The application is directed to an implantable wireless sensor. More particularly, this invention is directed to a wireless, unpowered, micromechanical sensor that can be delivered using endovascular techniques, to measure a corporeal parameter such as pressure or temperature.
Abdominal aortic aneurysms represent a dilatation and weakening of the abdominal aorta which can lead to aortic rupture and sudden death. Previously, the medical treatment of abdominal aortic aneurysms required complicated surgery with an associated high risk of injury to the patient. More recently, endografts (combining stents and grafts into a single device) have been developed that can be inserted through small incisions in the groin. Once in place, these endografts seal off the weakened section of the aorta. The aneurysms can then heal, eliminating the risk of sudden rupture. This less invasive form of treatment for abdominal aortic aneurysms has rapidly become the standard of care for this disease. An example of an endograft device is disclosed in Kornberg, U.S. Pat. No. 4,617,932.
A significant problem with endografts is that, due to inadequate sealing of the graft with the aorta, leaks can develop that allow blood to continue to fill the aneurysmal sac. Left undiscovered, the sac will continue to expand and potentially rupture. To address this situation, patients who have received endograft treatment for their abdominal aortic aneurysms are subjected to complex procedures that rely on injection of contrast agents to visualize the interior of the aneurysm sac. These procedures are expensive, not sensitive, and painful. In addition, they subject the patient to additional risk of injury. See, for example, Baum R A et al., “Aneurysm sac pressure measurements after endovascular repair of abdominal aortic aneurysms,” The Journal of Vascular Surgery, January 2001, and Schurink G W et al., “Endoleakage after stent-graft treatment of abdominal aneurysm: implications on pressure and imaging—an in vitro study,” The Journal of Vascular Surgery, August 1998. These articles provide further confirmation of the problem of endograft leakage and the value of intra-sac pressure measurements for monitoring of this condition.
Thus, there is a need for a method of monitor the pressure within an aneurysm sac that has undergone repair by implantation of an endograft to be able to identify the potential presence of endoleaks. Furthermore, this method should be accurate, reliable, safe, simple to use, inexpensive to manufacture, convenient to implant and comfortable to the patient.
An ideal method of accomplishing all of the above objectives would be to place a device capable of measuring pressure within the aneurysm sac at the time of endograft insertion. By utilizing an external device to display the pressure being measured by the sensor, the physician will obtain an immediate assessment of the success of the endograft at time of the procedure, and outpatient follow-up visits will allow simple monitoring of the success of the endograft implantation.
An example of an implantable pressure sensor designed to monitor pressure increases within an aneurysmal sac is shown in Van Bockel, U.S. Pat. No. 6,159,156. While some of the above objectives are accomplished, this device has multiple problems that would make its use impractical. For example, the sensor system disclosed in the Van Bockel patent relies on a mechanical sensing element that cannot be practically manufactured in dimensions that would allow for endovascular introduction. In addition, this type of pressure sensor would be subject to many problems in use that would limit its accuracy, stability and reliability. One example would be the interconnection of transponder and sensor as taught by Van Bockel, such interconnection being exposed to body fluids which could disrupt its function. This would impact the device's ability to maintain accurate pressure reading over long periods of time. A fundamental problem with sensors is their tendency to drift over time. A sensor described in the Van Bockel patent would be subject to drift as a result of its failure to seal the pressure sensing circuit from the external environment. Also, by failing to take advantage of specific approaches to electronic component fabrication, allowing for extensive miniaturization, the Van Bockel device requires a complex system for acquiring data from the sensor necessary for the physician to make an accurate determination of intra-aneurysmal pressure.
It is an object of this invention to provide an implantable wireless sensor.
It is also an object of this invention to provide a wireless, unpowered, micromechanical sensor that can be delivered endovascularly.
It is a further object of this invention to provide an implantable, wireless, unpowered sensor that can be delivered endovascularly to measure pressure and/or temperature.
It is a yet further object of this invention to provide a method of preparing a micromechanical implantable sensor.
It is a yet further object of this invention to provide a micromechanical sensor with a hermetically sealed, unbreached pressure reference for enhanced stability.
These and other objects of the invention will become more apparent from the discussion below.
The present invention comprises a method for manufacturing a device that can be implanted into the human body using non-surgical techniques to measure a corporeal parameter such as pressure, temperature, or both. Specific target locations could include the interior of an abdominal aneurysm or a chamber of the heart. This sensor is fabricated using MicroElectroMechanical Systems (MEMS) technology, which allows the creation of a device that is small, accurate, precise, durable, robust, biocompatible, radiopaque and insensitive to changes in body chemistry, biology or external pressure. This device will not require the use of wires to relay pressure information externally nor need an internal power supply to perform its function.
Stated somewhat more specifically, according to the disclosed method, a cavity is etched in one side of a first substrate. A conductive central plate and surrounding conductive coil is formed on the base of the cavity. A second conductive central plate and surrounding conductive coil is formed on a surface of a second substrate, and the two substrates are mutually imposed such that the two conductive plates and coils are disposed in opposed, spaced-apart relation. A laser is then used to cut away perimeter portions of the imposed substrates and simultaneously to heat bond the two substrates together such that the cavity in the first substrate is hermetically sealed.
According to one embodiment of the invention, the second conductive plate and coil are formed on the upper surface of the second substrate. According to another embodiment, the second substrate has a cavity etched into its upper side, and the conductive plate and coil are formed on the base of the cavity. According to this second embodiment, when the two substrates are mutually imposed, the cavities in the respective substrates communicate to form a hollow. The subsequent laser operation hermetically seals the hollow within the sensor body.
The invention can perhaps be better understood by referring to the drawings.
In the embodiment of the invention shown in
In similar fashion,
The size of the sensors of the invention will vary according to factors such as the intended application, the delivery system, etc. The oval sensors are intended to be from about 0.5 in. to about 1 in. in length and from about 0.1 in. to about 0.5 in. in width, with a thickness of from about 0.05 in. to about 0.30 in.
As shown in
In the embodiment of the invention shown in
A better appreciation of certain aspects of the invention, especially of a delivery system, can be obtained from
Further details of the delivery system are shown in
In
The pressure sensor of the invention can be manufactured using Micro-machining techniques that were developed for the integrated circuit industry. An example of this type of sensor features an inductive-capacitive (LC) resonant circuit with a variable capacitor, as is described in Allen et al., U.S. Pat. Nos. 6,111,520 and 6,278,379, all of which are incorporated herein by reference. The sensor contains two types of passive electrical components, namely, an inductor and a capacitor. The sensor is constructed so that the fluid pressure at the sensor's surface changes the distance between the capacitor's substantially parallel plates and causes a variation of the sensor's capacitance.
In a preferred embodiment the sensor of the invention is constructed through a series of steps that use standard MEMS manufacturing techniques.
In
In
In
In
This process is then repeated with a second substrate.
In
This sensor design provides many important benefits to sensor performance. The hermetic seal created during the laser cutting process, coupled with the design feature that the conductor lines of the sensor are sealed within the hermetic cavity, allows the sensor to remain stable and drift free during long time exposures to body fluids. In the past, this has been a significant issue to the development of sensors designed for use in the human body. The manufacturing methodology described above allows many variations of sensor geometry and electrical properties. By varying the width of the coils, the number of turns and the gap between the upper and lower coils the resonant frequency that the device operates at and the pressure sensitivity (i.e., the change in frequency as a result of membrane deflection) can be optimized for different applications. In general, the design allows for a very small gap between the coils (typically between about 3 and about 35 microns) that in turn provides a high degree of sensitivity while requiring only a minute movement of the coils to sense pressure changes. This is important for long term durability, where large membrane deflection could result in mechanical fatigue of the pressure sensing element.
The thickness of the sensor used can also be varied to alter mechanical properties. Thicker substrates are more durable for manufacturing. Thinner substrates allow for creating of thin pressure sensitive membranes for added sensitivity. In order to optimize both properties the sensors may be manufactured using substrates of different thicknesses. For example, one side of the sensor may be constructed from a substrate of approximate thickness of 200 microns. This substrate is manufactured using the steps outlined above. Following etching, the thickness of the pressure sensitive membrane (i.e., the bottom of the etched trench) is in the range of from about 85 to about 120 microns.
The matching substrate is from about 500 to about 1000 microns thick. In this substrate, the trench etching step is eliminated and the coils are plated directly onto the flat surface of the substrate extending above the substrate surface a height of from about 20 to about 40 microns. When aligned and bonded, the appropriate gap between the top and bottom coils is created to allow operation preferably in a frequency range of from 30 to 45 MHz and have sensitivity preferably in the range of from 5 to 15 kHz per millimeter of mercury. Due to the presence of the from about 500 to about 1000 micron thick substrate, this sensor will have added durability for endovascular delivery and for use within the human body.
The sensor exhibits the electrical characteristics associated with a standard LC circuit. An LC circuit can be described as a closed loop with two major elements, a capacitor and an inductor. If a current is induced in the LC loop, the energy in the circuit is shared back and forth between the inductor and capacitor. The result is an energy oscillation that will vary at a specific frequency. This is termed the resonant frequency of the circuit and it can be easily calculated as its value is dependent on the circuit's inductance and capacitance. Therefore, a change in capacitance will cause the frequency to shift higher or lower depending upon the change in the value of capacitance.
As noted above, the capacitor in the assembled pressure sensor consists of the two circular conductive segments separated by an air gap. If a pressure force is exerted on these segments it will act to move the two conductive segments closer together. This will have the effect of reducing the air gap between them which will consequently change the capacitance of the circuit. The result will be a shift in the circuit's resonant frequency that will be in direct proportion to the force applied to the sensor's surface.
