Joint disease, defect, and injury are leading causes of pain and disability in the adult population. The morbidity associated with joint disease, defect, and injury and their spectrum of associated disorders are responsible for significant health care, economic and social costs. Current treatments for repairing or ameliorating a joint disease, defect, or injury, for example an osteochondral injury in which articular cartilage and underlying bone are damaged, can be expensive, inefficacious, painful, or lengthy. Alternative treatments are, therefore, needed.
In view of these and related unmet needs, the present teachings disclose implants which can be used in the treatment, repair and/or partial or full replacement of a chondral or osteochondral defect, such as a chondral or osteochondral disease, defect, injury or lesion. The present teachings also provide methods of forming the implants, as well as methods of treating a chondral or osteochondral defect or injury in a patient in need of treatment, using implants as disclosed herein.
In various embodiments, an implant of the present teachings comprises cartilage and a subchondral base comprising trabecular metal, which can be a subchondral base comprising at least one trabecular metal component. In certain alternative embodiments, an implant comprises chondrocytes and a subchondral base comprising trabecular metal, which can be a subchondral base comprising at least one trabecular metal component. A trabecular metal used in an implant comprises at least one metal, which can be, in various aspects, tantalum, niobium, stainless steel, a chromium-cobalt alloy or titanium. In some aspects, a chromium-cobalt alloy can be a chromium-cobalt molybdenum alloy. Furthermore, a trabecular metal comprises a plurality of pores. A plurality of pores can have, in some aspects, a median diameter of from about 3 microns to about 800 microns. In addition, in certain aspects a subchondral base can further comprise at least one porous surface layer which comprises a plurality of pores of median diameter from about 3 microns to about 800 microns. In these aspects, the trabecular metal can have a “graded” porosity, i.e., the median diameter of the plurality of pores of a surface layer can be different from that of the plurality of pores comprising the core of the trabecular metal. Accordingly, in various configurations, a porous surface layer can comprise a plurality of pores of median pore diameter of from about 100 microns to about 800 microns, or, in alternative configurations, a porous surface layer can comprise a plurality of pores of median pore diameter of from about 3 microns to about 20 microns.
In some configurations of an implant, a subchondral base can comprises at least two surfaces. In these configurations, one surface can comprise trabecular metal having a plurality of pores, wherein the pores have a median pore diameter of from about 100 microns to about 800 microns, while a second surface can be a cartilage-adherent surface. In some aspects of these configurations, a cartilage-adherent surface (i.e., a surface adhesive to cartilage and/or chondrocytes) can comprise a plurality of pores having a median pore diameter of from about 3 microns to about 20 microns. Alternatively, a cartilage-adherent surface can comprise a cartilage adhesive, or a cartilage-adherent surface can comprise both a plurality of pores having a median pore diameter of from about 3 microns to about 20 microns as well as a cartilage adhesive. In various aspects of these configurations, a cartilage adhesive can comprise tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, a chemically cross-linked collagen, fibrin, albumin, gelatin, elastin, silk, demineralized bone matrix, polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polypropylene fumarate or a combination thereof (Jurgensen et al., J. Bone and Joint Surg. 79A: 185-193, 1997; U.S. Pat. No. 6,893,466 to Trieu; U.S. Pat. No. 6,835,277 to Goldberg et al.) or a hydrogel. Furthermore, a cartilage adhesive can also be adhesive towards chondrocytes. In various aspects, a vertebrate-derived component of a cartilage adhesive, such as tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, fibrin, albumin, gelatin, or elastin, or demineralized bone matrix, can be autologous, allogeneic, or xenogeneic to a mammalian recipient of an implant, such as a human patient in need of treatment. Furthermore, a protein or polypeptide component of a cartilage adhesive such as tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, fibrin, albumin, gelatin, or elastin, can be obtained from a naturally-occurring source such as an animal or human donor, or can be produced using molecular biological methods well known to skilled artisans, such as expression of a gene or cDNA encoding the protein in transformed or transfected cells (see, e.g., Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001).
In some configurations, a region of a subchondral base comprising pores having a median pore diameter of about 100 microns to about 800 microns can provide a surface which can promote bone attachment and ingrowth, while a region comprising a cartilage-adherent surface can provide a surface which can promote chondrocyte and/or cartilage attachment and growth. In various configurations, a cartilage-adherent surface can be a region of a subchondral base comprising a plurality of pores having a median pore diameter of about 3 microns to about 20 microns, a cartilage adhesive, or a combination of a plurality of pores and a cartilage adhesive, and can comprise trabecular metal or a different material, such as a polymer. In certain configurations, an implant can further comprise a non-trabecular metal material which provides a surface for chondrocyte or cartilage attachment, such as, in non-limiting example, a chondrocyte-adherent ceramic or plastic. In addition, in some configurations, a trabecular metal component of an implant can have a geometry that promotes retention of chondrocytes, such as barbs, ridges or hooks.
In various aspects, the trabecular metal of an implant can comprise metal having a sintered, porous texture such as sintered, porous titanium or porous tantalum. Furthermore, the trabecular metal can be sintered and/or cancellous-structured. In addition, in some configurations, a porous surface layer can include a biocompatible porous metal sheet, such as a porous titanium sheet. In addition, in some configurations, a porous surface layer can include an absorbable biocompatible material such as polylactic/polyglycolic acid (PLA/PGA).
In various configurations of the present teachings, cartilage comprised by an implant can be juvenile cartilage, a cartilage formed in vitro such as neocartilage described in Adkisson, H. D. et al., Clin. Orthop. 391S: S280-S294, 2001; and U.S. Pat. Nos. 6,235,316 and 6,645,316 to Adkisson, minced cartilage, minced juvenile cartilage and/or devitalized cartilage. In various aspects, the cartilage can comprise chondrocytes. Chondrocytes comprising an implant can be, in various aspects, chondrocytes grown either in contact with a trabecular metal, separately from the trabecular metal, or in a combination of growth apart from the trabecular metal then in contact with the trabecular metal. The contact between the chondrocytes and the at least one trabecular metal can be established either in vivo or in vitro, and subsequent growth can occur in vivo, in vitro, or in a combination thereof. Chondrocytes in contact with trabecular metal can be, in some configurations, chondrocytes adherent to the trabecular metal. Chondrocytes used in various configurations of the implants, including chondrocytes comprised by cartilage, can be chondrocytes allogeneic to, autologous to, and/or xenogeneic to a mammalian recipient such as a human patient. A donor of the chondrocytes can be, in various configurations, a cadaver no older than about fourteen years of age at time of death. Accordingly, as used herein, the terms “juvenile chondrocytes” refers to chondrocytes obtained from a human donor less than about fourteen years of age at time of donation. Similarly, the term “juvenile cartilage” as used herein refers to cartilage formed from such chondrocytes. In some embodiments, chondrocytes comprising an implant can be chondrocytes differentiated from chondrocyte precursor cells such as mesenchymal stem cells, for example as described in U.S. Pat. No. 5,811,094 to Caplan et al.
In various aspects of the present teachings, an implant can comprise cartilage affixed to a subchondral base comprising trabecular metal. A subchondral base of these aspects can comprise a biocompatible metal sheet. A biocompatible metal sheet can be a biocompatible porous metal sheet or a biocompatible non-porous metal sheet An attachment between cartilage and a subchondral base of an implant can include, in non-limiting example, one or more sutures, one or more biocompatible adhesives, one or more biocompatible absorbable fasteners, a chemical cross-link, a polymer formed from subunits polymerized at a cartilage/trabecular metal juncture, and/or one or more laser welds. In these aspects, a biocompatible adhesive can include at least one biocompatible macromolecular adhesive such as a fibrin-based adhesive, a collagen-based adhesive or a combination thereof, and a biocompatible absorbable fastener can be, without limitation, a staple, a dart, a pin or a tack, and can comprise a biocompatible material such as, without limitation, polylactic/polyglycolic acid (PLA/PGA).
In various configurations, an implant of the present teachings can be substantially cylindrical in shape, or can be substantially a pyramidal wedge or substantially a frustoconical “mushroom” in shape (see, e.g., U.S. Pat. No. 6,743,232 to Overaker et al.) Alternatively, an implant can have a shape more closely approximating an anatomical shape, such as that of a joint or a bone/joint combination, such as a shape of a human condyle, a human hemi-condyle, a human acetabular cup or a human femoral head.
Embodiments of the present teachings also include methods of forming an implant comprising cartilage and a subchondral base comprising trabecular metal. Various configurations of these methods comprise growing a population of chondrocytes in vitro, and contacting the population of chondrocytes with a subchondral base comprising trabecular metal. In these embodiments, contacting a population of chondrocytes with a trabecular metal can include coupling or attaching the chondrocytes to the trabecular metal. In some aspects, growing a population of chondrocytes in vitro can comprise growing the chondrocytes in a matrix. In these aspects, the matrix can later be attached to a subchondral base comprising trabecular metal. In various aspects, the chondrocytes can be juvenile chondrocytes, and the trabecular metal can comprise a porous surface as described herein for an implant. In some configurations, chondrocytes can be grown in a scaffold-free environment. The chondrocyte population can also be grown in contact with a subchondral base comprising trabecular metal. In these methods, contact between the chondrocytes and the subchondral base can be initiated prior to chondrocyte growth, during chondrocyte growth, or after chondrocyte growth. The chondrocyte growth can occur in vivo or in vitro. Accordingly, the contacting between a trabecular metal and the chondrocytes can occur subsequent to the growing, and/or simultaneously with the growing. As a result, the juvenile chondrocytes can grow in contact with the trabecular metal, or without contacting the trabecular metal.
In some configurations, methods of forming an implant can comprise growing chondrocytes in the presence of a trabecular metal component such that the chondrocytes adhere to a surface of the component. In some alternative configurations, methods of forming an implant can comprise coupling a cartilage tissue component to a surface of a trabecular metal component.
In certain configurations, methods of forming an implant include attaching cartilage to a subchondral base. The attaching can comprise applying one or more sutures, a biocompatible adhesive, and/or an absorbable fastener to the cartilage and/or the subchondral base. A biocompatible adhesive can be, in non-limiting example, a macromolecule such as a fibrin, a collagen, or a combination thereof. An absorbable fastener can be, in non-limiting example, a staple, a dart or a tack. The attaching can be accomplished by methods well known to skilled artisans.
In some configurations, a method of these embodiments can include applying a biocompatible adhesive, such as a fibrin, to a subchondral base comprising trabecular metal, prior to contacting the base with a population of chondrocytes such as juvenile chondrocytes. In some alternative configurations, a method of these embodiments can include applying a biocompatible adhesive, such as a fibrin glue, to a population of chondrocytes prior to contacting the subchondral base with the chondrocytes. In these configurations, the fibrin can be fibrin autologous to a mammalian recipient of the implant, fibrin allogeneic to a mammalian recipient of the implant, fibrin xenogeneic to a mammalian recipient of the implant, synthetic fibrin, or a combination of two or more of these types of fibrin. Furthermore, trabecular metal comprised by a subchondral base can comprise a porous surface as described for implants herein. In addition, in some aspects, a method of these embodiments can further comprise applying to a surface of a subchondral base a biocompatible absorbable polymer, such as polylactic/polyglycolic acid (PLA/PGA). The surface can be, in some aspects, a porous surface of the subchondral base.
Methods of forming an implant comprising cartilage and a subchondral base can include, in various configurations, growing a population of juvenile chondrocytes in vitro in a scaffold-free environment, and contacting the population of juvenile chondrocytes with a trabecular metal subsequent to the growing.
Some embodiments of the present teachings include methods of treating joint disease, defect or injury in a patient in need thereof. These methods can include introducing, into a patient in need, an implant of the present teachings. Introduction of an implant can comprise insertion or attachment of the implant into bone tissue of a recipient. Accordingly, in some configurations, a method can comprise introducing an implant comprising both cartilage and a subchondral base comprising trabecular metal as described herein into a patient at a site of joint disease, defect or injury. In some alternative configurations, a method can comprise introducing a subchondral base comprising trabecular metal into a patient, and attaching to base a component comprising cartilage or chondrocytes, including juvenile chondrocytes. In certain configurations, the subchondral base can be configured to receive chondrocytes such as juvenile chondrocytes comprised by neocartilage. In some aspects of these configurations, the former component can further comprise a surface which promotes chondrocyte attachment, such as a porous surface having a plurality of pores of median diameter of about 3 microns to about 20 microns, a biocompatible macromolecule, or a combination thereof. In some configurations, the present teachings disclose methods comprising introducing into a patient a subchondral base comprising trabecular metal. In these configurations, the subchondral base can be configured for receiving chondrocytes. These methods further comprise adding, adjacent to subchondral base, chondrocytes such as juvenile chondrocytes which have been grown in vitro, thereby forming an implant of the present teachings. The chondrocytes in certain aspects can comprise juvenile chondrocytes grown in vitro but not organized into cartilage tissue, or can be juvenile chondrocytes comprised by neocartilage, and the subchondral base which is configured for receiving chondrocytes can comprise a porous surface region having a plurality of pores of median diameter of about 3 microns to about 20 microns, a biocompatible macromolecule, or a combination thereof. The subchondral base can further comprise a region having a plurality of pores of median diameter of about 100 microns to about 800 microns.
In some configurations of these embodiments, a method can further include introducing a non-trabecular metal positioning structure to a recipient patient. Such a positioning structure can aid in the positioning or physical stability of an implant in the patient. In various configurations, a positioning structure can comprise a biocompatible metal or a biocompatible polymer. In configurations of these embodiments, a trabecular metal portion of an implant can be configured to attach to the positioning structure, and/or the positioning structure can be configured to attach to the subchondral base. In certain aspects, the positioning structure can be configured for engaging the bone, and can be, in non-limiting example, a screw, a cylinder, a plat, a rod, or a washer. In addition, in various aspects, a positioning structure can also comprise trabecular metal, and/or can comprise a material other than trabecular metal, such as, in non-limiting example, a biocompatible polymer, or a metal that is non-trabecular.
