Implants and methods for posterior dynamic stabilization of a spinal motion segment

Information

  • Patent Grant
  • 8034079
  • Patent Number
    8,034,079
  • Date Filed
    Tuesday, April 12, 2005
    19 years ago
  • Date Issued
    Tuesday, October 11, 2011
    12 years ago
Abstract
An implant assembly for stabilizing a spinal motion segment includes a spacer member positionable between adjacent spinous processes and upper and lower engaging members extending from the spacer member. The upper and lower engaging members engage at least one lamina to resist flexion of the spinal motion segment.
Description
BACKGROUND

Implants can be positioned between adjacent spinous processes to provide resistance to vertebral movement as a result of extension of the spinal column. These implants can provide a shock absorber or bumper that dynamically limits spinal extension. The implants can be secured to the adjacent spinous processes with looped cables or straps that extend completely about the spinous processes and implant to maintain positioning of the implant between the spinous processes while also limiting spinal flexion. However, these looped cables or straps can cut into the bone along the superior or inferior surfaces of the respective spinous process when subjected to sufficient forces. Furthermore, the looped cables or straps can be exposed to the spinal foramen at the location between the spinous processes, providing a potential for entry or impingement into the spinal foramen.


SUMMARY

There is provided a spinal implant assembly including a spacer member positionable between adjacent spinous processes with ends contacting respective ones of the spinous processes to limit extension of a spinal motion segment and engaging members coupled to the spinal motion segment to limit flexion. At least one of the engaging members is structured to contact a surface of a lamina opposite the spinous process surface in contact with the end of the spacer member.


According to one aspect, a spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another upon extension of the spinal motion segment. An upper engaging member and a lower engaging member each extend from the spacer member and are engageable with the spinal motion segment to limit flexion of the spinal motion segment. At least one of the upper and lower engaging members are structured for positioning along a surface of a lamina adjacent a respective one of the upper and lower spinous processes. The lamina surface is opposite a surface of the respective spinous process in contact with the adjacent one of the first and second ends of the spacer member.


In another aspect, a spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another under extension of the spinal motion segment. An upper engaging member and a lower engaging member extend from respective ones of the first and second ends of the spacer member. The upper engaging member includes a hook end portion positionable along a superior surface of an upper lamina adjacent the upper spinous process and the lower engaging member including a hook end portion positionable along an inferior surface of the lower spinous process. The engaging members contact the respective lamina surfaces to limit flexion of the spinal motion segment.


In a further aspect, a method for stabilizing a spinal motion segment comprises: positioning a spacer member between adjacent upper and lower spinous processes of the spinal motion segment, the spacer member including an upper end contacting an inferior surface of the upper spinous process and a lower end contacting a superior surface of the lower spinous process; positioning an upper engaging member extending from the upper end of the spacer member in contact with a superior surface of an upper lamina adjacent the upper spinous process; and positioning a lower engaging member extending the lower end of the spacer member in contact with an inferiorly oriented surface adjacent the lower spinous process.


According to another aspect, as spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The first and second ends each include a pair of arms extending along opposite sides of the adjacent spinous process. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another upon extension of the spinal motion segment. The assembly further includes a first engaging member and a second engaging member each extending from the spacer member and engageable with the spinal motion segment to limit flexion of the spinal motion segment. The first engaging member is engaged with the spacer member along one of the arms at the first end and the second engaging member is engaged with the spacer member along one of the arms at the second end.


These and other aspects will be discussed further below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a posterior portion of spinal column motion segment with an implant assembly engaged thereto.



FIG. 2 is an enlarged view of a portion of the spinal motion segment of FIG. 1 showing an engaging member of the implant assembly and a lamina.



FIG. 3 is an elevation view of another embodiment implant assembly between posterior elements of a spinal motion segment.



FIG. 4 is an elevation view of another embodiment implant assembly between posterior elements of a spinal motion segment.



FIG. 5 is an elevation view of another embodiment implant assembly.





DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein are contemplated as would normally occur to one skilled in the art to which the invention relates.