Because of the presence of the inductor, it is possible to electromagnetically couple to the sensor and induce a current in the circuit. This allows for wireless communication with the sensor and the ability to operate it without the need for an internal source of energy such as a battery. Thus, if the sensor is located within the sac of an aortic aneurysm, it will be possible to determine the pressure within the sac in a simple, non-invasive procedure by remotely interrogating the sensor, recording the resonant frequency and converting this value to a pressure measurement. The readout device generates electromagnetic energy that penetrates through the body's tissues to the sensor's implanted location. The sensor's electrical components absorb a fraction of the electromagnetic energy that is generated by the readout device via inductive coupling. This coupling induces a current in the sensor's circuit that oscillates at the same frequency as the applied electromagnetic energy. Due to the nature of the sensor's electro-mechanical system there exists a frequency of alternating current at which the absorption of energy from the readout device is at a maximum. This frequency is a function of the capacitance of the device. Therefore, if the sensor's capacitance changes, so will the optimal frequency at which it absorbs energy from the readout device. Since the sensor's capacitance is mechanically linked to the fluid pressure at the sensor's surface, a measurement of this frequency by the readout device gives a relative measurement of the fluid pressure. If calibration of the device is performed, then an absolute measurement of pressure can be made. See, for example, the extensive discussion in the Allen et al. patent, again incorporated herein by reference, as well as Gershenfeld et al., U.S. Pat. No. 6,025,725, incorporated herein by reference. Alternative readout schemes, such as phase-correlation approaches to detect the resonant frequency of the sensor, may also be employed.
The pressure sensor is made of completely passive components having no active circuitry or power sources such as batteries. The pressure sensor is completely self-contained having no leads to connect to an external circuit or power source. Furthermore, these same manufacturing techniques can be used to add additional sensing capabilities, such as the ability to measure temperature by the addition of a resistor to the basic LC circuit or by utilizing changes in the back pressure of gas intentionally sealed within the hermetic pressure reference to change the diaphragm position and therefore the capacitance of the LC circuit.
It is within the scope of the invention that the frequency response to the sensor will be in the range of from about 1 to about 200 MHz, preferably from about 1 to about 100 MHz, and more preferably from about 2 to about 90 MHz, and even more preferably from about 30 to about 45 MHz, with a Q factor of from about 5 to about 150, optimally from about 5 to about 80, preferably from about 40 to about 100, more preferably from about 50 to about 90.
In a further embodiment of the invention there is no direct conductor-based electrical connection between the two sides of the LC circuit. Referring again to the sensor described in the Allen et al. patents, the device is constructed using multiple layers upon lie the necessary circuit elements. Disposed on the top and bottom layer are metal patterns constructed using micro-machining techniques which define a top and bottom conductor and a spiral inductor coil. To provide for an electrical contact between the top and bottom layers small vias or holes are cut through the middle layers. When the layers are assembled, a metal paste is forced into the small vias to create direct electrical connections or conduits. However, experimentation has shown that due to additional capacitance that is created between the top and bottom inductor coils, a vialess operational LC circuit can be created. This absence of via holes represents a significant improvement to the sensor in that it simplifies the manufacturing process and, more importantly, significantly increases the durability of the sensor making it more appropriate for use inside the human body.
Further, the invention is not limited to the implantation of a single sensor. Multiple pressure sensors may be introduced into the aneurysm space, each being positioned at different locations. In this situation, each sensor may be designed with a unique signature (obtained by changing the resonant frequency of the sensor), so that the pressure measurement derived from one sensor can be localized to its specific position within the aneurysm.
A significant design factor that relates to the performance of the sensor and the operation of the system is the Quality factor (Q) associated with the sensor. The value of Q is one of the key determinates as to how far from the sensor the external read-out electronics can be located while still maintaining effective communication. Q is defined as a measure of the energy stored by the circuit divided by the energy dissipated by the circuit. Thus, the lower the loss of energy, the higher the Q.
Additional increases in Q can be achieved by removing the central capacitive plate and using capacitive coupling between the copper coils to act as the capacitor element.
In operation, energy transmitted from the external read-out electronics will be stored in the LC circuit of the sensor. This stored energy will induce a current in the LC loop which will cause the energy to be shared back and forth between the inductor and capacitor. The result is an oscillation that will vary at the resonant frequency of the LC circuit. A portion of this oscillating energy is then coupled back to the receiving antenna of the read-out electronics. In high Q sensors, most of the stored energy is available for transmission back to the electronics, which allows the distance between the sensor and the receiving antenna to be increased. Since the transmitted energy will decay exponentially as it travels away from the sensor, the lower the energy available to be transmitted, the faster it will decay below a signal strength that can be detected by the receiving antenna and the closer the sensor needs to be situated relative to the receiving electronics. In general then, the lower the Q, the greater the energy loss and the shorter the distance between sensor and receiving antenna required for sensor detection.
The Q of the sensor will be dependent on multiple factors such as the shape, size, diameter, number of turns, spacing between turns and cross-sectional area of the inductor component. In addition, Q will be greatly affected by the materials used to construct the sensors. Specifically, materials with low loss tangents will provide the sensor with higher Q factors.
The implantable sensor ascending to the invention is preferably constructed of various glasses or ceramics including but not limited to fused silica, quartz, pyrex and sintered zirconia, that provide the required biocompatibility, hermeticity and processing capabilities. Preferably the materials result in a high Q factor. These materials are considered dielectrics, that is, they are poor conductors of electricity, but are efficient supporters of electrostatic or electroquasiatatic fields. An important property of dielectric materials is their ability to support such fields while dissipating minimal energy. The lower the dielectric loss (the proportion of energy lost), the more effective the dielectric material in maintaining high Q. For a lossy dielectric material, the loss is described by the property termed “loss tangent.” A large loss tangent reflects a high degree of dielectric loss.
With regard to operation within the human body, there is a second important issue related to Q, namely, that blood and body fluids are conductive mediums and are thus particularly lossy. The consequence of this fact is that when a sensor is immersed in a conductive fluid, energy from the sensor will dissipate, substantially lowering the Q and reducing the sensor-to-electronics distance. For example, the sensors described above were immersed in saline (0.9% salt solution), and the measured Q decreased to approximately 10. It has been found that such loss can be minimized by further separation of the sensor from the conductive liquid. This can be accomplished, for example, by encapsulating the sensor in a suitable low-loss-tangent dielectric material. However, potential encapsulation material must have the flexibility and biocompatibility characteristics of the sensor material and also be sufficiently compliant to allow transmission of fluid pressure to the pressure sensitive diaphragm. A preferred material for this application is polydimethylsiloxane (silicone).
As an example, a thin (i.e., 200 micron) coating of silicone was applied to the sensor detailed above. This coating provided sufficient insulation to maintain the Q at 50 in a conductive medium. Equally important, despite the presence of the silicone, adequate sensitivity to pressure changes was maintained and the sensor retained sufficient flexibility to be folded for endovascular delivery. One additional benefit of the silicone encapsulation material is that it can be optionally loaded with a low percentage (i.e., 10-20%) of radio-opaque material (e.g., barium sulfate) to provide visibility when examined using fluoroscopic x-ray equipment. This added barium sulfate will not affect the mechanical and electrical properties of the silicone.
As described above, it is desirable to increase the Q factor of a sensor, and the Q factor can be increased by suitable selection of sensor materials or a coating, or both. Preferably both are used, because the resulting high Q factor of a sensor prepared in this fashion is especially suitable for the applications described.
When introduced into the sac of an abdominal aorta, the pressure sensor can provide pressure related data by use of an external measuring device. As disclosed in the Allen et al. patents, several different excitation systems can be used. The readout device generates electromagnetic energy that can penetrate through the body's tissues to the sensor's implanted location. The sensor's electrical components can absorb a fraction of the electromagnetic energy that is generated by the readout device via inductive coupling. This coupling will induce a current in the sensor's circuit that will oscillate at the same frequency as the applied electromagnetic energy. Due to the nature of the sensor's electromechanical system there will exist a frequency of alternating current at which the absorption of energy from the readout device is at a minimum. This frequency is a function of the capacitance of the device. Therefore, if the sensor's capacitance changes so will the frequency at which it minimally absorbs energy from the readout device. Since the sensor's capacitance is mechanically linked to the fluid pressure at the sensor's surface, a measurement of this frequency by the readout device can give a relative measurement of the fluid pressure. If calibration of the device is performed then an absolute measurement of pressure can be made.
The circuitry used to measure and display pressure is contained within a simple to operate, portable electronic unit 400, as shown in
Accordingly, the present invention provides for an impedance system and method of determining the resonant frequency and bandwidth of a resonant circuit within a particular sensor. The system includes a loop antenna, which is coupled to an impedance analyzer. The impedance analyzer applies a constant voltage signal to the loop antenna scanning the frequency across a predetermined spectrum. The current passing through the transmitting antenna experiences a peak at the resonant frequency of the sensor. The resonant frequency and bandwidth are thus determined from this peak in the current.
The method of determining the resonant frequency and bandwidth using an impedance approach may include the steps of transmitting an excitation signal using a transmitting antenna and electromagnetically coupling a sensor having a resonant circuit to the transmitting antenna thereby modifying the impedance of the transmitting antenna. Next, the step of measuring the change in impedance of the transmitting antenna is performed, and finally, the resonant frequency and bandwidth of the sensor circuit are determined.
In addition, the present invention provides for a transmit and receive system and method for determining the resonant frequency and bandwidth of a resonant circuit within a particular sensor. According to this method, an excitation signal of white noise or predetermined multiple frequencies is transmitted from a transmitting antenna, the sensor being electromagnetically coupled to the transmitting antenna. A current is induced in the resonant circuit of the sensor as it absorbs energy from the transmitted excitation signal, the current oscillating at the resonant frequency of the resonant circuit. A receiving antenna, also electromagnetically coupled to the transmitting antenna, receives the excitation signal minus the energy which was absorbed by the sensor. Thus, the power of the received signal experiences a dip or notch at the resonant frequency of the sensor. The resonant frequency and bandwidth are determined from this notch in the power.