In some configurations, an implant described herein can be used in the manufacture of a medicament for treatment of joint disease, repair, or injury.
Embodiments of the present teachings also encompass a kit comprising components of a disclosed implant. In these embodiments, a kit can include at least chondrocytes or cartilage, and a trabecular metal component of an implant. In some aspects of a kit, the chondrocytes or cartilage and the trabecular metal component can be packaged in separate containers, while in other aspects, a kit can comprise an implant comprising both cartilage or chondrocytes and a trabecular metal component of an implant. In some aspects, additional kit components can include culture medium for growing or maintaining chondrocytes or cartilage in vitro. In some configurations, a kit can further include instructions and/or reagents which can be used to assemble an implant, and/or tools and equipment which can aid in the assembly of an implant and/or installation of an implant into a recipient, such as, in non-limiting example, fasteners such as suturing thread, a staple, a dart, or a tack, such as a surgical grade staple, dart or tack,
The present teachings disclose implants which can be used in the treatment of joint disease, defect or injury, including chondral or osteochondral disease, as well as methods of forming the implants. In some alternative embodiments, the present teachings disclose methods of treating a patient in need of treatment with the implants.
In various configurations, an implant of the present teachings comprises a combination of cartilage and a subchondral base comprising trabecular metal. “Cartilage,” as used herein, encompasses articular cartilage, hyaline cartilage, neocartilage (Adkisson, H. D. et al., Clin. Orthop. 391S: S280-S294, 2001; and U.S. Pat. Nos. 6,235,316 and 6,645,316), devitalized cartilage, auricular cartilage, cartilage comprising genetically modified chondrocytes, cartilage from an autogenous source, cartilage from an allogenic source, cartilage from a xenogeneic source, juvenile cartilage, or a combination thereof. In some configurations, cartilage can also comprise chondrocytes differentiated from precursor cells such as mesenchymal stem cells. “Trabecular metal,” as used herein, encompasses biocompatible, porous metal compositions, such as a porous tantalum biomaterial. Descriptions of trabecular metal, as well as various methods of making trabecular metal of various pore sizes and using trabecular metal in applications such as prosthetic devices are described in references such as Bobyn et al., J. Biomed. Mater. Res. 16: 571-581, 1982; Bobyn et al., J. Bone Joint Surg. Br. 81-B: 907-14, 1999; Bobyn et al., J. Arthroplasty 14: 347-354, 1999; Black, Clinical Materials 16: 167-173 (1994); Hacking et al., J. Biomed. Mater. Res. 52: 631-638, 2000; U.S. Pat. No. 4,863,475 to Andersen et al.; U.S. Pat. No. 4,479,271 to Bolesky et al.; U.S. Pat. No. 4,863,474 to Brown et al.; U.S. Pat. Nos. 5,535,810 and 6,544,472 to Compton et al.; U.S. Pat. No. 5,219,363 to Crowninshield et al.; U.S. Pat. Nos. 5,236,457, 5,387,243 and 5,571,187 to Devanathan; U.S. Pat. Nos. 5,504,300, 5,672,284 and 5,723,011 to Devanathan et al.; U.S. Pat. No. 4,997,444 to Farling; U.S. Pat. No. 4,660,755 to Farling et al.; U.S. Pat. No. 6,740,186 to Hawkins et al.; U.S. Pat. Nos. 4,997,445 and 6,797,006 to Hodorek; U.S. Pat. No. 5,080,674 to Jacobs et al.; U.S. Pat. Nos. 5,734,959 and 5,926,685 to Krebs et al.; U.S. Pat. No. 4,566,138 to Lewis et al.; U.S. Pat. No. 6,417,320 to Otto et al.; U.S. Pat. No. 5,443,512 to Parr et al.; U.S. Pat. Nos. 6,685,987 and 6,395,327 to Shetty; U.S. Pat. Nos. 5,198,308, 5,323,954 and 5,443,510 to Shetty et al.; U.S. Pat. No. 5,496,375 to Sisk et al.; U.S. Pat. Nos. 6,336,930 and 6,447,514 to Stalcup et al.; U.S. Pat. No. 5,879,398 to Swarts et al.; U.S. Pat. No. 5,456,828 to Tersi et al.; U.S. Pat. No. 5,639,280 to Warner et al.; and U.S. Pat. Nos. 5,018,285 and 5,013,324 to Zolman et al.
In various configurations, an implant of the present teachings comprises a combination of chondrocytes and a subchondral base comprising trabecular metal. The chondrocytes can be, in some aspects, chondrocytes included in hyaline cartilage such as, without limitation, neocartilage. In other aspects, the chondrocytes can be chondrocytes with the potential to generate hyaline cartilage, but not organized into histologically recognizable cartilage. In some aspects of these configurations, a chondrocyte donor can be a cadaver. Hence, the chondrocytes can be cadaver chondrocytes. These chondrocytes can be grown in vitro using cell culture techniques known to skilled artisans, for example as described in U.S. patent application Ser. No. 10/956,971 of Milliman and Adkisson. As used herein, the term “cadaver chondrocytes” refers to viable chondrocytes originally comprised by a human cadaver, as well as clonal descendants of such chondrocytes, such as chondrocytes grown in vitro. Cadaver chondrocytes for use in the various aspects of the present teachings can be obtained from tissues comprising chondrocytes from a cadaver, such as cartilage tissue. Such tissues can be dissected from a cadaver using standard dissection methods well known to skilled artisans. The cartilage tissue utilized in the present teachings can comprise hyaline cartilage, or chondrocytes with the potential to generate hyaline cartilage, such as, for example, articular joint cartilage, tracheal cartilage, laryngeal cartilage, costal cartilage, epiphyseal plate cartilage, and combinations thereof. In various aspects, the cartilage tissue or chondrocytes can be knee joint cartilage or chondrocytes, hip joint cartilage or chondrocytes, or cartilage or chondrocytes from any other articular joint. Viable chondrocytes can be obtained from cartilaginous tissues in a donor cadaver any time after donor death of the donor, for example, for up to about two weeks after death of the donor. Accordingly, in some configurations, the time interval from the time of death of a donor (as determined, for example, by a physician or a coroner) to the time of dissection of cartilage tissue from the donor can be any time from immediately following a pronouncement of death, to about two weeks following death, such as, without limitation, about one hour, greater than 24 hours, about two days, about three days, about four days, about five days, about six days, about seven days, about eight days, about nine days, about ten days, about eleven days, about twelve days, about thirteen days, about fourteen days after death, or longer. In addition, a donor cadaver can be of any chronological age at time of death. For example, a donor cadaver can be, at time of death, about fourteen years old or younger. A donor cadaver need not be a familial member of a recipient, or be otherwise matched immunologically. Without being limited by theory, it is believed that chondrocytes are an “immunologically privileged” cell type, so that chondrocytes transplanted to an allogeneic recipient are not subject to rejection by the recipient's immune system.
In the present teachings, cartilage tissue can be removed from a cadaver using any surgical or dissecting techniques and tools known to skilled artisans. Following cartilage removal from a cadaver, the cartilage tissue can be minced, dissociated into single cells or small groups of cells, and/or placed into tissue or cell culture and expanded using standard techniques and apparatuses well known to skilled artisans. Such techniques and apparatuses are described in the references such as, for example, Feder, J. et al. in: Tissue Engineering in Musculoskeletal Clinical Practice. American Academy of Orthopaedic Surgeons, 2004; Adkisson, H. D. et al., Clin. Orthop. 391S:S280-S294, 2001; and U.S. Pat. Nos. 6,235,316 and 6,645,316 to Adkisson.
Cadaver chondrocytes used in the various embodiments of the present teachings are all cadaver chondrocytes which express type II collagen. In addition, in some aspects, cadaver chondrocytes can comprise chondrocytes expressing other molecular markers such as a high molecular weight sulfated proteoglycan, such as, for example, chondroitin sulfate (Kato, Y., and Gospodarowicz, D., J. Cell Biol. 100: 477-485. 1985). Presence of such markers can be determined using materials and methods well known to skilled artisans, such as, for example, antibody detection and histological staining.
In some configurations, cadaver cartilage tissue can be extracted from a cadaver. The cartilage tissue can then be dissociated into individual cells (or small clusters of cells), grown in vitro, and can then be combined with a subchondral base comprising trabecular metal, thereby forming an implant of the present teachings. Accordingly, in some aspects, the chondrocytes can be included in neocartilage. In vitro expansion of chondrocytes, and formation of neocartilage, can be accomplished using cell culture techniques and apparatuses well known to skilled artisans, such as culture methods for neocartilage described in U.S. Pat. Nos. 6,235,316 and 6,645,316 to Adkisson, and other general laboratory manuals on cell culture such as Sambrook, J. et al., Molecular Cloning: a Laboratory Manual (Third Edition), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; and Spector, D. L., et al., Culture and Biochemical Analysis of Cells, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1998.
In some configurations, a cell culture can include trabecular metal within a cell culture chamber. In these configurations, chondrocytes can grow in direct contact with a subchondral base of the present teachings, such as a subchondral base comprising trabecular metal as presented herein. Furthermore, the subchondral base can further comprise a cartilage-adherent surface. In various configurations, chondrocytes and/or cartilage can adhere to such a surface. In various aspects, chondrocytes adhered to such surfaces can proliferate and/or form cartilage such as neocartilage. Accordingly, as used herein, a “cartilage-adherent surface” is a surface of a biocompatible material to which cartilage can adhere. Similarly, as used herein, a “chondrocyte-adherent surface” is a surface of a biocompatible material to which chondrocytes can adhere. Non-limiting examples of cartilage- and chondrocyte adherent surfaces include a porous surface such as a trabecular metal surface comprising pores of median diameter from about 3 microns to about 20 microns, a plastic or ceramic surface comprising a cartilage adhesive or a chondrocyte adhesive, or a porous surface comprising pores of median diameter from about 3 microns to about 20 microns and a cartilage adhesive or chondrocyte adhesive. As used herein, the terms “cartilage adhesive” and “chondrocyte adhesive” refer to molecular species or mixtures of species which promote adhesion of cartilage or chondrocytes to a surface, by acting as a glue and/or by promoting adhesion-forming activity of cells. In various embodiments, a cartilage or chondrocyte adhesive can be used as a glue at the interface between cartilage or chondrocytes and a cartilage- or chondrocyte-adherent surface.
In certain configurations, cartilage tissue can be harvested from a donor such as a cadaver and placed as explants in a cell culture chamber including a growth medium as disclosed in the above-cited references. In some aspects, a cell culture chamber can further include a subchondral base (which can comprise trabecular metal) and a chondrocyte-adherent surface. In these aspects, chondrocytes can migrate out from the explant and populate the chondrocyte-adherent surface. A subchondral base populated with chondrocytes can be used directly as an implant in a recipient, or can be cultured under conditions which promote chondrocyte or cartilage maintenance or growth, or neocartilage formation as disclosed, for example, in U.S. Pat. Nos. 6,235,316 and 6,645,316 to Adkisson or U.S. Pat. No. 5,041,138 to Vacanti et al.
In certain alternative configurations, a cartilage explant can be affixed directly to a subchondral base and a cartilage-adhesive surface to form an implant, using methods and materials disclosed herein, such as, for example, sutures, adhesives, and fasteners.
In various aspects, chondrocytes adhered to a cartilage-adherent surface can grow and/or form cartilage tissue such as neocartilage. In certain alternative aspects, a surface can comprise a cartilage adhesive such as a fibrin adhesive as described herein. In yet other aspects, a surface can comprise a both a plurality of pores having a median diameter of about 3 microns to about 20 microns and a cartilage adhesive. The surface can comprise, in non-limiting example, trabecular metal, plastic such as cell culture plastic or an absorbable biocompatible material such as polylactic/polyglycolic acid (PLA/PGA). In addition, in various aspects, chondrocytes such as juvenile chondrocytes can be grown separately from a subchondral base.
In some embodiments of the present teachings, a method of treating a patient can comprise transferring an implant into a recipient patient. In other embodiments, a subchondral base component of an implant can be implanted into a recipient patient, for example by surgically attaching the subchondral base to a bone, followed by addition of chondrocytes and/or cartilage adjacent to the subchondral base. In some configurations, a method can further comprise attaching a positioning structure to a patient, then attaching an implant to the positioning structure. As used herein, the term “positioning structure” refers to a structure configured for supporting, positioning and/or maintaining the position of an implant of the present teachings or a portion thereof in a recipient such as a human patient. In non-limiting example, a positioning structure can be a screw or a cylinder which attaches to an aperture introduced into a patient's bone. A positioning structure of these configurations can comprise a biocompatible material such as, for example, a biocompatible polymer or a biocompatible metal.
In certain configurations, a positioning structure can be configured for engaging the bone. In these configurations, a positioning structure can be introduced to a bone of a subject. A subchondral base can then be attached to the positioning structure. Chondrocytes or cartilage, such as, in non-limiting example, devitalized cartilage or neocartilage, can then be attached to the subchondral base. Alternatively, in some configurations, a positioning structure can be introduced into a patient, for example by attaching to a bone an implant comprising both chondrocytes and/or cartilage and a subchondral base comprising trabecular metal can then be attached to the positioning structure.
