Implants can be positioned between adjacent spinous processes to provide resistance to vertebral movement as a result of extension of the spinal column. These implants can provide a shock absorber or bumper that dynamically limits spinal extension. The implants can be secured to the adjacent spinous processes with looped cables or straps that extend completely about the spinous processes and implant to maintain positioning of the implant between the spinous processes while also limiting spinal flexion. However, these looped cables or straps can cut into the bone along the superior or inferior surfaces of the respective spinous process when subjected to sufficient forces. Furthermore, the looped cables or straps can be exposed to the spinal foramen at the location between the spinous processes, providing a potential for entry or impingement into the spinal foramen.
There is provided a spinal implant assembly including a spacer member positionable between adjacent spinous processes with ends contacting respective ones of the spinous processes to limit extension of a spinal motion segment and engaging members coupled to the spinal motion segment to limit flexion. At least one of the engaging members is structured to contact a surface of a lamina opposite the spinous process surface in contact with the end of the spacer member.
According to one aspect, a spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another upon extension of the spinal motion segment. An upper engaging member and a lower engaging member each extend from the spacer member and are engageable with the spinal motion segment to limit flexion of the spinal motion segment. At least one of the upper and lower engaging members are structured for positioning along a surface of a lamina adjacent a respective one of the upper and lower spinous processes. The lamina surface is opposite a surface of the respective spinous process in contact with the adjacent one of the first and second ends of the spacer member.
In another aspect, a spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another under extension of the spinal motion segment. An upper engaging member and a lower engaging member extend from respective ones of the first and second ends of the spacer member. The upper engaging member includes a hook end portion positionable along a superior surface of an upper lamina adjacent the upper spinous process and the lower engaging member including a hook end portion positionable along an inferior surface of the lower spinous process. The engaging members contact the respective lamina surfaces to limit flexion of the spinal motion segment.
In a further aspect, a method for stabilizing a spinal motion segment comprises: positioning a spacer member between adjacent upper and lower spinous processes of the spinal motion segment, the spacer member including an upper end contacting an inferior surface of the upper spinous process and a lower end contacting a superior surface of the lower spinous process; positioning an upper engaging member extending from the upper end of the spacer member in contact with a superior surface of an upper lamina adjacent the upper spinous process; and positioning a lower engaging member extending the lower end of the spacer member in contact with an inferiorly oriented surface adjacent the lower spinous process.
According to another aspect, as spinal implant assembly includes a spacer member extending between opposite first and second ends positionable between adjacent upper and lower spinous processes of a spinal motion segment. The first and second ends each include a pair of arms extending along opposite sides of the adjacent spinous process. The spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another upon extension of the spinal motion segment. The assembly further includes a first engaging member and a second engaging member each extending from the spacer member and engageable with the spinal motion segment to limit flexion of the spinal motion segment. The first engaging member is engaged with the spacer member along one of the arms at the first end and the second engaging member is engaged with the spacer member along one of the arms at the second end.
These and other aspects will be discussed further below.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Implants are positionable between adjacent spinous processes of a spinal motion segment to dynamically stabilize and limit spinal extension and flexion. The implant includes a spacer member received between the spinous processes that is compressible to allow extension motion of the motion segment while maintaining a distraction force between the spinous processes. The implant further includes engaging members extending from each of the upper and lower ends of the spacer member. The engaging members engage the spinal motion segment to limit flexion. At least one of the engaging members is structured to engage a surface of the lamina adjacent the respective spinous process. The lamina provides a stable support surface suited to resisting loads applied thereto by the implant in resisting flexion of the motion segment. Engagement of the lamina with the engaging member also reduces torsional loading on the posterior vertebral elements.
In another embodiment, each of the upper and lower engaging members of the implant assembly is engageable along a surface of a lamina adjacent the respective spinous process. The engaging members engage surfaces of the lamina opposite the surfaces of the spinous process supported by the respective end of the spacer member. In a further embodiment, the engaging members include hooked ends, and the hooked end of the upper engaging member extends along the superior surface of the upper lamina and the hooked end of the lower engaging member extends along the inferior surface of the lower member. In another embodiment, the engaging members are movably coupled with the spacer member. In yet another embodiment, at least one of the upper and lower engaging members includes a resilient connecting portion allowing limited flexion of the motion segment while maintain engagement of the engaging member with the lamina.