The transmit and receive method of determining the resonant frequency and bandwidth of a sensor circuit includes the steps of transmitting a multiple frequency signal from transmitting antenna, and, electromagnetically coupling a resonant circuit on a sensor to the transmitting antenna thereby inducing a current in the sensor circuit. Next, the step of receiving a modified transmitted signal due to the induction of current in the sensor circuit is performed. Finally, the step of determining the resonant frequency and bandwidth from the received signal is executed.
Yet another system and method for determining the resonant frequency and bandwidth of a resonant circuit within a particular sensor includes a chirp interrogation system. This system provides for a transmitting antenna which is electromagnetically coupled to the resonant circuit of the sensor. An excitation signal of white noise or predetermined multiple frequencies, or a time-gated single frequency is applied to the transmitting antenna for a predetermined period of time, thereby inducing a current in the resonant circuit of the sensor at the resonant frequency. The system then listens for a return signal which is coupled back from the sensor. The resonant frequency and bandwidth of the resonant circuit are determined from the return signal.
The chirp interrogation method for determining the resonant frequency and bandwidth of a resonant circuit within a particular sensor includes the steps of transmitting a multi-frequency signal pulse from a transmitting antenna, electromagnetically coupling a resonant circuit on a sensor to the transmitting antenna thereby inducing a current in the sensor circuit, listening for and receiving a return signal radiated from the sensor circuit, and determining the resonant frequency and bandwidth from the return signal.
The present invention also provides an analog system and method for determining the resonant frequency of a resonant circuit within a particular sensor. The analog system comprises a transmitting antenna coupled as part of a tank circuit which in turn is coupled to an oscillator. A signal is generated which oscillates at a frequency determined by the electrical characteristics of the tank circuit. The frequency of this signal is further modified by the electromagnetic coupling of the resonant circuit of a sensor. This signal is applied to a frequency discriminator which in turn provides a signal from which the resonant frequency of the sensor circuit is determined.
The analog method for determining the resonant frequency and bandwidth of a resonant circuit within a particular sensor includes the steps of generating a transmission signal using a tank circuit which includes a transmitting antenna, modifying the frequency of the transmission signal by electromagnetically coupling the resonant circuit of a sensor to the transmitting antenna, and converting the modified transmission signal into a standard signal for further application.
The invention further includes an alternative method of measuring pressure in which a non-linear element such as a diode or polyvinylidenedifluoride piezo-electric polymer is added to the LC circuit. A diode with a low turn-on voltage such as a Schottky diode can be fabricated using micro-machining techniques. The presence of this non-linear element in various configurations within the LC circuit can be used to modulate the incoming signal from the receiving device and produce different harmonics of the original signal. The read-out circuitry can be tuned to receive the particular harmonic frequency that is produced and use this signal to reconstruct the fundamental frequency of the sensor. The advantage of this approach is two-fold; the incoming signal can be transmitted continuously and since the return signal will be at different signals, the return signal can also be received continuously.
The above methods lend themselves to the creation of small and simple to manufacture hand-held electronic devices that can be used without complication.
The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, however, that other expedients known to those skilled in the art or disclosed herein, may be employed without departing from the spirit of the invention of the scope of the appended claims.
This application is a divisional application of U.S. patent application Ser. No. 11/472,905, filed Jun. 22, 2006, now U.S. Pat. No. 7,574,792 which is a divisional application of U.S. patent application Ser. No. 10/943,772, filed Sep. 16, 2004, now abandoned, which is based upon commonly assigned U.S. provisional patent application Ser. No. 60/503,745, filed Sep. 16, 2003, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2512641 | Halstead | Jun 1950 | A |
2769863 | Von Wittern | Jun 1957 | A |
3350944 | De Michele | Nov 1967 | A |
3419384 | Rembaum | Dec 1968 | A |
3419834 | McKechnie et al. | Dec 1968 | A |
3550137 | Kuecken | Dec 1970 | A |
3651243 | Hornor et al. | Mar 1972 | A |
3867950 | Fischell | Feb 1975 | A |
3882424 | Debois et al. | May 1975 | A |
3913028 | Bosselaers | Oct 1975 | A |
3942382 | Hok | Mar 1976 | A |
3958558 | Dunphy et al. | May 1976 | A |
4026276 | Chubbuck | May 1977 | A |
4077016 | Sanders et al. | Feb 1978 | A |
4114606 | Seylar | Sep 1978 | A |
4127110 | Bullara | Nov 1978 | A |
4152669 | Igarashi | May 1979 | A |
4206762 | Cosman | Jun 1980 | A |
4207604 | Bell | Jun 1980 | A |
4207903 | O'Neill | Jun 1980 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4237900 | Schulman et al. | Dec 1980 | A |
4281212 | Bogese, II | Jul 1981 | A |
4354506 | Sakaguchi et al. | Oct 1982 | A |
4378809 | Cosman | Apr 1983 | A |
4385636 | Cosman | May 1983 | A |
4389895 | Rud, Jr. | Jun 1983 | A |
4407296 | Anderson | Oct 1983 | A |
4424403 | Bogese, II | Jan 1984 | A |
4467138 | Brorein | Aug 1984 | A |
4485813 | Anderson et al. | Dec 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4521684 | Gilby et al. | Jun 1985 | A |
4531526 | Genest | Jul 1985 | A |
4593703 | Cosman | Jun 1986 | A |
4596563 | Pande | Jun 1986 | A |
4617606 | Shak et al. | Oct 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4625561 | Mikkor | Dec 1986 | A |
4627079 | von der Embse | Dec 1986 | A |
4651571 | McGlade | Mar 1987 | A |
4660568 | Cosman | Apr 1987 | A |
4679560 | Galbraith | Jul 1987 | A |
4689806 | von der Embse | Aug 1987 | A |
4701826 | Mikkor | Oct 1987 | A |
4713540 | Gilby et al. | Dec 1987 | A |
4718425 | Tanaka et al. | Jan 1988 | A |
4720687 | Ostoich et al. | Jan 1988 | A |
4773972 | Mikkor | Sep 1988 | A |
4796641 | Mills et al. | Jan 1989 | A |
4815472 | Wise et al. | Mar 1989 | A |
4831325 | Watson, Jr. | May 1989 | A |
4833920 | Knecht et al. | May 1989 | A |
4846191 | Brockway et al. | Jul 1989 | A |
4890623 | Cook et al. | Jan 1990 | A |
4899752 | Cohen | Feb 1990 | A |
4905575 | Knecht et al. | Mar 1990 | A |
4913147 | Fahlstrom et al. | Apr 1990 | A |
4924172 | Holmgren | May 1990 | A |
4934369 | Maxwell | Jun 1990 | A |
4987897 | Funke | Jan 1991 | A |
5036854 | Schollmeyer et al. | Aug 1991 | A |
5043531 | Gutenson et al. | Aug 1991 | A |
5113868 | Wise et al. | May 1992 | A |
5115128 | Cook | May 1992 | A |
5129394 | Mehra | Jul 1992 | A |
5148123 | Ries | Sep 1992 | A |
5153583 | Murdoch | Oct 1992 | A |
5165289 | Tilmans | Nov 1992 | A |
5173836 | Tomase et al. | Dec 1992 | A |
5181423 | Philipps et al. | Jan 1993 | A |
5192314 | Daskalakis | Mar 1993 | A |
5200930 | Rouquette | Apr 1993 | A |
5207103 | Wise et al. | May 1993 | A |
5265606 | Kujawski | Nov 1993 | A |
5277068 | Fukiura et al. | Jan 1994 | A |
5312674 | Haertling et al. | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5331453 | Lipsky | Jul 1994 | A |
5353800 | Pohndorf et al. | Oct 1994 | A |
5355714 | Suzuki et al. | Oct 1994 | A |
5357253 | Van Etten et al. | Oct 1994 | A |
5373852 | Harrison et al. | Dec 1994 | A |
5400535 | Schomaker | Mar 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5411551 | Winston et al. | May 1995 | A |
5431171 | Harrison et al. | Jul 1995 | A |
5440300 | Spillman, Jr. | Aug 1995 | A |
5483834 | Frick | Jan 1996 | A |
5487760 | Villafana | Jan 1996 | A |
5491299 | Naylor et al. | Feb 1996 | A |
5497099 | Walton | Mar 1996 | A |
5515041 | Spillman, Jr. | May 1996 | A |
5535752 | Halperin et al. | Jul 1996 | A |
5538005 | Harrison et al. | Jul 1996 | A |
5543349 | Kurtz et al. | Aug 1996 | A |
5551427 | Altman | Sep 1996 | A |
5554139 | Okajima | Sep 1996 | A |
5566676 | Rosenfeldt et al. | Oct 1996 | A |
5574470 | de Vall | Nov 1996 | A |
5593430 | Renger | Jan 1997 | A |
5594389 | Kiyanagi et al. | Jan 1997 | A |
5600245 | Yamamoto et al. | Feb 1997 | A |
5625341 | Giles et al. | Apr 1997 | A |
5626630 | Markowitz et al. | May 1997 | A |
5659155 | Porzilli | Aug 1997 | A |
5686841 | Stolarczyk et al. | Nov 1997 | A |
5695155 | Macdonald et al. | Dec 1997 | A |
5701121 | Murdoch | Dec 1997 | A |
5702427 | Ecker et al. | Dec 1997 | A |
5703412 | Takemoto et al. | Dec 1997 | A |
5703576 | Spillman, Jr. et al. | Dec 1997 | A |
5713917 | Leonhardt et al. | Feb 1998 | A |
