Implantation of flexible implant

Information

  • Patent Grant
  • 10265170
  • Patent Number
    10,265,170
  • Date Filed
    Tuesday, February 28, 2017
    7 years ago
  • Date Issued
    Tuesday, April 23, 2019
    5 years ago
Abstract
A method is provided including introducing into a heart atrium, an annuloplasty structure having a sleeve with an elongated tubular side wall, anchoring a first section of the sleeve by deploying a first tissue anchor through the first section and into a first portion of annulus tissue, and anchoring a second section of the sleeve by deploying a second tissue anchor through the second section and into a second portion of annulus tissue. A longitudinal portion of the tubular side wall is disposed between the first and second tissue anchors and has first and second lateral parts. The first lateral part is closer to the annulus than the second lateral part is to the annulus, and the second lateral part is opposite the first lateral part and has a larger degree of tension than a degree of tension of the first lateral part.
Description
FIELD OF THE INVENTION

The present invention relates in general to valve repair, and more specifically to repair of an atrioventricular valve of a patient.


BACKGROUND OF THE INVENTION

Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.


Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.


SUMMARY OF THE INVENTION

In some embodiments of the present invention, an adjustable annuloplasty structure is provided for repairing a dilated valve annulus of an atrioventricular valve, such as a mitral valve. The annuloplasty structure comprises a flexible sleeve and a plurality of anchors. An anchor deployment manipulator is advanced into a lumen of the sleeve, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of the valve annulus. The anchors are typically deployed from a distal end of the manipulator while the distal end is positioned such that a central longitudinal axis through the distal end of the manipulator forms an angle with a surface of the cardiac tissue of between about 20 and 90 degrees, e.g., between about 45 and 90 degrees, e.g., between about 75 and 90 degrees, such as about 90 degrees. Typically, the anchors are deployed from the distal end of the manipulator into the cardiac tissue in a direction parallel to the central longitudinal axis through the distal end of the manipulator.


A multi-component tubular system is provided for accessing a heart of a patient. The system comprises one or more steerable guiding catheters configured for directing the passage of devices therethrough into the heart. The multi-component tubular system is configured to deliver an implant in a desired orientation to an annulus of a cardiac valve of the patient and to facilitate anchoring of the implant to the annulus. For some applications of the present invention, the guiding system is advanced transluminally or transthoracically accessing an atrium of the heart. Typically, the system comprises two or more steerable catheters. A first catheter has a distal portion that is steerable to a first desired spatial orientation. A second catheter is disposed within the first catheter and has a distal portion that is steerable to a second desired spatial orientation.


Typically, the annuloplasty structure comprises a sleeve with an elongated tubular wall and at least one end wall having a surface substantially transverse to a lateral surface of the tubular wall. A method is provided for deploying a first tissue anchor through the surface of the end wall of the sleeve and into annulus tissue and subsequently deploying a second tissue anchor through the tubular wall. The first tissue anchor and the second tissue anchor are both deployed consecutively to extend in a substantially same direction and into a common, substantially planar surface of a valve annulus. That is, the first and second tissue anchors are deployed in succession with no intervening anchor between the anchors, and a distance between the anchors is between 2.5 and 15 mm, e.g., between 2.5 and 9 mm, e.g., 8 mm.


The first and second anchors extend in the substantially same direction despite that the first tissue anchor is deployed through the end wall transverse to the side wall. That is, the first and second anchors extend in the substantially same direction while the first tissue anchor is deployed through the end wall transverse to the side wall.


In such a deployment, a distal end portion of the sleeve between the first and second tissue anchors is formed into a substantial “U”-shaped portion having a concavity facing the tissue of the annulus.


There is therefore provided, in accordance with some applications of the present invention, a method of deploying an annuloplasty structure, the method including:


introducing into a heart atrium, the annuloplasty structure having a sleeve with an elongated tubular side wall and at least one distal end wall having a surface substantially transverse to a lateral surface of the tubular side wall;


deploying a first tissue anchor through the surface of the end wall of the sleeve and into a first portion of annulus tissue; and


deploying a second tissue anchor through a portion of the tubular side wall and into a second portion of annulus tissue, such that the first tissue anchor and the second tissue anchor are both deployed consecutively, to extend in a substantially same direction and into a common, substantially planar surface of a valve annulus, the common, substantially planar surface including the first and second portions of the annulus tissue.


In some applications of the present invention, deploying the second tissue anchor includes deploying the second tissue anchor between 2.5 and 15 mm from the first tissue anchor.


In some applications of the present invention, deploying the second tissue anchor includes deploying the second tissue anchor between 2.5 and 9 mm from the first tissue anchor.


In some applications of the present invention, deploying the second tissue anchor through the tubular wall includes deploying the second tissue anchor substantially parallel with respect to the first tissue anchor.


In some applications of the present invention, deploying the second tissue anchor through the tubular wall includes deploying the second tissue anchor between 0 and 45 degrees with respect to the first tissue anchor.


In some applications of the present invention, deploying the second tissue anchor through the tubular wall, includes deploying the second tissue anchor between 0 and 20 degrees with respect to the first tissue anchor.


In some applications of the present invention, deploying the second tissue anchor includes forming a portion of the sleeve between the first and second tissue anchors into a substantially “U”-shaped portion.


In some applications of the present invention, deploying the first anchor includes deploying the first anchor from a distal end of a deployment manipulator through the surface of the end wall of the sleeve into the cardiac tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 20 and 90 degrees with the distal end wall of the sleeve at a point at which the first anchor penetrates the end wall.


In some applications of the present invention, deploying the first anchor includes deploying the first anchor from a distal end of a deployment manipulator through the surface of the end wall of the sleeve into the cardiac tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 45 and 90 degrees with the distal end wall of the sleeve at a point at which the first anchor penetrates the end wall.


In some applications of the present invention, deploying the second anchor includes deploying the second anchor from a distal end of a deployment manipulator through the surface of the portion of the tubular wall of the sleeve into the cardiac tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 20 and 90 degrees with the portion of the tubular wall of the sleeve at a point at which the second anchor penetrates the portion of the tubular wall.


In some applications of the present invention, deploying the second anchor includes deploying the second anchor from a distal end of a deployment manipulator through the surface of the portion of the tubular wall of the sleeve into the cardiac tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 45 and 90 degrees with the portion of the tubular wall of the sleeve at a point at which the second anchor penetrates the portion of the tubular wall.


In some applications of the present invention, deploying the first anchor includes deploying the first anchor through a channel disposed within a lumen of the sleeve, the channel having a distal end defining an opening through with the first anchor passes, and deploying the first anchor includes sandwiching the surface of the end wall of the sleeve between the distal end of the channel and the first portion of annulus tissue.


In some applications of the present invention, sandwiching includes positioning the distal end of the channel in a manner in which the distal end of the channel is aligned substantially parallel to the planar surface.


In some applications of the present invention, deploying the second anchor includes deploying the second anchor through a channel disposed within a lumen of the sleeve, the channel having a distal end defining an opening through with the second anchor passes, and deploying the second anchor includes sandwiching the portion of the tubular side wall of the sleeve between the distal end of the channel and the second portion of annulus tissue.


In some applications of the present invention, sandwiching includes positioning the distal end of the channel in a manner in which the distal end of the channel is aligned substantially parallel to the planar surface.


In some applications of the present invention, the method further includes, following the deploying the first tissue anchor, flexing the annuloplasty structure while the distal end wall is anchored, to form a portion of the sleeve that is proximal to the distal end into a substantially “U”-shaped portion.


In some applications of the present invention, deploying the second tissue anchor includes forming a portion of the sleeve between the first and second tissue anchors into an arc with a concave surface facing the annulus tissue.


In some applications of the present invention, the method further includes forming a distal portion of the sleeve between the first and second tissue anchors into a shape.


In some applications of the present invention, forming the distal portion of the sleeve into the shape includes forming the distal portion of the sleeve into the shape prior to the deploying of the second anchor by flexing the distal portion of the sleeve.


In some applications of the present invention, forming the distal portion of the sleeve into the shape includes forming the distal portion of the sleeve into the shape responsively to the deploying of the second anchor.


In some applications of the present invention, the annuloplasty structure includes a stiffener configured to bias the annuloplasty structure into the shape.


In some applications of the present invention, forming the distal portion of the sleeve into the shape includes forming the distal portion of the sleeve into a shape in which:


a first part of the lateral surface of the tubular side wall is positioned close to the tissue of the annulus,


a second part of the lateral surface of the tubular side wall is disposed opposite the first part of the lateral surface of the tubular side wall and away from the tissue of the annulus, and


the second part of the lateral surface of the tubular side wall has a degree of tension that is larger than a degree of tension of the first part of the lateral surface of the tubular side.


In some applications of the present invention, the first part of the lateral surface of the tubular side wall is ruffled and is disposed adjacent the tissue of the annulus.


In some applications of the present invention, forming the distal portion of the sleeve into the shape includes forming the distal portion of the sleeve into a shape having a concavity.


In some applications of the present invention, forming the distal portion of the sleeve into the shape having the concavity includes creating a gap between the distal portion of the sleeve and the annulus tissue, the gap having a longest distance between 0.2 and 7.5 mm.


In some applications of the present invention, forming the portion of the sleeve into the shape having the concavity includes creating a gap between the portion and the annulus tissue, the gap having a longest distance between 0.5 and 3 mm.


In some applications of the present invention, the method further includes, following the deploying the first tissue anchor, flexing the annuloplasty structure while the distal end wall is anchored, to form a concave shape of the structure between (a) a portion of the structure proximal to the distal end wall of the structure, and (b) the annulus, deploying the second tissue anchor includes maintaining the concave shape during the deploying.


In some applications of the present invention, deploying the first tissue anchor and deploying the second tissue anchor includes deploying the first and second tissue anchors from within a lumen of a channel disposed within a lumen of the sleeve while at least a proximal portion of the sleeve is surrounded by a catheter.


In some applications of the present invention, the valve is a mitral valve.


There is also provided, in accordance with some applications of the present invention, a method of repairing a cardiac valve, the method including:


introducing into a heart atrium, a flexible annuloplasty structure having a sleeve with an elongated tubular side wall and at least one distal end wall having a surface substantially transverse to a lateral surface of the tubular side wall;


anchoring the distal end wall of the sleeve to a valve annulus on an atrial surface of the valve by deploying a first tissue anchor;


while the distal end wall is anchored, positioning alongside the valve annulus a portion of the tubular side wall that is proximal to the distal end wall in a manner in which the portion of the tubular side wall assumes a shape in which:

    • a first part of the lateral surface of the tubular side wall is positioned close to the tissue of the annulus,
    • a second part of the lateral surface of the tubular side wall is disposed opposite the first part of the lateral surface of the tubular side wall and away from the tissue of the annulus, and
    • the second part of the lateral surface of the tubular side wall has a degree of tension that is larger than a degree of tension of the first part of the lateral surface of the tubular side;


anchoring the portion of the tubular side wall to the annulus by deploying a second tissue anchor consecutively to the first tissue anchor; and


continuing to position the annuloplasty structure about a circumference of the atrial surface of the annulus while periodically anchoring additional locations of the tubular side wall of the sleeve to the atrial surface of the annulus.


There is additionally provided, in accordance with some applications of the present invention, apparatus for repairing a cardiac valve, the apparatus including:


a flexible annuloplasty structure having a sleeve with an elongated tubular side wall and at least one distal end wall having a surface substantially transverse to a lateral surface of the tubular side wall;


a first tissue anchor passing through the distal end wall of the sleeve; and


a second tissue anchor passing through the tubular side wall, the first and second tissue anchors being disposed consecutively and to extend in a substantially same direction.


There is further provided, in accordance with some applications of the present invention, apparatus for repairing a cardiac valve, the apparatus including:


a flexible annuloplasty structure having a sleeve with an elongated tubular side wall and at least one distal end wall having a surface substantially transverse to a lateral surface of the tubular side wall;


a first tissue anchor passing through the distal end wall of the sleeve; and


a second tissue anchor passing through the tubular side wall in a manner in which a portion of the tubular side wall that is between the first and second tissue anchors assumes a shape in which:

    • the portion has a first part of the lateral surface of the tubular side wall and a second part of the lateral surface of the tubular side wall opposite the first part, and
    • the second part of the lateral surface of the tubular side wall has a degree of tension that is larger than a degree of tension of the first part of the lateral surface of the tubular side wall.


There is yet additionally provided, in accordance with some applications of the present invention, a method of repairing a cardiac valve, the method including:


introducing into a heart atrium, an annuloplasty structure having a sleeve with an elongated tubular side wall and at least one distal end wall having a surface substantially transverse to a lateral surface of the tubular side wall;


anchoring, using a first tissue anchor, the distal end wall of the sleeve to a valve annulus on an atrial surface of the valve;


forming a concave shape of a distal portion of the structure between the distal end portion of the structure and the annulus by positioning the tubular side wall in a vicinity of the valve annulus by flexing the annuloplasty structure while the distal end wall is anchored;


anchoring, using a second tissue anchor, a distal portion of the tubular side wall of the sleeve to the annulus, such that when the first tissue anchor and the second tissue anchor are anchored, the concave shape is maintained along the distal portion of the structure; and


continuing to position the annuloplasty structure about a circumference of the atrial surface of the annulus while periodically anchoring additional locations of the tubular side wall of the sleeve to the atrial surface of the annulus.


The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an annuloplasty ring structure, comprising a sleeve and an adjusting mechanism, in accordance with some applications of the invention;



FIG. 2 is a schematic illustration of a multi-component tubular system for delivering and anchoring an implant and for controlling a relative spatial orientation of components of the catheter system, in accordance with some applications of the present invention;



FIGS. 3A-C are schematic illustrations of an annuloplasty ring structure comprising a sleeve and an adjusting mechanism, in accordance with some applications of the invention;



FIGS. 4A-G are schematic illustrations of steps in the implantation of an annuloplasty ring structure to repair a mitral valve, in accordance with some applications of the invention;



FIG. 5 is a schematic illustration of a state of a distal portion of a multi-component tubular system within the heart of a subject, in accordance with some applications of the invention;



FIGS. 6A-C are schematic illustrations of a tissue anchor, in accordance with some applications of the present invention; and



FIG. 7 is a schematic illustration of a step in the implantation of an annuloplasty ring structure to repair a mitral valve, in accordance with some applications of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is now made to FIGS. 1-2, which are schematic illustrations of a multi-component tubular system 10 providing one or more rotationally-controlled steering catheters configured for delivering an implant to a heart of a patient, in accordance with some applications of the present invention.



FIG. 1 shows a distal portion of an implant comprises an annuloplasty ring structure 222 (e.g., an annuloplasty band) comprising a flexible sleeve 26 (shown in the exploded view of FIG. 2). Sleeve 26 typically comprises a braided fabric mesh, e.g., comprising DACRON™. Sleeve 26 is typically configured to be placed only partially around a cardiac valve annulus (i.e., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. Alternatively, the ring structure is configured to be placed entirely around the valve annulus.


Sleeve 26 has an elongated lateral tubular side wall 253 and at least one end wall 251 (e.g., a distal end wall) having a surface that is substantially transverse to a lateral surface of tubular wall 253. Typically, end wall 251 defines an end wall of annuloplasty ring structure 222.


In order to tighten the annulus, annuloplasty ring structure 222 comprises a flexible elongated contracting member 226 that extends along sleeve 26. Elongated contracting member 226 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications, contracting member 226 comprises a braided polyester suture (e.g., Micron). For some applications, contracting member 226 is coated with polytetrafluoroethylene (PTFE). For some applications, contracting member 226 comprises a plurality of wires that are intertwined to form a rope structure.