Implants are positionable between adjacent spinous processes of a spinal motion segment to dynamically stabilize and limit spinal extension and flexion. The implant includes a spacer member received between the spinous processes that is compressible to allow extension motion of the motion segment while maintaining a distraction force between the spinous processes. The implant further includes engaging members extending from each of the upper and lower ends of the spacer member. The engaging members engage the spinal motion segment to limit flexion. At least one of the engaging members is structured to engage a surface of the lamina adjacent the respective spinous process. The lamina provides a stable support surface suited to resisting loads applied thereto by the implant in resisting flexion of the motion segment. Engagement of the lamina with the engaging member also reduces torsional loading on the posterior vertebral elements.


In another embodiment, each of the upper and lower engaging members of the implant assembly is engageable along a surface of a lamina adjacent the respective spinous process. The engaging members engage surfaces of the lamina opposite the surfaces of the spinous process supported by the respective end of the spacer member. In a further embodiment, the engaging members include hooked ends, and the hooked end of the upper engaging member extends along the superior surface of the upper lamina and the hooked end of the lower engaging member extends along the inferior surface of the lower member. In another embodiment, the engaging members are movably coupled with the spacer member. In yet another embodiment, at least one of the upper and lower engaging members includes a resilient connecting portion allowing limited flexion of the motion segment while maintain engagement of the engaging member with the lamina.


In FIG. 1 there is shown a spinal column segment 10 including an upper vertebra 11, a lower vertebra 15 and a spinal disc 13 therebetween. The vertebrae 11, 15 and disc 13 comprise a spinal motion segment, it being understood that a spinal motion segment may include multiple vertebral levels. Upper vertebra 11 includes an upper spinous process 12 extending from an upper lamina 16. Lower vertebra 15 includes a lower spinous process 14 extending from a lower lamina 18. The spinous processes 12, 14 and laminae 16, 18 comprise posterior elements of the vertebrae of the spinal motion segment.


A spinal implant assembly 30 is positioned in engagement with the posterior vertebral elements to provide dynamic spinal stabilization. Spinal implant assembly 30 includes a spacer member 32 extending between and contacting adjacent surfaces of spinous processes 12, 14 to limit movement of the spinous processes toward one another as a result of extension of the spinal motion segment. For example, spacer member 32 can include an upper end 34 in contact with inferior surface 22 of spinous process 12, and a lower end 36 in contact with superior surface 26 of spinous process 14. Spacer member 32 can include a body structured to resiliently compress in response to extension of the spinal motion segment, providing resistance to the extension forces and limiting movement of the spinous processes 12, 14 toward one another as spacer member 32 is compressed.


Implant assembly 30 includes an upper engaging member 50 and a lower engaging member 70 extending from spacer member 32. Upper engaging member 50 extends along and contacts a superior surface 20 of upper lamina 16, and lower engaging member 70 extends along and contacts an inferior surface 24 of lower lamina 18. Engaging member 50, 70 thus limit movement of the spinous processes 12, 14 away from one another as a result of flexion of the motion segment. In one embodiment, engaging members 50, 70 are movably coupled with spacer member 32 to facilitate manipulation of the engaging members 50, 70 and placement over the spinal lamina. For example, as shown in FIG. 2, engaging member 50 includes a connecting portion 54 extending from spacer member 32 and a hook end portion 52 positionable along a superior surface of lamina 16. Engagement of the hook end portion 52 with the spinal lamina provides a bony support surface of sufficient size and strength to allow the forces exerted by engaging members 50, 70 to be resisted without cracking, cutting, or otherwise unsuitably deforming the bone.


In order to facilitate positioning of engaging members 50, 70 along the respective lamina 16, 18, engaging members 50, 70 can be offset toward the anterior side 38 of spacer member 32. Posterior side 40 of spacer member 32 is oriented posteriorly between spinous processes 12, 14. Since ends 34, 36 engage the adjacent surface of the respective spinous processes 12, 14, positioning engaging members 50, 70 along the anterior side 38 facilitates engagement with the respective laminae 16, 18, which are each located anteriorly of the respective adjacent spinous process 12, 14.


In one embodiment, engaging member 50 includes a flexible connecting portion 54 and a rigid hook end portion 52. The flexible connecting portion 54 facilitates manipulation of the engaging member 50 relative to spacer member 32 and into position for engagement with the lamina. In one embodiment, connecting portion 54 includes a spring-like structure that can be resiliently stretched or elongated to position the hook end portion along the superior lamina surface, and connecting portion 54 resiliently returns toward its pre-stretched state to bias hook end portion 52 into engagement with the superior surface of lamina 16. Engaging member 70 can be configured the same as engaging member 50 for engaging the inferior surface of lower lamina 18. In another embodiment, one of the engaging members 50, 70 includes a spring-like connecting portion that can be elongated while the other does not. In still another form, each of the engaging members 50, 70 are rigid.