5722414 | Archibald et al. | Mar 1998 | A |
5723791 | Koch et al. | Mar 1998 | A |
5740594 | Lukasiewicz et al. | Apr 1998 | A |
5743267 | Nikolic et al. | Apr 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5796827 | Coppersmith et al. | Aug 1998 | A |
5807265 | Itoigawa et al. | Sep 1998 | A |
5836886 | Itoigawa et al. | Nov 1998 | A |
5860938 | Lafontaine et al. | Jan 1999 | A |
5896113 | O'Neill, Jr. | Apr 1999 | A |
5899927 | Ecker et al. | May 1999 | A |
5935084 | Southworth | Aug 1999 | A |
5942991 | Gaudreau et al. | Aug 1999 | A |
5967986 | Cimochowski et al. | Oct 1999 | A |
5974894 | Delatorre | Nov 1999 | A |
5976070 | Ono et al. | Nov 1999 | A |
5986549 | Teodorescu | Nov 1999 | A |
6009350 | Renken | Dec 1999 | A |
6015386 | Kensey et al. | Jan 2000 | A |
6015387 | Schwartz et al. | Jan 2000 | A |
6019729 | Itoigawa et al. | Feb 2000 | A |
6024704 | Meador et al. | Feb 2000 | A |
6025725 | Gershenfeld et al. | Feb 2000 | A |
6030413 | Lazarus | Feb 2000 | A |
6033366 | Brockway et al. | Mar 2000 | A |
6051866 | Shaw et al. | Apr 2000 | A |
6053873 | Govari et al. | Apr 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6111520 | Allen et al. | Aug 2000 | A |
6113553 | Chubbuck | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6140740 | Porat et al. | Oct 2000 | A |
6159156 | Van Bockel | Dec 2000 | A |
6165135 | Neff | Dec 2000 | A |
6198965 | Penner et al. | Mar 2001 | B1 |
6201980 | Darrow et al. | Mar 2001 | B1 |
6206835 | Spillman, Jr. et al. | Mar 2001 | B1 |
6208305 | King | Mar 2001 | B1 |
6212056 | Gammel et al. | Apr 2001 | B1 |
6237398 | Porat et al. | May 2001 | B1 |
6239724 | Doron et al. | May 2001 | B1 |
6252163 | Fujimori et al. | Jun 2001 | B1 |
6252481 | Iwao et al. | Jun 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6278379 | Allen et al. | Aug 2001 | B1 |
6287253 | Ortega et al. | Sep 2001 | B1 |
6291343 | Tseng et al. | Sep 2001 | B1 |
6292104 | Wakabayashi | Sep 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6319208 | Abita et al. | Nov 2001 | B1 |
6327319 | Hietala et al. | Dec 2001 | B1 |
6331792 | Tonietto | Dec 2001 | B1 |
6338284 | Najafi et al. | Jan 2002 | B1 |
6373264 | Matsumoto et al. | Apr 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411130 | Gater | Jun 2002 | B1 |
6416474 | Penner et al. | Jul 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6448500 | Hosaka et al. | Sep 2002 | B1 |
6454720 | Clerc et al. | Sep 2002 | B1 |
6495895 | Peterson et al. | Dec 2002 | B1 |
6517483 | Park et al. | Feb 2003 | B2 |
6533733 | Hylton et al. | Mar 2003 | B1 |
6548176 | Gwo | Apr 2003 | B1 |
6577893 | Besson et al. | Jun 2003 | B1 |
6625341 | Novotny | Sep 2003 | B1 |
6645143 | VanTassel et al. | Nov 2003 | B2 |
6656135 | Zogbi et al. | Dec 2003 | B2 |
6660564 | Brady | Dec 2003 | B2 |
6667725 | Simons et al. | Dec 2003 | B1 |
6678458 | Ellis et al. | Jan 2004 | B2 |
6682490 | Roy et al. | Jan 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6702983 | Hu et al. | Mar 2004 | B2 |
6706005 | Roy et al. | Mar 2004 | B2 |
6743173 | Penner et al. | Jun 2004 | B2 |
6743183 | Thornton | Jun 2004 | B1 |
6749574 | O'Keefe | Jun 2004 | B2 |
6765493 | Lonsdale et al. | Jul 2004 | B2 |
6777940 | Macune | Aug 2004 | B2 |
6812404 | Martinez | Nov 2004 | B1 |
6822570 | Dimmer et al. | Nov 2004 | B2 |
6827250 | Uhland et al. | Dec 2004 | B2 |
6837438 | Takasugi et al. | Jan 2005 | B1 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6870105 | Maydanich et al. | Mar 2005 | B2 |
6890300 | Lloyd et al. | May 2005 | B2 |
6895281 | Amundson et al. | May 2005 | B1 |
6898454 | Atalar et al. | May 2005 | B2 |
6918173 | Ahn | Jul 2005 | B2 |
6919240 | Uzawa et al. | Jul 2005 | B2 |
6923769 | Nishii et al. | Aug 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6929974 | Ding et al. | Aug 2005 | B2 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6943419 | Wong et al. | Sep 2005 | B2 |
6943688 | Chung et al. | Sep 2005 | B2 |
6968743 | Rich et al. | Nov 2005 | B2 |
6989493 | Hipwell, Jr. et al. | Jan 2006 | B2 |
7005056 | Srinivasan et al. | Feb 2006 | B2 |
7024936 | Pedersen et al. | Apr 2006 | B2 |
7048756 | Eggers et al. | May 2006 | B2 |
7049523 | Shuman et al. | May 2006 | B2 |
7060038 | Letort et al. | Jun 2006 | B2 |
7076215 | Moliere | Jul 2006 | B1 |
7092765 | Geske et al. | Aug 2006 | B2 |
7147604 | Allen et al. | Dec 2006 | B1 |
7152477 | Banholzer et al. | Dec 2006 | B2 |
7181261 | Silver et al. | Feb 2007 | B2 |
7208684 | Fetterolf, Sr. et al. | Apr 2007 | B2 |
7215991 | Besson et al. | May 2007 | B2 |
7233182 | Savoj | Jun 2007 | B1 |
7245117 | Joy et al. | Jul 2007 | B1 |
7250041 | Chiu et al. | Jul 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7265478 | Thiesen | Sep 2007 | B2 |
7309330 | Bertrand et al. | Dec 2007 | B2 |
7353711 | O'Dowd et al. | Apr 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7432723 | Ellis et al. | Oct 2008 | B2 |
7439723 | Allen et al. | Oct 2008 | B2 |
7466120 | Miller et al. | Dec 2008 | B2 |
7498799 | Allen et al. | Mar 2009 | B2 |
7550978 | Joy et al. | Jun 2009 | B2 |
7572228 | Wolinsky et al. | Aug 2009 | B2 |
7574492 | Karaoguz et al. | Aug 2009 | B2 |
7574792 | O'Brien et al. | Aug 2009 | B2 |
7595647 | Kroh et al. | Sep 2009 | B2 |
7621036 | Cros et al. | Nov 2009 | B2 |
7621878 | Ericson et al. | Nov 2009 | B2 |
7647836 | O'Brien et al. | Jan 2010 | B2 |
7662653 | O'Brien et al. | Feb 2010 | B2 |
7679355 | Allen et al. | Mar 2010 | B2 |
7699059 | Fonseca et al. | Apr 2010 | B2 |
7699060 | Behm | Apr 2010 | B2 |
7748277 | O'Brien et al. | Jul 2010 | B2 |
7839153 | Joy et al. | Nov 2010 | B2 |
7930032 | Teske et al. | Apr 2011 | B2 |
7932732 | Ellis et al. | Apr 2011 | B2 |
7936174 | Ellis et al. | May 2011 | B2 |
7973540 | Kroh et al. | Jul 2011 | B2 |
8025625 | Allen | Sep 2011 | B2 |
8026692 | Chang | Sep 2011 | B2 |
8026729 | Kroh et al. | Sep 2011 | B2 |
8083741 | Morgan et al. | Dec 2011 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8237451 | Joy et al. | Aug 2012 | B2 |
8278941 | Kroh et al. | Oct 2012 | B2 |
20010001311 | Park et al. | May 2001 | A1 |
20020013994 | Ahn | Feb 2002 | A1 |
20020049394 | Roy et al. | Apr 2002 | A1 |
20020052563 | Penn et al. | May 2002 | A1 |
20020075825 | Hills et al. | Jun 2002 | A1 |
20020087059 | O'keefe | Jul 2002 | A1 |
20020115920 | Rich et al. | Aug 2002 | A1 |
20020138009 | Brockway et al. | Sep 2002 | A1 |
20020147416 | Zogbi et al. | Oct 2002 | A1 |
20020151816 | Rich et al. | Oct 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20020188207 | Richter | Dec 2002 | A1 |
20030010808 | Uhland et al. | Jan 2003 | A1 |
20030028094 | Kumar et al. | Feb 2003 | A1 |
20030031587 | Hu et al. | Feb 2003 | A1 |
20030085799 | Ghabra et al. | May 2003 | A1 |
20030105388 | Roy et al. | Jun 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030136417 | Fonseca et al. | Jul 2003 | A1 |
20030139677 | Fonseca et al. | Jul 2003 | A1 |
20030143775 | Brady | Jul 2003 | A1 |
20030151400 | Petrovich et al. | Aug 2003 | A1 |
20030179708 | Kamerman et al. | Sep 2003 | A1 |
20030185330 | Hessel et al. | Oct 2003 | A1 |
20030219220 | Ellis et al. | Nov 2003 | A1 |
20040003285 | Whelan et al. | Jan 2004 | A1 |
20040011650 | Zenhausern et al. | Jan 2004 | A1 |
20040017310 | Vargas-Hurlston et al. | Jan 2004 | A1 |
20040036626 | Chan et al. | Feb 2004 | A1 |
20040057589 | Pedersen et al. | Mar 2004 | A1 |
20040059348 | Geske et al. | Mar 2004 | A1 |
20040073137 | Lloyd et al. | Apr 2004 | A1 |
20040077117 | Ding et al. | Apr 2004 | A1 |
20040082851 | Bilgen et al. | Apr 2004 | A1 |
20040113790 | Hamel et al. | Jun 2004 | A1 |
20040118997 | Lehmann et al. | Jun 2004 | A1 |
20040122494 | Eggers et al. | Jun 2004 | A1 |
20040157367 | Wong et al. | Aug 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040181206 | Chiu et al. | Sep 2004 | A1 |
20040211260 | Girmonsky et al. | Oct 2004 | A1 |
20040236209 | Misic et al. | Nov 2004 | A1 |
20050043670 | Rosenberg | Feb 2005 | A1 |
20050046558 | Buenz et al. | Mar 2005 | A1 |
20050075697 | Olson et al. | Apr 2005 | A1 |
20050085703 | Behm | Apr 2005 | A1 |
20050154321 | Wolinsky et al. | Jul 2005 | A1 |
20050187482 | O'Brien et al. | Aug 2005 | A1 |
20050194174 | Hipwell et al. | Sep 2005 | A1 |
20050229710 | O'Dowd et al. | Oct 2005 | A1 |
20060025704 | Stendel et al. | Feb 2006 | A1 |
20060047327 | Colvin et al. | Mar 2006 | A1 |
20060052737 | Bertrand et al. | Mar 2006 | A1 |
20060052782 | Morgan et al. | Mar 2006 | A1 |
20060129056 | Leuthardt et al. | Jun 2006 | A1 |
20060174712 | O'Brien et al. | Aug 2006 | A1 |
20060177956 | O'Brien et al. | Aug 2006 | A1 |
20060178586 | Dobak | Aug 2006 | A1 |
20060196277 | Allen et al. | Sep 2006 | A1 |
20060235310 | O'Brien et al. | Oct 2006 | A1 |
20060241354 | Allen | Oct 2006 | A1 |
20060244465 | Kroh et al. | Nov 2006 | A1 |
20060283007 | Cros et al. | Dec 2006 | A1 |
20060287598 | Lasater et al. | Dec 2006 | A1 |
20060287602 | O'Brien et al. | Dec 2006 | A1 |
20060287700 | White et al. | Dec 2006 | A1 |
20070049845 | Fleischman et al. | Mar 2007 | A1 |