Annuloplasty ring structure 222 further comprises an adjustment mechanism 40, which facilitates contracting and expanding of annuloplasty ring structure 222 so as to facilitate adjusting of a perimeter of the annulus and leaflets of the cardiac valve. Adjustment mechanism 40 is described in more detail hereinbelow. Adjustment mechanism 40 comprises a rotatable structure (e.g., a spool, as described hereinbelow) that is disposed within a housing 44. As shown in the enlarged image of FIG. 1, adjustment mechanism 40 is surrounded by a braided mesh and is coupled (e.g., by being sutured or otherwise coupled) to the braided mesh of sleeve 26. For some applications, adjustment mechanism 40 is coupled to an outer, lateral surface of sleeve 26.


Reference is now made to FIG. 2, which shows the concentric relationship between components of tubular system 10 (in an exploded view on the left side of FIG. 2). System 10 comprises an implant-delivery tool. Typically, system 10 comprises a first, outer catheter 12 comprising a sheath configured for advancement through vasculature of a patient. For some applications of the present invention, outer catheter 12 comprises a sheath configured for advancement through a femoral artery toward an interatrial septum of a heart of a patient. A distal steerable end portion of outer catheter 12 is configured to pass through the septum and be oriented in a desired spatial orientation. System 10 comprises a second catheter, or guide catheter 14, comprising a steerable distal end portion. Catheter 14 is configured for advancement through a lumen of outer catheter 12.


A distal end portion of outer catheter 12 is steerable. The distal end portion of outer catheter 12 comprises a pull ring 11 that is coupled to two or more pull wires 29a and 29b, that are disposed within respective secondary lumens within a wall of catheter 12 (as shown in section A-A). As shown in the exploded view, guide catheter 14 is configured to be concentrically disposed within the lumen of catheter 12. As described hereinabove, the distal end portion of guide catheter 14 is steerable. The distal end portion of catheter 14 comprises a pull ring 13 that is coupled to two or more pull wires 31a and 31b, that are disposed within respective secondary lumens within a wall of catheter 14 (as shown in sections A-A and B-B).


Guide catheter 14 is steerable to a desired spatial orientation in order to facilitate advancing and implantation of an implant in a body cavity of the patient.


For applications in which system 10 is used to deliver an implant to the mitral valve of the patient, typically, outer catheter 12 is configured for initial advancement through vasculature of the patient until a distal end 102 of catheter 12 is positioned in the left atrium. The distal steerable end portion of catheter 12 is then steered such that distal end 102 of catheter 12 is positioned in a desired spatial orientation within the left atrium. The steering procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography. Following the steering of the distal end portion of catheter 12, guide catheter 14 (which houses annuloplasty ring structure 222) is advanced through catheter 12 in order to facilitate delivery and implantation of structure 222 along the annulus of the mitral valve. During the delivery, at least a portion of the steerable distal end portion of catheter 14 is exposed from distal end 102 of catheter 12 and is thus free for steering toward the annulus of the mitral valve, as is described hereinbelow.


During delivery of sleeve 26 to the annulus of the cardiac valve, sleeve 26 and mechanism 40 are disposed within a lumen of catheter 14 and are aligned longitudinally with a longitudinal lumen of catheter 14. Such coupling of mechanism 40 to sleeve 26 allows mechanism 40 to transition from a state in which it is in line with the longitudinal axis of catheter 14 (FIG. 2) to a state in which it is disposed alongside sleeve 26 (FIG. 3C, shown hereinbelow). The positioning of adjustment mechanism 40 alongside a portion of sleeve 26 exposes a driving interface of the rotational structure to be accessed by a rotational tool that is guided toward adjustment mechanism 40 via a guide member 86.


Reference is again made to FIG. 1. A flexible, longitudinal guide member 86 (e.g., a wire) is coupled to a portion of adjustment mechanism 40 (e.g., a portion of the rotatable structure, as described hereinbelow). Guide member 86 is configured to facilitate guiding of a rotational tool via guide member 86 and toward the rotatable structure of adjustment mechanism 40. Typically, the rotational tool is configured to engage the rotatable structure of adjustment mechanism 40 following implantation of sleeve 26 along the annulus of the cardiac valve. Guide member 86 passes from adjustment mechanism 40, alongside a portion of the distal end portion of guide catheter 14, and into a secondary lumen in the wall of guide catheter 14, through an opening 15 in guide catheter 14. Guide member 86 passes through the secondary lumen of guide catheter 14 (as shown in sections A-A and B-B in FIG. 2) and has a proximal end that is accessible from outside the body of the patient. The secondary lumen in the wall of guide catheter 14 facilitates passage of guide member 86 through system 10 without interfering with the other concentrically-disposed elongate tubular members that pass concentrically through the lumen of guide catheter 14.


Reference is again made to FIG. 2. In addition, system 10 comprises a plurality of anchors 32, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. Each anchor 32 comprises a tissue coupling element 60 (e.g., a helical tissue coupling element), and a tool-engaging head 62 (e.g., a non-helically-shaped portion), fixed to one end of the tissue coupling element. Only one anchor 32 is shown in FIG. 2 as being reversibly coupled to a deployment element 38 of a rotating anchor driver 36 of an anchor deployment manipulator 61. When sleeve 26 is disposed along the annulus of the cardiac valve, deployment manipulator 61 is configured to advance within a lumen of sleeve 26 and deploy each anchor 32 from within sleeve 26 through a wall of sleeve 26 and into cardiac tissue, thereby anchoring sleeve 26 around a portion of the valve annulus. The insertion of the anchors into the sleeve and deployment of the anchors into cardiac tissue is described in detail hereinbelow.


Typically, but not necessarily, anchors 32 comprise a biocompatible material such as stainless steel 316 LVM. For some applications, anchors 32 comprise nitinol. For some applications, anchors 32 are coated fully or partially with a non-conductive material.


Deployment manipulator 61 comprises anchor driver 36 and deployment element 38. For some applications, deployment manipulator 61 comprises channel 18.


As shown in the exploded view of FIG. 2, sleeve 26 is disposed within a lumen of guide catheter 14. A force is applied to a proximal end of sleeve 26 is by a distal end of a reference-force tube 19. As shown, an implant-decoupling channel 18 is advanceable within a lumen of reference-force tube 19 and through a lumen of sleeve 26. As shown in the enlarged image of FIG. 1, a distal end 17 of implant-decoupling channel 18 is disposed in contact with an inner wall of sleeve 26 at a distal end thereof. Additionally, a distal end portion of channel 18 comprises a radiopaque marker 1018. As shown, tube 19 and sleeve 26 are longitudinally and coaxially disposed with respect to each other.


For some applications, channel 18 is steerable.


Typically, manipulator 61 advances within channel 18. For some applications, system 10 comprises a plurality of anchor drivers 36 of manipulator 61, each driver 36 being coupled to a respective anchor 32. Each driver 36 is advanced within channel 18 in order to advance and implant anchor 32 in tissue. Following implantation of anchor 32, anchor 32 is decoupled from driver 36, as described herein, and driver 36 is removed from within channel 18. Subsequently, a new driver 36 coupled to another anchor 32 is then advanced within channel 18.


As will be described hereinbelow, a first one of anchors 32 is configured to be deployed through end wall 251 of sleeve 26 into cardiac tissue, when sleeve 26 is positioned along the annulus of the valve. Following the deployment of the first tissue anchor, a distal portion of sleeve 26 is slid distally off a portion of implant-decoupling channel 18. In order to decouple sleeve 26 distally from a portion of outer surface of channel 18, (1) a proximal force is applied to channel 18, while (2) reference-force tube 19 is maintained in place in a manner in which a distal end of tube 19 provides a reference force to sleeve 26 in order to facilitate freeing of a successive portion of sleeve 26 from around channel 18. Channel 18 is then positioned at a successive location within the lumen of sleeve 26 while either tube 19 and/or catheter 14 is steered toward a successive location along the annulus of the valve (as will be described hereinbelow). Consequently, the successive portion of sleeve 26 provides a free lumen for advancement of a successive anchor 32 and deployment of the anchor through the wall of the sleeve at the successive portion thereof. Such freeing of the successive portion of sleeve 26 creates a distance between successive anchors deployed from within the lumen of sleeve 26.


For some applications, sleeve 26 comprises a plurality of radiopaque markers 25, which are positioned along the sleeve at respective longitudinal sites. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of the sleeve has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance between anchors 32 along the sleeve. For some applications, the markers comprise a radiopaque ink.


Typically, at least a portion (e.g., at least three, such as all) of the longitudinal sites are longitudinally spaced at a constant interval. Typically, the longitudinal distance between the distal edges of adjacent/consecutive markers, and/or the distance between the proximal edges of adjacent markers, is set equal to the desired distance between adjacent anchors. For example, the markers may comprise first, second, and third markers, which first and second markers are adjacent, and which second and third markers are adjacent, and the distance between the proximal and/or distal edges of the first and second markers equal the corresponding distance between the proximal and/or distal edges of the second and third markers. For example, the distance may be between 3 and 15 mm, such as 6 mm, and the longitudinal length of each marker may be between 0.1 and 14 mm, such as 2 mm. (If, for example, the distance were 6 mm and the length were 2 mm, the longitudinal gaps between adjacent markers would have lengths of 4 mm.)


Each anchor 32 is coupled to deployment element 38 of anchor driver 36. Anchor driver 36 comprises an elongate tube having at least a flexible distal end portion. The elongate tube of driver 36 extends within a lumen of channel 18, through system 10 toward a proximal end of a proximal handle portion 101 of system 10. The tube of anchor driver 36 provides a lumen for slidable advancement therethrough of an elongate rod 130. Rod 130 facilitates the locking and unlocking of anchor 32 to deployment element 38. As shown in Section E-E of FIG. 2, a proximal end of rod 130 is coupled to a component of an anchor-release mechanism 28 at a proximal end of system 10. Mechanism 28 comprises a housing 135 and a finger-engager 131 that is coupled to the proximal end of rod 130. Finger-engager 131 is coupled to a housing 135 via a spring 133 (section E-E of FIG. 2). A proximal end of the tube of anchor driver 36 is coupled to housing 135. As is described hereinbelow, the physician releases anchor 32 from deployment element 38 when finger-engager 131 is pulled proximally, thereby pulling rod 130 proximally.


Proximal handle portion 101 is supported by a stand having support legs 91 and a handle-sliding track 90. Handle portion 101 comprises an outer-catheter handle 22, a guide-catheter handle 24, an implant-manipulating handle 126, and anchor-release mechanism 28. Handle 22 is coupled to a proximal end of outer catheter 12. Handle 24 is coupled to a proximal portion of guide catheter 14. Handle 126 is coupled to a proximal portion of reference-force tube 19, and linear movement of handle 126 with respect to handle 24 moves reference-force tube 19 (and thereby typically structure 222) through catheter 14. As described hereinabove, housing 135 of anchor-release mechanism 28 is coupled to a proximal portion of the tube of anchor driver 36. The relative positioning of each of the concentrically-disposed components of system 10 is shown in the exploded view and sections A-A, B-B, C-C, and D-D of FIG. 2.


The stand supporting proximal handle portion 101 may be moved distally and proximally to control a position of the entire multi-component system 10, particularly so as to adjust a distance of distal end 102 of catheter 12 from the interatrial septum. Handle 22 comprises a steering knob 210 that is coupled to steering wires 29a and 29b disposed within respective secondary lumens in the wall of outer catheter 12. Rotation of knob 210 adjusts a degree of tension of wires 29a and 29b which, in turn, apply a force to pull ring 11 at the distal end portion of outer catheter 12. Such force steers the distal end portion of catheter 12 within the atrium of the heart of the patient in a manner in which the distal end portion of catheter 12 is steered in a first plane that is parallel with the plane of the annulus of the valve (e.g., in a direction from the interatrial septum toward surrounding walls of the atrium). For some applications of the present invention, the distal end portion of catheter 12 may be pre-shaped so as to point downward toward the valve. For other applications, the distal end portion of catheter 12 may be pulled to assume an orientation in which the distal end portion points downward toward the valve. For yet other applications of the present invention, the distal end portion of catheter 12 is not made to point downward toward the valve.


Handle 24 is coupled to track 90 via a first mount 92. Mount 92 is slidable proximally and distally along track 90 in order to control an axial position of guide catheter 14 with respect to outer catheter 12. Mount 92 is slidable via a control knob 216. For example, control knob 216 of mount 92 controls the proximal and distal axial movement of the distal steerable portion of guide catheter 14 with respect to distal end 102 of outer catheter 12. Handle 24 comprises a steering knob 214 that is coupled to steering wires 31a and 31b disposed within respective secondary lumens in the wall of guide catheter 14. Rotation of knob 214 adjusts a degree of tension of wires 31a and 31b which, in turn, apply a force to pull ring 13 at the distal end portion of guide catheter 14. Such force steers the distal end portion of catheter 14 in a second plane within the atrium of the heart of the patient downward and toward the annulus of the cardiac valve. Typically, as described hereinbelow, the distal end portion of guide catheter 14 is steered in the second plane that is substantially perpendicular with respect to the first plane in which the distal end portion of outer catheter 12 is steered.


The combined steering of the respective distal end portions of catheters 12 and 14 directs sleeve 26 down toward the annulus (e.g., via the steering of the distal end portion of catheter 14) and along the perimeter of annulus (e.g., from the posterior section of the valve to the anterior section of the valve, and vice versa), via the steering of the distal end portion of catheter 12.


For some applications, handle 22 may be tilted by the operating physician, in order to further adjust a position of the distal end of catheter 12.


Handle 126 is coupled to track 90 via a second mount 93. Mount 93 is slidable proximally and distally along track 90, in order to control an axial position of reference-force tube 19 and at least a proximal portion of sleeve 26 with respect to guide catheter 14. Mount 93 is slidable via a control knob 95. For example, control knob 95 of mount 93 controls the proximal and distal axial movement of the tube 19 and at least the proximal portion of sleeve 26 with respect to distal end 104 of guide catheter 14. Taken together with the steering of the distal end portion of guide catheter 14, such movement of tube 19 and at least the proximal portion sleeve 26 moves the proximal portion of sleeve 26 toward a desired portion of tissue of the annulus of the valve during deployment of anchors 32 from within the lumen of sleeve 26, as is described hereinbelow.


As is described hereinabove, in order to decouple sleeve 26 from a portion of an outer surface of channel 18, (1) channel 18 is pulled proximally, while (2) reference-force tube 19 is maintained in place. A proximal end of channel 18 is coupled to a knob 94 which adjusts an axial position of channel 18 proximally and distally with respect to reference-force tube 19 and sleeve 26.


Typically, handle portion 101 comprises a release decision facilitation member 127, such as a latch or button, that automatically engages when a given length of sleeve 26 has advanced off channel 18 (e.g., when channel 18 is at a given position with respect to tube 19); typically just before sleeve 26 becomes completely decoupled from channel 18. Engagement of member 127 inhibits proximal movement of channel 18 with respect to tube 19, thereby reducing a likelihood of (e.g., preventing) inadvertent release of sleeve 26. In order to release sleeve 26 (e.g., to decouple channel 18 from the sleeve), the operating physician must disengage member 127, such as by pushing the button, before continuing to withdraw channel 18 proximally. Typically, when engaged, member 127 also inhibits distal movement of channel 18 with respect to tube 19.


