The present application claims priority to Swedish Application No. SE0800390-7, filed on Feb. 20, 2008, which is incorporated herein by reference in its entirety.
The following invention concerns a new method and device for connecting an implantable bone conduction transducer to the cranium for effective vibration transmission to the inner ear, which takes minimal space, has a low profile, allows for simple and safe surgical implantation and removal in the case of replacement or temporarily for a MRI examination.
In hearing aids of the bone conduction type the transducer was until the 1980s, applied against the skin behind the ear with a constant pressure that often was experienced as uncomfortable. The skin also dampened the vibration transmission, which made the sound quality generally poor. In the 1980s bone anchored hearing aids became available where the transducer was connected to a titanium implant anchored in the bone, see U.S. Pat. No. 4,498,461 and H{dot over (a)}kansson et al. 1985. Since the housing of the device must not come in contact with the outer ear (due to feedback problems) the skin penetrating implant is placed approximately 55-60 mm behind the auditory canal slightly upwards and into the parietal bone, as is shown in
In a bone anchored hearing aid the external sound processor with a built in transducer is connected and disconnected to a bone anchored implant on daily basis by the patient. The bone anchored implant consists of two parts; a bone screw which is anchored to the skull bone and a skin penetrating abutment connected to the bone screw. The skull bone consists of an inner and outer layer of compact bone tissue and a middle layer of spongy bone, which resembles a sponge with its inherent air cells. It is therefore important that the bone screw is set firmly in the compact outer bone tissue, so that it will grow properly together with the bone, a process called osseointegration.
There are several clinical drawbacks with skin penetrating (percutaneous) implants, see Reyes et al. 2006, Shirazi et al. 2006 and Tjellström et al. 2006. The bone screw can become loose either spontaneously or by an external impact against it. The skin penetrating area around the implant must be cared for daily as various degrees of infection can occur some of which require medical treatment. In the worst cases the implant must be removed. There are also some patients who feel stigmatized by the implant and some choose to decline the treatment on these grounds, see Burkey et al. 2006.
Recent studies have shown that sensitivity for bone conducted sound increases by 10-15 dB, if the connecting point for the transducer is removed from the parietal bone, where by today's standards the percutenous implants are placed, to the medial (inner) parts of the temporal bone and nearer the inner ear, see Stenfelt 2000 and H{dot over (a)}kansson 2007.
Based on the above findings the bone anchored hearing aid has now been further developed, where the entire transducer is permanently implanted into the skull bone and electrical signal and energy are transmitted via an inductive link through intact skin, see Stenfelt 2000, H{dot over (a)}kansson 2000, Holgers & H{dot over (a)}kansson 2001, US 2007/0156011 A1 and US 2007/0191673 A1. In these proposals the signals and energy are transmitted via an inductive link consisting of an implanted receiving coil, as well as an external transmitting coil which are connected to the sound processor itself. As a result there is no need for a permanent penetration through the skin for vibration transmission and—at the same time—the outer sound processor can be made smaller since the transducer is now implanted. A drawback to this is that the inductive link results in a loss of 10-15 dB in sensitivity, which means that it is important to use the gain from moving the excitation point to the inner medial parts of the temporal bone, so that an implanted transducer is experienced as equally strong as a conventional bone anchored hearing aid, which uses a percutaneous implant. The inductive link transmits the signal via some form of conventional signal modulation e.g. amplitude modulation (AM), frequency modulation (FM) or pulse width modulation (PWM).
When the transducer is permanently implanted higher demands are set for the transducer's reliability and it must be smaller in seize and possibly have a higher level of effectiveness. An improved transducer called Balanced Electromagnetic Separation Transducer (BEST) has been developed to meet these demands see Pat No: SE 0000810-2, SE 0201441-3 and SE 0600843-7.