Trabecular metal comprised by the implants of the present teaching can comprise any form of trabecular metal that is compatible with viable cells or tissues. In various aspects, trabecular metal used in an implant can be trabecular metal described in publications such as U.S. Pat. No. 5,282,861 to Kaplan, U.S. Pat. No. 5,456,723 to Steinemann et al., U.S. Pat. No. 6,087,553 to Cohen, or U.S. Pat. No. 6,840,960 to Bubb. In non-limiting examples, the trabecular metal can comprise tantalum, which can be substantially pure tantalum, niobium, titanium, which can be substantially pure titanium, stainless steel, a chromium-cobalt alloy, or a combination thereof. In some aspects, a chromium-cobalt alloy can be a chromium-cobalt-molybdenum alloy. In certain configurations, the trabecular metal can be porous throughout its structure, or substantially porous near the surface, and can comprise, in non-limiting example, a porous surface layer and a core, which can be porous or non-porous. Accordingly, in some configurations, a trabecular metal can include a core comprising a biocompatible material, such as, in non-limiting example, tantalum, niobium, titanium, a chrome-cobalt alloy or a ceramic, and a porous surface which can be, in non-limiting example, a porous titanium sheet or a cancellous-structured titanium layer.
In some configurations, an implant comprising a subchondral base comprising trabecular metal of the present teachings can further comprise one or more bioactive molecules, such as, in non-limiting example, a transforming growth factor-β family member protein such as a bone morphogenetic protein (BMP), basic fibroblast growth factor (bFGF), or other chondroinductive or osteoinductive molecules. Accordingly, in some aspects, a chondral-adhesive portion of an implant can comprise one or more chondroinductive molecules, while a subchondral base can comprise one or more osteoinductive molecules.
In some aspects of the present teachings, a surface for attachment of chondrocytes can comprise a plurality of pores. The pores can have a median pore diameter from about 3 microns to about 20 microns. The pores can be substantially homogeneous in diameter, or can be substantially heterogeneous in diameter. In some alternative aspects, the surface can comprise at least one biological macromolecule. A biological macromolecule can be, in some configurations, a macromolecule such as hyaluronic acid, collagen type I, collagen type II or fibrin. In various aspects, fibrin comprised by a surface layer can include fibrin that is autologous to a mammalian recipient of the juvenile chondrocytes, fibrin allogeneic to a mammalian recipient of the juvenile chondrocytes, fibrin xenogeneic to a mammalian recipient of the juvenile chondrocytes, synthetic fibrin, or a combination of two or more of these types of fibrin. In yet other aspects, a surface for attachment of chondrocytes can comprise both a plurality of pores and at least one biological macromolecule or biocompatible polymer. Such surfaces can be prepared using techniques known to skilled artisans, such as, for example, techniques disclosed in U.S. Pat. No. 6,740,186 to Hawkins. In some aspects, trabecular metal can be coated with or coupled to a biocompatible porous absorbable polymer, such as, for example, PLA/PGA to form a biocompatible surface layer to which chondrocytes can attach. Such a surface layer can promote juvenile chondrocyte growth in vivo or in vitro. In other aspects, trabecular metal can be coated with an osteoconductive or chondroconductive material such as, in non-limiting example, hydroxyapatite or hydroxyapatite-tricalcium phosphate.
In certain configurations, trabecular metal can be attached to biocompatible porous absorbable polymer such as PLA/PGA to form a reservoir or “cup” into which chondrocytes, cartilage and/or a biocompatible adhesive can be placed. In this connection, U.S. Pat. No. 4,997,445 to Hodorek discloses examples of methods for attaching a polyethylene polymer to a metal base which can be adapted to form the base of an implant of the present teachings.
In various aspects of the present teachings, trabecular metal comprising a porous surface can be made by any process known to skilled artisans, such as, in non-limiting example, etching methods or sputtering methods. In various aspects of the present teachings, a porous surface layer of a subchondral base used in an implant can comprise metal having a sintered, porous texture such as, for example, sintered, porous, cancellous-structured titanium. In addition, in some configurations, a porous surface layer can include a biocompatible porous metal sheet, such as a porous titanium sheet or a stainless steel sheet. Accordingly, in some configurations, an implant can comprise a trabecular metal which comprises a core material, which may or may not be porous, and a porous covering or sheet. In non-limiting example, the core material can be a chrome-cobalt alloy, such as, without limitation, a chrome-cobalt-molybdenum alloy, tantalum, niobium or titanium.
In various aspects, a subchondral base comprising trabecular metal can further comprise at least one biological macromolecule, a biocompatible polymer, a biocompatible ceramic, and/or an osteoconductive or chondroconductive material such as hydroxyapatite or hydroxyapatite-tricalcium phosphate. A biological macromolecule of these aspects can be, without limitation, hyaluronic acid, a transforming growth factor-β family member protein such as a bone morphogenetic protein (BMP), basic fibroblast growth factor (bFGF), or other chondroinductive or osteoinductive molecule. Without being limited by theory, it is believed that a biological macromolecule or biocompatible polymer can promote attachment of chondrocytes or cartilage to a trabecular metal surface by acting as a carrier and/or an adhesive. It is further believed that a biological macromolecule or biocompatible polymer, such as bioabsorbable polymer such as PLA/PGA can promote chondrocyte expansion when used as a coating of a surface such as a trabecular metal surface.
In various configurations of the present teachings, juvenile cartilage comprised by an implant can comprise cartilage formed in vitro, such as neocartilage described in Adkisson, H. D. et al., Clin. Orthop. 391S: S280-S294, 2001; and U.S. Pat. Nos. 6,235,316 and 6,645,316 to Adkisson. Chondrocytes comprising the cartilage can be grown either in contact with a subchondral base, separately from the subchondral base, or in a combination of growth apart from the base then in contact with the base. The contact between the chondrocytes and the subchondral base can be established either in vivo or in vitro, and subsequent growth can occur in vivo, in vitro, or a combination thereof. In non-limiting example, a culture chamber can be established comprising both chondrocytes and trabecular metal, under culture conditions that support formation of neocartilage. The neocartilage can then form directly on the surface of the at least one trabecular metal. The chondrocytes comprising the juvenile cartilage can be chondrocytes allogeneic to a mammalian recipient such as a human patient, or autologous to a recipient.
In certain aspects of the present teachings, an implant can include cartilage such as neocartilage comprising juvenile chondrocytes grown in contact with a subchondral base, either in vitro or in vivo, and can furthermore include neocartilage from juvenile cartilage attached to the subchondral base. As used herein, “chondrocyte growth” includes expansion of a population of chondrocytes or chondrocyte precursor cells such as mesenchymal stem cells, differentiation of chondrocyte precursor cells into chondrocytes, and/or accumulation and buildup of cartilaginous extracellular matrix during cartilage tissue formation. The attachment can include an attachment between the neocartilage and the base, and can aid in the establishment and/or retention of the shape of an implant. Accordingly, in some aspects, an implant can include at least one suture, which can attach the juvenile cartilage to the base. In non-limiting example, a series of sutures can be used to hold neocartilage to trabecular metal comprised by a subchondral base. Standard suturing instrumentation and techniques well-known to skilled artisans can be used to attach the neocartilage to the at least one trabecular metal. The sutures can be made of any known suture material, such as, for example, an absorbable material such as PLA/PGA. In alternative aspects, cartilage can be attached to a subchondral base using at least one biocompatible adhesive, such as, in non-limiting example, a fibrin-based adhesive, a collagen-based adhesive or a combination thereof. In yet other aspects, attachment of cartilage to a subchondral base can be effected using at least one absorbable fastener. In these aspects, an absorbable fastener can comprise a biocompatible material such as PLA/PGA, and can be, without limitation, a staple, a dart, or a tack, such as a surgical grade staple, dart or tack. A fastener can be applied to cartilage and a subchondral base using any technique known to skilled artisans. In some configurations, cartilage can be attached to a subchondral base by applying a chemical cross-linker such as, in non-limiting example, an aldehyde cross-linker such as formaldehyde or glutaraldehyde, or a homobifunctional or heterobifunctional cross-linker such as a cross-linker having amine-reactive and thiol reactive moieties, for example sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate, supplied by Pierce Chemical, Rockford Ill.
In various configurations, an implant of the present teachings can be substantially cylindrical in shape. Cylindrically shaped implants comprising non-autologous chondrocytes can be used, for example, in mosaicplasty-type joint repairs (see, e.g., Minas, T. et al., Orthopedics 20: 525-538, 1997; Marcacci, M., et al., Arthroscopy 21: 462-470, 2005; Christel, P., et al., http://www.maitrise-orthop.com/corpusmaitri/orthopaedic/mo76_mosaicplasty/index.shtml). Alternatively, one or more features of an implant can have a shape more closely approximating an anatomical shape, such as, for example, a feature of a joint. Without limitation, an implant of the present teachings can have, in some aspects, a substantially anatomical shape such as a shape of a human condyle, a hemi-condyle, an acetabular cup or a femoral head.
The present disclosure also includes methods of forming an implant of the present teachings. These methods comprise growing a population of chondrocytes in vitro, and contacting the population with a trabecular metal comprising a porous surface. In some configurations, the chondrocyte population can be grown in a scaffold-free environment. As used herein, the term “scaffold” refers to a support for chondrocytes or cartilage tissue onto which cells can attach, proliferate, and/or synthesize new tissue, other than a cell culture apparatus such as a plastic cell culture chamber. For example, chondrocytes obtained from a cadaver can be grown to increase cell numbers by about 1000 fold without any trabecular metal in a cell growth apparatus comprising the chondrocytes (e.g., a cell culture flask). The cells, which can be included within neocartilage, can then be attached to a piece of trabecular metal which can be of a shape appropriate for an osteochondral repair in a patient, and thereby form an implant which can be transplanted to the patient at a site of joint injury, defect or disease.
In some aspects, a chondrocyte population can be grown in contact with a subchondral base comprising trabecular metal. In these configurations, chondrocytes can be grown in an apparatus comprising the subchondral base. In various aspects of these configurations, the chondrocytes can attach and grow directly on the trabecular metal surface in vitro, and thereby form neocartilage directly on the trabecular metal. A resulting implant can then can then be transplanted to a recipient patient. Furthermore, in these configurations, chondrocytes can form neocartilage on the trabecular metal, and thereby form a layered structure comprising a layer of metal covered by a layer of neocartilage. Accordingly, implants can be formed of various shapes for transplantation into a patient. For example, an implant comprising trabecular metal shaped as an acetabular cup for a hip replacement can be covered on its rounded surface with cartilage by growing juvenile chondrocytes in the presence of the trabecular metal.
Accordingly, the present disclosure provides methods of treating joint disease, defect, or injury in a patient in need thereof. As used herein, “joint disease, defect or injury” includes physical conditions or diseases which can benefit from cartilage or osteochondral repair, replacement, or augmentation, such as, in non-limiting example, athletic injury, traumatic injury, congenital disorders, osteoarthritis and joint degeneration from aging. These methods include introduction of an implant of the present teachings into a recipient patient in need of treatment. In some embodiments, the methods comprise transplanting an implant comprising cartilage and/or chondrocytes and a subchondral base as described herein into the patient at a site of joint disease, defect or injury. In other embodiments, some methods comprise implanting into a patient an subchondral base comprising trabecular metal, and applying juvenile chondrocytes to the subchondral base subsequent to the implantation. In some configurations, a subchondral base can further comprise a chondrocyte attachment portion as described above. By temporally separating the attachment of the subchondral base to the bone and the attachment of the chondrocytes to the subchondral base, methods of these embodiments can reduce or eliminate trauma to the cells that can be associated with attaching a hard object to a bone of a patient. In additional embodiments, a positioning device can also be introduced into a patient. The positioning device can be attached to an appropriate site in a patient by a health professional such as a surgeon. In non-limiting example, a positioning device can be attached to a bone or introduced into an aperture in the bone. The positioning device can be configured for the attachment of the at least one trabecular metal base portion. The positioning device can be, in non-limiting example, a screw or a cylinder. A positioning device can comprise any material compatible with a patient's physiology, such as, for example, metal including non-trabecular metal, an absorbable polymer such as polylactic/polyglycolic acid (PLA/PGA) or a non-absorbable polymer. In certain configurations, the subchondral base can be configured to engage the positioning device, for example by comprising an internal screw thread which mates with the screw of the positioning device. Chondrocytes, which can be in the form of neocartilage, can then be applied to the prosthetic device. Alternatively, cartilage and/or chondrocytes can be applied to subchondral base before attaching the latter to the positioning device. In yet other configurations, a positioning device can comprise a surface for attaching chondrocytes and/or cartilage. In these configurations, chondrocytes or cartilage can be attached to the surface; a subchondral base comprising trabecular metal can be inserted into a patient (for example, by insertion of the base into an aperture introduced by a surgeon into a bone of the patient) and the positioning device, including the chondrocytes or cartilage, can then be attached to the subchondral base, thereby forming an implant comprising a subchondral base and chondrocytes and/or cartilage Accordingly, a wide variety of possible combinations comprising a subchondral base, chondrocytes and/or cartilage, and a positioning device are contemplated as within the scope of the present teachings.
Various embodiments of the present teachings can be illustrated by the following non-limiting examples. The following examples are illustrative, and are not intended to limit the scope of the claims. The description of a composition or a method in an example does not imply that a described article or composition has, or has not, been produced, or that a described method has, or has not, been performed, irrespective of verb tense.
This example illustrates replacement of a femoral head in a patient suffering from a femoral head fracture with an implant.
In this example, as shown in
This example illustrates attachment of neocartilage to a subchondral base in vitro.
In this example, as shown in
This example illustrates use of a positioning structure to introduce an implant into a patient.
In this example, as shown in
This example illustrates another configuration that uses a positioning structure to introduce an implant into a patient.
In this example, as shown in
This example, as shown in
In this example,
This example illustrates seeding of chondrocytes onto trabecular metal of a subchondral base.
In this example, as shown in
In related configurations, the surface layer can also be formed with one or more of the following: a) trabecular metal fine pore phase; b) hyaluronic acid; c) collagen I; d) collagen II, e) fibrin (including autologous, allogeneic, xenogeneic, or synthetic); f) absorbable synthetic polymer such as PLA/PLG); synthetic or natural hydrogel; g) titanium screen or porous sheet. The configurations of this example, like those of Example 5, are also useful for forming an implant either in vivo or in the operating room.