Handle portion 101 (comprising handles 22, 24, and 126 and anchor-release mechanism 28) has a length L1 of between 65 and 85 cm, e.g., 76 cm. Typically, as shown, a majority of the body portion of outer-catheter handle 22 is disposed at a non-zero angle with respect to a longitudinal axis 7 of the multiple components of system 10. The steering mechanism provided by handle 22 in order to steer the distal end portion of catheter 12 is disposed within the portion of handle 22 that is disposed at the non-zero angle with respect to axis 7. Handle 22 comprises an in-line tubular portion which is longitudinally disposed in-line along axis 7 and coaxially with respect to handles 24 and 126 and release mechanism 28. The in-line tubular portion is shaped so as to define a lumen for inserting guide catheter 14 therethrough and subsequently into the lumen of outer catheter 12. The in-line tubular portion has a length L24 of between 7 and 11 cm, e.g., 7 cm. Such spatial orientation of the majority of handle 22 at an angle with respect to axis 7 reduces an overall functional length of handle portion 101.


Typically, but not necessarily, a guidewire 2244 extends alongside sleeve 26 to facilitate positioning of sleeve 26 along the annulus.


For some applications, adjustment mechanism 40 is flexibly and/or articulatably coupled to sleeve 26 (e.g., by being coupled to the sleeve via a suture)


Reference is now made to FIGS. 3A-C, which are schematic illustrations of annuloplasty ring structure 222, comprising sleeve 26 and adjustment mechanism 40, in accordance with some applications of the invention. For some applications it is advantageous to (1) advance the structure to the mitral valve while mechanism 40 is disposed on the longitudinal axis of sleeve 26 (e.g., collinearly with the sleeve), so as to maintain a small cross-sectional diameter of the structure for transluminal delivery; and (2) to subsequently move mechanism 40 away from the longitudinal axis, e.g., so as to allow end wall 251 of the sleeve to be placed against the annulus, and/or so as to allow an anchor to be driven through the end wall of the sleeve. Structure 222 facilitates this technique by mechanism 40 being flexibly and/or articulatably coupled to sleeve 26.


Adjustment mechanism 40 of structure 222 is coupled to the lateral wall of sleeve 26 of structure 222, as shown in FIG. 3C. For delivery of structure 222, channel 18 is not disposed throughout the entire lumen of sleeve 26. Rather, a region 3224 (e.g., a distal region) of sleeve 26 is provided in which channel 18 is not disposed in the lumen of the sleeve, and mechanism 40 is pressed laterally into region 3224, such that the sleeve is compressed at region 3224, and mechanism 40 is disposed on the longitudinal axis of the sleeve (e.g., collinearly with the sleeve). Typically, region 3224 includes end wall 251 of sleeve 26. It is to be noted, however, that region 3224 may be provided at another position along the longitudinal axis of sleeve 26. Typically, mechanism 40 is fixedly coupled to the lateral wall of sleeve 26 at region 3224. In this state, structure 222 is disposed within catheter 14 for delivery.


Structure 222 is advanced out of catheter 14. Once at least adjustment mechanism 40 and/or structure/portion 222 is exposed from catheter 14, the adjustment mechanism moves (e.g., translates) away from the longitudinal axis of sleeve 26 (e.g., laterally), typically by channel 18 being moved distally such that it pushes laterally the portion of the lateral wall of the sleeve to which the adjustment mechanism is coupled (FIG. 3B). FIG. 3C shows channel 18 having been moved all the way to distal end 251 of sleeve 26, and mechanism 40 having been moved away from the longitudinal axis of the sleeve, so as to allow the distal end of the sleeve to be placed against the annulus, and/or so as to allow an anchor to be driven through the distal end wall of the sleeve.


Reference is made to FIGS. 4A-G, which are schematic illustrations of steps in the implantation of an annuloplasty ring structure to repair a mitral valve, in accordance with some applications of the invention. This procedure is one exemplary procedure that can be performed using system 10.


Annuloplasty ring structure 222 is used to repair a dilated valve annulus of an atrioventricular valve, such as mitral valve 230. For some applications, the annuloplasty ring is configured to be placed only partially around the valve annulus (e.g., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. The annuloplasty ring comprises flexible sleeve 26 and a plurality of anchors 32. Anchor deployment manipulator 61 is advanced into a lumen of sleeve 26, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of the valve annulus. For some applications, annuloplasty ring structure 222 is implemented using techniques described in U.S. application Ser. No. 12/437,103, filed May 7, 2009 which published as US 2010/0286767, and which issued as U.S. Pat. No. 8,715,342, and/or U.S. application Ser. No. 12/689,635, filed Jan. 19, 2010 which published as US 2010/0280604, and which issued as U.S. Pat. No. 8,545,553, both of which are assigned to the assignee of the present application and are incorporated herein by reference. As described hereinabove, annuloplasty ring structure 222 comprises adjustment mechanism 40. The adjustment mechanism comprises a rotatable structure, such as a spool, arranged such that rotation of the rotatable structure contracts the implant structure. The implant further comprises a longitudinal member, such as a wire, which is coupled to the adjustment mechanism. A rotation tool is provided for rotating the rotatable structure. The tool is configured to be guided along (e.g., over, alongside, or through) the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool.


The procedure typically begins by advancing a semi-rigid guidewire into a right atrium 220 of the patient. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography.


The guidewire provides a guide for the subsequent advancement of outer catheter 12 therealong and into the right atrium. Once a distal portion of catheter 12 has entered the right atrium, the guidewire is retracted from the patient's body. Catheter 12 typically comprises a 14-24 F sheath, although the size may be selected as appropriate for a given patient. Catheter 12 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:

    • catheter 12 may be introduced into the femoral vein of the patient, through an interior vena cava 223, into right atrium 220, and into a left atrium 224 transseptally, typically through the fossa ovalis;
    • catheter 12 may be introduced into the basilic vein, through the subclavian vein to the superior vena cava, into right atrium 220, and into left atrium 224 transseptally, typically through the fossa ovalis; or
    • catheter 12 may be introduced into the external jugular vein, through the subclavian vein to the superior vena cava, into right atrium 220, and into left atrium 224 transseptally, typically through the fossa ovalis.


For some applications of the present invention, catheter 12 is advanced through inferior vena cava 223 of the patient (as shown) and into right atrium 220 using a suitable point of origin typically determined for a given patient.


Catheter 12 is advanced distally until the sheath reaches the interatrial septum, and the guidewire is withdrawn.


A resilient needle and a dilator are advanced through catheter 12 and into the heart. In order to advance catheter 12 transseptally into left atrium 224, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently catheter 12 therethrough and into left atrium 224. The dilator is passed through the hole in the septum created by the needle. Typically, the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum. A distal-most end 102 of catheter 12 is tapered so as to facilitate passage of the distal portion of catheter 12 through the opening in the septum.


The advancement of catheter 12 through the septum and into the left atrium is followed by the extraction of the dilator and the needle from within catheter 12. Once the distal portion of catheter 12 is disposed within atrium 224, the steerable distal end portion of catheter 12 (which includes at least a portion of a bending section 1203) is steered in a first plane that is parallel to a plane of the annulus of mitral valve 230. Such steering moves the distal end portion of catheter 12 in a direction from the interatrial septum toward surrounding walls of the atrium, as indicated by the arrow in atrium 224. The steering of the distal portion of catheter 12 is performed via steering knob 210 of handle 22 in handle portion 101 (in FIG. 2).


As shown in FIG. 4A, annuloplasty ring structure 222 with channel 18 housing the anchor deployment manipulator 61 (not shown) therein is advanced through guide catheter 14, which is in turn, advanced through catheter 12 into left atrium 224. An exposed distal end portion 114 of catheter 14 extends beyond distal end 102 of catheter 12. Exposed distal end portion 114 is then (1) steered toward the annulus of valve 230 along a plane that is perpendicular with respect to the steering plane of catheter 12 and that is perpendicular with respect to valve 230, and is (2) bent, via a bending section 1403 toward valve 230. The steering of the distal portion of catheter 14 is performed via steering knob 214 of handle 24 in handle portion 101 (in FIG. 2).



FIG. 4A shows annuloplasty ring structure 222, comprising sleeve 26 and adjustment mechanism 40, having been advanced, via catheter 14, to a mitral valve 230. As shown in FIG. 4A, and as described hereinabove, during advancement of structure 222, adjustment mechanism 40 is disposed distal to (i.e., in front of) sleeve 26. In this way, adjustment mechanism 40 is disposed on the longitudinal axis of sleeve 26 (e.g., collinearly with the sleeve), so as to advantageously maintain a small cross-sectional diameter of the implant for transluminal delivery. Mechanism 40 is typically coupled to sleeve 26 via one or more connectors 27, such as sutures, which provide flexible and/or articulated coupling. A proximal end of connector 27 is disposed proximally to mechanism 40 (e.g., by being fixed to a portion of sleeve 26 proximal to mechanism 40 or by being accessible outside the body of the patient). A distal end of connector 27 is coupled (e.g., by being fixedly coupled by a knot or other mechanical coupling) to mechanism 40. Guide member 86, described hereinabove, typically extends distally from catheter 14, between end wall 251 of sleeve 26 and adjustment mechanism 40, and there is coupled to the adjustment mechanism. For some applications it is advantageous to (1) advance the structure to the mitral valve while mechanism 40 is disposed on the longitudinal axis of sleeve 26 (e.g., collinearly with the sleeve), so as to maintain a small cross-sectional diameter of the structure for transluminal delivery; and (2) to subsequently move mechanism 40 away from the longitudinal axis, e.g., so as to allow end wall 251 of the sleeve to be placed against the annulus, and/or so as to allow an anchor to be driven through the end wall of the sleeve. Connectors 27 facilitate this technique by making mechanism 40 flexibly and/or articulatably coupled to sleeve 26. For some applications, connectors 27 are tensioned or relaxed to move mechanism 40 with respect to sleeve 26 to reposition mechanism 40. For some applications, guide member 86 is tensioned or relaxed in order to reposition mechanism 40.


For some applications, mechanism 40 is coupled to sleeve 26 in a manner as described hereinabove with reference to FIGS. 1 and 3A-C.


Subsequent to exposure of at least adjustment mechanism 40 (and typically at least end wall 251 of sleeve 26) from catheter 14, the adjustment mechanism is moved away from end wall 251. Typically, this is achieved by guide member 86 being proximally such that mechanism 40 moves (e.g., translates, deflects, and/or rotates) away from the longitudinal axis of the sleeve, typically to become disposed laterally from sleeve 26. FIG. 4B shows mechanism 40 having translated to such a position. The movement of mechanism 40 away from end wall 251 of sleeve 26 advantageously allows end wall 251 of sleeve 26 to be placed against an atrial surface of an annulus 240, and a first one of anchors 32 to be driven through end wall 251 of the sleeve and into the annulus (FIG. 4C).


As shown in FIG. 4C, end wall 251 of sleeve 26 is positioned in a vicinity of a left fibrous trigone 242 of an annulus 240 of mitral valve 230. (It is noted that for clarity of illustration, distal end wall 251 of sleeve 26 is shown schematically in the cross-sectional view of the heart, although left trigone 242 is in reality not located in the shown cross-sectional plane, but rather out of the page closer to the viewer.) Alternatively, the distal end of sleeve 26 is positioned in a vicinity of a right fibrous trigone 244 of the mitral valve (configuration not shown). Further alternatively, the distal end of the sleeve is not positioned in the vicinity of either of the trigones, but is instead positioned elsewhere in a vicinity of the mitral valve, such as in a vicinity of the anterior or posterior commissure. Once positioned at the desired site near the selected trigone, deployment manipulator 61 deploys the first one of anchors 32 through the wall of sleeve 26 (by penetrating and passing through the wall of the sleeve in a direction in a direction parallel to a central longitudinal of deployment manipulator 61, or anchor driver 36, through the distal end of channel 18, and/or parallel to central longitudinal axis of tissue coupling element 60 of anchor 32) into cardiac tissue near the trigone. Following the deployment of anchor 32 in the cardiac tissue, deployment element 38 is decoupled from anchor 32.


Anchors 32 are typically deployed from a distal end of manipulator 61 while the distal end is positioned such that a central longitudinal axis through the distal end of manipulator 61 forms an angle with a surface of the cardiac tissue of between about 20 and 90 degrees, e.g., between 45 and 90 degrees, such as between about 75 and 90 degrees, such as about 90 degrees. Typically, anchors 32 are deployed from the distal end of manipulator 61 into the atrial surface of the cardiac tissue in a direction parallel to the central longitudinal axis through the distal end of manipulator 61. Such an angle is typically provided and/or maintained by channel 18 being more rigid than sleeve 26. Distal end 17 of channel 18 is typically brought close to the surface of the cardiac tissue (and the wall of sleeve 26 that is disposed against the surface of the cardiac tissue), such that little of each anchor 32 is exposed from channel 18 before penetrating the sleeve and the tissue. For example, distal end 17 of channel 18 may be placed (e.g., pushed) against the wall of the sleeve, sandwiching the sleeve against the cardiac tissue.


For some applications, such placement of distal end 17 of channel 18 against the cardiac tissue (via the wall of the sleeve), stabilizes the distal end during deployment and anchoring of each anchor 32, and thereby facilitates anchoring. For some applications, pushing of distal end 17 against the cardiac tissue (via the wall of the sleeve) temporarily deforms the cardiac tissue at the site of contact. This deformation may facilitate identification of the site of contact using imaging techniques (e.g., by identifying a deformation in the border between cardiac tissue and blood), and thereby may facilitate correct positioning of the anchor.


That is, the entire circular surface of distal end 17 of channel 18 is disposed in contact with the wall of sleeve 26 that is disposed against the surface of the cardiac tissue. As shown, distal end 17 is the lower-most circular tip of channel 18 and defines a distal opening of channel 18. In the configuration in which channel 18 is positioned in order to sandwich the portion of sleeve 26, the distal end 17 is disposed in parallel with a planar surface 255 of the tissue of annulus 240.


View-A provides an exploded view of components of system 10 isolated in relative spatial orientation. View-A shows (1) sleeve 26 and distal end wall 251, (2) channel 18 and distal end 17 thereof, and (3) tissue of annulus 240 at planar surface 255. Deployment manipulator 61 and anchor 32 are not shown in View-A for clarity of illustration. View-A shows the alignment of channel 18, specifically distal end 17 thereof, with respect to distal end wall 251 of sleeve 26, and tissue of annulus 240 at planar surface 255. That is, in such an alignment, distal end 17 is aligned substantially in parallel with respect to distal end wall 251 of sleeve 26, and tissue of annulus 240 at planar surface 255.


Also, for clarity in View-A, distal end 17 of channel 18 is distanced from end wall 251, which is distanced from the tissue of annulus 240. It is to be noted that this distancing is shown by way of illustration only, and that during the procedure of implanting anchor 32 into tissue and through wall 251, distal end 17 of channel contacts wall 251, which contacts tissue of annulus 240. That is, channel 18 is pushed against wall 251 such that distal end 17 of channel sandwiches wall 251 between distal end 17 and the tissue of annulus 240.


For some applications of the present invention, anchors 32 may be deployed from a lateral portion of manipulator 61.


As shown in the enlarged image of FIG. 4C, end wall 251 aligns against the tissue of annulus 240 in a manner in which a surface of end wall 251 is disposed in parallel with a planar surface 255 of the tissue of annulus 240. Additionally, distal end 17 of implant-decoupling channel 18 flattens end wall 251 against the tissue of annulus 240 in a manner in which channel 18 sandwiches end wall 251 between (1) distal end 17 of implant-decoupling channel, and (2) the portion of the tissue of annulus 240 at planar surface 255 into which a first one of anchors 32 is implanted. In such a manner, end wall 251 lies flat against the tissue of annulus 240 in parallel with planar surface 255, while at least a distal portion of tubular side wall 253 is disposed substantially perpendicularly with respect to the portion of the tissue of annulus 240 at planar surface 255 into which the first one of anchors 32 is implanted.