In
A spinal implant assembly 30 is positioned in engagement with the posterior vertebral elements to provide dynamic spinal stabilization. Spinal implant assembly 30 includes a spacer member 32 extending between and contacting adjacent surfaces of spinous processes 12, 14 to limit movement of the spinous processes toward one another as a result of extension of the spinal motion segment. For example, spacer member 32 can include an upper end 34 in contact with inferior surface 22 of spinous process 12, and a lower end 36 in contact with superior surface 26 of spinous process 14. Spacer member 32 can include a body structured to resiliently compress in response to extension of the spinal motion segment, providing resistance to the extension forces and limiting movement of the spinous processes 12, 14 toward one another as spacer member 32 is compressed.
Implant assembly 30 includes an upper engaging member 50 and a lower engaging member 70 extending from spacer member 32. Upper engaging member 50 extends along and contacts a superior surface 20 of upper lamina 16, and lower engaging member 70 extends along and contacts an inferior surface 24 of lower lamina 18. Engaging member 50, 70 thus limit movement of the spinous processes 12, 14 away from one another as a result of flexion of the motion segment. In one embodiment, engaging members 50, 70 are movably coupled with spacer member 32 to facilitate manipulation of the engaging members 50, 70 and placement over the spinal lamina. For example, as shown in
In order to facilitate positioning of engaging members 50, 70 along the respective lamina 16, 18, engaging members 50, 70 can be offset toward the anterior side 38 of spacer member 32. Posterior side 40 of spacer member 32 is oriented posteriorly between spinous processes 12, 14. Since ends 34, 36 engage the adjacent surface of the respective spinous processes 12, 14, positioning engaging members 50, 70 along the anterior side 38 facilitates engagement with the respective laminae 16, 18, which are each located anteriorly of the respective adjacent spinous process 12, 14.
In one embodiment, engaging member 50 includes a flexible connecting portion 54 and a rigid hook end portion 52. The flexible connecting portion 54 facilitates manipulation of the engaging member 50 relative to spacer member 32 and into position for engagement with the lamina. In one embodiment, connecting portion 54 includes a spring-like structure that can be resiliently stretched or elongated to position the hook end portion along the superior lamina surface, and connecting portion 54 resiliently returns toward its pre-stretched state to bias hook end portion 52 into engagement with the superior surface of lamina 16. Engaging member 70 can be configured the same as engaging member 50 for engaging the inferior surface of lower lamina 18. In another embodiment, one of the engaging members 50, 70 includes a spring-like connecting portion that can be elongated while the other does not. In still another form, each of the engaging members 50, 70 are rigid.
Connecting portion 54 can be coupled to spacer member 32 in any suitable manner. In one embodiment, connecting portion 54 is movably coupled to spacer member 32. Connecting portion 54 can be integrally formed with spacer member 32, or can be attached by a fastener, suture, anchor, cable, link, over-molding or other suitable connection. Spacer member 32 can be provided with ears, eyelets, recesses or other suitable structure to facilitate engagement of engaging member 50 to spacer member 32. Connecting portion 74 can be similarly configured.
Referring now to
Implant assembly 130 includes an upper engaging member 150 and a lower engaging member 170 for engaging upper lamina 16 and lower lamina 18 in a manner similar to or the same as discussed above with respect to implant assembly 30. Engaging member 150 includes a hook end portion 152 and a connecting portion 154 extending to a location along one of the upper arms 42. Similarly, engaging member 170 includes a hook end portion 172 and a connecting portion 174 extending to a location along one of the lower arms 44. The end 156 of engaging arm 150 is located along arm 42 so that in its implanted position engaging member 150 is not located along the foramen extending along the spinal motion segment. For example, the upper end of arm 42 can be spaced a distance 184 from an anatomical opening to the foramen, while the end 156 of engaging member 150 is spaced a distance 182 from the upper end of arm 42, spacing it above or cephaladly from the opening between vertebrae to the spinal foramen. End 176 of arm 170 can be similarly situated relative to one of the lower arms 44. Other embodiments contemplate arrangements where one or more of the engaging members and connecting member extend along and are exposed to the foramen.