20070096715 | Joy et al. | May 2007 | A1 |
20070100215 | Powers et al. | May 2007 | A1 |
20070107524 | O'Brien et al. | May 2007 | A1 |
20070118038 | Bodecker et al. | May 2007 | A1 |
20070181331 | Kroh et al. | Aug 2007 | A1 |
20070185546 | Tseng et al. | Aug 2007 | A1 |
20070199385 | O'Brien et al. | Aug 2007 | A1 |
20070210786 | Allen et al. | Sep 2007 | A1 |
20070222603 | Lai et al. | Sep 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070247138 | Miller et al. | Oct 2007 | A1 |
20070261497 | O'Brien et al. | Nov 2007 | A1 |
20070276294 | Gupta et al. | Nov 2007 | A1 |
20080029590 | Zosimadis et al. | Feb 2008 | A1 |
20080060834 | Eck et al. | Mar 2008 | A1 |
20080060844 | Teske et al. | Mar 2008 | A1 |
20080061955 | Tang et al. | Mar 2008 | A1 |
20080077016 | Sparks et al. | Mar 2008 | A1 |
20080078567 | Miller et al. | Apr 2008 | A1 |
20080081962 | Miller et al. | Apr 2008 | A1 |
20080272733 | Huang | Nov 2008 | A1 |
20090030291 | O'Brien et al. | Jan 2009 | A1 |
20090030397 | Stofer et al. | Jan 2009 | A1 |
20090033486 | Costantino | Feb 2009 | A1 |
20090033846 | Yamada et al. | Feb 2009 | A1 |
20090224773 | Joy et al. | Sep 2009 | A1 |
20090224837 | Joy et al. | Sep 2009 | A1 |
20090273353 | Kroh et al. | Nov 2009 | A1 |
20090278553 | Kroh et al. | Nov 2009 | A1 |
20100022896 | Yadav et al. | Jan 2010 | A1 |
20100026318 | Kroh et al. | Feb 2010 | A1 |
20100058583 | Cros et al. | Mar 2010 | A1 |
20120016228 | Kroh et al. | Jan 2012 | A1 |
20140084943 | Kroh et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
701577 | Feb 1999 | AU |
2004274005 | Mar 2005 | AU |
2006262234 | Jan 2007 | AU |
2009201749 | May 2009 | AU |
2009201750 | May 2009 | AU |
2012247061 | Nov 2012 | AU |
2013263860 | Jan 2014 | AU |
1158061 | Jun 1983 | CA |
2539261 | Mar 2005 | CA |
2613361 | Jan 2007 | CA |
3330519 | Mar 1985 | DE |
19510452 | Oct 1995 | DE |
19644858.5 | Oct 1996 | DE |
19853135 | May 2000 | DE |
10052053 | Apr 2002 | DE |
10135568 | Feb 2003 | DE |
0072003 | Feb 1983 | EP |
0450653 | Oct 1991 | EP |
0337035 | Nov 1993 | EP |
0646365 | Apr 1995 | EP |
1491137 | Dec 2004 | EP |
1677852 | Jul 2006 | EP |
1817593 | Aug 2007 | EP |
1893081 | Mar 2008 | EP |
2265164 | Dec 2010 | EP |
2268218 | Jan 2011 | EP |
2456502 | May 2012 | EP |
5870399 | Nov 1984 | JP |
63171331 | Jul 1988 | JP |
6481597 | Mar 1989 | JP |
09259384 | Oct 1997 | JP |
WO 8303348 | Oct 1983 | WO |
WO 9006723 | Jun 1990 | WO |
WO-9308871 | May 1993 | WO |
WO 9533517 | Dec 1995 | WO |
WO 9709926 | Mar 1997 | WO |
WO-9711641 | Apr 1997 | WO |
WO 9732518 | Sep 1997 | WO |
WO 9732519 | Sep 1997 | WO |
WO 9733513 | Sep 1997 | WO |
WO-9847727 | Oct 1998 | WO |
WO 9934731 | Jul 1999 | WO |
WO 0016686 | Mar 2000 | WO |
WO 0100089 | Jan 2001 | WO |
WO-0135872 | May 2001 | WO |
WO 0187137 | Nov 2001 | WO |
WO 0197908 | Dec 2001 | WO |
WO-02058551 | Aug 2002 | WO |
WO-03032009 | Apr 2003 | WO |
WO 03061504 | Jul 2003 | WO |
WO-2004014456 | Feb 2004 | WO |
WO-2004098701 | Nov 2004 | WO |
WO-2005019785 | Mar 2005 | WO |
WO-2005027998 | Mar 2005 | WO |
WO-2006049796 | May 2006 | WO |
WO-2006086113 | Aug 2006 | WO |
WO-2006086114 | Aug 2006 | WO |
WO-2006096582 | Sep 2006 | WO |
WO-2007002185 | Jan 2007 | WO |
WO-2007002224 | Jan 2007 | WO |
WO-2007002225 | Jan 2007 | WO |
WO-2007008493 | Jan 2007 | WO |
WO-2007030489 | Mar 2007 | WO |
WO-2007047571 | Apr 2007 | WO |
WO-2007047794 | Apr 2007 | WO |
WO-2007106490 | Sep 2007 | WO |
WO-2008015679 | Feb 2008 | WO |
WO-2008031011 | Mar 2008 | WO |
WO-2008031095 | Mar 2008 | WO |
WO-2008047727 | Apr 2008 | WO |
WO-2009146089 | Dec 2009 | WO |
WO-2009146090 | Dec 2009 | WO |
WO-2011011104 | Jan 2011 | WO |
Entry |
---|
Resonant Beam Pressure Sensor Fabricated with Silicon Fusion Bonding, IEEE, pp. 664-667, dated May 1991 to Peterson, et al. |
A. Dehennis, K.D. Wise; “A Passive-Telemetry-Based Pressure Sensing System”: NSF Engineering Research Center for Wireless Integrated Microsystems; Department of Electrical Engineering and Computer Science; The University of Michigan, Ann Arbor, MI 48109-2122 US. |
S.R. Vallabhane, J. Brennan, G. Gilling-Smith, D. Gould, T. How, R. McWilliams, P.L. Harris; “Aortic Side Branch perfusion Alone Does Not Account for High Intra-Sac Pressure After Endovascular Repair (EVAR) In the Absence of Graft-Related Endoleak”; Royal Liverpool University Hospital, Liverpool, UK. |
M. Gawenda, J. Heckenkamp, M. Zaehringer, J. Brunkwall; “Intra-Aneurysm Sac Pressure-The Holy Gail of Endoluminal Grafting of AAA”; Eur J Vasc Endovasc Surg, vol. 24, Aug. 2002, pp. 139-145. |
GWH Schurink, NJM Arts, J Wild, J.M Van Baalen, Tam Chutner, LJ Schultze Kool, JH Van Bockel; “Endoleakage After Stent-Graft Treatment of Abdominal Aneurysm: Implications on Pressure and Imaging-An In Vitro Study”; Journal of Vascular Surgery, vol. 28, No. 2, pp. 234-241. |
B. Sonesson, N. Dias, M. Malina, P. Olofsson, D. Griffin, B. Lindblad, K. Ivancev; “Intra-Aneurysm Pressure Measurements in Successfully Excluded Abdominal Aortic Aneurysm After Endovascular Repair”; Journal of Vascular Surgery, vol. 37, No. 4, Apr. 2003, pp. 733-738. |
C.S. Skillern, S.L. Stevens, K.T. Piercy, R.L. Donnell, M.B. Freeman, M.H. Goldman; “Endotension in an Experimental Aneurysm Model”; Journal of Vascular Surgery, vol. 36, No. 4, Oct. 2002, pp. 814-817. |
G.D. Treharne, I.M. Loftus, M.M. Thompson, N. Leonard, J. Smith, G. Fishwick, PRF Bell; “Quality Control During Endovascular Aneurysm Repair: Monitoring Aneurysmal Sac Pressure and Superficial Femoral Artery Flow Velocity”; J. Endovasc Surg, 1999, 6, pp. 239-245. |
M.L. Manwaring, V.D. Malbasa, K.L. Manwaring: “Remote Monitoring of Intercranial Pressure”; Institute of Concology; Annals of the Academy of Studencia Apr. 2001; pp. 77-80. |
GWH Schurink, NJM Arts, J.M Van Baalen, L.J Schultze Kool, JH Van Bockel; “Experimental Study of the Influence of Endoleakage Size on Pressure in the Aneurysm Sac and the Consequences of Thrombosis”; Bristish Journal of Surgery 2002, 87, pp. 71-78. |
K. Ouriel; “role of intrasac Pressure Measurements After EVAR: Can They Be Followed Noninvasively?”; Combined Session: Vascular Surgery and Interventional Radiology; VII 4.1. |
R.A. Baum, J.P. Carpenter, C. Cope, M.A. Golden, O.C. Velazquez, D.G. Neschis, M.E. Mitchell, C.F. Barker, R.M. Fairman; “Aneurysm Sac Pressure measurements After Endovascular Repair of Abdominal Aortic Aneurysms”; Journal of Vascular Surgery, vol. 33, No. 1, Jan. 2001, pp. 32-41. |
P.L. Harris, S. Dimitri; “Predicting failure of endovascular Aneurysm repair”; Eur J Vas Endovasc Surg, vol. 17, Jan. 1999; pp. 1-2. |
G. Akingba, A. Cheng, A. Shum, P. Yang; “An Implantable Pressure Sensor for Aneurysmal Disease”. |
K.F. Adams, Jr.; “Guiding Heart Failure Care by Invasive Hemodynamic Measurements: Possible or Useful?”, Journal of cardiac failure, vol. 8, No. 2, Apr. 2002, pp. 71-73. |
A. Magalski, P. Adamson, F. Gadler, M. Boehm, D. Steinhaus, D. Reynolds,K. Vlach, C. Linde, Cremers, B. Sparks, T. Bennet; “Continuous Ambulatory Right Heart Presure Measurements with an Implantable Hemodynamic Monitor: A Multicenter, 12-Month Follow-Up Study of Patients with Chronic Heart Failure”; Journal of Cardiac failure, vol. 8, Apr. 2002, pp. 63-70. |
R. Shabetai; “Monitoring Heart Failure Hemodynamics with an Implanted Device: Its Potential to Improve Outcome”; Journal of the American College of Cardiology; vol. 41, No. 4, Feb. 19, 2003; pp. 572-573. |
J.C. Parodi, R. Berguer, L.M. Ferreira, R. Lamura, M.L. Schererhorn; “intra-eneurysmal Pressure After Incomplete Endovascular Exclusion”; Journal of Vascular Surgery, vol. 24, No. 5, Nov. 2001, pp. 909-914. |
M. Gawenda, J. Heckenkamp, S. Winter, G. Jaschke, J. Brunkwall; Pressure if Transmitted Through PTFE and Dacron Grafts Leading the Aneurysm Sac Pressure Endoluminal Grafting of AAA—An In Vitro Study; Vascular Centre, university of Cologne, Germany. |
T. Akin, B. Ziaie, K. Najafi; “RF Telemetry Powering and Controlling of Hermetically Sealed Integrated Sensors and Actuators”; Center for Integrated Sensors and Circuits; Department of Electrical Engineering and Computer Science; University of Michigan; Ann Arbor, Michigan 48109-2122; pp. 145-148. |
H.E. Haynes, A.L. Witchey; “Medical electronics: The Pill That Talks”; DEP, Camden, N.J. |
A. Dehennis, K.D. Wise; “A Double-Sided Single-Chip Wireless Pressure Sensor”: Engineering Research Center for Wireless Integrated Microsystems; Department of Electrical Engineering and Computer Science; The University of Michigan, Ann Arbor, MI 48109-2122 US. |
J. Zhe, R.R. Farmer, V. Modi; “A MEMS Device for Measurement of Skin Friction with Capacitive Sensing”; Department of Mechanical Engineering, Columbia university, NY 10027; Microelectronics research Center, New Jersey institute of Technology, Newark, NJ 07102. |
T. Chuter, K. Ivancev, M. Malina, T. Resch, J. Brunkwall, B. Lindblad, B. Risberg; “Endovascular and Surgical techniques”; Eur J. Vasc Endovasc Surg vol. 13, Jan. 1997, pp. 85-87. |