As shown, anchor 32 is implanted using channel 18 and manipulator 61 contained within sleeve 26 of annuloplasty structure 222 while at least a portion of annuloplasty structure 222 is contained within surrounding catheter 14.


Reference is now made to FIGS. 4C and 2. Following the deployment of the first tissue anchor, a distal portion of sleeve 26 is decoupled from a portion of implant-decoupling channel 18. In order to decouple the portion of sleeve 26 from outer surface of channel 18, (1) channel 18 is pulled proximally, while (2) reference-force tube 19 is maintained in place in a manner in which a distal end of tube 19 provides a reference force to sleeve 26 in order to facilitate retraction freeing of a successive portion of sleeve 26 from around channel 18. In order to decouple sleeve 26 from the outer surface of channel 18, (1) channel 18 is pulled proximally, while (2) reference-force tube 19 is maintained in place. An indicator 2120 on handle 126 provides an indication of how much channel 18 is withdrawn from within sleeve 26 (i.e., how much the delivery tool is decoupled from sleeve 26, and how much the sleeve has advanced off channel 18 and against tissue). A proximal end of channel 18 is coupled to a knob 94 (FIG. 2) which adjusts an axial position of channel 18 proximally and distally with respect to reference-force tube 19 and sleeve 26. As shown in FIG. 4D, deployment manipulator 61 is repositioned along annulus 240 to another site selected for deployment of a second one of anchors 32.


Reference is now made to FIGS. 2 and 4D. Such repositioning of manipulator 61 is accomplished by:


(1) the steering of the distal end portion of catheter 12 (e.g., by steering knob 210 of handle 22) in the first plane that is parallel with respect to annulus 240 of valve 230 to a desired spatial orientation and in a manner which bends bending section 1203 of catheter 12,


(2) the steering of the distal end portion of portion of catheter 14 (e.g., by steering knob 214 of handle 24) in the second plane that is perpendicular with respect to annulus 240 of valve 230 to a desired spatial orientation, and in a manner which bends bending section 1405 of catheter 14 (specifically bending section 1403),


(3) by axially moving catheter 14 with respect to catheter 12 via knob 216,


(4) by axially moving the stand supporting handles 22 and 24 to move both catheters 12 and 14,


(5) by moving tube 19 and sleeve 26 axially by sliding mount 93 along track 90 via knob 95, and/or


(6) by moving channel 18 relative to tube 19 by actuating knob 94.


As shown in the enlarged in-phantom image to the right, during repositioning of manipulator 61 (i.e., during flexing of the annuloplasty structure 222/sleeve 26 while distal end wall 251 is anchored), a generally-triangular shape is formed between: (1) guide member 86, (2) a distal end portion 257 of side wall 253 sleeve 26 (i.e., the portion of the sleeve that is proximal to end wall 251), and (3) channel 18 surrounded partially by catheter 14. It is to be noted that the illustrated triangle is shown in phantom to indicate the relative triangular orientation of the three components, and that the illustrated triangle is not a part of the apparatus shown.


Typically, the first tissue anchor is deployed most distally in the sleeve (generally at or within a few millimeters of the distal tip of the sleeve), and each subsequent anchor is deployed more proximally, such that the sleeve is gradually decoupled from channel 18 of deployment manipulator 61 in a distal direction during the anchoring procedure (i.e., channel 18 is withdrawn from within sleeve 26, and handle 126 is moved distally so as to retract the tool to make the successive proximal portion sleeve 26 ready for implantation of a subsequent anchor). The already-deployed first one of anchors 32 holds the anchored end of sleeve 26 in place, so that the sleeve is drawn from the site of the first tissue anchor towards the site of the second tissue anchor. As sleeve 26 is drawn and decoupled from channel 18, distal portion 257 of sleeve 26 (i.e., the portion of the sleeve that is proximal to end wall 251) is positioned in a vicinity of tissue of annulus 240.


Typically, as sleeve 26 is decoupled from channel 18, deployment manipulator 61 is moved generally laterally along planar surface 255 of the cardiac tissue, as shown in FIG. 4D in a manner which exposes distal portion 257 of sleeve 26 (i.e., the portion of the sleeve that is proximal to end wall 251) and flexes portion 257 to create a generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 255). Forming portion 257 of sleeve 26 into the generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 255) comprises creating a gap between portion 257 and the tissue of annulus 240 at planar surface 255, the gap having a longest distance D1 between 0.2 and 7.5 mm, e.g., 0.5 and 3 mm. Additionally, such forming of portion 257 is accomplished by flexing portion 257 while end wall 251 is anchored to the tissue of annulus 240. Typically, the gap is formed between (1) the tissue of annulus 240 at planar surface 255, and (2) a first part 258 of the lateral surface distal end portion of side wall 253 (i.e., at portion 257). First part 258 is disposed close to the tissue of annulus 240.


Typically, the “U”-shape differs from the natural shape of annulus 240, as it is distanced from the tissue.


Distal end portion 257 has a tubular, lateral surface. Portion 257 is formed into the generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 255) such that first part 258 of the lateral surface of the distal end portion 257 of side wall 253 is formed into a concave surface with respect to the tissue of annulus 240. For some applications, when portion 257 is formed into the generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 255), a shape is achieve in which: (1) first part 258, that is concave and disposed closer to the tissue of annulus 240, while (2) a second part 259 of the lateral surface of portion 257 of side wall 253 (i.e., opposite first part 258 and father away from the tissue of annulus 240) is more tensioned and less curved than first part 258. That is, first part 258 has (1) a greater degree of curvature than second part 259, (2) a smaller degree of tension than second part 259, and (3) a smaller radius of curvature than second part 259. Additionally, second part 259 has (1) a smaller degree of curvature than first part 258, (2) a greater degree of tension than first part 258, and (3) a larger radius of curvature than first part 259.


For some applications, part 258 is crimped or ruffled when portion 257 assumes the general “U”-shape.


For some applications, the shape of portion 257 is actively formed by flexing sleeve 26 by deployment manipulator 61. For other applications, the shape of portion 257 is passively assumed during the decoupling of portion 257 of sleeve 26 from channel 18, positioning of portion 257 in a vicinity of tissue of the annulus, and subsequently, anchoring side wall 253 to annulus 240 using the second tissue anchor.



FIG. 4D shows distal portion 257 of sleeve 26 (i.e., the portion of the sleeve that is proximal to end wall 251) having been decoupled from a portion of channel 18 by retracting channel 18 proximally. Depending on the tension applied between the first and second tissue anchor sites, the portion of sleeve 26 therebetween may remain tubular in shape, or may become flattened, which may help reduce any interference of the ring with blood flow.



FIG. 4E shows a second tissue anchor 32 (shown as a second tissue anchor 32b) being deployed through a portion of lateral side wall 253 of sleeve 26. As shown, the first one of anchors 32 deployed through end wall 251 is labeled as anchor 32a. Deployment manipulator 61 deploys the second tissue anchor by penetrating and passing through the wall of sleeve 26 into cardiac tissue at the second site.


As shown, anchor 32b is implanted using channel 18 and manipulator 61 contained within sleeve 26 of annuloplasty structure 222 while at least a portion of annuloplasty structure 222 is contained within surrounding catheter 14.


As described hereinabove, anchors 32a and 32b are each deployed from a distal end of manipulator 61 while the distal end is positioned such that a central longitudinal axis through the distal end of manipulator 61 forms an angle with a surface of the cardiac tissue of between about 20 and 90 degrees, e.g., between 45 and 90 degrees, such as between about 75 and 90 degrees, such as about 90 degrees. Typically, anchors 32 are deployed from the distal end of manipulator 61 into the atrial surface of the cardiac tissue in a direction parallel to the central longitudinal axis through the distal end of manipulator 61. Such an angle is typically provided and/or maintained by channel 18 being more rigid than sleeve 26. Distal end 17 of channel 18 is typically brought close to the surface of the cardiac tissue (and the wall of sleeve 26 that is disposed against the surface of the cardiac tissue), such that little of anchor 32b is exposed from channel 18 before penetrating the sleeve and the tissue. For example, distal end 17 of channel 18 may be placed (e.g., pushed) against the wall of the sleeve, sandwiching the sleeve against the cardiac tissue. Reference is made to FIGS. 4D-E. FIG. 4D shows channel 18 of deployment manipulator 61 positioned in alignment with a portion of tubular side wall 253 prior to implantation of the next, consecutive anchor 32 (i.e., 32b, as shown in FIG. 4E). 4D shows a View-B, which provides an exploded view of components of system 10 isolated in relative spatial orientation. View-B shows (1) sleeve 26 and a portion of tubular side wall 253, (2) channel 18 and distal end 17 thereof, and (3) tissue of annulus 240 at planar surface 255. Deployment manipulator 61 and anchor 32 are not shown in View-B for clarity of illustration. View-B shows the alignment of channel 18, specifically distal end 17 thereof, with respect to the portion of tubular side wall 253 of sleeve 26, and tissue of annulus 240 at planar surface 255. That is, in such an alignment, distal end 17 is aligned substantially in parallel with respect to the portion of tubular side wall 253 of sleeve 26, and tissue of annulus 240 at planar surface 255.


Also, for clarity in View-B, distal end 17 of channel 18 is distanced from the portion of tubular side wall 253, which is distanced from the tissue of annulus 240. It is to be noted that this distancing is shown by way of illustration only, and that during the procedure of implanting anchor 32 into tissue and through the portion of tubular side wall 253, distal end 17 of channel contacts the portion of tubular side wall 253, which contacts tissue of annulus 240. That is, channel 18 is pushed against the portion of tubular side wall 253 such that distal end 17 of channel sandwiches the portion of tubular side wall 253 between distal end 17 and the tissue of annulus 240.


As shown in the enlarged image of FIG. 4E, a portion of side wall 253 aligns against the tissue of annulus 240 in a manner in Which a surface of the portion of side wall 253 is disposed in parallel with planar surface 255 of the surface of the tissue of annulus 240. Additionally, distal end 17 of implant-decoupling channel 18 flattens the portion of side wall 253 against the tissue of annulus 240 in a manner in Which channel 18 sandwiches the portion of side wall 253 between (1) distal end 17 of implant-decoupling channel, and (2) the portion of the tissue of annulus 240 at planar surface 255 into which second tissue anchor 32b is implanted. In such a manner, the portion of side wall 253 lies flat against the tissue of annulus 240 in parallel with planar surface 255, while the remaining portion of tubular side wall 253 is disposed substantially perpendicularly with respect to the portion of the tissue of annulus 240 at planar surface 255 into which second tissue anchor 32b is implanted.


As shown in the right-most, above-view of FIG. 4E, first and second tissue anchors 32a and 32b extend in a substantially same direction and into a common, substantially planar surface 255 of a valve annulus. First and second anchors 32a and 32b extend in the substantially same direction despite that first tissue anchor 32a is deployed through end wall 251 transverse to side wall 253. That is, first and second anchors 32a and 32b extend in the substantially same direction while first tissue anchor 32a is deployed through end wall 251 transverse to side wall 253.


As shown in the bottom-left enlarged image, anchors 32a and 32b are deployed consecutively (i.e., in succession with no intervening anchor between anchors 32a and 32b) and extend in a substantially same direction. For example, anchors 32a and 32b are substantially parallel (e.g., parallel) with respect to each other. For some applications, anchors 32a and 32b are disposed with respect to each other at an angle of between 0 and 45 degrees, e.g., between 0 and 30 degrees, e.g., between 0 and 20 degrees. For some applications, first and second tissue anchors 32a and 32b, respectively, are deployed consecutively. That is, first and second tissue anchors 32a and 32b, respectively, are deployed in succession with no intervening anchor between anchors 32a and 32b, and a distance between anchors 32a and 32b is between 2.5 and 15 mm, e.g., between 2.5 and 9 mm, e.g., 8 mm.


Reference is now made to FIGS. 4C and 4E. It is to be noted that first and second tissue anchors 32a and 32b are deployed from within the lumen of channel 18 contained within the lumen of sleeve 26, while at least a proximal portion of sleeve 26 is surrounded by catheter 14, as shown.


Reference is again made to FIG. 4E. As shown, each of anchors 32a and 32b defines a respective central longitudinal axis 232a and 232b. Anchors 32a and 32b are substantially parallel (e.g., parallel) with respect to each other. For some applications, anchors 32a and 32b are implanted with respect to each other such that axes 232a and 232b are substantially parallel. For some applications, anchors 32a and 32b are implanted with respect to each other such that axes 232a and 232b are at angle of between 0 and 45 degrees, e.g., between 0 and 30 degrees, e.g., between 0 and 20 degrees.


For some applications, forming of portion 257 into the generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 2551) comprises anchoring anchor 32b into tissue of annulus 240 at planar surface 255. Anchors 32a and 32b are implanted in tissue of annulus 240 along a common plane (i.e., planar surface 255) and extend in substantially the same direction (i.e., anchors 32a and 32b extend substantially parallel with respect to each other). First and second anchors 32a and 32b extend in the substantially same direction despite that first tissue anchor 32a is deployed through end wall 251 transverse to side wall 253. That is, first and second anchors 32a and 32b extend in the substantially same direction while first tissue anchor 32a is deployed through end wall 251 transverse to side wall 253.


For some applications, a maximum distance L10 between first tissue anchor 32a and a point of anchoring of second tissue anchor 32b is provided by the length of sleeve 26 that has been decoupled from the portion of channel 18 (e.g., by the distance that channel 18 has been retracted from sleeve 26, e.g., between 3 and 15 mm, e.g., 8 mm). That is, for some applications, second tissue anchor 32b may be placed anywhere within a circle having a radius that equals L10, centered on the first tissue anchor.


For some applications, a stiffening element 1926 is provided during the implantation of sleeve 26, and for some applications, the stiffening element facilitates positioning of portions of the sleeve and/or anchors 32, such as positioning of subsequent portions and/or anchors following positioning of previous portions and/or anchors. For example, and as shown in FIG. 4D, by resisting compression, stiffening element 1926 biases the positioning of the distal end of channel 18 (and thereby the position at which the second tissue anchor will be deployed) toward the perimeter of the circle described hereinabove that is centered on the first tissue anchor. That is, by resisting compression, stiffening element 1926 biases the second tissue anchor toward being disposed a distance L10 from the first tissue anchor. Due to, or independently from, this compression-resisting feature of stiffening element 1926, stiffening element 1926 typically maintains an overall length of sleeve 26, the length of the sleeve having typically been selected in response to measurement of the annulus on which it is to be implanted.


By resisting bending, stiffening element 1926 may further bias the positioning of the distal end of channel 18 (and thereby the position at which the second tissue anchor will be deployed) toward a particular sector of the circle. For some applications, by resisting compression and bending, stiffening element 1926 biases the positioning of the distal end of channel 18 (and thereby the position at which the second tissue anchor will be deployed) toward a particular sector of the perimeter of the circle, i.e., toward an arc 1928.