A connecting member 180 extends through spacer member 32, and can be isolated from the foramen by the body of spacer member 32 surrounding connecting member 180. The ends of connecting member 180 are coupled to respective ones of the ends 156, 176 of engaging members 150, 170 to secure engaging members 150, 170 to spacer member 32 while allowing pivoting movement of engaging members 150, 170 relative to spacer member 32.
Referring now to
In the embodiments in
In
Connecting member 280 extends from the body of spacer member 32 so that its connection with respective upper and lower engaging members 250, 270 is spaced from spacer member 32. Connecting member 280 flexibly extends between the respective engaging members 250, 270 to allow movement of engaging member 250, 270. Connecting member 280 can also be stretchable but resilient to provide a spring-like coupling arrangement to assist in maintaining the hook end portions of engaging members 250, 270 in contact with the respective lamina surfaces. Furthermore, hook end portions 250, 270 each include a contact surface 251, 271 with surface features to enhance engagement with the lamina. Such surface features can include spikes, teeth, roughenings, knurlings, surface treatments, etchings, fasteners, or other interruption to enhance engagement and resist movement of the engaging member relative to the lamina surface. Surface features may also be provided with the other embodiment engaging members.
In the implant assembly embodiments utilizing a connecting member, the connecting member extends through the body of spacer member 32 so that it is not exposed to the anatomy outside and adjacent spacer member 32 when implanted. This arrangement avoids exposure of the connecting member to the spinal foramen and neural elements, for example. The connection of the connecting member to the engaging members at locations along the respective arms 42, 44, also avoids exposure to the foramen. The connecting member can be positioned through one or more passages formed in the spacer member, or the spacer member can be over-molded about the connecting member. Various forms for the connecting members are contemplated, including cables, wires, sutures, cords, bands, belts, rigid links or rods, and flexible links or rods, for example.
With respect to the various embodiments described herein, the engaging members can be joined or fixed to the spacer member using various devices and/or techniques, or can be integrally formed with or form an extension of the spacer member. The spacer member can be joined or attached to the engaging member by, for example, sewing the engaging member to the spacer member, thermal welding or bonding, adhesive bonding, three dimensional weaving or braiding, screws, staples, pins, tacks or rivet fixation. Furthermore, the engaging member can be secured to the spacer member either before or after the spacing member is placed between the spinous processes.
The spacer member can be fabricated from components that are flexible or exhibit at least some flexibility. Examples of such components include woven fabric tubing, woven and non-woven mesh, or braided or woven structures, sutures, tethers, cords, planar members, bands, wires, cables, or any other component capable of extending between and supporting the adjacent spinous processes. Additionally, the spacer member may be resilient and/or elastic so it can assume various shapes during and after insertion and attachment.
The spacer member can be made from any biocompatible material, material of synthetic or natural origin, and material of a resorbable or non-resorbable nature. Suitable examples of spacer member material include autograft, allograft or xenograft; tissue materials including soft tissues, connective tissues, demineralized bone matrix and combinations thereof; resorbable materials including polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, collagen, albumin, fibrinogen and combinations thereof; and non-resorbable materials including polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluorethylene, poly-paraphenylene terephthalamide, polyetheretherketone, cellulose, and combinations thereof.
The engaging members described herein can be made from any one or combinations of biocompatible material, including synthetic or natural autograft, allograft or xenograft tissues, and can be resorbable or non-resorbable nature. Examples of tissue materials include hard tissues, connective tissues, demineralized bone matrix and combinations thereof. Further examples of resorbable materials are polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, and combinations thereof. Further examples of non-resorbable materials are carbon-reinforced polymer composites, shape-memory alloys, titanium, titanium alloys, cobalt chrome alloys, stainless steel, and combinations thereof.