J.T. Farrar, C. Berkley, V.K. Zworykin; “ Telemetering of Intraenteric pressure in man by an Externally Energized Wireless Capsule”; Science, New Series, vol. 131, Issue 3416 (Jun. 17, 1960), 1814. |
Collins, Miniature Passive Pressure Transensor for Implanting in the Eye, IEEE Transactions on Bio-Medical Engineering, vol. BME-14, No. 2, Apr. 1967. |
George et al., Ceramic Windows to the Future, http://matse1.mse.uiuc.edu/ceramics/ceramics.html, 1995, p. 4. |
U.S. Appl. No. 13/850,022, Yadav. |
“Helix,” The American Heritage Dictionary of the English Language. Boston, MA: Houghton Mifflin. Http://www.credoreference.com/entry/7055911 Aug. 21, 2008. |
“Interfere,” The American Heritage Dictionary of the English Language. Boston, MA: Houghton Mifflin. Http://www.credoreference.com/entry/7072413 Aug. 22, 2008. |
“Spiral,” The American Heritage Dictionary of the English Language. Boston, MA: Houghton Mifflin. Http://www.credoreference.com/entry/7129585 Aug. 21, 2008. |
Akar O, et al. “A Wireless Batch Sealed Absolute Capacitive Pressure Sensor,” Sensor and Actuators. Dec. 15, 2001, 95(1), pp. 29-38. |
Allen, “Micromachined endovascularly implantable wireless aneurysm pressue sensors,” International Conference on Solid State Sensors, Actuators and Microsystems, No. 13, pp. 275-278 (2005). |
Chirlian, “Basic network theory,” McGraw Hill Book Co., Impendance section: pp. 275-283, 350-355 (1969). |
Fonseca, “High temperature characterization of ceramic pressure sensors,” vol. 1, pp. 486-489 (2001). |
Harpster, “A passive wireless integrated humidity sensor,” Micro Electro Mechanical Systems, vol. IEEEMEMSCONF, No. 14, pp. 553-557 (2001). |
Puers, et al. “Electrodeposited copper indicators for intraocular pressure telemetry; electrodeposited copper inductors for IOP telemetry,” Journal of Micromechanics & Microengineering, vol. 10(2), pp. 124-129 (2000). |
Seifert, et al. “Wirelessly interrogable acoustic sensors,” Frequency and Time Form, (Online) No. 4, pp. 1013-1018 (1999). |
Notice of Allowance issued Aug. 5, 2011 for U.S. Appl. No. 12/416,904, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,026,729 on Sep. 27, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-9). |
Issue Notification issued Sep. 27, 2011 for U.S. Appl. No. 12/416,904, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,026,729 on Sep. 27, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Mar. 14, 2014 for U.S. Appl. No. 13/245,553, filed Sep. 26, 2011 and published as U.S. 2012/0016228 on Jan. 19, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-12). |
Supplemental European Search Report issued Apr. 11, 2013 for European Patent Application No. 09755451.3, which was filed on Apr. 1, 2009 and published as EP 2268218 on Jan. 5, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-5). |
International Search Report and Written Opinion issued Nov. 17, 2009 for International Patent Application No. PCT/US2009/039220, which was filed on Apr. 1, 2009 and published as WO 2009/146089 on Dec. 3, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-10). |
International Preliminary Report on Patentability issued Oct. 5, 2010 for International Patent Applicantion No. PCT/US2009/039220, which was filed on Apr. 1, 2009 and published as WO 2009/146089 on Dec. 3, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-6). |
Restriction Requirement issued Oct. 12, 2011 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-6). |
Response to Restriction Requirement filed Oct. 28, 2011 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-3). |
Ex Parte Quayle Action issued Mar. 15, 2012 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-5). |
Response to Ex Parte Quayle Communication filed May 15, 2012 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-9). |
Notice of Allowance issued May 25, 2012 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-8). |
Issue Notification issued Oct. 2, 2012 for U.S. Appl. No. 12/416,916, filed Apr. 1, 2009 and issued as U.S. Pat. No. 8,278,941 on Oct. 2, 2012 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Supplemental European Search Report issued Sep. 2, 2013 for European Patent Application No. 09755452.1, which was filed on Apr. 1, 2009 and published as EP 2265164 on Dec. 29, 2010 (Inventor—Kroh; Application—CardioMEMS) (pp. 1-7). |
International Search Report and Written Opinion issued Nov. 12, 2009 for International Patent Application No. PCT/US2009/039222, which was filed on Apr. 1, 2009 and published as WO 2009/146090 on Dec. 3, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-5). |
International Preliminary Report on Patentability issued Oct. 5, 2010 for International Patent Application No. PCT/US2009/039222, which was filed on Apr. 1, 2009 and published as WO 2009/146090 on Dec. 3, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-4). |
Supplemental European Search Report issued Apr. 29, 2013 for European Patent Application No. 10802580.0, which was filed on May 3, 2010 and published as EP 2456502 on May 30, 2012 (Inventor—Yadev; Applicant—CardioMEMS) (pp. 1-11). |
International Search Report and Written Opinion issued Jan. 7, 2011 for International Patent Application No. PCT/US2010/033396, which was filed on May 3, 2010 and published as WO 2011/011104 on Jan. 27, 2011 (Inventor—Yadev; Applicant—CardioMEMS) (pp. 1-7). |
International Preliminary Report on Patentability issued Jan. 24, 2012 for International Patent Application No. PCT/US2010/033396, which was filed on May 3, 2010 and published as WO 2011/011104 on Jan. 27, 2011 (Inventor—Yadev; Applicant—CardioMEMS) (pp. 1-5). |
Preliminary Amendment filed Nov. 4, 2009 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-3). |
Restriction Requirement issued Dec. 9, 2010 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-6). |
Preliminary Amendment and Response to Restriction Requirement filed Jun. 9, 2011 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-4). |
Non-Final Office Action issued Aug. 26, 2011 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-8). |
Response to Non-Final Office Action filed Jan. 31, 2012 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-13). |
Response to Final Office Action filed Jun. 26, 2012 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-8). |
Non-Final Office Action issued Jul. 18, 2013 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-7). |
Non-Final Office Action issued Feb. 24, 2014 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-10). |
Restriction Requirement issued Jan. 15, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-7). |
Response to Restriction Requirement filed Feb. 15, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-5). |
Restriction Requirement issued Apr. 11, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-7). |
Response to Restriction Requirement filed May 12, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-5). |
Non-Final Office Action issued Jun. 12, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-7). |
Response to Non-Final Office Action filed Dec. 12, 2008 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-15). |
Examiner Interview Summary issued Apr. 16, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-2). |
Notice of Allowance issued Jul. 10, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-4). |
Notice of Allowance issued Sep. 29, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-2). |
Examiner Interview Summary issued Oct. 30, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-3). |
Issue Notification issued Nov. 24, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-1). |
Preliminary Amendment filed Jun. 21, 2006 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-8). |
Non-Final Office Action issued Oct. 29, 2007 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-12). |
Supplemental Response to Non-Final Office Action filed May 30, 2008 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-19). |
Restriction Requirement issued Aug. 22, 2008 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-6). |
Final Office Action issued Aug. 25, 2008 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-12). |
Response and Amendment to Final Office Action filed Feb. 25, 2009 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-14). |
Non-Final Office Action issued Jun. 1, 2009 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-11). |
Amendment and Response to Non-Final Office Action filed Oct. 23, 2009 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-11). |
Final Office Action issued Jul. 29, 2010 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-12). |
Amendment in Response to Final Office Action filed Jan. 31, 2011 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-11). |
Non-Final Office Action issued Jan. 16, 2014 for U.S. Appl. No. 11/157,375, filed Jun. 21, 2005 and published as U.S. 2006/0287602 on Dec. 21, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-1 1). |
International Preliminary Report on Patentability issued Dec. 24, 2007 for International Patent Applicantion No. PCT/US2006/024185, which was filed on Jun. 21, 2006 and published as WO 2007/002225 on Jan. 4, 2007 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-7). |