To date all known bone anchored hearing aids, facial prostheses and dental prosthesis's are anchored in the bone with the help of a screw attachment which osseointegrate with the skull bone in order to bear the static forces and transmit vibrations. The osseointegration of the screw attachment is itself considered a necessary prerequisite for a successful long term anchorage. Examples of solutions with screw attachment for percutaneous transmission to the skull bone are given in U.S. Pat. No. 4,498,461 and examples of solutions with screw attachment for implanted transducers are given in U.S. Pat. No. 4,904,233, US 2007/0156011 A1 and US 2007/0191673A1.
A significant feature among the known solutions for implanted transducers (U.S. Pat. No. 4,904,233, US 2007/0156011 A1 and US 2007/0191673A1) is that they are attached from the temporal or parietal bone's lateral side, that is to say into the outer compact bone wall to insure osseointegration. The drawback with these anchoring methods is that they cannot utilize the greater sensitivity that is available when the connecting point is placed in the medial (inner) parts of the temporal bone which is largely composed of spongy bone.
The use of a screw attachment of an implantable transducer to the temporal bone's inner medial part has been considered, but because of associated surgical risks it has been rejected. A drilled hole can damage underlying structures such as facial nerve, veins and semicircular canals. Also the spongy bone tissue of the temporal bone is considered as less suitable for optimal osseointegration and stable anchorage of the titanium implant.
U.S. Pat. No. 4,612,915 relates to another type of vibrator than the present one, viz. a Xomeds transcutaneous vibrator, consisting a inner yoke, an airgap to intact skin and an outer magnetic circuit. The inner yoke is thus not an vibrator. This way of designing a complete vibrator where the skin is part of the construction and design was not really successful, but has been dropped since 15 years. The differences between the present system and the Xomed vibrator has been described in detail in H{dot over (a)}kansson, B. et al, (1990), Otolaryngology Head and Neck Surgery, 102: 339-344-Percutaneous vs Transcutaneous transducers for hearing by direct bone conduction.
An alternative method for connecting an implantable transducer to the temporal bone's inner medial part has been suggested by H{dot over (a)}kansson 2000, where these drawbacks are avoided, see
Preliminary studies have shown that such solutions provide a relatively safe, stable and long term anchorage to the bone, however, recovery is long and a relatively greater distance between the housing and the bone's bottom plane is required to accommodate both the bone screw and the coupling unit. A coupling unit is needed in order to remove the transducer for replacement or in the case of a MRI examination. As can be seen in
The present invention solves the above problems by connecting the implanted transducer to the medial (inner) parts of the temporal bone by directly connecting the housing, which contains the transducer, to the bone for transmission of the vibrations via a surface of the housing. The housing is pressed with a static force against the bone, which is greater than the signal forces. By this non-screw attachment a height of at least 5-6 mm is saved. The solution demands that a seat is made in the temporal bone in the bottom plane to which the transducer's housing is attached. The transducer is thus not attached for vibration transmission with a conventional osseointegrated screw attachment, but by a static force pressing the transducer housing against the bone surface. Over time osseointegration can occur at the housing surface, however, the fastening effect becomes relatively low due to the flat surface design. The implanted transducer can thus be easily removed in the case of an MRI examination, or upgrading or replacement due to failure.
In a preferred embodiment the transducer housing has an attachment surface, which is located medially and below to the outer surface of the temporal bone and the static force is maintained with a compliant device on the lateral side of the housing, which is attached to the bone's outer surface. The attachment surface of the temporal bone in the bottom plane is first formed to fit the attachment surface of the transducer housing. This surface can be levelled and any cavities can be filled with bone chips from the drilling of the bone when the hole was made or with bone cement. The device which creates the static force can be made of an elastic material such as silicon, which is compressed by e.g. a band/bar or thread material which is fixed to the lateral side of the skull bone. The band/bar or thread material can also function as the elastic element. In a simplified embodiment suture threads can be used. If a band/bar material with screw attachment is used, it can also serve as a mechanical protection against external impact in the area and prevent damage to the transducer or the temporal bone from possible external force. Such a bone anchored band/bar also provides protection against the radiation of vibration energy from the transducer housing, which reduces the risk of feedback.