This example illustrates seeding of cells onto trabecular metal.
In this example, an implant as illustrated in
This example, as shown in
a presents a cylindrical shape comprising a subchondral base comprising trabecular metal (33), and cartilage adherent on one surface (32).
b presents an anatomical shape: the subchondral base comprising trabecular metal (35) comprises a contoured dual-hemispherical surface for cell attachment and two spikes (36) for insertion into bone (37), while the cartilage (34), which adopts the shape of the contoured surface, can replace the condyle of a distal femur.
c presents a second anatomical shape: the subchondral base comprising trabecular metal comprises a contoured-hemispherical surface for cell attachment and a spike (39) for insertion into bone (40), while the cartilage (38), which adopts the shape of the contoured surface, can replace a hemi-condyle.
This example, as shown in
a presents cartilage (41) attached to an anatomically shaped femoral head prosthesis, as presented in Example 1. The femoral head prosthesis attaches to a spike-shaped trabecular metal component (42) which, in turn, inserts into native bone (43). This shape can be used to repair a proximal femur.
b presents an acetabular cup, which includes a cartilage component attached to a trabecular metal component, attached to native bone.
It is to be understood that particular formulations and processes of the present teachings are not limited to the descriptions of the specific embodiments presented, but rather the descriptions and examples should be viewed in terms of the claims that follow and their equivalents. While some of the examples and descriptions above may include some conclusions about the way the certain embodiments function, the inventors do not intend to be bound by those conclusions and functions, but put them forth only as possible explanations.
It is to be further understood that the specific embodiments of the present teachings as set forth are not intended as being exhaustive or limiting of the invention, and that many alternatives, modifications, and variations will be apparent to those of ordinary skill in the art in light of the foregoing examples and detailed description. Accordingly, the disclosed embodiments are intended to embrace all such alternatives, modifications, and variations that fall within the spirit and scope of the following claims.
All publications, patents, patent applications and other references cited in this application are herein incorporated by reference in their entirety as if each individual publication, patent, patent application or other reference were specifically and individually indicated to be incorporated by reference.
This application is a U.S. National of PCT/US2006/33687 filed Aug. 28, 2006 which claims priority from U.S. Provisional Application Ser. No. 60/712,004 filed on Aug. 26, 2005, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/033687 | 8/28/2006 | WO | 00 | 12/10/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/025290 | 3/1/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1347622 | Deininger | Jul 1920 | A |
2533004 | Ferry et al. | Dec 1950 | A |
2621145 | Sano | Dec 1952 | A |
3400199 | Balassa | Sep 1968 | A |
3476855 | Balassa | Nov 1969 | A |
3478146 | Balassa | Nov 1969 | A |
3772432 | Balassa | Nov 1973 | A |
RE28093 | Balassa | Jul 1974 | E |
3966908 | Balassa | Jun 1976 | A |
4440680 | Cioca | Apr 1984 | A |
4453939 | Zimmerman et al. | Jun 1984 | A |
4479271 | Bolesky et al. | Oct 1984 | A |
4522096 | Niven, Jr. | Jun 1985 | A |
4566138 | Lewis et al. | Jan 1986 | A |
4587766 | Miyatake et al. | May 1986 | A |
4609551 | Caplan et al. | Sep 1986 | A |
4627879 | Rose et al. | Dec 1986 | A |
4640834 | Eibl et al. | Feb 1987 | A |
4641651 | Card | Feb 1987 | A |
4642120 | Nevo et al. | Feb 1987 | A |
4656137 | Balassa | Apr 1987 | A |
4660755 | Farling et al. | Apr 1987 | A |
4714457 | Alterbaum | Dec 1987 | A |
4773418 | Hettich | Sep 1988 | A |
4818633 | Dinwoodie et al. | Apr 1989 | A |
4846835 | Grande | Jul 1989 | A |
4851354 | Winston et al. | Jul 1989 | A |
4863474 | Brown et al. | Sep 1989 | A |
4863475 | Andersen et al. | Sep 1989 | A |
4904259 | Itay | Feb 1990 | A |
4911720 | Collier | Mar 1990 | A |
4928603 | Rose et al. | May 1990 | A |
4952403 | Vallee et al. | Aug 1990 | A |
4963489 | Naughton et al. | Oct 1990 | A |
4997444 | Farling | Mar 1991 | A |
4997445 | Hodorek | Mar 1991 | A |
5002071 | Harrell | Mar 1991 | A |
5002582 | Guire et al. | Mar 1991 | A |
5013324 | Zolman et al. | May 1991 | A |
5018285 | Zolman et al. | May 1991 | A |
5030215 | Morse et al. | Jul 1991 | A |
5032508 | Naughton et al. | Jul 1991 | A |
5041138 | Vacanti et al. | Aug 1991 | A |
5053050 | Itay | Oct 1991 | A |
5067963 | Khouri et al. | Nov 1991 | A |
5067964 | Richmond et al. | Nov 1991 | A |
5069881 | Clarkin | Dec 1991 | A |
5080674 | Jacobs et al. | Jan 1992 | A |
5092887 | Gendler | Mar 1992 | A |
5130418 | Thompson | Jul 1992 | A |
5139527 | Redl et al. | Aug 1992 | A |
5189148 | Akiyama et al. | Feb 1993 | A |
5198308 | Shetty et al. | Mar 1993 | A |
5206023 | Hunziker | Apr 1993 | A |
5217954 | Foster et al. | Jun 1993 | A |
5219363 | Crowninshield et al. | Jun 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5236457 | Devanathan | Aug 1993 | A |
5254471 | Mori et al. | Oct 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5270300 | Hunziker | Dec 1993 | A |
5281422 | Badylak et al. | Jan 1994 | A |
5282861 | Kaplan | Feb 1994 | A |
5290552 | Sierra et al. | Mar 1994 | A |
5290558 | O'Leary et al. | Mar 1994 | A |
5312417 | Wilk | May 1994 | A |
5323954 | Shetty et al. | Jun 1994 | A |
5326357 | Kandel | Jul 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5356629 | Sander et al. | Oct 1994 | A |
5368858 | Hunziker | Nov 1994 | A |
5372821 | Badylak et al. | Dec 1994 | A |
5387243 | Devanathan | Feb 1995 | A |
5403317 | Bonutti | Apr 1995 | A |
5405607 | Epstein | Apr 1995 | A |
5410016 | Hubbell et al. | Apr 1995 | A |
5443454 | Tanabe et al. | Aug 1995 | A |
5443510 | Shetty et al. | Aug 1995 | A |
5443512 | Parr et al. | Aug 1995 | A |
5445833 | Badylak et al. | Aug 1995 | A |
5456723 | Steinemann et al. | Oct 1995 | A |
5456828 | Tersi et al. | Oct 1995 | A |
5461953 | McCormick | Oct 1995 | A |
5475052 | Rhee et al. | Dec 1995 | A |
5482929 | Fukunaga et al. | Jan 1996 | A |
5496375 | Sisk et al. | Mar 1996 | A |
5504300 | Devanathan et al. | Apr 1996 | A |
5510396 | Prewett et al. | Apr 1996 | A |
5514536 | Taylor | May 1996 | A |
5516532 | Atala et al. | May 1996 | A |
5516533 | Badylak et al. | May 1996 | A |
5535810 | Compton et al. | Jul 1996 | A |
5545222 | Bonutti | Aug 1996 | A |
5549704 | Sutter | Aug 1996 | A |
5549904 | Juergensen et al. | Aug 1996 | A |
5554389 | Badylak et al. | Sep 1996 | A |
5556429 | Felt | Sep 1996 | A |
5565519 | Rhee et al. | Oct 1996 | A |
5571187 | Devanathan | Nov 1996 | A |
5577517 | Bonutti | Nov 1996 | A |
5578492 | Fedun | Nov 1996 | A |
5585007 | Antanavich et al. | Dec 1996 | A |
5605887 | Pines et al. | Feb 1997 | A |
5612028 | Sackier et al. | Mar 1997 | A |
5618925 | Dupont et al. | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5639280 | Warner et al. | Jun 1997 | A |
5643192 | Hirsh et al. | Jul 1997 | A |
5650494 | Cerletti et al. | Jul 1997 | A |
5654166 | Kurth | Aug 1997 | A |
5655546 | Halpern | Aug 1997 | A |
5656587 | Sporn et al. | Aug 1997 | A |
5662710 | Bonutti | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5672284 | Devanathan et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5681353 | Li et al. | Oct 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5694951 | Bonutti | Dec 1997 | A |
5695998 | Badylak et al. | Dec 1997 | A |
5709854 | Griffith-Cima et al. | Jan 1998 | A |
5713374 | Pachence et al. | Feb 1998 | A |
5714371 | Ramanathan et al. | Feb 1998 | A |
5723010 | Yui et al. | Mar 1998 | A |
5723011 | Devanathan et al. | Mar 1998 | A |
5723331 | Tubo et al. | Mar 1998 | A |
5734959 | Krebs et al. | Mar 1998 | A |
5735875 | Bonutti et al. | Apr 1998 | A |
5736132 | Juergensen et al. | Apr 1998 | A |
5736396 | Bruder et al. | Apr 1998 | A |
5749968 | Melanson et al. | May 1998 | A |
5753485 | Dwulet et al. | May 1998 | A |
5755791 | Whitson et al. | May 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5770194 | Edwardson et al. | Jun 1998 | A |
5782835 | Hart et al. | Jul 1998 | A |
5782915 | Stone | Jul 1998 | A |
5786217 | Tubo et al. | Jul 1998 | A |
5788662 | Antanavich et al. | Aug 1998 | A |
5795571 | Cederholm-Williams et al. | Aug 1998 | A |
5795780 | Cederholm-Williams et al. | Aug 1998 | A |
5811094 | Caplan et al. | Sep 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827217 | Silver et al. | Oct 1998 | A |
5830741 | Dwulet et al. | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5853746 | Hunziker | Dec 1998 | A |
5853976 | Hesse et al. | Dec 1998 | A |
5864016 | Eibl et al. | Jan 1999 | A |
5866415 | Villeneuve | Feb 1999 | A |
5866630 | Mitra et al. | Feb 1999 | A |
5876208 | Mitra et al. | Mar 1999 | A |
5876451 | Yui et al. | Mar 1999 | A |
5876452 | Athanasiou et al. | Mar 1999 | A |
5879398 | Swarts et al. | Mar 1999 | A |
5888219 | Bonutti | Mar 1999 | A |
5888491 | Mitra et al. | Mar 1999 | A |
5890898 | Wada et al. | Apr 1999 | A |
5891455 | Sittinger et al. | Apr 1999 | A |
5899936 | Goldstein | May 1999 | A |
5902741 | Purchio et al. | May 1999 | A |
5919702 | Purchio et al. | Jul 1999 | A |
5921987 | Stone | Jul 1999 | A |
5922027 | Stone | Jul 1999 | A |
5922846 | Cerletti et al. | Jul 1999 | A |
5926685 | Krebs et al. | Jul 1999 | A |
5928945 | Seliktar et al. | Jul 1999 | A |
5935131 | Bonutti | Aug 1999 | A |
5944754 | Vacanti | Aug 1999 | A |
5944755 | Stone | Aug 1999 | A |
5948384 | Filler | Sep 1999 | A |
5952215 | Dwulet et al. | Sep 1999 | A |
5962405 | Seelich | Oct 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964805 | Stone | Oct 1999 | A |
5968556 | Atala et al. | Oct 1999 | A |
5985315 | Patat et al. | Nov 1999 | A |
5989269 | Vibe-Hansen et al. | Nov 1999 | A |
5989888 | Dwulet et al. | Nov 1999 | A |
6022361 | Epstein et al. | Feb 2000 | A |
6025334 | Dupont et al. | Feb 2000 | A |
6041723 | Peterson | Mar 2000 | A |
6045990 | Baust et al. | Apr 2000 | A |
6048966 | Edwardson et al. | Apr 2000 | A |
6051249 | Samuelsen | Apr 2000 | A |
6059198 | Moroi et al. | May 2000 | A |
6060053 | Atala | May 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6080194 | Pachence et al. | Jun 2000 | A |
6080579 | Hanley, Jr. et al. | Jun 2000 | A |
6083383 | Huang et al. | Jul 2000 | A |
6087553 | Cohen et al. | Jul 2000 | A |
6107085 | Coughlin et al. | Aug 2000 | A |
6110209 | Stone | Aug 2000 | A |
6110210 | Norton et al. | Aug 2000 | A |
6110212 | Gregory | Aug 2000 | A |
6110482 | Khouri et al. | Aug 2000 | A |