International Search Report and Written Opinion issued Jan. 25, 2007 for International Patent Applicantion No. PCT/US2006/024185, which was filed on Jun. 21, 2006 and published as WO 2007/002225 on Jan. 4, 2007 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-11). |
Supplemental European Search Report issued May 27, 2009 for European Patent Application No. 4078884.1, which was filed on Sep. 16, 2004 and published as EP 1677852 on Jul. 12, 2006 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-5). |
International Preliminary Report on Patentability issued Oct. 3, 2006 for International Patent Application No. PCT/US2004/030727, which was filed on Sep. 16, 2004 and published as WO 2005/027998 on Mar. 31, 2005 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-9). |
International Search Report and Written Opinoin issued Aug. 4, 2006 for International Patent Application No. PCT/US2004/030727, which was filed on Sep. 16, 2004 and published as WO 2005/027998 on Mar. 31, 2005 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-12). |
Restriction Requirement issued Jul. 28, 2006 for U.S. App. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-7). |
Response to Restriction Requirement filed Aug. 28, 2006 for U.S. Appl. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-3). |
Examiner Interview Summary issued Sep. 20, 2006 for U.S. Appl. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Sep. 20, 2006 for U.S. Appl. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued Nov. 6, 2006 for U.S. Appl. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-2). |
Issue Notification issued Jun. 27, 2007 for U.S. Appl. No. 11/105,294, filed Apr. 13, 2005 and issued as U.S. Pat. No. 7,245,117 on Jul. 17, 2007 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Restriction Requirement issued Jan. 22, 2007 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-5). |
Response to Restriction Requirement filed Feb. 16, 2007 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-6). |
Non-Final Office Action issued Mar. 29, 2007 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-8). |
Examiner Interview Summary issued Jun. 26, 2007 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-3). |
Amendment and Response filed Jul. 26, 2007 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-12). |
Notice of Allowance issued Mar. 27, 2008 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-9). |
Notice of Allowance issued May 23, 2008 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued Aug. 12, 2008 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-2). |
Issue Notification issued Oct. 7, 2008 for U.S. Appl. No. 11/479,527, filed Jun. 30, 2006 and issued as U.S. Pat. No. 7,432,723 on Oct. 7, 2008 (Inventor—Ellis; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Aug. 17, 2007 for U.S. Appl. No. 11/748,053, filed May 14, 2007 and issued as U.S. Pat. No. 7,439,723 on Oct. 21, 2008 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-8). |
Notice of Allowance issued Jan. 2, 2008 for U.S. Appl. No. 11/748,053, filed May 14, 2007 and issued as U.S. Pat. No. 7,439,723 on Oct. 21, 2008 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued May 8, 2008 for U.S. Appl. No. 11/748,053, filed May 14, 2007 and issued as U.S. Pat. No. 7,439,723 on Oct. 21, 2008 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued Aug. 15, 2008 for U.S. Appl. No. 11/748,053, filed May 14, 2007 and issued as U.S. Pat. No. 7,439,723 on Oct. 21, 2008 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Issue Notification issued Oct. 21, 2008 for U.S. Appl. No. 11/748,053, filed May 14, 2007 and issued as U.S. Pat. No. 7,439,723 on Oct. 21, 2008 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Oct. 2, 2007 for U.S. Appl. No. 11/717,967, filed Mar. 14, 2007 and issued as U.S. Pat. No. 7,466,120 on Dec. 16, 2008 (Inventor—Miller; Applicant—CardioMEMS) (pp. 1-7). |
Notice of Allowance issued Nov. 21, 2007 for U.S. Appl. No. 11/717,967, filed Mar. 14, 2007 and issued as U.S. Pat. No. 7,466,120 on Dec. 16, 2008 (Inventor—Miller; Applicant—CardioMEMS) (pp. 1-2). |
Notice of Allowance issued Mar. 31, 2008 for U.S. Appl. No. 11/717,967, filed Mar. 14, 2007 and issued as U.S. Pat. No. 7,466,120 on Dec. 16, 2008 (Inventor—Miller; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued Jul. 14, 2008 for U.S. Appl. No. 11/717,967, filed Mar. 14, 2007 and issued as U.S. Pat. No. 7,466,120 on Dec. 16, 2008 (Inventor—Miller; Applicant—CardioMEMS) (pp. 1-6). |
Issue Notification issued Nov. 25, 2008 for U.S. Appl. No. 11/717,967, filed Mar. 14, 2007 and issued as U.S. Pat. No. 7,466,120 on Dec. 16, 2008 (Inventor—Miller; Applicant—CardioMEMS) (pp. 1-1). |
Requirement for Restriction issued Sep. 12, 2008 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-5). |
Examiner Interview Summary issued Sep. 12, 2008 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-2). |
Response to Restriction Requirement filed Oct. 14, 2008 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-6). |
Notice of Allowance issued Dec. 16, 2008 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-8). |
Notice of Allowance issued Feb. 17, 2009 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-6). |
Issue Notification issued Jun. 23, 2009 for U.S. Appl. No. 11/613,645, filed Dec. 20, 2006 and issued as U.S. Pat. No. 7,550,978 on Jun. 23, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Sep. 8, 2006 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-7). |
Response to Non-Final Office Action filed Nov. 8, 2006 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-6). |
Final Office Action issued Jan. 25, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-8). |
Response to Final Office Action filed Mar. 19, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-7). |
Advisory Action issued Apr. 16, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-3). |
Pre-Appeal Brief Request for Review filed Apr. 25, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-6). |
Pre-Appeal Brief Conference Decision issued Jul. 2, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-2). |
Response to Final Office Action filed Jan. 25, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-19). |
Non-Final Office Action issued Sep. 20, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-8). |
Response to Non-Final Office Action filed Dec. 7, 2007 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-9). |
Final Office Action issued Mar. 21, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-9). |
Response to Final Office Action filed May 8, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-9). |
Advisory Action issued May 30, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-3). |
Non-Final Office Action issued Aug. 6, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-8). |
Response to Non-Final Office Action filed Sep. 24, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-19). |
Final Office Action issued Dec. 17, 2008 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-10). |
Response to Final Office Action filed Feb. 17, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-11). |
Advisory Action issued Mar. 9, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-3). |
Non-Final Office Action issued Apr. 14, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-10). |
Response to Non-Final Office Action filed May 18, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-12). |
Notice of Allowance issued Jun. 9, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-4). |
Issue Notification issued Aug. 11, 2009 for U.S. Appl. No. 10/348,894, filed Jan. 23, 2003 and issued as U.S. Pat. No. 7,574,492 on Aug. 11, 2009 (Inventor—Karaoguz; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Jun. 12, 2008 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-9). |
Amendment and Response to Non-Final Office Action filed Oct. 13, 2008 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 112). |
Final Office Action issued Jan. 6, 2009 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-13). |
Amendment and Response to Final Office Action May 1, 2009 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-9). |
Notice of Allowance issued Jun. 1, 2009 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-7). |
Issue Notification issued Sep. 9, 2009 for U.S. Appl. No. 11/668,601, filed Jan. 30, 2007 and issued as U.S. Pat. No. 7,595,647 on Sep. 29, 2009 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Jun. 24, 2009 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-7). |
Examiner Interview Summary issued Aug. 25, 2009 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-2). |
Amendment and Response for Non-Final Office Action filed Sep. 24, 2009 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 19). |
Notice of Allowance issued Dec. 15, 2009 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-4). |
Notice of Allowance issued Feb. 4, 2010 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-2). |
