | Van Kampen et al. | Sep 2011 | A1 |
20110264149 | Pappalardo et al. | Oct 2011 | A1 |
20120160893 | Harris et al. | Jun 2012 | A1 |
20120193391 | Michler et al. | Aug 2012 | A1 |
20120209401 | Euteneuer et al. | Aug 2012 | A1 |
20120211543 | Euteneuer et al. | Aug 2012 | A1 |
20120248171 | Bailly et al. | Oct 2012 | A1 |
20120316608 | Foley | Dec 2012 | A1 |
20130153628 | Euteneuer et al. | Jun 2013 | A1 |
20130158554 | Euteneuer et al. | Jun 2013 | A1 |
20130172920 | Euteneuer et al. | Jul 2013 | A1 |
20130172997 | Euteneuer et al. | Jul 2013 | A1 |
20130184716 | Euteneuer et al. | Jul 2013 | A1 |
20130240598 | Euteneuer et al. | Sep 2013 | A1 |
20130245627 | Euteneuer et al. | Sep 2013 | A1 |
20130245682 | Euteneuer et al. | Sep 2013 | A1 |
20130245683 | Euteneuer et al. | Sep 2013 | A1 |
20130245706 | Euteneuer et al. | Sep 2013 | A1 |
20130245707 | Euteneuer et al. | Sep 2013 | A1 |
20130245762 | Van Kampen et al. | Sep 2013 | A1 |
20130245774 | Euteneuer et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2390508 | May 2001 | CA |
0142225 | May 1985 | EP |
0298400 | Jan 1989 | EP |
0390613 | Oct 1990 | EP |
0543499 | May 1993 | EP |
0548998 | Jun 1993 | EP |
0557963 | Sep 1993 | EP |
0589306 | Mar 1994 | EP |
0908152 | Apr 1999 | EP |
1491157 | Dec 2004 | EP |
1559379 | Aug 2005 | EP |
2030576 | Mar 2009 | EP |
2154688 | Sep 1985 | GB |
2397240 | Jul 2004 | GB |
58188442 | Nov 1983 | JP |
2005506122 | Mar 2005 | JP |
2006515774 | Jun 2006 | JP |
8505025 | Nov 1985 | WO |
0176456 | Oct 2001 | WO |
0234140 | May 2002 | WO |
03105670 | Dec 2003 | WO |
04000138 | Dec 2003 | WO |
2004093690 | Nov 2004 | WO |
2005016389 | Feb 2005 | WO |
2006086679 | Aug 2006 | WO |
2007014910 | Feb 2007 | WO |
2007030676 | Mar 2007 | WO |
2007078978 | Jul 2007 | WO |
2007082088 | Jul 2007 | WO |
2008111073 | Sep 2008 | WO |
2008111078 | Sep 2008 | WO |
2008139473 | Nov 2008 | WO |
2009079211 | Jun 2009 | WO |
2009143331 | Nov 2009 | WO |
2011095890 | Aug 2011 | WO |
2011128903 | Oct 2011 | WO |
Entry |
---|
Alexander et al., “Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent”, Bulletin of the Hospital for Joint Diseases Orthopaedic Institute, 46(2):155-173, 1986. |
Bahler et al., “Tabecular bypass stents decrease intraocular pressure in cultured himan anterior segments”, Am. J. Opthalmology, 138(6):988-994, Dec. 2004. |
Charmay et al., “Digital contracture deformity after implantation of a silicone prosthesis: Light and electron microscopic study”, The Journal of Hand Surgery, 3(3):266-270, May 1978. |
D'Ermo et al., “Our results with the operation of ab externo,” Ophthalmologica, 168:347-355, (year of pub. sufficiently earlier than effective US filing and any foreign priority date) 1971. |
France et al., “Biomechanical evaluation of rotator cuff fixation methods”, The American Journal of Sports Medicine, 17(2):176-181, Mar.-Apr. 1989. |
Goodship et al., “An assessment of filamentous carbon fibre for the treatment of tendon injury in the horse”, Veterinary Record, 106:217-221, Mar. 8, 1980. |
Johnstone et al., “Microsurgery of Schelmm's canal and the human aqueous outflow system”, Am. J. Opthalmology, 76(6):906-917, Dec. 1973. |
Kowalsky et al., “Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 24(3):329-334, Mar. 2008. |
Lee et al., “Aqueous-venous and intraocular pressure. Preliminary report of animal studies”, Investigative Ophthalmology, 5(1):59-64, Feb. 1966. |
Maepea et al., “The pressures in the episcleral veins, Schlemm's canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure”, Exp. Eye Res., 49:645-663, Oct. 1989. |
Nicolle et al., “A silastic tendon prothesis as an adjunct to flexor tendon grafting . . . ”, British Journal of Plastic Surgery, 22(3-4):224-236, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1969. |
Rubin et al., “The use of acellular biologic tissue patches in foot and ankle surgery”, Clinics in Podiatric Medicine and Surgery, 22:533-552, Oct. 2005. |
Schultz, “Canaloplasty procedure shows promise for open-ankle glaucoma in European study”, Ocular Surgery News, pp. 34-35, Mar. 1, 2007. |
Spiegel et al., “Schlemm's canal implant: A new method to lower intraocular pressure in patients with POAG”, Ophthalmic Surgery and Lasers, 30(6):492-494, Jun. 1999. |
Stetson et al., “Arthroscopic treatment of partial rotator cuff tears”, Operative Techniques in Sports Medicine, 12 (2):135-148, Apr. 2004. |
Valdez et al., “Repair of digital flexor tendon lacerations in the horse, using carbon fiber implants”, JAYMA, 177 (5):427-435, Sep. 1, 1980. |
“Rotator cuff tear”, Wikipedia, the free encyclopedia, downloaded from <http://en.wikipedia.org/wiki/Roatator_cuff_tear> on Dec. 6, 2012, 14 pages. |
Euteneuer et al., U.S. Appl. No. 13/717,474 entitled “Apparatus and Method for Forming Pilot Holes in Bone and Delivering Fasteners Therein for Retaining an Implant,” filed Dec. 17, 2012. |
Euteneuer et al., U.S. Appl. No. 13/717,493 entitled “Fasteners and Fastener Delivery Devices for Affixing Sheet-Like Materials to Bone or Tissue,” filed Dec. 17, 2012. |
All non-patent literature documents and foreign patent documents have been previously uploaded in parent U.S. Appl. No. 12/684,774, filed Jan. 8, 2010; U.S. Appl. No. 13/763,414, filed Feb. 8, 2013. |
Hunter et al; “Flexor-Tendon Reconstruction in Severely Damaged Hands”, The Journal of Bone and Joint Surgery (American Volume); vol. 53-A; No. 5; pp. 329-358; Jul. 1971. |
Number | Date | Country | |
---|---|---|---|
20190388215 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
61253800 | Oct 2009 | US | |
61184198 | Jun 2009 | US | |
61162234 | Mar 2009 | US | |
61153592 | Feb 2009 | US | |
61143267 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14798921 | Jul 2015 | US |
Child | 16559134 | US | |
Parent | 13763414 | Feb 2013 | US |
Child | 14798921 | US | |
Parent | 12684774 | Jan 2010 | US |
Child | 13763414 | US |