For some applications, by resisting bending, stiffening element 1926 biases sleeve 26 (and portions thereof) toward being straight, and thereby biases positioning of the distal end of channel 18 (and thereby the position at which the next anchor will be deployed) toward being on a line defined by at least the two preceding anchors (e.g., the two preceding anchors define a line segment of the line therebetween). FIG. 4E includes a schematic view illustrating first tissue anchor 32a, second tissue anchor 32b, and a corresponding portion of sleeve 26 having been anchored to annulus 240. A line 1927 is defined by the anchors 32a and 32b, stiffening element 1926 (not shown in this view) biasing a subsequent portion of sleeve 26 (and thereby subsequent anchors) to be disposed along line 1927. A desired position of a subsequent anchor is shown by cross 1930. This desired position is at the annulus, rather than closer to the center of the valve (e.g., the leaflets of the valve). Anatomical constraints and/or application of force by the operating physician oppose this biasing, such that the subsequent anchor is anchored at cross 1930. For such applications, the presence of stiffening element 1926 thereby facilitates placement of the subsequent anchor at annulus 240, as opposed to placement closer to the center of valve 230. It is to be noted that stiffening element 1926 biases structure 222 (e.g., sleeve 26 thereof) to assume a shape that is different to that of the native valve and/or native annulus. That is, stiffening element 1926 biases structure 222 (e.g., sleeve 26 thereof) to not conform to the shape of the native valve and/or native annulus.


For some applications, stiffening element 1926 helps maintain the shape of portion 257. That is, stiffening element 1926 helps maintain the general “U”-shape of portion 257 (i.e., the portion having a concavity with respect to tissue of annulus 240 at planar surface 255). For some applications, stiffening element 1926 helps bias portion 257 into the shape. Alternatively, for some applications, the shape of portion 257 as shown in FIG. 4E, is achieved without stiffening element 1926. For example, a distal end of stiffening element 1926 is disposed proximally to portion 257. For other applications, structure 222 does not comprise stiffening element 1926. For some applications, sleeve 26 at least portion 257 is resilient.


It is to be noted, however, that stiffening element 1926 is shown by way of illustration and not limitation, and that for some applications of the present invention structure 222 is provided without stiffening element 1926.



FIG. 4F shows the entire length of sleeve 26 having been anchored, via a plurality of anchors 32, to annulus 240, as described hereinabove. As shown, the plurality of remaining anchors 32 are implanted while maintaining distal portion 257 of sleeve 26 (i.e., the portion of the sleeve that is proximal to end wall 251) in a generally “U”-shaped portion (i.e., a portion having a concavity with respect to tissue of annulus 240 at planar surface 255).


The deployment manipulator (i.e., deployment manipulator 61 described herein but not shown in FIG. 4F) is repositioned along the annulus to additional sites, at which respective anchors are deployed, until the last anchor is deployed in a vicinity of right fibrous trigone 244 (or left fibrous trigone 242 if the anchoring began at the right trigone). Alternatively, the last anchor is not deployed in the vicinity of a trigone, but is instead deployed elsewhere in a vicinity of the mitral valve, such as in a vicinity of the anterior or posterior commissure. Then, system 10 is removed, leaving behind guide member 86.



FIG. 4G shows an adjustment tool 87 being threaded over and advanced along guide member 86. Adjustment tool 87 typically comprises a rotation tool, and is configured to actuate (e.g., rotate) adjustment mechanism 40, so as to contract contracting member 226, and thereby sleeve 26, as described hereinabove. Typically, adjustment mechanism 40 comprises a housing which houses a spool, i.e., a rotatable structure, to which a first end of contracting member 226 is coupled. Typically, the spool is configured to adjust a perimeter of annuloplasty ring structure 222 by adjusting a degree of tension of contracting member 226 that is coupled at a first portion of member 226 to the spool. The contracting member 226 extends along sleeve 26 and a second portion of contracting member 226 (i.e., a free end portion) is coupled to a portion of sleeve 26 such that upon rotation of the spool in a first rotational direction, the portion of sleeve 26 is pulled toward adjustment mechanism 40 in order to contract annuloplasty ring structure 222. It is to be noted that the contraction of structure 222 is reversible. That is, rotating the spool in a second rotational direction that opposes the first rotational direction used to contract the annuloplasty structure, unwinds a portion of contracting member 226 from around the spool. Unwinding the portion of contracting member 226 from around the spool thus feeds the portion of contracting member 226 back into a lumen of sleeve 26 of structure 222, thereby slackening the remaining portion of contracting member 226 that is disposed within the lumen sleeve 26. Responsively, the annuloplasty structure gradually relaxes and expands (i.e., with respect to its contracted state prior to the unwinding).


The spool typically comprises a locking mechanism that prevents rotation of the spool after contracting member 226 has been tightened. For example, locking techniques may be used that are described with reference to FIG. 4 of U.S. Pat. No. 8,241,351 to Cabiri.


Tool 87 and is used to rotate the spool of adjustment mechanism 4C) in order to tighten structure 222 by adjusting a degree of tension of contracting member 226 (not shown in FIG. 4G. Once the desired level of adjustment of structure 222 is achieved (e.g., by monitoring the extent of regurgitation of the valve under echocardiographic and/or fluoroscopic guidance), rotation tool 87 and guide member 86 are removed from the heart. For some applications, a distal portion of guide member 86 may be left within the heart of the patient and the proximal end may be accessible outside the body, e.g., using a port. For such applications, adjusting mechanism 40 may be accessed at a later stage following initial implantation and adjustment of ring structure 222.


As shown, sleeve 26 of ring structure 222 comprises a plurality of radiopaque markers 25, which are positioned along the sleeve at respective longitudinal sites to indicate anchor-designated target areas. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of sleeve 26 has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance between anchors 32 along the sleeve 26.


Alternatively, annuloplasty ring structure 222 is implanted by right or left thoracotomy, mutatis mutandis.


For some applications of the present invention, following implantation of sleeve 26 along the annulus, an excess portion of sleeve 26 may be present at the proximal portion of sleeve. In such applications, following removal of manipulator 61, a cutting tool (not shown) may be advanced within channel 18 and into the lumen of the excess portions of sleeve 26 (e.g., from within sleeve 26) in order to cut the sleeve proximal to the proximal-most-deployed anchor 32.


Reference is again made to FIGS. 4A-G. For anatomical reasons, a transluminal (e.g., transfemoral) approach to the mitral valve via transseptal puncture typically provides access more directly and/or easily to the region of the anterior commissure (e.g., including left fibrous trigone 242) than to the region of the posterior commissure (e.g., including right fibrous trigone 244). It may therefore be advantageous to position and anchor distal end wall 251 of sleeve 26 in the vicinity of the left fibrous trigone; the positioning of the first point of anchoring of structure 222 may be more difficult than the positioning of subsequent points of anchoring (e.g., due to guidance provided by sleeve 26 and/or stiffening element 1926; FIG. 4E). Due to this same reason of accessibility, it may also be advantageous to deliver adjustment tool 87 to the region of the anterior commissure (as shown in FIG. 4G).


System 10 (e.g., structure 222 thereof) is configured to facilitate exploitation of these two advantages: By adjustment mechanism 40 being disposed at a distal end of sleeve 26, and being movable away from the longitudinal axis of the sleeve, (1) the first tissue anchor may be driven through end wall 251 into the region of the anterior commissure, despite the adjustment mechanism having previously been obstructively positioned, and (2) the adjustment tool may be delivered to the region of the anterior commissure because the adjustment mechanism is disposed in that region.


Reference is made to FIG. 5, which is a schematic illustration of a state of a distal portion of system 10 within the heart of a subject, in accordance with some applications of the invention. As generally described hereinabove, (i) catheter 12 is steerable in a first plane, (ii) catheter 14 is steerable in a second plane that is typically perpendicular to the first plane, and (iii) distal portions of sleeve 26 are laid along the annulus of the native valve while proximal portions of the sleeve (and the distal end of manipulator 61, within the sleeve) are disposed at a nonzero angle with respect to the annulus. Thus, system 10 is configured to assume a multi-bend formation 2948 (e.g., handle portion 101 is configured to configure catheter 12, catheter 14, and structure 222 to assume the multi-bend formation) in which at least three domains 2950, and at least two bends 2952 separating the domains, are defined.


The formation includes (i) a first bend 2952a that separates a first domain 2950a of the formation from a second domain 2950b of the formation, and (ii) a second bend 2952b that separates the second domain from a third domain 2950c of the formation. Typically, the formation further includes a third bend 2952c that separates first domain 2950a from a fourth domain 2950d of the formation. First domain 2950a comprises at least (1) part of catheter 12 and (2) part of catheter 14 (i.e., at least a part of catheter 14 disposed within catheter 12), and typically further comprises at least part of sleeve 26 (i.e., at least part of sleeve 26 disposed within catheter 14). Second domain 2950b comprises at least part of catheter 14 (e.g., distal end portion 114 thereof), and at least part of sleeve 26 (e.g., the second domain comprises at least part of sleeve 26 disposed within a portion of catheter 14 that is exposed from catheter 12). Third domain 2950c comprises at least part of sleeve 26, and none of catheters 12 or 14 (i.e., the third domain comprises part of sleeve 26 that is disposed out of the distal end of catheter 14). In applications in which formation 2948 includes third bend 2952 and fourth domain 2950d, the fourth domain comprises at least (1) part of catheter 12 and (2) part of catheter 14 (i.e., at least a part of catheter 14 disposed within catheter 12), and may further comprise at least part of sleeve 26 (i.e., at least part of sleeve 26 disposed within catheter 14). Thus, domains 2950a and 2950d are typically of similar composition, but separated by third bend 2952c.


Thus, handle portion 101 may be considered to be configured:


to drive at least (i) part of catheter 12 and (ii) part of catheter 14 to define first domain 2950a,


to drive at least part of catheter 14 that is disposed outside of catheter 12 to define second domain 2950b,


to drive system 10 to define third domain 2950c from sleeve 26, and


typically, to drive at least (i) part of catheter 12 and (ii) part of catheter 14 to define fourth domain 2950d.


Reference is made to FIGS. 6A-C, which are schematic illustrations of a tissue anchor 2332 configured for anchoring sleeve 26 described hereinabove, in accordance with some applications of the present invention. Anchor 2332 has a coupling head 2310 configured to be coupled to a deployment element 2338, which has a locking mechanism 2128 disposed at a distal end thereof. Typically, deployment element 2338 (which comprises comprise deployment element 38, described herein) and a locking mechanism 2128. Locking mechanism 2128 is configured to selectively assume locked and unlocked states. When locking mechanism 2128 assumes the locked state, the locking mechanism prevents disengagement of rotating deployment element 2338 from the anchor which rotating deployment element 2338 currently engages. This locking allows deployment element 38 to proximally withdraw anchor 2332 if necessary, without coming disengaged therefrom. Disengagement is thus prevented even upon withdrawal of the rotating deployment element in the proximal direction. When the locking mechanism assumes the unlocked state, the locking mechanism does not prevent disengagement of the rotating deployment element from the anchor upon withdrawal of rotating deployment element 2338 in the proximal direction. The rotating deployment element thus can be disengaged and withdrawn from the anchor in a proximal direction. It is noted that even when the locking mechanism assumes the unlocked state, the rotating deployment element generally does not disengage from the anchor unless the rotating deployment element is withdrawn in the proximal direction.


For some applications, coupling head 2310 is alternatively or additionally configured to be coupled to, and/or used with, deployment manipulator 61, deployment element 38, and/or anchor driver 36 described hereinabove. Anchor 2332 provides a tissue coupling element 2312 (e.g., a helical tissue coupling element, as shown, or a screw). For some applications of the invention, anchor 32 described hereinabove, comprises anchor 2332 and/or anchors 32 and 2332 are interchangeable.


A proximal portion of coupling element 2312 comprises a vertical (and typically straight) proximal portion 2314 which is coupled to coupling head 2310 within 3 mm of a central longitudinal axis 2316 of tissue anchor 2332 (e.g., within 1 mm of axis 2316, such as on axis 2316). Proximal portion 2314 may alternatively comprise a proximal stem portion that couples coupling element 2312 to coupling head 2310. Vertical proximal portion 2314 typically has a length L36 of 0.2-0.7 mm, and is typically more than 1.3 times as great as (e.g., between 2 and 10 times as great as, such as between 2 and 4 times as great as) a thickness of the fabric of sleeve 26. During anchoring of sleeve 26 by anchor 2332 (e.g., as shown in FIG. 6B), such a configuration of the positioning of portion 2314 at the center of coupling head 2310 facilitates rotation of tissue anchor 2332 with respect to sleeve 26 in a manner that prevents twisting of sleeve 26 during rotation. That is, once coupling element 2312 has passed far enough through sleeve 26 such that portion 2314 traverses the wall of the sleeve (as shown in stage (iii) of FIG. 6B), portion 2314 rotates freely within the wall of the sleeve. (For some applications in which portion 2314 is coupled to coupling head 2310 within 3 mm of, but not on, axis 2316, flexibility of the fabric of sleeve 26 facilitates such free rotation, by distorting as portion 2314 “wiggles”.) Such a configuration allows anchor 2332 to be driven into the cardiac tissue, such that coupling head 2310 draws sleeve 26 closer to the cardiac tissue, without distorting (e.g., twisting, kinking, buckling, etc.) the sleeve (as shown by the transition from stage (iii) to stage (iv) of FIG. 6B). For some such applications, anchor 2332, coupling element 2312, and/or portion 2314 act as an integral washer and/or a screw with an integral washer, as is known in the hardware art.


Coupling head 2310 may be either male (e.g., a hex or square protrusion) or female (e.g., a straight slot, a hex opening, a Phillips opening, or a Robertson opening). The use of helical anchors, which are screwed into the cardiac tissue, generally minimizes the force that needs to be applied during deployment of the anchors into the cardiac tissue. Anchor driver 36 has a deployment element 38 that is either male (e.g., comprising a screwdriver head, having, such as a slot-head, an Allen-head, a Phillips-head, a Robertson-head, or a hex-head) or female (e.g., comprising a wrench head, having, for example, a square or hex opening), as appropriate for the driving interface provided by coupling head 2310 of anchor 2332 of FIGS. 6A-C.


Thus, anchor 2332, by way of illustration and not limitation, comprises a helical portion (i.e., tissue coupling element 2312) and a non-helically shaped portion (i.e., coupling head 2310 and vertical (and typically straight) proximal portion 2314).


Anchor 2332 has an anchor helix diameter L32 of between 0.2 and 0.3 cm, e.g., 0.25 cm. That is, the radius of the anchor helix from longitudinal axis 2316 is typically between 0.1 and 0.15 cm, e.g., 0.125 cm. Anchor 2332 has an anchor helix pitch L33 of between 0.1 and 0.2 cm, e.g., 0.12 cm. Anchor 2332 has an anchor helix length L34 of between 0.3 and 0.6 cm, such as 0.3 and 0.45 cm, e.g., 0.35 cm. Anchor 2332 has a helix wire thickness L35 of between 0.02 and 0.1 cm, e.g., 0.05 cm.


For some applications of the invention, torque-limiting apparatus 2300, coupled to anchor driver 36, prevents over-rotation of the anchor, penetration of tissue coupling element 2312 too deep into tissue, and/or damage to the tissue.


For some applications, a ratio between diameter L32 of the helix of anchor 2332 (cm) to torque (Ncm) is typically, but not necessarily 0.25/0.8, or 0.3125. For some applications, a ratio between pitch L33 of anchor 2332 (cm) to torque (Ncm) is typically, but not necessarily 0.12/0.8, or 0.15. For some applications, a ratio between length L34 of the helix of anchor 2332 (cm) to torque (Ncm) is typically, but not necessarily 0.35/0.8, or 0.4375. For some applications, a ratio between thickness L35 of the wire forming anchor 2332 (cm) to torque (Ncm) is typically, but not necessarily 0.05/0.8, or 0.0625.


Typically, but not necessarily, anchor 2332 comprises a biocompatible material such as stainless steel 316 LVM. For some applications, anchor 2332 comprises nitinol. For some applications, anchor 2332 is coated with a non-conductive material.