Connecting portion 54 can be coupled to spacer member 32 in any suitable manner. In one embodiment, connecting portion 54 is movably coupled to spacer member 32. Connecting portion 54 can be integrally formed with spacer member 32, or can be attached by a fastener, suture, anchor, cable, link, over-molding or other suitable connection. Spacer member 32 can be provided with ears, eyelets, recesses or other suitable structure to facilitate engagement of engaging member 50 to spacer member 32. Connecting portion 74 can be similarly configured.


Referring now to FIG. 3, there is shown a spinal implant assembly 130 having spacer member 32 and engaging members 150, 170 coupled at opposite ends thereof. Spacer member 32 includes a first pair of upper arms 42 defining a concavely curved upper surface 34 extending between arms 42 for nestingly receiving spinous process 12, and a second pair of lower arms 44 defining a concavely curved lower surface 36 between arms 44 for nestingly receiving spinous process 14. Arms 42, 44 extend along the sides of the respective spinous process 12, 14 and prevent spacer member 32 from slipping or moving out of position laterally from between spinous processes 12, 14.


Implant assembly 130 includes an upper engaging member 150 and a lower engaging member 170 for engaging upper lamina 16 and lower lamina 18 in a manner similar to or the same as discussed above with respect to implant assembly 30. Engaging member 150 includes a hook end portion 152 and a connecting portion 154 extending to a location along one of the upper arms 42. Similarly, engaging member 170 includes a hook end portion 172 and a connecting portion 174 extending to a location along one of the lower arms 44. The end 156 of engaging arm 150 is located along arm 42 so that in its implanted position engaging member 150 is not located along the foramen extending along the spinal motion segment. For example, the upper end of arm 42 can be spaced a distance 184 from an anatomical opening to the foramen, while the end 156 of engaging member 150 is spaced a distance 182 from the upper end of arm 42, spacing it above or cephaladly from the opening between vertebrae to the spinal foramen. End 176 of arm 170 can be similarly situated relative to one of the lower arms 44. Other embodiments contemplate arrangements where one or more of the engaging members and connecting member extend along and are exposed to the foramen.


A connecting member 180 extends through spacer member 32, and can be isolated from the foramen by the body of spacer member 32 surrounding connecting member 180. The ends of connecting member 180 are coupled to respective ones of the ends 156, 176 of engaging members 150, 170 to secure engaging members 150, 170 to spacer member 32 while allowing pivoting movement of engaging members 150, 170 relative to spacer member 32.


Referring now to FIG. 4, there is shown another embodiment implant assembly 132. Implant assembly 132 is similar to implant assembly 130 discussed above, and like elements are designated with like reference numerals. However, engaging member 150 is located relative to spacer member 32 on an opposite side of a central axis 133 relative to engaging member 170, whereas in FIG. 3 the engaging member 150 is located on the same side of axis 133 as engaging member 170. In FIG. 4, a connecting member 190 extends trans-axially through spacer member 32 and is coupled to ends 156, 176 of engaging members 150, 170.


In the embodiments in FIGS. 3 and 4, connecting portions 154, 174 can be rigid, although flexible connecting portions 154, 174 are contemplated. Ends 156, 176 can be coupled to connecting member 180, 190 with a pin, fastener, friction fit, adhesive, fusion, crimp, or other suitable connecting arrangement. Ends 156, 176 are located along the respective arms 42, 44 so that their positioning and movement avoids the foramen.


In FIG. 5, there is shown another implant assembly 230 including a spacing member 32 with a connecting member 280 extending therethrough. Connecting member 280 includes an upper end 254 extending from the side of one of the arms 42 to a hook end portion 252 of engaging member 250. Connecting member 280 is coupled to hook end portion 252 at connection 256. Connection 256 can include a pin, fastener, friction fit, adhesive, fusion, crimp, or other suitable coupling arrangement. Connecting member 280 further includes a lower end 274 extending from the side of one of the arms 44 to a hook end portion 272 of engaging member 270. Connecting member 280 is coupled to hook end portion 272 at connection 276. Connection 276 can include a pin, fastener, friction fit, adhesive, fusion, crimp, or other suitable coupling arrangement. Engaging members 250, 270 can be located on the same side of a central axis of the body, or can be on opposite sides of the central axis.