In another preferred embodiment the static force can be obtained by adjustable screws which are pressing the arms in a lateral direction against a fold formed in the skull bone's outer part.
In another preferred embodiment a receiving adapter of biocompatible material can be placed in the bottom of the recess, between the application surface of the transducer housing and the skull bone. One side of the adaptor can be formed so as to heal with the skull bone, while its other side connects to the transducer housing, which may be easily removed in the case of replacement or an MRI examination.
In another preferred embodiment the bone and the receiving adaptor are formed so that static anchorage in a radial direction is obtained by a clamp fitting in a groove against the skull bone. The anchorage here must be sufficiently strong in order to transmit the dynamic signal forces in an axial direction without distortion. The connection between the adaptor and the transducer housing can in this case be achieved with a mechanical coupling device such as e.g. snap design.
In one preferred embodiment, silicon casing surrounding the transducer housing can be designed to dampen vibrations when in contact with overlying skin, in order to further prevent acoustic radiation.
In summary, the present invention offers the following advantages over the solutions known to date:
a, b: A previous suggested type of attachment of an implanted transducer, in two steps, using an osseointegration screw attachment to a bone graft.
a-d: Schematic illustrations showing the attachment of a complete auditory system according to the present invention consisting of: (a) a transducer housing which is partly sealed in, for example, silicon and containing a transducer, is placed in a recess in the skull bone; (b) an open and biocompatible surface of the housing is pressed with force F against the bottom plane of the skull bone using a bar arrangement attached with orthopaedic screws; (c) an implanted receiving coil connected electrically via appropriate demodulation electronics; (d) an external sound processor including a transmitting coil is applied over the receiving coil with permanent magnets as retention elements.
a, b: Show how elastic arms of a metallic thread can be attached against a notch under the temporal bone's outer wall of compact bone with the help of elastic metallic thread material.
a, b: Show how the implanted transducer is attached with suture threads (a) and how the transducer housing is held in place with the help of fat tissue, cartilage and outer soft tissue (b).
a-d: Show a preferred embodiment where: (a) an adapter of biocompatible material is inserted to heal into the skull bone on its one side and where the transducer housing is connected to the other side; (b) the adaptor can have compliant arms for static tightening between the housing and the adaptor; (c) the adaptor can be rectangular and have holes in the plate for bone in growth; (d) the adaptor's shape is arbitrary and it can be for example circular.
Definitions of terms and expressions used are here outlined in greater detail.
Osseointegration
Osseointegration indicates a process where, on the microscopic level, direct contact is established between living bone cells and the implanted screw surface.
Housing
A structure made of bio compatible material which hermetically capsulate the transducer and electronic components. The transducer can be of various types such as the conventional electromagnetic, BEST, FMT. In preferred embodiments the housing has at least one part that is intended for direct connection to the bone tissue or an adaptor made of biocompatible material, which can also connect to the bone tissue. The transducer itself can connect to the inside of the housing in different ways.
Biocompatible Material
Biocompatible material has minimal or no immunological or irritating effects on the surrounding tissue. Such material can be, although is not exclusively limited to, titanium, gold, platinum and ceramic.
Static Force
Static force refers to a force which presses the housing of the transducer against the skull bone, so that the dynamic signal forces generated by the transducer can be transmitted to the skull bone without distortion.
Signal Force
Signal force or dynamic force refers to those forces that the transducer generates, which are directly related to the sound at the microphone(s) inlet which is processed and fed to the power amplifier and the inductive link, to drive the transducer.
Inductive Link
Inductive link refers to a system for the transmission of electric signal through intact skin and soft tissue, consisting of an externally placed transmitting coil and an implanted receiving coil. The transmitting coil can be integrated with the sound processor, but it can also be separated and connected by a wire. There are electronic circuits on the sender side for the modulation of the signal to the carrier wave. On the implanted side there are electronic circuits for the demodulation of the signal and potential reception of the energy of the carrier wave to supply active electronics or to charge an implanted battery. The transmitting external coil and the implanted coil are kept in place and aligned by one or more magnets on the respective side.