Reference is now made to FIG. 7, which is a schematic illustration of a step in the implantation of an annuloplasty ring structure to repair a mitral valve, in accordance with some applications of the invention. It is to be noted that the steps for implanting structure 222 are similar to those described in FIGS. 4A-G and 5 with the exception of portion 257 being implanted along the surface of the tissue of annulus 240, while minimizing or eliminating the gap (defined as having a distance D1) shown in FIGS. 5D-G and 5. As shown in FIG. 7, for some applications, due to the elasticity of the fabric, portion 257 of sleeve 26 is generally flush with respect to planar surface 255 of annulus 240 despite that first tissue anchor 32a is deployed through end wall 251 transverse to side wall 253 in substantially the same direction (as described hereinabove with reference to FIG. 4E). In such a manner a gap is minimized or eliminated between portion 257 and the tissue of annulus 240 at planar surface 255. That is, for some applications, part 258 of portion 257 is positioned adjacent, alongside, and touching the tissue of annulus 240.


Thus, in such an application of the present invention, structure forms a shape in which: (1) first part 258 of the lateral surface of portion 257 of side wall 253, is crimped or ruffled, while (2) second part 259 of the lateral surface of portion 257 of side wall 253 (i.e., opposite first part 258) is more tensioned and less curved than first part 258. That is, first part 258 has (1) a higher degree of curvature than second part 259, and (2) a smaller radius of curvature than second part 259. Additionally, second part 259 has (1) a smaller degree of curvature than first part 258, (2) a greater degree of tension than first part 258, and (3) a larger radius of curvature than first part 259.


It is to be noted that stiffening element 1926 is shown extending through portion 257 by way of illustration and not limitation. For example, for some applications, the shape of portion 257 as shown in FIG. 7, is achieved without stiffening element 1926. For example, a distal end of stiffening element 1926 is disposed proximally to portion 257. For other applications, structure 222 does not comprise stiffening element 1926. That is, without stiffening element 1926 in portion 257, portion 257 has a greater flexibility to achieve the ruffled and crimped configuration of part 258. For some applications, such flexibility is due to sleeve 26 comprising a fabric.


Reference is now made to FIGS. 4D-E and 7. As described hereinabove, the shape of portion 257 is achieved in situ actively by flexing sleeve 26 prior to deploying the second anchor 32b. For other applications, the shape of portion 257 is achieved passively in response to releasing portion 257 from channel 18 followed by anchoring wall 253 with second anchor 32b.


Reference is made to FIGS. 1-7. It is to be noted that following implantation of the annuloplasty structures described herein, the dimensions of the annuloplasty structures may be adjusted remotely and while the patient is not on a cardio-pulmonary bypass pump (i.e., with a beating heart), under fluoroscopy and/or echo guidance.


Although annuloplasty structure 222 has been described hereinabove as comprising a partial annuloplasty ring, in some embodiments of the present invention, the ring instead comprises a full annuloplasty ring.


It is to be further noted that system 10 and catheters 12 and 14 may be advanced using a (1) trans-septal procedure in which the system is advanced through vasculature of the patient at any suitable access location e.g., femoral vein), (2) a minimally-invasive transapical approach, (3) a minimally-invasive transatrial approach (e.g., an intercostal approach), or (4) a surgical, open-heart approach. Furthermore, for some applications, the systems described herein are not steerable and may comprise straight elements (e.g., in a surgical, open-heart procedure).


It is to be further noted that system 10 and catheters 12 and 14 for repairing a dilated annulus of the patient may be used to treat any cardiac valve of the patient, e.g., the aortic valve, the pulmonary valve, the mitral valve, and the tricuspid valve. It is to be still further noted that systems described herein for treatment of valves may be used to treat other annular muscles within the body of the patient. For example, the systems described herein may be used in order to treat a sphincter muscle within a stomach of the patient.


It is further noted that the scope of the present invention includes the use of system 10 and catheters 12 and 14 (or subcomponents thereof) and methods described hereinabove on any suitable tissue of the patient (e.g., stomach tissue, urinary tract, and prostate tissue).


In some embodiments of the present invention, system 10 is used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. In these embodiments, annuloplasty structure 222 and other components of system 10 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Although annuloplasty structure 222 is described hereinabove as being placed in an atrium, for some application the ring is instead placed in either the left or right ventricle.


Additionally, the scope of the present invention includes embodiments described in the following applications, which are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:

    • U.S. patent application Ser. No. 12/341,960 to Cabiri, entitled, “Adjustable partial annuloplasty ring and mechanism therefor,” filed on Dec. 22, 2008, which published as US Patent Application Publication 2010/0161047 and issued as U.S. Pat. No. 8,241,351;
    • U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed on May 4, 2009, which published as US Patent Application Publication 2010/0161041 and issued as U.S. Pat. No. 8,147,542;
    • U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed on May 7, 2009, which published as US Patent Application Publication 2010/0286767 and which issued as U.S. Pat. No. 8,715,342;
    • U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on Aug. 27, 2009, which published as US Patent Application Publication 2010/0161042, and which issued as U.S. Pat. No. 8,808,368;
    • PCT Patent Application PCT/IL2009/001209 to Cabiri et al., entitled, “Adjustable annuloplasty devices and mechanisms therefor,” filed on Dec. 22, 2009, which published as PCT Publication WO 10/073246;
    • PCT Patent Application PCT/IL2010/000357 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on May 4, 2010, which published as WO 10/128502;
    • PCT Patent Application PCT/IL2010/000358 to Zipory et al., entitled, “Deployment techniques for annuloplasty ring and oven-wire rotation tool,” filed on May 4, 2010, which published as WO 10/128503; and/or
    • PCT Patent Application PCT/IL2012/050451 to Sheps et al., entitled, “Controlled steering functionality for implant-delivery tool,” filed on Nov. 8, 2012, and which published as WO 13/069019.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A method for deploying a flexible annuloplasty structure at annulus tissue of a valve annulus, the method comprising: introducing the annuloplasty structure into a heart atrium, the annuloplasty structure having a sleeve with an elongated tubular side wall;anchoring a first section of the sleeve by deploying a first tissue anchor through the first section of the sleeve and into a first portion of the annulus tissue; andanchoring a second section of the sleeve by deploying a second tissue anchor through the second section of the sleeve and into a second portion of the annulus tissue, such that: a longitudinal portion of the tubular side wall is disposed between the first tissue anchor and the second tissue anchor, and has a first lateral part and a second lateral part opposite the first lateral part, the first lateral part being closer to the annulus than the second lateral part is to the annulus, andthe second lateral part of the longitudinal portion has a degree of tension that is larger than a degree of tension of the first lateral part of the longitudinal portion.
  • 2. The method according to claim 1, wherein deploying the second tissue anchor comprises deploying the second tissue anchor such that the first tissue anchor and the second tissue anchor: (a) are deployed consecutively; and(b) extend in a substantially same direction and into a common, substantially planar surface of the valve annulus, the common, substantially planar surface including the first and second portions of the annulus tissue.
  • 3. The method according to claim 1, wherein deploying the second tissue anchor comprises deploying the second tissue anchor substantially parallel with respect to the first tissue anchor.
  • 4. The method according to claim 1, wherein deploying the second tissue anchor comprises deploying the second tissue anchor between 0 and 45 degrees with respect to the first tissue anchor.
  • 5. The method according to claim 1, wherein deploying the first tissue anchor comprises deploying the first tissue anchor from a distal end of a deployment manipulator through the first section of the sleeve into the first portion of the annulus tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 20 and 90 degrees with the first section of the sleeve at a point at which the first tissue anchor penetrates the first section of the sleeve.
  • 6. The method according to claim 1, wherein deploying the second tissue anchor comprises deploying the second tissue anchor from a distal end of a deployment manipulator through the second section of the sleeve into the second portion of the annulus tissue, while the distal end of the deployment manipulator is positioned such that a central longitudinal axis through the distal end of the deployment manipulator forms an angle of between 20 and 90 degrees with the second section of the sleeve at a point at which the second tissue anchor penetrates the second section of the sleeve.
  • 7. The method according to claim 1, wherein deploying the first tissue anchor and deploying the second tissue anchor comprises deploying the first and second tissue anchors from within a lumen of the sleeve.
  • 8. The method according to claim 1, wherein deploying the first tissue anchor and deploying the second tissue anchor comprises deploying the first and second tissue anchors from within a lumen of a channel disposed within a lumen of the sleeve while at least a proximal portion of the sleeve is surrounded by a catheter.
  • 9. The method according to claim 1, wherein deploying the first tissue anchor comprises deploying the first tissue anchor through a channel disposed within a lumen of the sleeve, the channel having a distal end defining an opening through with the first tissue anchor passes, and wherein deploying the first tissue anchor comprises sandwiching the first section of the sleeve between the distal end of the channel and the first portion of the annulus tissue.
  • 10. The method according to claim 9, wherein deploying the first tissue anchor comprises deploying the first tissue anchor into a planar surface of the valve annulus at the first portion of the annulus tissue, and wherein sandwiching comprises positioning the distal end of the channel in a manner in which the distal end of the channel is aligned substantially parallel to the planar surface.
  • 11. The method according to claim 1, wherein deploying the second tissue anchor comprises deploying the second tissue anchor through a channel disposed within a lumen of the sleeve, the channel having a distal end defining an opening through with the second tissue anchor passes, and wherein deploying the second tissue anchor comprises sandwiching the second section of the sleeve between the distal end of the channel and the second portion of the annulus tissue.
  • 12. The method according to claim 11, wherein deploying the second tissue anchor comprises deploying the second tissue anchor into a planar surface of the valve annulus at the first portion of the annulus tissue, and wherein sandwiching comprises positioning the distal end of the channel in a manner in which the distal end of the channel is aligned substantially parallel to the planar surface.
  • 13. The method according to claim 1, further comprising, in conjunction with the anchoring the second section of the sleeve, forming the longitudinal portion of the tubular side wall into a shape having a concavity.
  • 14. The method according to claim 13, wherein forming the longitudinal portion into the shape having the concavity comprises creating a gap between (1) the first lateral part, and (2) the annulus tissue, the gap having a longest distance between 0.2 and 7.5 mm.
  • 15. A method for deploying a flexible annuloplasty structure at annulus tissue of a valve annulus, the method comprising: introducing the annuloplasty structure into a heart atrium, the annuloplasty structure having a sleeve with an elongated tubular side wall;anchoring a first section of the sleeve by deploying a first tissue anchor through the first section of the sleeve and into a first portion of the annulus tissue;while the first section of the sleeve is anchored, positioning alongside the valve annulus a longitudinal portion of the tubular side wall that is proximal to the first section of the sleeve in a manner in which the longitudinal portion of the tubular side wall that is proximal to the first section of the sleeve assumes a shape in which: a first lateral part of the longitudinal portion of the tubular side wall is positioned close to the annulus tissue,a second lateral part of the longitudinal portion of the tubular side wall is disposed opposite the first lateral part of the longitudinal portion of the tubular side wall and away from the annulus tissue, andthe second lateral part of the longitudinal portion of the tubular side wall has a degree of tension that is larger than a degree of tension of the first lateral part of the longitudinal portion of the tubular side wall; andanchoring the longitudinal portion of the tubular side wall to the annulus by deploying a second tissue anchor through a second section of the sleeve and into a second portion of the annulus tissue,wherein the first and second tissue anchors are disposed in a manner in which the longitudinal portion of the tubular side wall assumes the shape.
  • 16. The method according to claim 15, wherein deploying the first tissue anchor and deploying the second tissue anchor comprises deploying the first and second tissue anchors from within a lumen of the sleeve.
  • 17. The method according to claim 15, wherein positioning the longitudinal portion alongside the valve annulus comprises creating a gap between (1) the first lateral part, and (2) the annulus tissue, the gap having a longest distance between 0.2 and 7.5 mm.
  • 18. The method according to claim 15, wherein deploying the first tissue anchor and deploying the second tissue anchor comprises deploying the first and second tissue anchors into a common, substantially planar surface of the valve annulus, the common, substantially planar surface including the first and second portions of the annulus tissue.
  • 19. The method according to claim 18, wherein deploying the second tissue anchor comprises deploying the second tissue anchor substantially parallel with respect to the first tissue anchor.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of Ser. No. 14/141,228 to Zipory et al., entitled, “Implantation of flexible implant,” filed on Dec. 26, 2013, which published as US 2015/0182336, and which is assigned to the assignee of the present application and is incorporated herein by reference.