Connecting member 280 extends from the body of spacer member 32 so that its connection with respective upper and lower engaging members 250, 270 is spaced from spacer member 32. Connecting member 280 flexibly extends between the respective engaging members 250, 270 to allow movement of engaging member 250, 270. Connecting member 280 can also be stretchable but resilient to provide a spring-like coupling arrangement to assist in maintaining the hook end portions of engaging members 250, 270 in contact with the respective lamina surfaces. Furthermore, hook end portions 250, 270 each include a contact surface 251, 271 with surface features to enhance engagement with the lamina. Such surface features can include spikes, teeth, roughenings, knurlings, surface treatments, etchings, fasteners, or other interruption to enhance engagement and resist movement of the engaging member relative to the lamina surface. Surface features may also be provided with the other embodiment engaging members.


In the implant assembly embodiments utilizing a connecting member, the connecting member extends through the body of spacer member 32 so that it is not exposed to the anatomy outside and adjacent spacer member 32 when implanted. This arrangement avoids exposure of the connecting member to the spinal foramen and neural elements, for example. The connection of the connecting member to the engaging members at locations along the respective arms 42, 44, also avoids exposure to the foramen. The connecting member can be positioned through one or more passages formed in the spacer member, or the spacer member can be over-molded about the connecting member. Various forms for the connecting members are contemplated, including cables, wires, sutures, cords, bands, belts, rigid links or rods, and flexible links or rods, for example.


With respect to the various embodiments described herein, the engaging members can be joined or fixed to the spacer member using various devices and/or techniques, or can be integrally formed with or form an extension of the spacer member. The spacer member can be joined or attached to the engaging member by, for example, sewing the engaging member to the spacer member, thermal welding or bonding, adhesive bonding, three dimensional weaving or braiding, screws, staples, pins, tacks or rivet fixation. Furthermore, the engaging member can be secured to the spacer member either before or after the spacing member is placed between the spinous processes.


The spacer member can be fabricated from components that are flexible or exhibit at least some flexibility. Examples of such components include woven fabric tubing, woven and non-woven mesh, or braided or woven structures, sutures, tethers, cords, planar members, bands, wires, cables, or any other component capable of extending between and supporting the adjacent spinous processes. Additionally, the spacer member may be resilient and/or elastic so it can assume various shapes during and after insertion and attachment.


The spacer member can be made from any biocompatible material, material of synthetic or natural origin, and material of a resorbable or non-resorbable nature. Suitable examples of spacer member material include autograft, allograft or xenograft; tissue materials including soft tissues, connective tissues, demineralized bone matrix and combinations thereof; resorbable materials including polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, collagen, albumin, fibrinogen and combinations thereof; and non-resorbable materials including polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluorethylene, poly-paraphenylene terephthalamide, polyetheretherketone, cellulose, and combinations thereof.


The engaging members described herein can be made from any one or combinations of biocompatible material, including synthetic or natural autograft, allograft or xenograft tissues, and can be resorbable or non-resorbable nature. Examples of tissue materials include hard tissues, connective tissues, demineralized bone matrix and combinations thereof. Further examples of resorbable materials are polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, and combinations thereof. Further examples of non-resorbable materials are carbon-reinforced polymer composites, shape-memory alloys, titanium, titanium alloys, cobalt chrome alloys, stainless steel, and combinations thereof.


In one embodiment, the hook end portion is rigid and made from a metal material, polymer material, or other material exhibiting rigid properties, and the connecting portion is flexible to facilitate positioning of the engaging member along the spinal lamina. In a further embodiment, the connecting portion is resilient and includes a spring or spring-like material that allows stretching for placement of the hook end portion along the lamina and resiliently returns to maintain the hook end portion in contact with the corresponding lamina surface.


While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. All changes and modifications that come within the spirit of the invention are desired to be protected.