6120514 | Vibe-Hansen et al. | Sep 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6132472 | Bonutti | Oct 2000 | A |
6140123 | Demetriou et al. | Oct 2000 | A |
6140452 | Felt et al. | Oct 2000 | A |
6143214 | Barlow | Nov 2000 | A |
6150163 | McPherson et al. | Nov 2000 | A |
6152142 | Tseng | Nov 2000 | A |
6162241 | Coury et al. | Dec 2000 | A |
6171610 | Vacanti et al. | Jan 2001 | B1 |
6174313 | Bonutti | Jan 2001 | B1 |
6179871 | Halpern | Jan 2001 | B1 |
6183737 | Zaleske et al. | Feb 2001 | B1 |
6187329 | Agrawal et al. | Feb 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6203526 | McBeth et al. | Mar 2001 | B1 |
6224893 | Langer et al. | May 2001 | B1 |
6235316 | Adkisson | May 2001 | B1 |
6242247 | Rieser et al. | Jun 2001 | B1 |
6248114 | Ysebaert | Jun 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6271320 | Keller et al. | Aug 2001 | B1 |
6274090 | Coelho et al. | Aug 2001 | B1 |
6280993 | Yamato et al. | Aug 2001 | B1 |
6294656 | Mittl et al. | Sep 2001 | B1 |
6306169 | Lee et al. | Oct 2001 | B1 |
6306177 | Felt et al. | Oct 2001 | B1 |
6312668 | Mitra et al. | Nov 2001 | B2 |
6322563 | Cummings et al. | Nov 2001 | B1 |
6327257 | Khalifa | Dec 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6338878 | Overton et al. | Jan 2002 | B1 |
6358266 | Bonutti | Mar 2002 | B1 |
6361565 | Bonutti | Mar 2002 | B1 |
6368298 | Beretta et al. | Apr 2002 | B1 |
6368784 | Murray | Apr 2002 | B1 |
6370920 | Overton et al. | Apr 2002 | B1 |
6378527 | Hungerford et al. | Apr 2002 | B1 |
6395327 | Shetty | May 2002 | B1 |
6417320 | Otto et al. | Jul 2002 | B1 |
6423063 | Bonutti | Jul 2002 | B1 |
6425704 | Voiers et al. | Jul 2002 | B2 |
6436143 | Ross et al. | Aug 2002 | B1 |
6437018 | Gertzman et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6444228 | Baugh et al. | Sep 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6464713 | Bonutti | Oct 2002 | B2 |
6468289 | Bonutti | Oct 2002 | B1 |
6468527 | Austin et al. | Oct 2002 | B2 |
6472162 | Coelho et al. | Oct 2002 | B1 |
6475764 | Burtscher et al. | Nov 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6485723 | Badylak et al. | Nov 2002 | B1 |
6492163 | Yoo et al. | Dec 2002 | B1 |
6497903 | Hennink et al. | Dec 2002 | B1 |
6503267 | Bonutti et al. | Jan 2003 | B2 |
6503277 | Bonutti | Jan 2003 | B2 |
6504079 | Tucker et al. | Jan 2003 | B2 |
6511958 | Atkinson et al. | Jan 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6514522 | Domb | Feb 2003 | B2 |
6528052 | Smith et al. | Mar 2003 | B1 |
6533817 | Norton et al. | Mar 2003 | B1 |
6534084 | Vyakarnam et al. | Mar 2003 | B1 |
6534591 | Rhee et al. | Mar 2003 | B2 |
6543455 | Bonutti | Apr 2003 | B2 |
6544472 | Compton et al. | Apr 2003 | B1 |
6551355 | Lewandrowski et al. | Apr 2003 | B1 |
6559119 | Burgess et al. | May 2003 | B1 |
6575982 | Bonutti | Jun 2003 | B1 |
6576265 | Spievack | Jun 2003 | B1 |
6579538 | Spievack | Jun 2003 | B1 |
6582960 | Martin et al. | Jun 2003 | B1 |
6592531 | Bonutti | Jul 2003 | B2 |
6596180 | Baugh et al. | Jul 2003 | B2 |
6599515 | Delmotte | Jul 2003 | B1 |
6607534 | Bonutti | Aug 2003 | B2 |
6610033 | Melanson et al. | Aug 2003 | B1 |
6620169 | Peterson et al. | Sep 2003 | B1 |
6626859 | Von Segesser | Sep 2003 | B2 |
6626945 | Simon et al. | Sep 2003 | B2 |
6626950 | Brown et al. | Sep 2003 | B2 |
6630000 | Bonutti | Oct 2003 | B1 |
6632246 | Simon et al. | Oct 2003 | B1 |
6632648 | Kampinga et al. | Oct 2003 | B1 |
6637437 | Hungerford et al. | Oct 2003 | B1 |
6638309 | Bonutti | Oct 2003 | B2 |
6645316 | Brouwer et al. | Nov 2003 | B1 |
6645764 | Adkisson | Nov 2003 | B1 |
6649168 | Arvinte et al. | Nov 2003 | B2 |
6652532 | Bonutti | Nov 2003 | B2 |
6652872 | Nevo et al. | Nov 2003 | B2 |
6652883 | Goupil et al. | Nov 2003 | B2 |
6653062 | DePablo et al. | Nov 2003 | B1 |
6662805 | Frondoza et al. | Dec 2003 | B2 |
6663616 | Roth et al. | Dec 2003 | B1 |
6676971 | Goupil et al. | Jan 2004 | B2 |
6685987 | Shetty | Feb 2004 | B2 |
6697143 | Freeman | Feb 2004 | B2 |
6705790 | Quintero et al. | Mar 2004 | B2 |
6713772 | Goodman et al. | Mar 2004 | B2 |
6719803 | Bonutti | Apr 2004 | B2 |
6719901 | Dolecek et al. | Apr 2004 | B2 |
6730299 | Tayot et al. | May 2004 | B1 |
6733515 | Edwards et al. | May 2004 | B1 |
6736853 | Bonutti | May 2004 | B2 |
6737072 | Angele et al. | May 2004 | B1 |
6740186 | Hawkins et al. | May 2004 | B2 |
6743232 | Overaker et al. | Jun 2004 | B2 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6773713 | Bonassar et al. | Aug 2004 | B2 |
6776938 | Bonutti | Aug 2004 | B2 |
6797006 | Hodorek | Sep 2004 | B2 |
6800663 | Asgarzadeh et al. | Oct 2004 | B2 |
6818008 | Cates et al. | Nov 2004 | B1 |
6830762 | Baugh et al. | Dec 2004 | B2 |
6833408 | Sehl et al. | Dec 2004 | B2 |
6835198 | Bonutti | Dec 2004 | B2 |
6835277 | Park | Dec 2004 | B2 |
6840960 | Bubb | Jan 2005 | B2 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6860904 | Bonutti | Mar 2005 | B2 |
6884428 | Binette et al. | Apr 2005 | B2 |
6886568 | Frondoza et al. | May 2005 | B2 |
6893466 | Trieu | May 2005 | B2 |
6905517 | Bonutti | Jun 2005 | B2 |
6919067 | Filler et al. | Jul 2005 | B2 |
6919172 | DePablo et al. | Jul 2005 | B2 |
6921633 | Baust et al. | Jul 2005 | B2 |
6942880 | Dolecek | Sep 2005 | B1 |
6949252 | Mizuno et al. | Sep 2005 | B2 |
6965014 | Delmotte et al. | Nov 2005 | B1 |
6979307 | Beretta et al. | Dec 2005 | B2 |
6990982 | Bonutti | Jan 2006 | B1 |
6991652 | Burg | Jan 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7045601 | Metzner et al. | May 2006 | B2 |
7067123 | Gomes et al. | Jun 2006 | B2 |
7081125 | Edwards et al. | Jul 2006 | B2 |
7083964 | Kurfurst et al. | Aug 2006 | B2 |
7087227 | Adkisson | Aug 2006 | B2 |
RE39321 | MacPhee et al. | Oct 2006 | E |
7134437 | Bonutti | Nov 2006 | B2 |
7147471 | Frey et al. | Dec 2006 | B2 |
7217294 | Kusanagi et al. | May 2007 | B2 |
7235255 | Austin et al. | Jun 2007 | B2 |
7273756 | Adkisson et al. | Sep 2007 | B2 |
7276235 | Metzner et al. | Oct 2007 | B2 |
7276481 | Golembo et al. | Oct 2007 | B2 |
7299805 | Bonutti | Nov 2007 | B2 |
7316822 | Binette et al. | Jan 2008 | B2 |
7375077 | Mao | May 2008 | B2 |
7468192 | Mizuno et al. | Dec 2008 | B2 |
7488348 | Truncale et al. | Feb 2009 | B2 |
7537780 | Mizuno et al. | May 2009 | B2 |
7720533 | Behravesh et al. | May 2010 | B2 |
7824711 | Kizer et al. | Nov 2010 | B2 |
7838040 | Malinin | Nov 2010 | B2 |
7875296 | Binette et al. | Jan 2011 | B2 |
7879604 | Seyedin et al. | Feb 2011 | B2 |
RE42208 | Truncale et al. | Mar 2011 | E |
7897384 | Binette et al. | Mar 2011 | B2 |
7901457 | Truncale et al. | Mar 2011 | B2 |
7901461 | Harmon et al. | Mar 2011 | B2 |
8017394 | Adkisson, IV et al. | Sep 2011 | B2 |
8025901 | Kao et al. | Sep 2011 | B2 |
8137702 | Binette et al. | Mar 2012 | B2 |
8163549 | Yao et al. | Apr 2012 | B2 |
20010006634 | Zaleske et al. | Jul 2001 | A1 |
20010014473 | Rieser et al. | Aug 2001 | A1 |
20010014475 | Frondoza et al. | Aug 2001 | A1 |
20010051834 | Frondoza et al. | Dec 2001 | A1 |
20010055621 | Baugh et al. | Dec 2001 | A1 |
20020004038 | Baugh et al. | Jan 2002 | A1 |
20020009805 | Nevo et al. | Jan 2002 | A1 |
20020012705 | Domb | Jan 2002 | A1 |
20020028192 | Dimitrijevich et al. | Mar 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020045940 | Giannetti et al. | Apr 2002 | A1 |
20020055755 | Bonutti | May 2002 | A1 |
20020062151 | Altman et al. | May 2002 | A1 |
20020064512 | Petersen et al. | May 2002 | A1 |
20020082623 | Osther et al. | Jun 2002 | A1 |
20020095160 | Bonutti | Jul 2002 | A1 |
20020099401 | Bonutti | Jul 2002 | A1 |
20020099448 | Hiles et al. | Jul 2002 | A1 |
20020106625 | Hung et al. | Aug 2002 | A1 |
20020123142 | Hungerford et al. | Sep 2002 | A1 |
20020128683 | Epstein | Sep 2002 | A1 |
20020133235 | Hungerford et al. | Sep 2002 | A1 |
20020150550 | Petersen | Oct 2002 | A1 |
20020151974 | Bonassar et al. | Oct 2002 | A1 |
20020159982 | Bonassar et al. | Oct 2002 | A1 |
20020159985 | Baugh et al. | Oct 2002 | A1 |
20020183850 | Felt et al. | Dec 2002 | A1 |
20020198490 | Wirt et al. | Dec 2002 | A1 |
20020198599 | Haldimann | Dec 2002 | A1 |
20030009147 | Bonutti | Jan 2003 | A1 |
20030009235 | Manrique et al. | Jan 2003 | A1 |
20030039695 | Geistlich et al. | Feb 2003 | A1 |
20030040113 | Mizuno et al. | Feb 2003 | A1 |
20030065389 | Petersen | Apr 2003 | A1 |
20030069605 | Bonutti et al. | Apr 2003 | A1 |
20030077244 | Petersen | Apr 2003 | A1 |
20030099620 | Zaleske et al. | May 2003 | A1 |
20030114936 | Sherwood et al. | Jun 2003 | A1 |
20030134032 | Chaouk et al. | Jul 2003 | A1 |
20030151974 | Kutty et al. | Aug 2003 | A1 |
20030153078 | Libera et al. | Aug 2003 | A1 |
20030176602 | Schmidt et al. | Sep 2003 | A1 |
20030181939 | Bonutti | Sep 2003 | A1 |
20030187387 | Wirt et al. | Oct 2003 | A1 |
20030195628 | Bao et al. | Oct 2003 | A1 |
20030211073 | Goupil et al. | Nov 2003 | A1 |
20030223956 | Goupil et al. | Dec 2003 | A1 |
20040030404 | Noll et al. | Feb 2004 | A1 |
20040030406 | Ochi et al. | Feb 2004 | A1 |
20040033212 | Thomson et al. | Feb 2004 | A1 |
20040042960 | Frey et al. | Mar 2004 | A1 |
20040044408 | Hungerford et al. | Mar 2004 | A1 |
20040048796 | Hariri et al. | Mar 2004 | A1 |
20040059416 | Murray et al. | Mar 2004 | A1 |
20040064192 | Bubb | Apr 2004 | A1 |
20040064193 | Evans et al. | Apr 2004 | A1 |
20040073308 | Kuslich et al. | Apr 2004 | A1 |
20040078073 | Bonutti | Apr 2004 | A1 |
20040078077 | Binette et al. | Apr 2004 | A1 |
20040078090 | Binette et al. | Apr 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040097714 | Maubois et al. | May 2004 | A1 |
20040097829 | McRury et al. | May 2004 | A1 |
20040117033 | Frondoza et al. | Jun 2004 | A1 |
20040127987 | Evans et al. | Jul 2004 | A1 |
20040134502 | Mizuno et al. | Jul 2004 | A1 |
20040138522 | Haarstad et al. | Jul 2004 | A1 |
20040151705 | Mizuno et al. | Aug 2004 | A1 |
20040172045 | Eriksson et al. | Sep 2004 | A1 |
20040175690 | Mishra et al. | Sep 2004 | A1 |
20040176787 | Mishra et al. | Sep 2004 | A1 |
20040181240 | Tseng et al. | Sep 2004 | A1 |
20040191900 | Mizuno et al. | Sep 2004 | A1 |
20040193181 | Bonutti | Sep 2004 | A1 |
20040219182 | Gomes et al. | Nov 2004 | A1 |
20040228901 | Trieu et al. | Nov 2004 | A1 |
20040230303 | Gomes et al. | Nov 2004 | A1 |
20040230309 | DiMauro et al. | Nov 2004 | A1 |
20050026133 | Nakatsuji et al. | Feb 2005 | A1 |
20050038520 | Binette et al. | Feb 2005 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050043814 | Kusanagi et al. | Feb 2005 | A1 |
20050054595 | Binette et al. | Mar 2005 | A1 |
20050064042 | Vunjak-Novakovic et al. | Mar 2005 | A1 |
20050079159 | Shastri et al. | Apr 2005 | A1 |
20050095235 | Austin et al. | May 2005 | A1 |
20050095666 | Jhavar et al. | May 2005 | A1 |
20050113736 | Orr et al. | May 2005 | A1 |
20050113937 | Binette et al. | May 2005 | A1 |
20050119754 | Trieu et al. | Jun 2005 | A1 |