US Referenced Citations (830)
Number Name Date Kind
3604488 Wishart Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpenter et al. Apr 1990 A
4961738 Mackin Oct 1990 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke Apr 1994 A
5306296 Wright et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5450860 O'Connor Sep 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5669919 Sanders et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5810882 Bolduc Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell Aug 1999 A
5957953 DiPoto Sep 1999 A
5961440 Schweich et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson Nov 1999 A
6042554 Rosenman Mar 2000 A
6045497 Schweich et al. Apr 2000 A
6050936 Schweich et al. Apr 2000 A
6059715 Schweich et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6143024 Campbell Nov 2000 A
6159240 Sparer Dec 2000 A
6165119 Schweich et al. Dec 2000 A
6174332 Loch Jan 2001 B1
6183411 Mortier Feb 2001 B1
6187040 Wright Feb 2001 B1
6315784 Djurovic Feb 2001 B1
6217610 Carpentier Apr 2001 B1
6231602 Carpentier May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bodluc et al. Oct 2001 B1
6319281 Patel Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec Jan 2003 B1
6524338 Gundry Feb 2003 B1
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent Apr 2003 B1
6554845 Fleenor Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich et al. Jul 2003 B2
6602288 Cosgrove Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTasel Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719786 Ryan Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon Sep 2004 B1
6790231 Liddicoat Sep 2004 B2
6797001 Mathis Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem Feb 2006 B2
7004176 Lau Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy Jan 2007 B2
7166127 Spence Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shoulian Apr 2008 B2
7364588 Mathis Apr 2008 B2
7377941 Rhee May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn Aug 2009 B1
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton Feb 2010 B2
7682319 Martin Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee Apr 2010 B2
7704269 Goar Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955377 Melsheimer Jun 2011 B2
7988725 Gross Aug 2011 B2
7992567 Hirotsuka Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde Dec 2011 B2
8070805 Vidlund Dec 2011 B2
8075616 Solem Dec 2011 B2
8100964 Spence Jan 2012 B2
8123800 McCarthy Feb 2012 B2
8123801 Milo Feb 2012 B2
8323334 Deem Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao Apr 2012 B2
8163013 Machold Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler May 2012 B2
8202315 Hlavka Jun 2012 B2
8206439 Gomez-Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8226711 Mortier Jul 2012 B2
8231671 Kim Jul 2012 B2
8241351 Cabiri Aug 2012 B2
8252050 Maisano et al. Aug 2012 B2
8262725 Subramanian Sep 2012 B2
8277502 Miller Oct 2012 B2
8287584 Salahieh Oct 2012 B2
8287591 Keidar Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8328868 Paul Dec 2012 B2
8333777 Schaller Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8430926 Kirson Apr 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8500800 Maisano et al. Aug 2013 B2
8518107 Tsukashima Aug 2013 B2
8523881 Cabiri Sep 2013 B2
8523940 Richardson Sep 2013 B2
8545553 Zipory Oct 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam Nov 2013 B2
8608797 Gross Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8690939 Miller et al. Apr 2014 B2
8715342 Zipory May 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8808371 Cartledge Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer Dec 2014 B2
8926695 Gross et al. Jan 2015 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940042 Miller et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9017399 Gross Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9226825 Starksen et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9351830 Gross et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9610162 Zipory Apr 2017 B2
20010021874 Carpentier Sep 2001 A1
20010044656 Williamson Nov 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020029080 Mortier Mar 2002 A1
20020042621 Liddicoat Apr 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020133180 Ryan et al. Sep 2002 A1
20020151916 Muramatsu Oct 2002 A1
20020151961 Lashinski Oct 2002 A1
20020151970 Garrison Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030018358 Saadat Jan 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely Apr 2003 A1
20030083742 Spence May 2003 A1
20030100943 Bolduc May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund Jul 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171760 Gambale Sep 2003 A1
20030191528 Quijano et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204195 Keane Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040092962 Thornton et al. May 2004 A1
20040122448 Levine Jun 2004 A1
20040122514 Forgarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040172046 Hlavka Sep 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040236419 Milo Nov 2004 A1
20040243227 Starsken et al. Dec 2004 A1
20040249453 Cartledge Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187613 Bolduc et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050197696 Gomez Duran Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288776 Shaoulian et al. Dec 2005 A1
20050288778 Shaoulian Dec 2005 A1
20050288781 Moaddeb et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060052868 Mortier Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos May 2006 A1
20060106423 Weisel May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060149280 Harvine et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jiminez Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia Nov 2006 A1
20060271175 Woolfson Nov 2006 A1
20060282161 Huyn et al. Dec 2006 A1
20060287661 Bolduc Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis Jan 2007 A1
20070021781 Jervis Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070038221 Fine Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070213582 Zollinger et al. Sep 2007 A1
20070219558 Deutsch Sep 2007 A1
20070233239 Navia Oct 2007 A1
20070239208 Crawford Oct 2007 A1
20070244555 Rafiee Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070276437 Call Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cummings et al. Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Wodson et al. Feb 2008 A1
20080039935 Buch Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Mackoviak Mar 2008 A1
20080071366 Tuval Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080125861 Webler et al. May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167714 St. Goar Jul 2008 A1
20080177382 Hyde et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere Sep 2008 A1
20080243245 Thambar Oct 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross Oct 2008 A1
20080275300 Rothe Nov 2008 A1
20080275469 Fanton Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20090028670 Garcia et al. Jan 2009 A1
20090043153 Zollinger et al. Feb 2009 A1
20090043381 Macoviak Feb 2009 A1
20090054969 Salahieh Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090088837 Gillinov Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc Apr 2009 A1
20090105816 Olsen Apr 2009 A1
20090125102 Cartledge May 2009 A1
20090149872 Gross et al. Jun 2009 A1
20090177274 Scorsin Jun 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177277 Milo Jul 2009 A1
20090222083 Nguyen et al. Sep 2009 A1
20090248148 Shaolian Oct 2009 A1
20090254103 Deustch Oct 2009 A1
20090259307 Gross et al. Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090264995 Subramanian Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren Nov 2009 A1
20090299409 Coe Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin Jan 2010 A1
20100010538 Juravic Jan 2010 A1
20100023117 Yoganathan Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100063542 Van der Burg Mar 2010 A1
20100063550 Felix Mar 2010 A1
20100063586 Hasenkam Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100114180 Rock May 2010 A1
20100121349 Meier May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom Jun 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100161042 Maisano et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100161047 Cabiri Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100211166 Miller et al. Aug 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280604 Zipory Nov 2010 A1
20100280605 Hammer Nov 2010 A1
20100286628 Gross Nov 2010 A1
20100286767 Zipory Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson Jan 2011 A1
20110004298 Lee Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Otsuro et al. Feb 2011 A1
20110029066 Gilad Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110106245 Miller et al. May 2011 A1
20110106247 Miller May 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause Jun 2011 A1
20110166649 Gross Jul 2011 A1
20110184510 Maisano et al. Jul 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110202130 Cartledge Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge Oct 2011 A1
20110257728 Kuehn Oct 2011 A1
20110264208 Duffy Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110282361 Miller et al. Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110288635 Miller Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20110301698 Miller et al. Dec 2011 A1
20120022557 Cabiri Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120022644 Reich Jan 2012 A1
20120035712 Maisano et al. Feb 2012 A1
20120078355 Zipory Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120095552 Spence Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120123531 Tsukashima May 2012 A1
20120136436 Cabiri May 2012 A1
20120143323 Hasenkam Jun 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120179086 Shank Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120197388 Khairkhahan et al. Aug 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120283757 Miller Nov 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill Nov 2012 A1
20120296419 Richardson Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20120330410 Hammer Dec 2012 A1
20120330411 Gross Dec 2012 A1
20130023758 Fabro Jan 2013 A1
20130030522 Rowe et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130079873 Migliazza Mar 2013 A1
20130297013 Klima et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian Apr 2013 A1
20130096672 Reich Apr 2013 A1
20130096673 Hill Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130116780 Miller May 2013 A1
20130123910 Cartledge May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130131792 Miller May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130172992 Gross et al. Jul 2013 A1
20130190863 Call et al. Jul 2013 A1
20130190866 Zipory Jul 2013 A1
20130197632 Kovach Aug 2013 A1
20130204361 Adams Aug 2013 A1
20130226289 Shaolian Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130325118 Cartledge Dec 2013 A1
20140018914 Zipory et al. Jan 2014 A1
20140088368 Park Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140148898 Gross et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140222137 Miller et al. Aug 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140343668 Zipory Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150012087 Miller et al. Jan 2015 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150105855 Cabiri et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150230924 Miller Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150297212 Reich et al. Oct 2015 A1
20150351906 Hammer Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160324633 Gross et al. Nov 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
Foreign Referenced Citations (107)
Number Date Country
2671966 Jun 2008 CA
101653365 Feb 2010 CN
0611561 Aug 1994 EP
0614342 Sep 1994 EP
1006905 Jun 2000 EP
0954257 Aug 2000 EP
1258437 Nov 2002 EP
0871417 Oct 2003 EP
1266641 Oct 2004 EP
1034753 Feb 2005 EP
1258232 Jan 2006 EP
1990014 Nov 2008 EP
1562522 Dec 2008 EP
1420723 Jan 2009 EP
1903991 Sep 2009 EP
1418865 Oct 2009 EP
2119399 Nov 2009 EP
1531762 Apr 2010 EP
1450733 Feb 2011 EP
1861045 Mar 2015 EP
1465555 May 2015 EP
223448 Dec 2012 IL
9205093 Apr 1992 WO
9310714 Jun 1993 WO
1993015690 Aug 1993 WO
9639963 Dec 1996 WO
9640344 Dec 1996 WO
9701369 Jan 1997 WO
9846149 Oct 1998 WO
1999030647 Jun 1999 WO
99033414 Jul 1999 WO
99063907 Dec 1999 WO
99063910 Dec 1999 WO
2000009048 Feb 2000 WO
0022981 Apr 2000 WO
0126586 Apr 2001 WO
0156457 Aug 2001 WO
2001087191 Nov 2001 WO
02085250 Oct 2002 WO
02085251 Oct 2002 WO
02085252 Oct 2002 WO
03028558 Apr 2003 WO
03047467 Jun 2003 WO
2003049647 Jun 2003 WO
2003105667 Dec 2003 WO
2004012583 Feb 2004 WO
2004019816 Mar 2004 WO
2004019826 Mar 2004 WO
04103434 Dec 2004 WO
05021063 Mar 2005 WO
05046488 May 2005 WO
2005062931 Jul 2005 WO
06012013 Feb 2006 WO
06012038 Feb 2006 WO
06086434 Aug 2006 WO
06097931 Sep 2006 WO
06105084 Oct 2006 WO
06116558 Nov 2006 WO
07011799 Jan 2007 WO
2007080595 Jul 2007 WO
07121314 Oct 2007 WO
07136783 Nov 2007 WO
07136981 Nov 2007 WO
2008014144 Jan 2008 WO
2008031103 Mar 2008 WO
08068756 Jun 2008 WO
2009160631 Oct 2009 WO
10004546 Jan 2010 WO
2010000454 Jan 2010 WO
2010006905 Jan 2010 WO
2010044851 Apr 2010 WO
2010065274 Jun 2010 WO
10073246 Jul 2010 WO
2010085649 Jul 2010 WO
2010128502 Nov 2010 WO
2010128503 Nov 2010 WO
2010150178 Dec 2010 WO
2011051942 May 2011 WO
11067770 Jun 2011 WO
2011089401 Jul 2011 WO
2011089601 Jul 2011 WO
2011111047 Sep 2011 WO
2011148374 Dec 2011 WO
2011154942 Dec 2011 WO
2012011108 Jan 2012 WO
2012014201 Feb 2012 WO
2012068541 May 2012 WO
2012106346 Aug 2012 WO
2012176195 Dec 2012 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013069019 May 2013 WO
2013078497 Jun 2013 WO
2013088327 Jun 2013 WO
2014064694 May 2014 WO
2014064695 May 2014 WO
2014064964 May 2014 WO
2014076696 May 2014 WO
2014087402 Jun 2014 WO
2014108903 Jul 2014 WO
2014115149 Jul 2014 WO
2014195786 Dec 2014 WO
2015059699 Apr 2015 WO
2015193728 Dec 2015 WO
2016059639 Apr 2016 WO
2016087934 Jun 2016 WO
2016174669 Nov 2016 WO
Non-Patent Literature Citations (301)
Entry
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
U.S. Appl. No. 60/873,075, filed Dec. 5, 2006.
An International Preliminary Report on Patentability dated Nov. 9, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000357.
U.S. Appl. No. 60/902,146, filed Feb. 16, 2007.
An International Preliminary Report on Patentability dated Jun. 5, 2012, which issued during the prosecution of Applicant's PCT/IL2010/001024.
U.S. Appl. No. 61/001,013, filed Oct. 29, 2007.
An International Preliminary Report on Patentability dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000404.
U.S. Appl. No. 61/132,295, filed Jun. 16, 2008.
Notice of Allowance dated Apr. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/341,960.
“Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
An Office Action dated Mar. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Aug. 2, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
A Restriction Requirement dated Mar. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An International Search Report and a Written Opinion both dated Jun. 10, 2010, which issued during the prosecution of Applicant's PCT/IL09/01209.
An Office Action dated Jan. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Office Action dated Apr. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
An Office Action dated Nov. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Notice of Allowance dated Sep. 16, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An International Search Report and a Written Opinion both dated Aug. 17, 2010, which issued during the prosecution of Applicant's PCT/IL10/00357.
An Office Action dated Sep. 16, 2009 which issued during the prosecution of U.S. Appl. No. 11/950,930.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
A Restriction Requirement dated Nov. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/926,673.
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
A Supplementary European Search Report dated Jan. 20, 2015, which issued during the prosecution of European Patent Application No. 12803037.6.
An International Preliminary Report on Patentability dated Jun. 29, 2011, which issued during the prosecution of Applicant's PCT/IL2009/001209.
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
An International Search Report and a Written Opinion both dated Feb. 10, 2011, which issued during the prosecution of Applicant's PCT/IL10/00890.
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
A Notice of Allowance dated Jun. 26, 2012, which issued during the prosecution of U.S. Appl. No. 12/608,316.
A Notice of Allowance dated Jul. 30, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Jan. 23, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An International Search Report dated May 19, 2011, which issued during the prosecution of Applicant's PCT/IL2011/00064.
A Supplementary European Search Report dated Feb. 1, 2011, which issued during the prosecution of European Patent Application No. EP 07849540.
An International Search Report together with Written Opinion both dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001024.
An Office Action dated Aug. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An Office Action dated Jul. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
Notice of Allowance dated May 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
An Office Action dated Aug. 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated May 10, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
An Office Action dated Mar. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
A Restriction Requirement dated Sep. 14, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,192.
Notice of Allowance dated Apr. 12, 2016, which issued during the prosecution of U.S. Appl. No. 14/667,090.
An Office Action dated Sep. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An International Search Report and Written Opinion dated Nov. 8, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000358.
An Office Action dated Dec. 29, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
An International Search Report and a Written Opinion both dated Nov. 23, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000446.
An International Search Report with Written Opinion both dated Feb. 2, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Preliminary Report on Patentability dated Nov. 9, 2011 which issued during the prosecution of Applicant's PCT/IL2010/000358.
An Office Action dated Aug. 4, 2010, which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
An Office Action dated Aug. 15, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Feb. 12, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
Notice of Allowance dated Dec. 7, 2011, which issued during the prosecution of U.S. Appl. No. 12/435,291.
A Restriction Requirement dated Oct. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Notice of Allowance dated May 24, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952.
A Restriction Requirement dated Jul. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,930.
A Notice of Allowance dated Apr. 3, 2013, which issued during the prosecution of U.S. Appl. No. 12/563,930.
An Office Action dated Apr. 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Advisory Action dated Sep. 6, 2012 which issued during the prosecution of U.S. Appl. No. 12/548,991.
A Restriction Requirement dated Feb. 4, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Feb. 14, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,492.
An International Search Report and a Written Opinion both dated Feb. 22, 2013, which issued during the prosecution of Applicant's PCT/IL201/050451.
An Office Action dated Apr. 1, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,476.
A Restriction Requirement dated Jun. 7, 2013 which issued during the prosecution of U.S. Appl. No. 13/141,606.
An Office Action dated Aug. 23, 2013 which issued during the prosecution of U.S. Appl. No. 13/167,444.
U.S. Appl. No. 61/265,936, filed Dec. 2, 2009.
U.S. Appl. No. 61/283,445, filed Dec. 2, 2009.
U.S. Appl. No. 61/207,908, filed Feb. 17, 2009.
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
An Office Action dated Dec. 16, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,262.
Notice of Allowance dated Nov. 19, 2013, which issued during the prosecution of U.S. Appl. No. 12/795,192.
An Office Action dated Oct. 2, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated Nov. 21, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,476.
An Office Action dated Dec. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/666,141.
A Restriction Requirement dated Apr. 19, 2010 which issued during the prosecution of U.S. Appl. No. 12/341,960.
An Office Action dated Jun. 13, 2012, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An Office Action dated Nov. 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An Office Action dated Oct. 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/926,673.