In one embodiment, the hook end portion is rigid and made from a metal material, polymer material, or other material exhibiting rigid properties, and the connecting portion is flexible to facilitate positioning of the engaging member along the spinal lamina. In a further embodiment, the connecting portion is resilient and includes a spring or spring-like material that allows stretching for placement of the hook end portion along the lamina and resiliently returns to maintain the hook end portion in contact with the corresponding lamina surface.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. All changes and modifications that come within the spirit of the invention are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
278097 | Collins | May 1883 | A |
624969 | Peterson | May 1899 | A |
1153797 | Kegreisz | Sep 1915 | A |
1516347 | Pataky | Nov 1924 | A |
1706431 | Whitliff | Mar 1929 | A |
1870942 | Beatty | Aug 1932 | A |
2077804 | Morrison | Apr 1937 | A |
2299308 | Creighton | Oct 1942 | A |
2485531 | Dzus et al. | Oct 1949 | A |
2502902 | Tofflemire | Apr 1950 | A |
2607370 | Anderson | Aug 1952 | A |
2677369 | Knowles | May 1954 | A |
2685877 | Dobelle | Aug 1954 | A |
2774350 | Cleveland, Jr. | Dec 1956 | A |
3065659 | Eriksson et al. | Nov 1962 | A |
3108595 | Overment | Oct 1963 | A |
3123077 | Alcamo | Mar 1964 | A |
3397699 | Kohl | Aug 1968 | A |
3426364 | Lumb | Feb 1969 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3654668 | Appleton | Apr 1972 | A |
3678542 | Prete, Jr. | Jul 1972 | A |
3693616 | Roaf et al. | Sep 1972 | A |
3779239 | Fischer et al. | Dec 1973 | A |
4003376 | McKay et al. | Jan 1977 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4047523 | Hall | Sep 1977 | A |
4237875 | Termanini | Dec 1980 | A |
4257409 | Bacal et al. | Mar 1981 | A |
4274324 | Giannuzzi | Jun 1981 | A |
4289123 | Dunn | Sep 1981 | A |
4327736 | Inoue | May 1982 | A |
4401112 | Rezaian | Aug 1983 | A |
4422451 | Kalamchi | Dec 1983 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4499636 | Tanaka | Feb 1985 | A |
4519100 | Wills et al. | May 1985 | A |
4553273 | Wu | Nov 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4570618 | Wu | Feb 1986 | A |
4573454 | Hoffman | Mar 1986 | A |
4592341 | Omagari et al. | Jun 1986 | A |
4599086 | Doty | Jul 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4611582 | Duff | Sep 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4643174 | Horiuchi | Feb 1987 | A |
4643178 | Nastari et al. | Feb 1987 | A |
4646998 | Pate | Mar 1987 | A |
4657550 | Daher | Apr 1987 | A |
4662808 | Camilleri | May 1987 | A |
4686970 | Dove et al. | Aug 1987 | A |
4704057 | McSherry | Nov 1987 | A |
4721103 | Freedland | Jan 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4779816 | Varlet | Oct 1988 | A |
4787378 | Sodhi | Nov 1988 | A |
4822226 | Kennedy | Apr 1989 | A |
4827918 | Olerud | May 1989 | A |
4834600 | Lemke | May 1989 | A |
4841959 | Ransford | Jun 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4886405 | Blomberg | Dec 1989 | A |
4892545 | Day et al. | Jan 1990 | A |
4913134 | Luque | Apr 1990 | A |
4913144 | Del Medico | Apr 1990 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4969887 | Sodhi | Nov 1990 | A |
4998936 | Mehdian | Mar 1991 | A |
5000166 | Karpf | Mar 1991 | A |
5010879 | Moriya et al. | Apr 1991 | A |
5011484 | Breard | Apr 1991 | A |
5030220 | Howland | Jul 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5098433 | Freedland | Mar 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5201734 | Cozad et al. | Apr 1993 | A |