Claims
  • 1. A method for stabilizing a spinal motion segment, comprising: positioning a spacer member between adjacent upper and lower spinous processes of the spinal motion segment, the spacer member including an upper end contacting an inferior surface of the upper spinous process and a lower end contacting a superior surface of the lower spinous process;positioning an upper engaging member extending from the upper end of the spacer member in contact with a superior surface of an upper lamina adjacent the upper spinous process; andpositioning a lower engaging member extending from the lower end of the spacer member in contact with an interiorly oriented surface adjacent the lower spinous process; andresiliently stretching the upper engaging member before positioning the upper engaging member in contact with the superior surface of the upper lamina.
  • 2. The method of claim 1, wherein the interiorly oriented surface extends along a lower lamina adjacent the lower spinous process, and positioning the lower engaging member includes contacting the inferior surface at the lower lamina with the lower engaging member.
  • 3. The method of claim 2, wherein positioning the upper engaging member and the lower engaging member each includes positioning hooked end portions in contact with the respective lamina surfaces.
  • 4. The method of claim 1, wherein the upper and lower engaging members are movably coupled with the spacer member along respective ones of the upper and lower spinous processes when the spacer member is positioned between the upper and lower spinous processes.
US Referenced Citations (404)
Number Name Date Kind
278097 Collins May 1883 A
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1706431 Whitliff Mar 1929 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2502902 Tofflemire Apr 1950 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
2774350 Cleveland, Jr. Dec 1956 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3123077 Alcamo Mar 1964 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3654668 Appleton Apr 1972 A
3678542 Prete, Jr. Jul 1972 A
3693616 Roaf et al. Sep 1972 A
3779239 Fischer et al. Dec 1973 A
4003376 McKay et al. Jan 1977 A
4011602 Rybicki et al. Mar 1977 A
4047523 Hall Sep 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4422451 Kalamchi Dec 1983 A
4448191 Rodnyansky et al. May 1984 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4570618 Wu Feb 1986 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4643174 Horiuchi Feb 1987 A
4643178 Nastari et al. Feb 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759769 Hedman et al. Jul 1988 A
4776851 Bruchman et al. Oct 1988 A
4779816 Varlet Oct 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4841959 Ransford Jun 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913134 Luque Apr 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
4998936 Mehdian Mar 1991 A
5000166 Karpf Mar 1991 A
5010879 Moriya et al. Apr 1991 A
5011484 Breard Apr 1991 A
5030220 Howland Jul 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5180393 Commarmond Jan 1993 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5356412 Golds et al. Oct 1994 A
5356417 Golds Oct 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove et al. Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5527312 Ray Jun 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5575819 Amis Nov 1996 A
5609592 Brumfield et al. Mar 1997 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665096 Yoon Sep 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5725582 Bevan et al. Mar 1998 A
5746762 Bass May 1998 A
5755797 Baumgartner May 1998 A
5797916 McDowell Aug 1998 A
5800547 Schafer et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5885290 Guerrero et al. Mar 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6090043 Austin et al. Jul 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6312431 Asfora Nov 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514255 Ferree Feb 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6554833 Levy Apr 2003 B2
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7524324 Winslow et al. Apr 2009 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7658752 Labrom et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7771456 Hartmann et al. Aug 2010 B2
7901430 Matsuura et al. Mar 2011 B2
20010016743 Zucherman et al. Aug 2001 A1
20020029039 Zucherman et al. Mar 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20030032959 Yeh Feb 2003 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030216736 Robinson et al. Nov 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040106995 Le Couedic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050033434 Berry Feb 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050055031 Lim Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050209603 Zucherman et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Feree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015099 Cannon et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060149278 Abdou Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235386 Anderson Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241610 Lim et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241614 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080009866 Alamin et al. Jan 2008 A1
20080015693 Le Couedic Jan 2008 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090018658 Garcia Jan 2009 A1
20090062915 Kohm et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090270918 Attia et al. Oct 2009 A1
20100121379 Edmond May 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
Foreign Referenced Citations (67)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2 775 183 Feb 1998 FR
2775183 Aug 1999 FR
2 799 640 Oct 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
780652 Aug 1957 GB
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003-079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
WO 0271960 Mar 2002 WO
WO 03057055 Jul 2003 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
2004084743 Oct 2004 WO
2004084768 Oct 2004 WO
WO 2004084743 Oct 2004 WO
2004110300 Dec 2004 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
2005037150 Apr 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
2007052975 May 2007 WO
2009083276 Jul 2009 WO
2009083583 Jul 2009 WO
2009098536 Aug 2009 WO
Related Publications (1)
Number Date Country
20060241614 A1 Oct 2006 US