Issue Notification issued Feb. 24, 2010 for U.S. Appl. No. 12/349,606, filed Jan. 7, 2009 and issued as U.S. Pat. No. 7,679,355 on Mar. 16, 2010 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Mar. 24, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-8). |
Examiner Interview Summary issued Jun. 21, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-4). |
Amendment and Response for Non-Final Office Action filed Jun. 24, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-10). |
Terminal Disclaimer filed Jun. 24, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Terminal Disclaimer Review Decision issued Jul. 6, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Aug. 25, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-6). |
Issue Notification issued Nov. 3, 2010 for U.S. Appl. No. 12/466,541, filed May 15, 2009 and issued as U.S. Pat. No. 7,839,153 on Nov. 23, 2010 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Oct. 15, 2010 for U.S. Appl. No. 12/466,595, filed May 15, 2009 and issued as U.S. Pat. No. 7,932,732 on Apr. 26, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-6). |
Amendment and Response for Non-Final Office Action filed Dec. 10, 2010 for U.S. Appl. No. 12/466,595, filed May 15, 2009 and issued as U.S. Pat. No. 7,932,732 on Apr. 26, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 18). |
Notice of Allowance issued Dec. 29, 2010 for U.S. Appl. No. 12/466,595, filed May 15, 2009 and issued as U.S. Pat. No. 7,932,732 on Apr. 26, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-4). |
Issue Notification issued Apr. 6, 2011 for U.S. Appl. No. 12/466,595, filed May 15, 2009 and issued as U.S. Pat. No. 7,932,732 on Apr. 26, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Preliminary Amendment filed Oct. 16, 2009 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-3). |
Non-Final Office Action issued Jun. 25, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-7). |
Terminal Disclaimer filed Oct. 7, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-2). |
Response to Non-Final Office Action filed Oct. 7, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-7). |
Examiner Interview Summary issued Oct. 12, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-4). |
Terminal Disclaimer Review Decision issued Oct. 31, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Dec. 23, 2010 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-7). |
Issue Notification issued Apr. 13, 2011 for U.S. Appl. No. 12/545,166, filed Aug. 21, 2009 and issued as U.S. Pat. No. 7,936,174 on May 3, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Mar. 18, 2011 for U.S. Appl. No. 12/765,970, filed Apr. 23, 2010 and issued as U.S. Pat. No. 7,973,540 on Jul. 5, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-8). |
Amendment After Notice of Allowance May 24, 2011 for U.S. Appl. No. 12/765,970, filed Apr. 23, 2010 and issued as U.S. Pat. No. 7,973,540 on Jul. 5, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-5). |
Issue Notification issued Jun. 15, 2011 for U.S. Appl. No. 12/765,970, filed Apr. 23, 2010 and issued as U.S. Pat. No. 7,973,540 on Jul. 5, 2011 (Inventor—Kroh; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Dec. 8, 2011 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-7). |
Applicant-Initiated Interview Summary issued Mar. 6, 2012 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-3). |
Response to Non-Final Office Action issued Mar. 8, 2012 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-10). |
Notice of Allowance issued Apr. 4, 2012 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-7). |
Notice of Allowance issued May 17, 2012 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-2). |
Issue Notification issued Jul. 18, 2012 for U.S. Appl. No. 13/078,091, filed Apr. 1, 2011 and issued as U.S. Pat. No. 8,237,451 on Aug. 7, 2012 (Inventor—Joy; Applicant—CardioMEMS) (pp. 1-1). |
Non-Final Office Action issued Jun. 9, 2006 for U.S. Appl. No. 10/943,772, filed Sep. 16, 2004 and published as U.S. 2005/0187482 on Aug. 25, 2005 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-15). |
Amendment and Response to Non-Final Office Action filed Oct. 13, 2006 for U.S. Appl. No. 10/943,772, filed Sep. 16, 2004 and published as U.S. 2005/0187482 on Aug. 25, 2005 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 134). |
Final Office Action issued Mar. 7, 2007 for U.S. Appl. No. 10/943,772, filed Sep. 16, 2004 and published as U.S. 2005/0187482 on Aug. 25, 2005 (Inventor—O'Brien; Applicant—CardioMEMS) (pp. 1-19). |
Preliminary Amendment filed Jun. 21, 2006 for U.S. Appl. No. 11/232,534, filed Sep. 22, 2005 and published as U.S. 2006/0287700 on Dec. 21, 2006 (Inventor—White; Applicant—CardioMEMS) (pp. 1-4). |
Non-Final Office Action issued Oct. 18, 2008 for U.S. Appl. No. 11/232,534, filed Sep. 22, 2005 and published as U.S. 2006/0287700 on Dec. 21, 2006 (Inventor—White; Applicant—CardioMEMS) (pp. 1-11). |
Response to Non-Final Office Action filed Apr. 15, 2009 for U.S. Appl. No. 11/232,534, filed Sep. 22, 2005 and published as U.S. 2006/0287700 on Dec. 21, 2006 (Inventor—White; Applicant—CardioMEMS) (pp. 1-15). |
Final Office Action issued Jul. 10, 2009 for U.S. Appl. No. 11/232,534, filed Sep. 22, 2005 and published as U.S. 2006/0287700 on Dec. 21, 2006 (Inventor—White; Applicant—CardioMEMS) (pp. 1-12). |
Notice of Abandonment issued Feb. 16, 2010 for U.S. Appl. No. 11/232,534, filed Sep. 22, 2005 and published as U.S. 2006/0287700 on Dec. 21, 2006 (Inventor—White; Applicant—CardioMEMS) (pp. 1-2). |
International Search Report issued Jul. 28, 2006 for International Patent Application No. PCT/US2006/007790, which was filed on Mar. 6, 2006 and published as WO 2006/096582 on Sep. 14, 2006 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Supplementary European Search Report issued Feb. 1, 2012 for EP Patent Application No. 05805691.2, which was filed on Oct. 4, 2005 and published as EP 1817593 on Aug. 15, 2007 (Inventor—James; Applicant—CardioMEMS) (pp. 1-7). |
Final Office Action issued Mar. 26, 2012 for U.S. Appl. No. 12/612,070, filed Nov. 4, 2009 and published as U.S. 2010/0058583 on Mar. 11, 2010 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-8). |
Notice of Allowance issued Mar. 23, 2009 for U.S. Appl. No. 11/204,812, filed Aug. 16, 2005 and issued as U.S. Pat. No. 7,621,036 on Nov. 24, 2009 (Inventor—Cros; Applicant—CardioMEMS) (pp. 1-7). |
Requirement for Restriction issued May 10, 2012 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 1-7). |
Response to Restriction Requirement filed May 17, 2012 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 1-3). |
Non-Final Office Action issued Aug. 2, 2012 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 1-13). |
Response to Non-Final Office Action filed Feb. 4, 2014 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 118). |
Final Office Action issued Jun. 3, 2013 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 1-6). |
Response to Final Office Action filed Dec. 2, 2013 for U.S. Appl. No. 12/509,053, filed Jul. 24, 2009 and published as U.S. 2010/0022896 on Jan. 28, 2010 (Inventor—Yadav; Applicant—CardioMEMS) (pp. 1-12). |
Requirement for Restriction issued Dec. 12, 2006 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-7). |
Response to Restriction Requirement filed Jan. 10, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-5). |
Notice of Allowance issued Feb. 14, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Request for Continued Examination filed May 14, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Jun. 18, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-2). |
Examiner Interview Summary issued Jul. 23, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-2). |
Notice of Allowance issued Jul. 23, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Request for Continued Examination filed Oct. 23, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-1). |
Notice of Allowance issued Nov. 21, 2007 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Request for Continued Examination filed Feb. 21, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Notice of Allowance issued Mar. 5, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Request for Continued Examination filed Jun. 5, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Notice of Allowance issued Jun. 13, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Request for Continued Examination filed Sep. 10, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-3). |
Notice of Allowance issued Oct. 7, 2008 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-6). |
Issue Notification issued Feb. 11, 2009 for U.S. Appl. No. 11/276,571, filed Mar. 6, 2006 and issued as U.S. Pat. No. 7,498,799 on Mar. 3, 2009 (Inventor—Allen; Applicant—CardioMEMS) (pp. 1-1). |
Number | Date | Country | |
---|---|---|---|
20090030291 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60503745 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11472905 | Jun 2006 | US |
Child | 12175803 | US | |
Parent | 10943772 | Sep 2004 | US |
Child | 11472905 | US |