5267999 | Olerud | Dec 1993 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5312405 | Korotko et al. | May 1994 | A |
5316422 | Coffman | May 1994 | A |
5356412 | Golds et al. | Oct 1994 | A |
5356417 | Golds | Oct 1994 | A |
5356423 | Tihon et al. | Oct 1994 | A |
5360430 | Lin | Nov 1994 | A |
5366455 | Dove et al. | Nov 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5395370 | Muller et al. | Mar 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5403316 | Ashman | Apr 1995 | A |
5415661 | Holmes | May 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5437674 | Worcel et al. | Aug 1995 | A |
5439463 | Lin | Aug 1995 | A |
5454812 | Lin | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5458641 | Ramirez Jimenez | Oct 1995 | A |
5480442 | Bertagnoli | Jan 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5518498 | Lindenberg et al. | May 1996 | A |
5527312 | Ray | Jun 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5562662 | Brumfield et al. | Oct 1996 | A |
5562735 | Margulies | Oct 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5575819 | Amis | Nov 1996 | A |
5609592 | Brumfield et al. | Mar 1997 | A |
5609634 | Voydeville | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5630816 | Kambin | May 1997 | A |
5645599 | Samani | Jul 1997 | A |
5653762 | Pisharodi | Aug 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5658335 | Allen | Aug 1997 | A |
5665096 | Yoon | Sep 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5685826 | Bonutti | Nov 1997 | A |
5690649 | Li | Nov 1997 | A |
5693100 | Pisharodi | Dec 1997 | A |
5702395 | Hopf | Dec 1997 | A |
5702452 | Argenson et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5707390 | Bonutti | Jan 1998 | A |
5716416 | Lin | Feb 1998 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5725341 | Hofmeister | Mar 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5746762 | Bass | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5797916 | McDowell | Aug 1998 | A |
5800547 | Schafer et al. | Sep 1998 | A |
5810815 | Morales | Sep 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5849004 | Bramlet | Dec 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5885290 | Guerrero et al. | Mar 1999 | A |
5888196 | Bonutti | Mar 1999 | A |
5941881 | Barnes | Aug 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
5980523 | Jackson | Nov 1999 | A |
6022376 | Assell et al. | Feb 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6074390 | Zucherman et al. | Jun 2000 | A |
6090043 | Austin et al. | Jul 2000 | A |
6126689 | Brett | Oct 2000 | A |
6126691 | Kasra et al. | Oct 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6132464 | Martin | Oct 2000 | A |
6190413 | Sutcliffe | Feb 2001 | B1 |
6190414 | Young | Feb 2001 | B1 |
6214037 | Mitchell et al. | Apr 2001 | B1 |
6214050 | Huene | Apr 2001 | B1 |
6245107 | Ferree | Jun 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6312431 | Asfora | Nov 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6352537 | Strnad | Mar 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6371987 | Weiland et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402751 | Hoeck et al. | Jun 2002 | B1 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6432130 | Hanson | Aug 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6447513 | Griggs | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6500178 | Zucherman et al. | Dec 2002 | B2 |
6511508 | Shahinpoor et al. | Jan 2003 | B1 |
6514255 | Ferree | Feb 2003 | B1 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6520991 | Huene | Feb 2003 | B2 |