A Restriction Requirement dated Oct. 25, 2012 which issued during the prosecution of U.S. Appl. No. 13/167,444.
An Office Action dated Jan. 17, 2013, which issued during the prosecution of U.S. Appl. No. 13/167,444.
A Restriction Requirement dated Nov. 2, 2012, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An International Preliminary Report on Patentability dated Feb. 4, 2014, which issued during the prosecution of Applicant's PCT/IL2011/000446.
A Supplementary European Search Report dated Dec. 4, 2012, which issued during the prosecution of European Patent Application No. EP 09834225.6.
A Supplementary European Search Report dated Mar. 28, 2013, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
U.S. Appl. No. 61/733,979, filed Dec. 6, 2012.
U.S. Appl. No. 61/717,303, filed Oct. 23, 2012.
U.S. Appl. No. 61/820,979, filed May 8, 2013.
U.S. Appl. No. 61/745,848, filed Dec. 6, 2012.
An Office Action dated May 19, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated Sep. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated Dec. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/785,717.
An Office Action dated May 30, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
Amendment, Terminal Disclaimer and Extension dated Jun. 27, 2012, which issued during the prosecution of U.S. Appl. No. 12/548,991.
An International Preliminary Report on Patentability dated Jan. 29, 2013, which issued during the prosecution of Applicant's PCT/IL2011/000600.
An International Search Report and a Written Opinion both dated Dec. 6, 2012 which issued during the prosecution of Applicant's PCT/IL2012/000250.
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 14/551,951.
U.S. Appl. No. 61/557,082, filed Nov. 8, 2011.
A Restriction Requirement dated Jul. 12, 2011, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An Office Action dated Mar. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
An Office Action dated May 6, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,693.
A Restriction Requirement dated May 1, 2012, which issued during the prosecution of U.S. Appl. No. 12/843,412.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
U.S. Appl. No. 61/555,570, filed Nov. 4, 2011.
A Notice of Allowance dated Sep. 18, 2012, which issued during the prosecution of U.S. Appl. No. 12/706,868.
An Office Action dated Aug. 13, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
An Office Action dated Dec. 31, 2012, which issued during the prosecution of U.S. Appl. No. 13/044,694.
A Restriction Requirement dated Apr. 1, 2011, which issued during the prosecution of U.S. Appl. No. 12/608,316.
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
An Office Action dated Oct. 6, 2010, which issued during the prosecution of Applicant's U.S. Appl. No. 12/484,512.
An Office Action dated Jul. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/692,061.
An Interview Summary dated Jul. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/341,960.
A Notice of Allowance dated May 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/843,412.
An Office Action dated Jul. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/044,694.
Search Report in European Patent Application 10772090.6 dated Jan. 17, 2014.
An Office Action dated Feb. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
Communication regarding amended claims filed dated Dec. 27, 2012, regarding European App No. 11792047.0.
Notice of Allowance dated Mar. 6, 2014, which issued during the prosecution of U.S. Appl. No. 12/437,103.
An Office Action dated Oct. 9, 2013, which issued during the prosecution of U.S. Appl. No. 12/996,954.
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Notice of Allowance dated Sep. 12, 2014, which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Dec. 19, 2013, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An International Preliminary Report on Patentability dated Dec. 18, 2010, which issued during the prosecution of Applicant's PCT/IL09/00593.
An English translation of an Office Action dated Apr. 23, 2014 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Notice of Allowance dated Jun. 23, 2014, which issued during the prosecution of U.S. Appl. No. 12/548,991.
Notice of Allowance dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
Notice of Allowance dated Jun. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/666,262.
An International Search Report and Written Opinion both dated Apr. 9, 2014, which issued during the prosecution of Applicant's PCT/IL13/50860.
An International Search Report & Written Opinion both dated May 12, 2015, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An Office Action dated Jun. 11, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
A Restriction Requirement dated Jun. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
A communication from the European Patent Office dated Sep. 28, 2011 which issued during the prosecution of European Application No. 09834225.6.
A Restriction Requirement dated Sep. 17, 2012, which issued during the prosecution of U.S. Appl. No. 12/689,693.
An Office Action dated Aug. 22, 2014, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Aug. 26, 2014 which issued during the prosecution of U.S. Appl. No. 13/167,444.
Communication dated Jul. 25, 2014, issued by the State Intellectual Property Office of the P.R. of China in counterpart Application No. 200980157331.3.
A Notice of Allowance dated Sep. 3, 2014, which issued during the prosecution of U.S. Appl. No. 12/689,693.
Communication from the European Patent Office dated Jun. 11, 2015, which issued during the prosecution of European Patent Application No. 11811934.
Supplementary European Search Report dated Oct. 23, 2014 which issued during the prosecution of Applicant's European App No. 10826224.7.
An International Search Report & Written Opinion both dated Mar. 21, 2014, which issued during the prosecution of Applicant's PCT/IL13/50992.
A Notice of Allowance dated Feb. 2, 2015, which issued during the prosecution of U.S. Appl. No. 13/504,870.
An Office Action dated Oct. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/319,030.
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
An Office Action dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/504,870.
An Office Action dated Oct. 3, 2014, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An International Search Report & Written Opinion both dated Sep. 8, 2009, which issued during the prosecution of Applicant's PCT/IL09/00593.
An International Search Report and a Written Opinion both dated Nov. 14, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000404.
Dictionary.com definition of “lock”, Jul. 29, 2013.
A Restriction Requirement dated Jan. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/795,026.
A Restriction Requirement dated Nov. 14, 2011 which issued during the prosecution of U.S. Appl. No. 12/548,991.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050861.
A Notice of Allowance dated May 22, 2013, which issued during the prosecution of U.S. Appl. No. 12/689,635.
An International Preliminary Report on Patentability dated May 1, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000890.
A Notice of Allowance dated Jan. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/926,673.
Restriction Requirement dated May 5, 2011, which issued during the prosecution of U.S. Appl. No. 12/706,868.
Supplementary European Search Report dated Aug. 4, 2014 which issued during the prosecution of Applicant's European App No. 11 81 1934.6.
An Office Action dated Aug. 5, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
An Office Action dated Feb. 17, 2010 which issued during the prosecution of U.S. Appl. No. 11/950,930.
Restriction Requirement dated Nov. 14, 2011, which issued during the prosecution of U.S. Appl. No. 12/689,635.
Supplementary European Search Report dated Jan. 21, 2014 which issued during the prosecution of Applicant's European App No. 11 78 6226.
An Office Action dated Jun. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/840,463.
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . , European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
An Office Action dated Jun. 10, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
An Office Action dated May 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated Apr. 2, 2015, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Supplementary European Search Report dated Dec. 23, 2014 which issued during the prosecution of Applicant's European App No. 10834311.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Mar. 23, 2015, which issued during the prosecution of European Patent Application No. EP 09834225.6.
Supplementary European Search Report dated Mar. 23, 2015, which issued during the prosecution of Applicant's European App No. 11792047.0.
Notice of Allowance dated Dec. 20, 2013, which issued during the prosecution of U.S. Appl. No. 12/437,103.
Supplementary European Search Report dated Apr. 29, 2015, which issued during the prosecution of Applicant's European App No. 14200202.
An International Preliminary Report on Patentability dated Dec. 23, 2014, which issued during the prosecution of Applicant's PCT/IL2012/050451.
An International Search Report and a Written Opinion both dated Apr. 15, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An International Preliminary Report on Patentability dated Dec. 23, 2013, which issued during the prosecution of Applicant's PCT/IL2012/000250.
An Office Action dated Aug. 7, 2015, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050861.
An Invitation to pay additional fees dated Jan. 31, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050860.
An Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/044,694.
A communication from the European Patent Office dated Oct. 19, 2012 which issued during the prosecution of European Application No. 11792047.0.
An Office Action dated Oct. 5, 2012, which issued during the prosecution of U.S. Appl. No. 12/996,954.
An Office Action dated Oct. 5, 2015, which issued during the prosecution of U.S. Appl. No. 14/246,417.
An Office Action dated Oct. 1, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228.
Supplementary European Search Report dated Sep. 25, 2015, which issued during the prosecution of Applicant's European App No. 09794095.1.
An Office Action dated Apr. 7, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
An Office Action dated Jan. 13, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426.
European Search Report dated Jun. 24, 2016, which issued during the prosecution of European Patent Application No. EP 12847363.
An Office Action dated Mar. 24, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
An Office Action dated Jul. 20, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
Notice of Allowance dated May 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
An Office Action dated Jun. 18, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,030.
An Office Action dated Jun. 13, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
An English translation of an Office Action dated Jul. 17, 2015 which issued during the prosecution of Chinese Patent Application No. 201080059948.4.
Notice of Allowance dated Sep. 29, 2014, which issued during the prosecution of U.S. Appl. No. 13/141,606.
An International Search Report and a Written Opinion both dated Oct. 27, 2016, which issued during the prosecution of Applicant's PCT/IL2015/050792.
An International Preliminary Report on Patentability dated Jun. 9, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050992.
An Office Action dated May 3, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
A Notice of Allowance dated Sep. 2, 2016, which issued during the prosecution of U.S. Appl. No. 14/027,934.
An Office Action dated Feb. 3, 2015, which issued during the prosecution of U.S. Appl. No. 14/084,426.
Search Report in European Patent Application 10826224.7 dated Nov. 16, 2015.
Notice of Allowance dated Dec. 24, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
An English Translation of an Office Action dated Nov. 24, 2015, which issued during the prosecution of Israel Patent Application No. 223448. (the relevant part only).
Notice of Allowance dated Nov. 12, 2015, which issued during the prosecution of U.S. Appl. No. 13/319,007.
Notice of Allowance dated Jan. 7, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,007.
Notice of Allowance dated Apr. 20, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
Notice of Allowance dated Mar. 23, 2011, which issued during the prosecution of U.S. Appl. No. 12/484,512.
An Office Action dated May 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,171.
European Search Report dated Jul. 8, 2016, which issued during the prosecution of Applicant's European App No. 13849843.1.
Notice of Allowance dated Nov. 13, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,026.
Notice of Allowance dated Feb. 19, 2014, which issued during the prosecution of U.S. Appl. No. 12/795,192.
Notice of Allowance dated Nov. 23, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228.
An English translation of an Office Action dated Dec. 12, 2013 which issued during the prosecution of Chinese Patent Application No. 200980157331.3.
Notice of Allowance dated Nov. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/486,226.
European Search Report dated Nov. 4, 2015, which issued during the prosecution of European Patent Application No. EP 1077 2091.4.
Notice of Allowance dated Dec. 19, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151.
European Search Report dated Jul. 15, 2016, which issued during the prosecution of Applicant's European App No. 13849947.0.
An Office Action dated Jun. 17, 2016, which issued during the prosecution of U.S. Appl. No. 14/357,040.
Notice of Allowance dated Dec. 30, 2016, which issued during the prosecution of U.S. Appl. No. 13/319,030.
Notice of Allowance dated Mar. 25, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated Aug. 3, 2015, which issued during the prosecution of U.S. Appl. No. 13/749,153.
Notice of Allowance dated Dec. 9, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,492.
Notice of Allowance dated Jan. 22, 2015, which issued during the prosecution of U.S. Appl. No. 13/167,444.
An International Preliminary Report on Patentability dated Apr. 28, 2015, which issued during the prosecution of Applicant's PCT/IL2013/050860.
An Office Action dated Jan. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An Office Action dated Apr. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228.
An Office Action dated Apr. 7, 2016, which issued during the prosecution of U.S. Appl. No. 14/242,151.
An Office Action dated Jan. 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An International Preliminary Report on Patentability dated Jun. 10, 2009, which issued during the prosecution of Applicant's PCT/IL07/01503.
Notice of Allowance dated Aug. 19, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Jun. 8, 2012, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Dec. 21, 2013, which issued during the prosecution of U.S. Appl. No. 11/908,906.
A Restriction Requirement dated Aug. 5, 2011, which issued during the prosecution of U.S. Appl. No. 11/908,906.
An Office Action dated Oct. 23, 2012, which issued during the prosecution of Japanese Patent Application No. 2009-539871.
U.S. Appl. No. 60/662,616, filed Mar. 17, 2005.
U.S. Appl. No. 60/700,542, filed Jul. 18, 2005.
An Office Action dated May 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/589,100.
An Office Action dated Jun. 14, 2016, which issued during the prosecution of U.S. Appl. No. 14/273,155.
An International Search Report and a Written Opinion both dated Jan. 25, 2016, which issued during the prosecution of Applicant's PCT/IL2015/051027.
An Office Action dated Jan. 5, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An International Preliminary Report on Patentability dated Apr. 26, 2016, which issued during the prosecution of Applicant's PCT/IL2014/050914.
An Office Action dated May 11, 2016, which issued during the prosecution of U.S. Appl. No. 14/128,756.
An International Search Report and a Written Opinion both dated Sep. 12, 2008, which issued during the prosecution of Applicant's PCT/IL07/01503.
An English Translation of an Office Action dated Sep. 15, 2016, which issued during the prosecution of Israel Patent Application No. 243837. (the relevant part only).
Notice of Allowance dated Sep. 14, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Notice of Allowance dated Jul. 24, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Notice of Allowance dated Jul. 8, 2015, which issued during the prosecution of U.S. Appl. No. 13/707,013.
Ahmadi, Ali, et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Park, Sang C., et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484.
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154.
An Invitation to pay additional fees dated Aug. 18, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050433.
Daebritz, S., et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Notice of Allowance dated Mar. 1, 2017, which issued during the prosecution of U.S. Appl. No. 14/357,040.
An Office Action dated Sep. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/141,228.
An International Search Report and a Written Opinion both dated Oct. 17, 2016, which issued during the prosecution of Applicant's PCT/IL2016/050433.
An Office Action dated Oct. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/567,472.
Notice of Allowance dated Jul. 7, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Notice of Allowance dated Nov. 18, 2016, which issued during the prosecution of U.S. Appl. No. 13/740,582.
Notice of Allowance dated Oct. 20, 2015, which issued during the prosecution of U.S. Appl. No. 12/996,954.
Amendment and Extension dated Apr. 11, 2012, which issued during the prosecution of U.S. Appl. No. 12/563,952.
Notice of Allowance dated Dec. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
Notice of Allowance dated Dec. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
Notice of Allowance dated Dec. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/246,417.
Notice of Allowance dated Jan. 3, 2017, which issued during the prosecution of U.S. Appl. No. 14/128,756.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
An International Preliminary Report on Patentability dated Sep. 18, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342.
An International Search Report and a Written Opinion both dated May 30, 2007, which issued during the prosecution of Applicant's PCT/IL2006/000342.
An Advisory Action dated Feb. 4, 2014, which issued during the prosecution of U.S. Appl. No. 13/167,476.
An English Translation of an Office Action dated May 31, 2012, which issued during the prosecution of Israel Patent Application No. 209946. (the relevant part only).
A Restriction Requirement dated Jul. 8, 2015, which issued during the prosecution of U.S. Appl. No. 14/141,228.
Notice of Allowance dated Sep. 22, 2016, which issued during the prosecution of U.S. Appl. No. 13/740,582.
A Restriction Requirement dated Sep. 4, 2015, which issued during the prosecution of U.S. Appl. No. 14/589,100.
Notice of Allowance dated Jan. 29, 2016, which issued during the prosecution of U.S. Appl. No. 14/551,951.
An International Search Report and a Written Opinion both dated May 28, 2014, which issued during the prosecution of Applicant's PCT/IL14/050027.
An Office Action dated Aug. 22, 2016, which issued during the prosecution of U.S. Appl. No. 14/084,426.
An Office Action dated Dec. 20, 2016, which issued during the prosecution of UK Patent Application No. 1611910.9.
Notice of Allowance dated Aug. 7, 2015, which issued during the prosecution of Chinese Patent Application No. 200980157331.3.
An Office Action dated Jan. 20, 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114.
An Office Action dated Feb. 10, 2017, which issued during the prosecution of U.S. Appl. No. 14/990,172.
An Office Action dated Feb. 2, 2017, which issued during the prosecution of U.S. Appl. No. 14/209,171.
An Office Action dated Jan. 25, 2017, which issued during the prosecution of Chinese Patent Application No. 201510681407.X.
An Office Action dated Dec. 13, 2016, which issued during the prosecution of Applicant's European App No. 11786226.8.
An Interview Summary dated Apr. 4 ,2012, which issued during the prosecution of U.S. Appl. No. 12/563,952.
An Office Action dated Mar. 3, 2017, which issued during the prosecution of Applicant's European App No. 11792047.0.
An Office Action dated Feb. 27, 2017, which issued during the prosecution of U.S. Appl. No. 15/249,957.
An Office Action dated Apr. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/437,062.
Notice of Allowance dated Apr. 13, 2017, which issued during the prosecution of U.S. Appl. No. 14/650,114.
An Office Action dated Mar. 24, 2017, which issued during the prosecution of U.S. Appl. No. 14/273,155.
Related Publications (1)
Number Date Country
20170196691 A1 Jul 2017 US
Continuations (1)
Number Date Country
Parent 14141228 Dec 2013 US
Child 15444862 US