20050124038 | Aguiar et al. | Jun 2005 | A1 |
20050125077 | Harmon et al. | Jun 2005 | A1 |
20050136046 | Pines et al. | Jun 2005 | A1 |
20050137600 | Jacobs et al. | Jun 2005 | A1 |
20050139656 | Arnouse | Jun 2005 | A1 |
20050152882 | Kizer et al. | Jul 2005 | A1 |
20050152886 | Baugh et al. | Jul 2005 | A1 |
20050152961 | Austin et al. | Jul 2005 | A1 |
20050171470 | Kucklick et al. | Aug 2005 | A1 |
20050175657 | Hunter et al. | Aug 2005 | A1 |
20050175704 | Petersen | Aug 2005 | A1 |
20050175711 | Kralovee et al. | Aug 2005 | A1 |
20050177249 | Kladakis et al. | Aug 2005 | A1 |
20050186247 | Hunter et al. | Aug 2005 | A1 |
20050186283 | Geistlich et al. | Aug 2005 | A1 |
20050186673 | Geistlich et al. | Aug 2005 | A1 |
20050192532 | Kucklick et al. | Sep 2005 | A1 |
20050196387 | Seyedin et al. | Sep 2005 | A1 |
20050196460 | Malinin | Sep 2005 | A1 |
20050203342 | Kucklick et al. | Sep 2005 | A1 |
20050209601 | Bowman et al. | Sep 2005 | A1 |
20050209602 | Bowman et al. | Sep 2005 | A1 |
20050222687 | Vunjak-Novakovic et al. | Oct 2005 | A1 |
20050226856 | Ahlfors | Oct 2005 | A1 |
20050234298 | Kucklick et al. | Oct 2005 | A1 |
20050234485 | Seegert et al. | Oct 2005 | A1 |
20050244454 | Elson et al. | Nov 2005 | A1 |
20050250697 | Maubois et al. | Nov 2005 | A1 |
20050250698 | Maubois et al. | Nov 2005 | A1 |
20050251268 | Truncale | Nov 2005 | A1 |
20050265980 | Chen et al. | Dec 2005 | A1 |
20050267584 | Burdulis et al. | Dec 2005 | A1 |
20050273129 | Michels et al. | Dec 2005 | A1 |
20050287218 | Chaouk et al. | Dec 2005 | A1 |
20050288796 | Awad et al. | Dec 2005 | A1 |
20060008530 | Seyedin et al. | Jan 2006 | A1 |
20060009779 | Collins et al. | Jan 2006 | A1 |
20060019389 | Yayon et al. | Jan 2006 | A1 |
20060024373 | Shahar et al. | Feb 2006 | A1 |
20060024826 | Bonassar et al. | Feb 2006 | A1 |
20060029679 | Dolecek | Feb 2006 | A1 |
20060041270 | Lenker et al. | Feb 2006 | A1 |
20060073588 | Adkisson et al. | Apr 2006 | A1 |
20060078872 | Taguchi et al. | Apr 2006 | A1 |
20060099706 | Massey et al. | May 2006 | A1 |
20060111738 | Wenchell | May 2006 | A1 |
20060111778 | Michalow | May 2006 | A1 |
20060128016 | Tokushima et al. | Jun 2006 | A1 |
20060134093 | Ronfard | Jun 2006 | A1 |
20060134094 | Delmotte et al. | Jun 2006 | A2 |
20060147547 | Yayon | Jul 2006 | A1 |
20060153815 | Seyda et al. | Jul 2006 | A1 |
20060183224 | Aerts et al. | Aug 2006 | A1 |
20060195188 | ODriscoll et al. | Aug 2006 | A1 |
20060210643 | Truncale et al. | Sep 2006 | A1 |
20060216822 | Mizuno et al. | Sep 2006 | A1 |
20060228391 | Seyedin et al. | Oct 2006 | A1 |
20060240064 | Hunter et al. | Oct 2006 | A9 |
20060240555 | Ronfard | Oct 2006 | A1 |
20060251631 | Adkisson, IV et al. | Nov 2006 | A1 |
20060264966 | Armstrong | Nov 2006 | A1 |
20060275273 | Seyedin et al. | Dec 2006 | A1 |
20060281173 | Fukuda et al. | Dec 2006 | A1 |
20060292131 | Binette et al. | Dec 2006 | A1 |
20070014867 | Kusanagi et al. | Jan 2007 | A1 |
20070031471 | Peyman | Feb 2007 | A1 |
20070038299 | Stone et al. | Feb 2007 | A1 |
20070041952 | Guilak et al. | Feb 2007 | A1 |
20070077236 | Osther | Apr 2007 | A1 |
20070087032 | Chang et al. | Apr 2007 | A1 |
20070098759 | Malinin | May 2007 | A1 |
20070106394 | Chen | May 2007 | A1 |
20070128155 | Seyedin et al. | Jun 2007 | A1 |
20070191781 | Richards et al. | Aug 2007 | A1 |
20070212389 | Weiss et al. | Sep 2007 | A1 |
20070213660 | Richards et al. | Sep 2007 | A1 |
20070250164 | Troxel | Oct 2007 | A1 |
20070292945 | Lin et al. | Dec 2007 | A1 |
20070299517 | Davisson et al. | Dec 2007 | A1 |
20080009942 | Mizuno et al. | Jan 2008 | A1 |
20080031934 | MacPhee et al. | Feb 2008 | A1 |
20080033331 | MacPhee et al. | Feb 2008 | A1 |
20080033332 | MacPhee et al. | Feb 2008 | A1 |
20080033333 | MacPhee et al. | Feb 2008 | A1 |
20080039940 | Hashimoto et al. | Feb 2008 | A1 |
20080039954 | Long et al. | Feb 2008 | A1 |
20080051624 | Bonutti | Feb 2008 | A1 |
20080065210 | McKay | Mar 2008 | A1 |
20080071385 | Binette et al. | Mar 2008 | A1 |
20080081369 | Adkisson, IV et al. | Apr 2008 | A1 |
20080103564 | Burkinshaw et al. | May 2008 | A1 |
20080113007 | Kurihara et al. | May 2008 | A1 |
20080153157 | Yao et al. | Jun 2008 | A1 |
20080154370 | Mathies | Jun 2008 | A1 |
20080199429 | Hollander et al. | Aug 2008 | A1 |
20080274157 | Vunjak-Novakovic et al. | Nov 2008 | A1 |
20080299214 | Seyedin et al. | Dec 2008 | A1 |
20090012629 | Yao et al. | Jan 2009 | A1 |
20090069901 | Truncale et al. | Mar 2009 | A1 |
20090143867 | Gage et al. | Jun 2009 | A1 |
20090149893 | Semler et al. | Jun 2009 | A1 |
20090155229 | Yayon | Jun 2009 | A1 |
20090181092 | Thorne et al. | Jul 2009 | A1 |
20090181093 | Thorne et al. | Jul 2009 | A1 |
20090181892 | Thorne et al. | Jul 2009 | A1 |
20090214614 | Everland et al. | Aug 2009 | A1 |
20090291112 | Truncale et al. | Nov 2009 | A1 |
20090319045 | Truncale et al. | Dec 2009 | A1 |
20100015202 | Semler et al. | Jan 2010 | A1 |
20100086594 | Amit et al. | Apr 2010 | A1 |
20100121311 | Seegert et al. | May 2010 | A1 |
20100168856 | Long et al. | Jul 2010 | A1 |
20100209397 | Maor | Aug 2010 | A1 |
20100209408 | Stephen et al. | Aug 2010 | A1 |
20100274362 | Yayon et al. | Oct 2010 | A1 |
20100303765 | Athanasiou et al. | Dec 2010 | A1 |
20100322994 | Kizer et al. | Dec 2010 | A1 |
20110009963 | Binnette et al. | Jan 2011 | A1 |
20110052705 | Malinin | Mar 2011 | A1 |
20110070271 | Truncale et al. | Mar 2011 | A1 |
20110091517 | Binette et al. | Apr 2011 | A1 |
20110097381 | Binette et al. | Apr 2011 | A1 |
20110166669 | Truncale et al. | Jul 2011 | A1 |
20110177134 | Harmon et al. | Jul 2011 | A1 |
20110196508 | Truncale et al. | Aug 2011 | A1 |
20110256095 | Seyedin et al. | Oct 2011 | A1 |
20120009224 | Kizer et al. | Jan 2012 | A1 |
20120009270 | Kizer et al. | Jan 2012 | A1 |
20120107384 | Yao et al. | May 2012 | A1 |
20120156265 | Binette et al. | Jun 2012 | A1 |
20120183586 | Yao et al. | Jul 2012 | A1 |
20120239146 | Kizer et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
199871003 | Apr 1998 | AU |
2006282754 | Aug 2006 | AU |
2261292 | Jul 1997 | CA |
2261292 | Jul 1997 | CA |
2441994 | Mar 2002 | CA |
2445356 | Oct 2003 | CA |
2445356 | Oct 2003 | CA |
2445558 | Oct 2003 | CA |
2445558 | Oct 2003 | CA |
2449227 | Nov 2003 | CA |
2449227 | Nov 2003 | CA |
2522133 | Apr 2004 | CA |
2522133 | Apr 2004 | CA |
2475905 | Jul 2004 | CA |
2475905 | Jul 2004 | CA |
2480712 | Sep 2004 | CA |
2487029 | Nov 2004 | CA |
2487042 | Nov 2004 | CA |
2496184 | Feb 2005 | CA |
2563082 | Mar 2005 | CA |
2570521 | Dec 2006 | CA |
2631520 | Dec 2006 | CA |
2708147 | Dec 2008 | CA |
2717725 | Mar 2009 | CA |
0006216 | Jan 1980 | EP |
0133934 | Jul 1984 | EP |
0341007 | Apr 1989 | EP |
0493387 | Jul 1990 | EP |
1142581 | Nov 1991 | EP |
0610423 | Oct 1992 | EP |
0654078 | Jun 1993 | EP |
0592242 | Oct 1993 | EP |
0592242 | Oct 1993 | EP |
0641007 | Jan 1994 | EP |
0669138 | Feb 1995 | EP |
0906069 | Nov 1996 | EP |
0877632 | Sep 1997 | EP |
1003568 | Aug 1998 | EP |
0867193 | Sep 1998 | EP |
01010356 | Jun 2000 | EP |
1303184 | May 2001 | EP |
1387703 | May 2001 | EP |
1132061 | Sep 2001 | EP |
1471140 | Jan 2003 | EP |
1538196 | Aug 2003 | EP |
1410810 | Oct 2003 | EP |
1410810 | Oct 2003 | EP |
1410811 | Oct 2003 | EP |
1410811 | Oct 2003 | EP |
1433423 | Oct 2003 | EP |
1433423 | Oct 2003 | EP |
1599126 | Mar 2004 | EP |
1618178 | Apr 2004 | EP |
1506790 | Aug 2004 | EP |
1512739 | Sep 2004 | EP |
1537883 | Dec 2004 | EP |
1537883 | Dec 2004 | EP |
1537883 | Dec 2004 | EP |
1691727 | Dec 2004 | EP |
1958651 | Dec 2004 | EP |
2335650 | Dec 2004 | EP |
2338441 | Dec 2004 | EP |
2338442 | Dec 2004 | EP |
2338533 | Dec 2004 | EP |
1561481 | Feb 2005 | EP |
1561481 | Feb 2005 | EP |
1561481 | Feb 2005 | EP |
1753860 | Feb 2005 | EP |
1535578 | Jun 2005 | EP |
1535633 | Jun 2005 | EP |
1788077 | Nov 2006 | EP |
0920490 | Feb 2008 | EP |
2101681 | Aug 2011 | EP |
2335650 | Oct 2012 | EP |
2105198 | Mar 1983 | GB |
2175507 | May 1985 | GB |
2404607 | Sep 2005 | GB |
59135054 | Aug 1984 | JP |
10036534 | Feb 1998 | JP |
2002233567 | Aug 2002 | JP |
2004136096 | May 2004 | JP |
2006230749 | Sep 2006 | JP |
2003102755 | Apr 2008 | JP |
8002501 | Nov 1980 | WO |
8505274 | Dec 1985 | WO |
9000060 | Jan 1990 | WO |
9101711 | Feb 1991 | WO |
9209697 | Jun 1992 | WO |
9603112 | Feb 1996 | WO |
9603160 | Feb 1996 | WO |
9639170 | Dec 1996 | WO |
9711090 | Mar 1997 | WO |
WO-9726847 | Jul 1997 | WO |
9804681 | Feb 1998 | WO |
9804681 | Feb 1998 | WO |
9844874 | Oct 1998 | WO |
9907417 | Feb 1999 | WO |
9951164 | Oct 1999 | WO |
WO-0006216 | Feb 2000 | WO |
0029484 | May 2000 | WO |
WO-0048837 | Aug 2000 | WO |
0056251 | Sep 2000 | WO |
WO-0062832 | Oct 2000 | WO |
WO-0074741 | Dec 2000 | WO |
WO-0074741 | Dec 2000 | WO |
0102030 | Jan 2001 | WO |
0105443 | Jan 2001 | WO |
WO-0110356 | Feb 2001 | WO |
WO-0123014 | Apr 2001 | WO |
0167961 | Sep 2001 | WO |
0168811 | Sep 2001 | WO |
0168811 | Sep 2001 | WO |
0185225 | Nov 2001 | WO |
0185225 | Nov 2001 | WO |
0197872 | Dec 2001 | WO |
0224244 | Mar 2002 | WO |
02067856 | Sep 2002 | WO |
02076285 | Oct 2002 | WO |
02080991 | Oct 2002 | WO |
02089868 | Nov 2002 | WO |
03077794 | Sep 2003 | WO |
03093433 | Nov 2003 | WO |
03093433 | Nov 2003 | WO |
03100417 | Dec 2003 | WO |
2004028547 | Apr 2004 | WO |
2004028584 | Apr 2004 | WO |
2004028584 | Apr 2004 | WO |
2004078032 | Sep 2004 | WO |
2004078032 | Sep 2004 | WO |
2004078955 | Sep 2004 | WO |
WO-2004078035 | Sep 2004 | WO |
2004096983 | Nov 2004 | WO |
2004105576 | Dec 2004 | WO |
2004110512 | Dec 2004 | WO |
2004110512 | Dec 2004 | WO |
WO-2005011765 | Feb 2005 | WO |
2005018491 | Mar 2005 | WO |
2005044326 | May 2005 | WO |
2005092208 | May 2005 | WO |
2005058207 | Jun 2005 | WO |
2005060987 | Jul 2005 | WO |
2005060987 | Jul 2005 | WO |
2005061018 | Jul 2005 | WO |
2005065079 | Jul 2005 | WO |
2005081870 | Sep 2005 | WO |
2005081870 | Sep 2005 | WO |
2005092405 | Oct 2005 | WO |
2005110278 | Nov 2005 | WO |
2005113751 | Dec 2005 | WO |
2006002253 | Jan 2006 | WO |
WO-2006002253 | Jan 2006 | WO |
2006017176 | Feb 2006 | WO |
2006033698 | Mar 2006 | WO |
2006033698 | Mar 2006 | WO |
2006039484 | Apr 2006 | WO |
2006039484 | Apr 2006 | WO |
2006068972 | Jun 2006 | WO |
2006090372 | Aug 2006 | WO |
2006090372 | Aug 2006 | WO |
2006113642 | Oct 2006 | WO |
2006121612 | Nov 2006 | WO |
2007025290 | Mar 2007 | WO |
2007025290 | Mar 2007 | WO |
2007054939 | May 2007 | WO |
2007067637 | Jun 2007 | WO |
2007067637 | Jun 2007 | WO |
2007089942 | Aug 2007 | WO |
2007089948 | Aug 2007 | WO |
2007089948 | Aug 2007 | WO |
2007102149 | Sep 2007 | WO |
2007115336 | Oct 2007 | WO |
2007143726 | Dec 2007 | WO |
2008019127 | Feb 2008 | WO |
2008019128 | Feb 2008 | WO |
2008019129 | Feb 2008 | WO |
2008021127 | Feb 2008 | WO |
2008079194 | Jul 2008 | WO |