6554833 | Levy | Apr 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6592585 | Lee et al. | Jul 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6652527 | Zucherman et al. | Nov 2003 | B2 |
6669729 | Chin | Dec 2003 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6699246 | Zucherman et al. | Mar 2004 | B2 |
6709435 | Lin | Mar 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6730126 | Boehm, Jr. et al. | May 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6736818 | Perren et al. | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
6758863 | Estes et al. | Jul 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6783530 | Levy | Aug 2004 | B1 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6902580 | Fallin et al. | Jun 2005 | B2 |
6905512 | Paes et al. | Jun 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6981975 | Michelson | Jan 2006 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7081120 | Li et al. | Jul 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7087083 | Pasquet et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7097654 | Freedland | Aug 2006 | B1 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7238204 | Le Couedic et al. | Jul 2007 | B2 |
7306628 | Zucherman et al. | Dec 2007 | B2 |
7335203 | Winslow et al. | Feb 2008 | B2 |
7377942 | Berry | May 2008 | B2 |
7431735 | Liu et al. | Oct 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445637 | Taylor | Nov 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7524324 | Winslow et al. | Apr 2009 | B2 |
7582106 | Teitelbaum et al. | Sep 2009 | B2 |
7604652 | Arnin et al. | Oct 2009 | B2 |
7611316 | Panasik et al. | Nov 2009 | B2 |
7621950 | Globerman et al. | Nov 2009 | B1 |
7658752 | Labrom et al. | Feb 2010 | B2 |
7749252 | Zucherman et al. | Jul 2010 | B2 |
7771456 | Hartmann et al. | Aug 2010 | B2 |
7901430 | Matsuura et al. | Mar 2011 | B2 |
20010016743 | Zucherman et al. | Aug 2001 | A1 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20030032959 | Yeh | Feb 2003 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030045940 | Eberlein et al. | Mar 2003 | A1 |
20030065330 | Zucherman et al. | Apr 2003 | A1 |
20030153915 | Nekozuka et al. | Aug 2003 | A1 |
20030216736 | Robinson et al. | Nov 2003 | A1 |
20040010312 | Enayati | Jan 2004 | A1 |
20040010316 | William et al. | Jan 2004 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040097931 | Mitchell | May 2004 | A1 |
20040106995 | Le Couedic et al. | Jun 2004 | A1 |
20040117017 | Pasquet et al. | Jun 2004 | A1 |
20040133204 | Davies | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040181282 | Zucherman et al. | Sep 2004 | A1 |
20040199255 | Mathieu et al. | Oct 2004 | A1 |
20040260397 | Lambrecht et al. | Dec 2004 | A1 |
20050010293 | Zucherman et al. | Jan 2005 | A1 |
20050033434 | Berry | Feb 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050055031 | Lim | Mar 2005 | A1 |
20050085814 | Sherman et al. | Apr 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050203512 | Hawkins et al. | Sep 2005 | A1 |
20050203519 | Harms et al. | Sep 2005 | A1 |
20050203624 | Serhan et al. | Sep 2005 | A1 |
20050209603 | Zucherman et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050245937 | Winslow | Nov 2005 | A1 |
20050261768 | Trieu | Nov 2005 | A1 |
20050267579 | Reiley et al. | Dec 2005 | A1 |
20050273166 | Sweeney | Dec 2005 | A1 |
20050288672 | Feree | Dec 2005 | A1 |
20060004447 | Mastrorio et al. | Jan 2006 | A1 |
20060004455 | Leonard et al. | Jan 2006 | A1 |