Modulation
Modulation refers to some form of modulation where a high frequency carrier wave (0.05-10 MHz) is modulated with the sound signal (0.1-10 kHz) as by amplitude modulation (AM), frequency modulation (FM) or pulse width modulation (PWM).
Conventional Electromagnetic Transducer
Conventional electromagnetic transducer refers to an electromagnetic variable reluctance transducer with an air gap between the counter weight unit and yoke, which are connected to each other by a spring suspension device, which maintains the air gap. The yoke is connected to the mechanical load. Conventional electromagnetic transducers are used today e.g. in bone anchored hearing aids (BAHA) from Choclear Corp. or in the audiometric transducer type B71 from Radioear.
BEST
BEST refers to an electromagnetic variable reluctance transducer with counter acting air gaps for out-balancing of static forces and where the static and dynamic magnetic fluxes are separated except in and close to the air gaps, see Pat nr SE 0000810-2, SE 0201441-3 and SE 0600843-7.
FMT—Floating Mass Transducer
Electromagnetic transducer which is available in some varieties, where the basic common design is that the magnet is the counter weight mass and is suspended inside a bobbin case, see U.S. Pat. Nos. 5,554,096 and 5,897,486.
Piezoelectric Transducer
A piezoelectric transducer is created by laminating disks having piezoelectric properties with opposing polarities, so that the disks are bended when the voltage is applied.
Temporal Bone—Skull Bone
Most of the preferred embodiments above describe how the transducer housing is placed in the temporal bone, but the present invention can also refer to other locations on the skull where the bone is sufficiently thick.
As is shown in
For medical reasons it is not custom to drill or screw a hole into the bottom plane of the recess (5) where the bone as shown in
It is already well-known that a complete hearing system of this kind, which is shown in
In
The attachment surface (20) of the transducer housing can have an arbitrary shape and cross section i.e. rectangular or round for example. Its size can range from a few mm2 up to the entire cross section surface of the transducer housing, as is shown in the detail of
In
d shows the externally supported sound processor (16) which contains the transmitting coil (15). The sound processor (16) contains common hearing aid components such as one or more microphones (29), a signal processing unit (30), and battery (31). In order to firmly fasten and aligning the transmitting coil against the implanted receiving coil, one or more magnets (32a, b) are placed centrally in the transmitting coil and the receiving coil, respectively.
a shows an alternative method to attach the transducer house by use of elastic metallic wire elements (34), where their ends (35a, b) can be tightened and attached to the groove (36a, b) under the temporal bone's outer wall of compact bone (10). As is shown in
a shows another, simpler, preferred embodiment entailing that the wire elements (34) are substituted by suture threads (39). The suture threads are tied or attached through holes (40) in the outer bone that enters in the grooves (36).
a-d shows an embodiment where an adaptor (49) of bio compatible material is placed between the bone on the bottom plane (4) and the transducer housing's attachment surface (20).
Although all of the embodiments above are presented to describe the invention, it is clear that the professional can modify, add to, combine or remove details without deviating from the invention's scope and essence as is defined by the following patent claims.
Number | Date | Country | Kind |
---|---|---|---|
0800390 | Feb 2008 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
4498461 | Hakansson | Feb 1985 | A |
4612915 | Hough et al. | Sep 1986 | A |
4652702 | Yoshii | Mar 1987 | A |
4904233 | Hakansson et al. | Feb 1990 | A |
8065012 | Firlik et al. | Nov 2011 | B2 |
20040032962 | Westerkull | Feb 2004 | A1 |
20070053542 | Lee | Mar 2007 | A1 |
20070156011 | Westerkull | Jul 2007 | A1 |
20070191673 | Ball et al. | Aug 2007 | A1 |
20080312716 | Russell | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
0145457 | Jun 2001 | WO |
2004014269 | Feb 2004 | WO |
2004084583 | Sep 2004 | WO |
2007078506 | Jul 2007 | WO |
2007095196 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090209806 A1 | Aug 2009 | US |