2008079194 | Jul 2008 | WO |
WO-2008079613 | Jul 2008 | WO |
2008106254 | Sep 2008 | WO |
2008128075 | Oct 2008 | WO |
2009039469 | Mar 2009 | WO |
2009076164 | Jun 2009 | WO |
2009111069 | Sep 2009 | WO |
2010078040 | Jul 2010 | WO |
Entry |
---|
Adkisson H.D. et al, In Vitro Generation of Scaffold Independent Neocartilage, Clinical Orthopaedics and Related Research, 2001, pp. S280-S294, No. 391S. |
Black, J, Biological Performance of Tantalum, Clinical Materials, 1994, pp. 167-173, vol. 16. |
Bobyn, J.D. et al, Tissue Response to Porous Tantalum Acetabular Cups, J. Arthroplasty, 1999, pp. 347-354, vol. 14, No. 3. |
Bobyn, J.D. et al, Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants, J. Biomed. Mater. Res., 1982, pp. 571-584, vol. 16. |
Bobyn, J.D. et al, Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, JBJS (Br), 1999, pp. 907-914, vol. 81-B, No. 5. |
Christel, P. et al, Osteochondral Grafting using the Mosaicplasty Technique, www.maitrise-orthop.com/corpusmaitri/orthopaedic/mo76—mosaicplasty/index.shtml, 20 pages. |
Feder, J. et al, Tissue Engineering in Musculoskeletal Clinical Practice: The Promise of Chondral Repair Using Neocartilage, Am. Acad. Orthop. Surg., 2004, pp. 219-226, Chapter 22. |
Hacking, S.A. et al, Fibrous tissue ingrowth and attachment to porous tantalum, J. Biomed. Mater. Res., 2000, pp. 631-638, vol. 52, No. 4. |
Jurgensen, K. et al, A New Biological Glue for Cartilage-Cartilage Interfaces: Tissue Transglutaminase, JBJS (Am), 1997, pp. 185-193, vol. 79. |
Kato, Y. et al, Sulfated Proteoglycan Synthesis by Confluent Cultures of Rabbit Costal Chondrocytes Grown in the Presence of Fibroblast Growth Factor, J. Cell Biology, 1985, pp. 477-485, vol. 100. |
Marcacci, M. et al, Multiple Osteochondral Arthroscopic Grafting (Mosaicplasty) for Cartilage Defects of the Knee: Prospective Study Results at 2-Year Follow-up, J. Arthroscopic & Related Surgery, 2005, pp. 462-470, vol. 21, No. 4. |
Minas, T. et al, Current Concepts in the Treatment of Articular Cartilage Defects, Orthopedics, 1997, pp. 525-538, vol. 20. |
Stockwell, R.A., The cell density of human articular and costal cartilage, J. Anat, 1967, pp. 753-763, vol. 101, No. 4. |
Thilly, W.G. and Levine, D.W., Microcarrier Culture: A Homogeneous Environment for Studies of Cellular Biochemistry, Methods in Enzymology, 1979, pp. 184-194, vol. LVIII, ISBN 0-12-181958-2, Academic Press, Inc., New York, New York, United States. |
Thilly, W.G. et al, Microcarriers and the problem of high density cell culture, From Gene to Protein: Translation in Biotechnology, 1982, pp. 75-103, vol. 19, Academic Press, Inc., New York, New York, United States. |
Trattnig, S. et al, Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging, Magnetic Resonance Imaging, 2005, pp. 779-787, vol. 23. |
Trattnig, S. et al, Quantitative T2 Mapping of Matrix-Associated Autologous Chondrocyte Transplantation at 3 Tesla An in vivo Cross-Sectional Study, Investigative Radiology, 2007, pp. 442-448, vol. 42, No. 6. |
Trattnig, S. et al, Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla, Eur Radiol, 2008, pp. 1251-1259, vol. 18. |
Tuan, R.S., A second-generation autologous chondrocytes implantation approach to the treatment of focal articular cartilage defects, Arthritis Research & Therapy, 2007, pp. 109-112, vol. 9. |
Vacanti, C.A. et al, Synthetic Polymers Seeded with Chondrocytes Provide a Template for New Cartilage Formation, Plastic and Reconstructive Surgery, 1991, pp. 753-759, vol. 88, No. 5. |
Vanderploeg, E.J. et al, Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading, Osteoarthritis and Cartilage, 2008, pp. 1228-1236, vol. 16. |
Venkat, R.V. et al, Study of Hydrodynamics in Microcarrier Culture Spinner Vessels: A Particle Tracking Velocimetry Approach, Biotechnology and Bioengineering, 1996, pp. 456-466, vol. 49. |
Vishwakarma, G.K, et al, Isolation & cryo-preservation of human foetal articular chondrocytes, Indian J. Med Res, 1993, pp. 309-313, vol. 98. |
Von Schroeder, H.P. et al, The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defects, J. Biomedical Materials Research, 1991, pp. 329-339, vol. 25. |
Oldshue, J.Y. et al, Comparison of Mass Transfer Characteristics of Radial and Axial Flow Impellers, Mixing Proceedings of the 6th European Conference, Pavia, Italy, 1988, pp. 345-350. |
Wei, X. et al, The Effect of Sodium Selenite on Chondrocytes in Monolayer Culture, Arthritis & Rheumatism, 1986, pp. 660-664, vol. 29, No. 5. |
Willers, C. et al, Articular cartilage repair: procedures versus products, Expert Rev Med Devices, 2007, pp. 373-392, vol. 4, No. 3. |
Yoshihashi, Y., Tissue Reconstitution by Isolated Articular Chondrocytes in vitro, J. Japanese Orthopaedic Surgical Society, 1983, pp. 629-641, vol. 58. |
Zalzal, G. H. et al, Cartilage Grafts-present status, Head & Neck Surgery, 1986, pp. 363-374, vol. 8. |
Ze'Ev, A.B. et al, Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts, Cell, 1980, pp. 365-372, vol. 21. |
Zheng, M.H. et al, Matrix-induced autologous chondrocyte implantation (MACI): Biological and Histological Assessment, Tissue Engineering, 2007, pp. 737-746, vol. 13, No. 4. |
Zimber, M.P. et al, TGF-β Promotes the Growth of Bovine Chondrocytes in Monolayer Culture and the Formation of Cartilage Tissue on Three-Dimensional Scaffolds, Tissue Engineering, 1995, pp. 289-300, vol. 1, No. 3. |
English translation of Abstract for CA2285382, published Oct. 15, 1998, one page. |
English translation of Abstract of AU7100398, published Oct. 30, 1998, one page. |
English translation of Abstract of JP2001519700, published Oct. 23, 2001, one page. |
English translation of Abstract of JP 2006230749, published Feb. 25, 2005, one page. |
Bartlett, W. et al, Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee, A Prospective, Randomised Study, JBJS, 2005, pp. 640-645, vol. 87-B. |
Peretti, G.M. et al, Meniscal repair using engineered tissue, J. Orthop Res, 2001, pp. 278-285, vol. 19, No. 2. |
Spangenberg, K.M. et al, Histomorphometric Analysis of a Cell-Based Model of Cartilage Repair, Tissue Engineering, 2002, pp. 839-846, vol. 8, No. 5. |
Guilak, F. et al, Functional tissue engineering: the role of biomechanics in articular cartilage repair, Clin Orthop Relat Res, 2001, pp. S295-S2305, vol. 391S. |
“Pulverize”, Merriam-Webster Online Dictionary, Retrieved Jul. 13, 2011 from URL: http://www.merriam-webster.com/dictionary/pulverize, 2 pages. |
“Combine”, Merriam-Webster Online Dictionary, Retrieved Jul. 13, 2011 from URL: http://www.merriam-webster.com/dictionary/combine, 2 pages. |
“Morsel”, Merriam-Webster Online Dictionary, Retrieved Jul. 13, 2011 from URL: http://www.merriam-webster.com/dictionary/morsel, 2 pages. |
Final Office Action regarding U.S. Appl. No. 10/874,402, issued Feb. 22, 2011, 10 pages. |
Non-Final Office Action regarding U.S. Appl. No. 10/874,402, issued Apr. 10, 2008, 8 pages. |
Final Office Action regarding U.S. Appl. No. 10/874,402, issued Apr. 17, 2009, 16 pages. |
Final Office Action regarding U.S. Appl. No. 10/874,402, issued Apr. 19, 2010, 13 pages. |
Non-Final Office Action regarding U.S. Appl. No. 10/874,402, issued Sep. 22, 2010, 10 pages. |
Non-Final Office Action regarding U.S. Appl. No. 10/874,402, issued Oct. 27, 2009, 15 pages. |
Non-Final Office Action regarding U.S. Appl. No. 11/413,419, issued Jun. 26, 2008, 11 pages. |
Final Office Action regarding U.S. Appl. No. 11/413,419, issued Aug. 25, 2009, 13 pages. |
Adkisson, H.D. et al, In Vitro Generation of Scaffold Independent Neocartilage, Clinical Orthopaedics and Related Research, 2001, pp. S280-S294, vol. 391S. |
Adkisson, H.D. et al, The Potential of Human Allogeneic Juvenile Chondrocytes for Restoration of Articular Cartilage, the American Journal of Sports Medicine, 2010, pp. 1324-1333, vol. 38, No. 7. |
Akens, M.K. et al, In Vitro Studies of a Photo-oxidized Bovine Articular Cartilage, J. Vet. Med. A., 2002, pp. 39-45, vol. 49. |
Alfredson, H. and Lorentzon, R., Superior results with continuous passive motion compared to active motion after periosteal transplantation: A retrospective study of human patella cartilage defect treatment, Knee Surg. Sports Traumatol Athrosc, 1999, pp. 232-238, vol. 7. |
Aston, J. E. and Bentley, G., Repair of articular surfaces by allografts of articular and growth-plate cartilage, Society of Bone and Joint Surgery, 1986, pp. 29-35, vol. 68-B, No. 1. |
Augenstein, D.C. et al, Effect of Shear on the Death of Two Strains of Mammalian Tissue Cells, Biotechnology and Bioengineering, 1971, pp. 409-418, vol. XIII. |
Aulthouse, A.L. et al, Expression of the human chondrocyte phenotype in vitro, In Vitro Cellular and Developmental Biology, 1989, pp. 659-668, vol. 25, No. 7. |
Azizkhan, J.C. and Klagsbrun, M., Chondrocytes contain a growth factor that is localized in the nucleus and is associated with chromatin, PNAS, 1980, pp. 2762-2766, vol. 77, No. 5. |
Bacsich, P. and Wyburn, G.M., XXXVIII—The Significance of the Mucoprotein Content on the Survival of Homografts of Cartilage and Cornea, P.R.S.E., 1947, pp. 321-329, vol. LXII, Part III. |
Bartlett, W. et al, Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft, A Preliminary Report, J. Bone and Joint Surgery, 2005, pp. 330-332, vol. 87-B. |
Bassleer, C. et al, Human Chondrocytes in tridimensional culture, In Vitro Cellular and Developmental Biology, 1986, pp. 113-119, vol. 22, No. 3, Part I. |
Behrens, P. et al, Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)-5-year follow up, The Knee, 2006, pp. 194-202, vol. 13. |
Bentley, G. and Greer, R., Homotransplantation of Isolated Epiphyseal and Articular Cartilage Chondrocytes into Joint Surfaces of Rabbits, Nature, 1971, pp. 385-388, vol. 230. |
Binette, F. et al, Terminally redifferentiated human articular chondrocytes express hyaline cartilage markers without hypertrophy, 43rd Annual Meeting, Orthopaedic Research Society, 1997, pp. 520. |
Boumediene, K. et al, Modulation of rabbit articular chondrocyte (RAC) proliferation by TGF-β isoforms, Cell Prolif, 1995, pp. 221-234, vol. 28. |
Brighton, C.T. et al, Articular Cartilage Preservation and Storage, I. Application of Tissue Culture Techniques to the Storage of Viable Articular Cartilage, Arthritis and Rheumatism, 1979, pp. 1093-1101, vol. 22, No. 10. |
Buckwalter, J.A., Articular Cartilage Injuries, Clinical Orthopaedics and Related Research, 2002, pp. 21-37, No. 402. |
Bujia, J. et al, Synthesis of Human Cartilage Using Organotypic Cell Culture, ORL, 1993, pp. 347-351, vol. 55. |
Bujia, J. et al, Effect of Growth Factors on Cell Proliferation by Human Nasal Septal Chondrocytes Cultured in Monolayer, Acta Otolaryngol, 1994, pp. 539-543, vol. 114. |
Chawla, K. et al, Short-term retention of labeled chondrocyte subpopulations in stratified tissue-engineered cartilaginous constructs implanted in vivo in mini-pigs, Tissue Engineering, 2007, pp. 1525-1538, vol. 13, No. 7. |