20060015099 | Cannon et al. | Jan 2006 | A1 |
20060015181 | Elberg | Jan 2006 | A1 |
20060064165 | Zucherman et al. | Mar 2006 | A1 |
20060084983 | Kim | Apr 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060084987 | Kim | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060085069 | Kim | Apr 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060089654 | Lins et al. | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060095136 | McLuen | May 2006 | A1 |
20060106381 | Ferree et al. | May 2006 | A1 |
20060106397 | Lins | May 2006 | A1 |
20060111728 | Abdou | May 2006 | A1 |
20060116690 | Pagano | Jun 2006 | A1 |
20060122620 | Kim | Jun 2006 | A1 |
20060129239 | Kwak | Jun 2006 | A1 |
20060136060 | Taylor | Jun 2006 | A1 |
20060149242 | Kraus et al. | Jul 2006 | A1 |
20060149278 | Abdou | Jul 2006 | A1 |
20060182515 | Panasik et al. | Aug 2006 | A1 |
20060184247 | Edidin et al. | Aug 2006 | A1 |
20060184248 | Edidin et al. | Aug 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217726 | Maxy et al. | Sep 2006 | A1 |
20060224159 | Anderson | Oct 2006 | A1 |
20060224241 | Butler et al. | Oct 2006 | A1 |
20060235386 | Anderson | Oct 2006 | A1 |
20060235387 | Peterman | Oct 2006 | A1 |
20060235532 | Meunier et al. | Oct 2006 | A1 |
20060241601 | Trautwein et al. | Oct 2006 | A1 |
20060241610 | Lim et al. | Oct 2006 | A1 |
20060241613 | Bruneau et al. | Oct 2006 | A1 |
20060241614 | Bruneau et al. | Oct 2006 | A1 |
20060241643 | Lim et al. | Oct 2006 | A1 |
20060241757 | Anderson | Oct 2006 | A1 |
20060247623 | Anderson et al. | Nov 2006 | A1 |
20060247640 | Blackwell et al. | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060271044 | Petrini et al. | Nov 2006 | A1 |
20060271049 | Zucherman et al. | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060282075 | Labrom et al. | Dec 2006 | A1 |
20060282079 | Labrom et al. | Dec 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070005064 | Anderson et al. | Jan 2007 | A1 |
20070010813 | Zucherman et al. | Jan 2007 | A1 |
20070032790 | Aschmann et al. | Feb 2007 | A1 |
20070043362 | Malandain et al. | Feb 2007 | A1 |
20070043363 | Malandain et al. | Feb 2007 | A1 |
20070073289 | Kwak et al. | Mar 2007 | A1 |
20070100340 | Lange et al. | May 2007 | A1 |
20070123861 | Dewey et al. | May 2007 | A1 |
20070142915 | Altarac et al. | Jun 2007 | A1 |
20070151116 | Malandain | Jul 2007 | A1 |
20070162000 | Perkins | Jul 2007 | A1 |
20070167945 | Lange et al. | Jul 2007 | A1 |
20070173822 | Bruneau et al. | Jul 2007 | A1 |
20070173823 | Dewey et al. | Jul 2007 | A1 |
20070191833 | Bruneau et al. | Aug 2007 | A1 |
20070191834 | Bruneau et al. | Aug 2007 | A1 |
20070191837 | Trieu | Aug 2007 | A1 |
20070191838 | Bruneau et al. | Aug 2007 | A1 |
20070198091 | Boyer et al. | Aug 2007 | A1 |
20070225807 | Phan et al. | Sep 2007 | A1 |
20070233068 | Bruneau et al. | Oct 2007 | A1 |
20070233074 | Anderson et al. | Oct 2007 | A1 |
20070233076 | Trieu | Oct 2007 | A1 |
20070233081 | Pasquet et al. | Oct 2007 | A1 |
20070233089 | DiPoto et al. | Oct 2007 | A1 |
20070250060 | Anderson et al. | Oct 2007 | A1 |
20070270823 | Trieu et al. | Nov 2007 | A1 |
20070270824 | Lim et al. | Nov 2007 | A1 |
20070270825 | Carls et al. | Nov 2007 | A1 |
20070270826 | Trieu et al. | Nov 2007 | A1 |
20070270827 | Lim et al. | Nov 2007 | A1 |
20070270828 | Bruneau et al. | Nov 2007 | A1 |
20070270829 | Carls et al. | Nov 2007 | A1 |
20070270834 | Bruneau et al. | Nov 2007 | A1 |
20070270874 | Anderson | Nov 2007 | A1 |
20070272259 | Allard et al. | Nov 2007 | A1 |
20070276368 | Trieu et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070276496 | Lange et al. | Nov 2007 | A1 |
20070276497 | Anderson | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080009866 | Alamin et al. | Jan 2008 | A1 |
20080015693 | Le Couedic | Jan 2008 | A1 |
20080021457 | Anderson et al. | Jan 2008 | A1 |
20080021460 | Bruneau et al. | Jan 2008 | A1 |
20080058934 | Malandain et al. | Mar 2008 | A1 |
20080097446 | Reiley et al. | Apr 2008 | A1 |
20080114357 | Allard et al. | May 2008 | A1 |
20080114358 | Anderson et al. | May 2008 | A1 |
20080114456 | Dewey et al. | May 2008 | A1 |
20080147190 | Dewey et al. | Jun 2008 | A1 |
20080161818 | Kloss et al. | Jul 2008 | A1 |
20080167685 | Allard et al. | Jul 2008 | A1 |
20080183209 | Robinson et al. | Jul 2008 | A1 |
20080183211 | Lamborne et al. | Jul 2008 | A1 |
20080183218 | Mueller et al. | Jul 2008 | A1 |
20080195152 | Altarac et al. | Aug 2008 | A1 |
20080215094 | Taylor | Sep 2008 | A1 |
20080221685 | Altarac et al. | Sep 2008 | A9 |
20080234824 | Youssef et al. | Sep 2008 | A1 |
20080262617 | Froehlich et al. | Oct 2008 | A1 |
20080281360 | Vittur et al. | Nov 2008 | A1 |
20080281361 | Vittur et al. | Nov 2008 | A1 |
20090018658 | Garcia | Jan 2009 | A1 |
20090062915 | Kohm et al. | Mar 2009 | A1 |
20090105766 | Thompson et al. | Apr 2009 | A1 |
20090105773 | Lange et al. | Apr 2009 | A1 |
20090234389 | Chuang et al. | Sep 2009 | A1 |
20090240283 | Carls et al. | Sep 2009 | A1 |
20090270918 | Attia et al. | Oct 2009 | A1 |
20100121379 | Edmond | May 2010 | A1 |
20100204732 | Aschmann et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2821678 | Nov 1979 | DE |
3922044 | Feb 1991 | DE |
4012622 | Jul 1991 | DE |
0322334 | Feb 1992 | EP |
0767636 | Jan 1999 | EP |
1004276 | May 2000 | EP |
1011464 | Jun 2000 | EP |
1138268 | Oct 2001 | EP |
1148850 | Oct 2001 | EP |
1148851 | Oct 2001 | EP |
1302169 | Apr 2003 | EP |
1330987 | Jul 2003 | EP |
1552797 | Jul 2005 | EP |
1854433 | Nov 2007 | EP |
1905392 | Apr 2008 | EP |
1982664 | Oct 2008 | EP |
2623085 | May 1989 | FR |
2625097 | Jun 1989 | FR |
2681525 | Mar 1993 | FR |
2700941 | Aug 1994 | FR |
2703239 | Oct 1994 | FR |
2707864 | Jan 1995 | FR |
2717675 | Sep 1995 | FR |
2722087 | Jan 1996 | FR |
2722088 | Jan 1996 | FR |
2724554 | Mar 1996 | FR |
2725892 | Apr 1996 | FR |
2730156 | Aug 1996 | FR |
2731643 | Sep 1996 | FR |
2 775 183 | Feb 1998 | FR |
2775183 | Aug 1999 | FR |
2 799 640 | Oct 1999 | FR |
2799948 | Apr 2001 | FR |
2816197 | May 2002 | FR |
780652 | Aug 1957 | GB |
02-224660 | Sep 1990 | JP |
09-075381 | Mar 1997 | JP |
2003-079649 | Mar 2003 | JP |
988281 | Jan 1983 | SU |
1484348 | Jun 1989 | SU |
WO 9426192 | Nov 1994 | WO |
WO 9426195 | Nov 1994 | WO |
9718769 | May 1997 | WO |
WO 9820939 | May 1998 | WO |
WO 9926562 | Jun 1999 | WO |
WO 0044319 | Aug 2000 | WO |
WO 0154598 | Aug 2001 | WO |
WO 0271960 | Mar 2002 | WO |
WO 03057055 | Jul 2003 | WO |
WO 2004047689 | Jun 2004 | WO |
WO 2004047691 | Jun 2004 | WO |
2004084743 | Oct 2004 | WO |
2004084768 | Oct 2004 | WO |
WO 2004084743 | Oct 2004 | WO |
2004110300 | Dec 2004 | WO |
WO 2005009300 | Feb 2005 | WO |
WO 2005011507 | Feb 2005 | WO |
2005037150 | Apr 2005 | WO |
WO 2005044118 | May 2005 | WO |
WO 2005048856 | Jun 2005 | WO |
WO 2005110258 | Nov 2005 | WO |
2006064356 | Jun 2006 | WO |
WO 2007034516 | Mar 2007 | WO |
2007052975 | May 2007 | WO |
2009083276 | Jul 2009 | WO |
2009083583 | Jul 2009 | WO |
2009098536 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20060241614 A1 | Oct 2006 | US |