Chen, F.S. et al, Repair of articular cartilage defects: Part II. Treatment options, The American Journal of Orthopedics, 1999, pp. 88-96. |
Cherry, R.S. and Papoutsakis, E.T., Hydrodynamic effects on cells in agitated tissue culture reactors, Bioprocess Engineering, 1986, pp. 29-41, vol. 1. |
Cherry, R.S. and Papoutsakis, E.T., Physical mechanisms of cell damage in microcarrier cell culture bioreactors, Biotechnology and Bioengineering, 1988, pp. 1001-1014, vol. 32. |
Cherry, R.S. and Papoutsakis, E.T., Understanding and Controlling Fluid-Mechanical Injury of Animal Cells in Bioreactors, Animal Cell Biotechnology, vol. 4, 1990, pp. 72-121, ISBN 0-12-657554-1, Academic Press, Inc., San Diego, California, United States. |
Cherubino, P. et al, Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report, J. Orthopaedic Surgery, 2003, pp. 10-15, vol. 11, No. 1. |
Choi, Y.C. et al, Effect of Platelet Lysate on Growth and Sulfated Glycosaminoglycan Synthesis in Articular Chondrocyte Cultures, Arthritis and Rheumatism, 1980, pp. 220-224, vol. 22, No. 2. |
Cooke, M.E. et al, Manuscript-Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy, pp. 1-19. |
Coutts, R.D. et al, Section III Basic Science and Pathology Rib periochondrial autografts in full-thickness articular cartilage defects in rabbits, Clinical Orthopaedics and Related Research, 1989, pp. 263-273, No. 275. |
Craigmyle, M.B.L., Studies of cartilage autografts and homografts in the rabbit, British Journal of Plastic Surgery, 1955, pp. 93-100. |
Croughan, M. S. et al, Hydrodynamic effects on animal cells grown in microcarrier cultures, Biotechnology and Bioengineering, 1987, pp. 130-141, vol. XXIX. |
Delbruck, A. et al, In vitro culture of human chondrocytes from adult subjects, Connective Tissue Research, 1986, pp. 155-172, vol. 15. |
Dewey, C.F. et al, The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomechanical Engineering, 1981, pp. 177-185, vol. 103. |
Dogterom, A.A. et al, Matrix depletion of young and old human articular cartilage by cultured autologous synovium fragments: a chondrocyte-independent effect, Rheumatol Int, 1985, pp. 169-173, vol. 5. |
Dowthwaite, G.P. et al, The surface of articular cartilage contains a progenitor cell population, J. of Cell Science, 2004, pp. 889-897, vol. 117. |
Drobnic, M. et al, Comparison of four techniques for the fixation of a collagen scaffold in the human cadaveric knee, OsteoArthritis and Cartilage, 2006, pp. 337-344, vol. 14. |
Elima, K. and Vuorio, E., Expression of mRNAs for collagens and other matrix components in dedifferentiating and redifferentialting human chondrocytes in culture, FEBS letters, 1989, pp. 195-198, vol. 258, No. 2. |
Evans, R.C. and Quinn, T.M., Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage, Archives of Biochemistry and Biophysics, 2005, pp. 1-10, vol. 442. |
Farmer, S.R. et al, Altered Translatability of Messenger RNA from Suspended Anchorage-Dependent Fibroblasts: Reversal upon Cell Attachment to a Surface, Cell, 1978, pp. 627-637, vol. 15. |
Feder, J. and Tolbert, W.R., The Large-Scale Cultivation of Mammalian Cells, Scientific American, 1983, pp. 36-43, vol. 248, No. 1. |
Folkman, J. and Moscona, A., Role of cell shape in growth control, Nature, 1978, pp. 345-349, vol. 273. |
Frangos, J.A. et al, Flow effects on prostacyclin production by cultured human endothelial cells, Science, 1985, pp. 1477-1479, vol. 227. |
Freed, L.E. et al, Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J. of Biomedical Materials Research, 1993, pp. 11-23, vol. 27. |
Freed, L.E. et al, Cultivation of Cell-Polymer Cartilage Implants in Bioreactors, J. Cellular Biochemistry, 1993, pp. 257-264, vol. 51. |
Freed, L.E. et al, Composition of Cell-Polymer Cartilage Implants, Biotechnology and Bioengineering, 1994, pp. 605-614, vol. 43. |
Freed, L.E. and Vunjak-Novakovic, G., Tissue Engineering of Cartilage, Tissue Engineering, published 1995, pp. 1788-1806, Chapter 120, CRC Press, Inc., Boca Raton, Florida United States. |
Freed, L.E. and Vunjak-Novakovic, G., Cultivation of Cell-Polymer Tissue Constructs in Simulated Microgravity, Biotechnology and Bioengineering, 1995, pp. 306-313, vol. 46. |
Freed, L.E. et al, Tissue engineering of cartilage in space, PNAS, 1997, pp. 13885-13890, vol. 94. |
Fry, D.L, Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients, Circulation Research, 1968, pp. 165-197, vol. 22. |
Fub, M. et al, Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions, A light, scanning and transmission electron microscopy study, Annals of Anatomy, 2000, pp. 303-310, vol. 182. |
Galera, P. et al, Effect of Transforming Growth Factor-β1 (TGF-β1) on Matrix Synthesis by Monolayer Cultures of Rabbit Articular Chondrocytes during the Dedifferentiation Process, Experimental Cell Research, 1992, pp. 379-392, vol. 200. |
Gelse, K. et al, Paracrine Effect of Transplanted Rib Chondrocyte Spheroids Supports Formation of Secondary Cartilage Repair Tissue, J. Orthopaedic Research, 2009, pp. 1216-1225, vol. 27. |
Gibson, T. et al, The Long-term survival of cartilage homografts in man, British J. Plastic Surgery, 1958, pp. 177-187, vol. 11. |
Gille, J. et al, Migration pattern, morphology and viability of cells suspended in or sealed with fibrin glue: A histomorphologic study, Tissue and Cell, 2005, pp. 339-348, vol. 37. |
Girotto, D. et al, Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds, Biomaterials, 2003, pp. 3265-3275, vol. 24. |
Gooch, K.J. et al, Effects of Mixing Intensity on Tissue-Engineered Cartilage, Biotechnol Bioeng, 2001, pp. 402-407, vol. 72. |
De Haart, M. et al, Optimization of chondrocyte expansion in culture, Effect of TGFβ-2, bFGF and L-ascorbic Acid on bovine articular chondrocytes, Acta Orthop Scand, 1999, pp. 55-61, vol. 70, No. 1. |
Han, E. et al, Shaped, Stratified, Scaffold-free Grafts for Articular Cartilage Defects, Clin Orthop Relat Res, 2008, pp. 1912-1920, vol. 466. |
Harrison, E.T. et al, Osteogenin promotes reexpression of cartilage phenotype by dedifferentiated articular chondrocytes in serum-free meduim, Experimental Cell Research, 1991, pp. 340-345, vol. 192. |
Harrison, E.T. et al, Transforming growth factor-beta: Its effect on phenotype reexpression by dedifferentiated chondrocytes in the presence and absence of osteogenin, In Vitro Cell, Dev. Biol, 1992, pp. 445-448, vol. 28A. |
He, Q. et al, Repair of flexor tendon defects of rabbit with tissue engineering method, Chin J Traumatol (English edition), 2002, pp. 200-208, vol. 5, No. 4. |
Hiraki, Y. et al, Effect of transforming growth factor β on cell proliferation and glycosaminoglycan synthesis by rabbit growth-plate chondrocytes in culture, Biochimica et Biophysica Acta, 1988, pp. 91-99, vol. 969. |
Hollander, A.P. et al, Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees, Tissue Engineering, 2006, pp. 1787-1798, vol. 12, No. 7. |
Hollinger, J.O. and Leong, K., Poly(α-hydroxy acids): carriers for bone morphogenetic proteins, Biomaterials, 1996, pp. 187-194, vol. 17, No. 2. |
Homminga, G. N. et al, Perichondral grafting for cartilage lesions of the knee, J. Bone Joint Surg (Br), 1990, pp. 1003-1007, vol. 72-B, No. 6. |
Horton, W.E. et al, Transforming growth factor-beta and fibroblast growth factor act synergistically to inhibit collagen II synthesis through a mechanism involving regulatory DNA sequences, J. Cellular Physiology, 1989, pp. 8-15, vol. 141. |
Hu, W.S., Bioreactors for animal cell cultivation, Recent Advances in Biotechnology, 1992, pp. 243-261, ISBN 0-7923-1632-0, Kluwer Academic Publishers, Dordrecht, Netherlands. |
Iwasa, J. et al, Clinical application of scaffolds for cartilage tissue engineering, Knee Surg Sports Traumatol Arthorsc, 2008, pp. 561-577, vol. 17, No. 6. |
Jin, C.Z. et al, Human amniotic membrane as a delivery matrix for articular cartilage repair, Tissue Engineering, 2007, pp. 693-703, vol. 13, No. 4. |
Jones, C.W. et al, Matrix-induced autologous chondrocyte implantation in sheep: objective assessments including confocal arthroscopy, J. Orthopaedic Research, 2008, pp. 292-303, vol. 26. |
Kandel, R.A. et al, Fetal bovine serum inhibits chondrocyte collagenase production: interleukin 1 reverses the effect, Biochimica et Biophysics Acta, 1990, pp. 130-134, vol. 1053. |
Kavalkovich, K.W. et al, Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system, In vitro Cell Dev Biol Animal, 2002, pp. 457-466, vol. 38. |
Kimura, T. et al, Basic Science and Pathology, Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures, Clinical Orthopaedic and Related Research, 1984, pp. 231-239, No. 186. |
Klagsbrun, M. et al, The stimulation of DNA synthesis and cell division in chondrocytes and 3T3 cells by a growth factor isolated from cartilage, Experimental Cell Research, 1977, pp. 99-108, vol. 105. |
Klagsbrun, M. and Smtih, S., Purification of a cartilage-derived growth factor, J. Biological Chem, 1980, pp. 10859-10866, vol. 255, No. 22. |
Klein, T.J. et al, Tissue engineering of stratified articular cartilage from chondrocyte subpopulations, OsteoArthritis and Cartilage, 2003, pp. 595-602, vol. 11. |
Klein, T.J. et al, Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage, Tissue Engineering, 2006, pp. 1429-1439, vol. 12, No. 6. |
Kon, E. et al, Arthroscopic second generation autologous chondrocyte implantation at 48 months follow up, Osteoarthritis and Cartilage, 2007, pp. B44 45, vol. 15, Suppl. B. |
Kon, E. et al, Arthroscopic Second-generation Autologous Chondrocyte Implantation Compared with Microfracture of Chondral Lesions of the Knee, Am J. of Sports Medicine, 2009, pp. 33-41, vol. 37, No. 1. |
Kon, E. et al, Second generation issues in cartilage repair, Sports Med Arthrosc Rev, 2008, pp. 221-229, vol. 16, No. 4. |
Krueger, J.W. et al, An in vitro study of flow response by cells, J. Biomechanics, 1971, pp. 31-36, vol. 4. |
Kuettner, K.E. et al, Synthesis of Cartilage Matrix by Mammalian Chondrocytes In Vitro I. Isolation, Culture Characteristics, and Morphology, J. Cell Biology, 1982, pp. 743-750, vol. 93. |
Kujawa, M.J. et al, Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis, Developmental Biology, 1986, pp. 10-16, vol. 113. |
Kujawa, M.J. et al, Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture, Developmental Biology, 1986, pp. 519-528, vol. 114. |
Kujawa, M.J. and Caplan, A.I., Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures, Developmental Biology, 1986, pp. 504-518, vol. 114. |
Lee, J.D. et al, Primary cultured chondrocytes of different origins respond differently to bFGF and TGF-β, Life Sciences, 1997, pp. 293-299, vol. 61, No. 3. |
Leopold, G., Experimental Studies into the Etiology of Tumors, Achiv f. path. Anat., 1881, pp. 283-324, vol. LXXXV, No. 2. |
Libera, J. et al, Cartilage Engineering, Fundamentals of Tissue Engineering and Regenerative Medicine, Chapter 18, pp. 233-242, ISBN: 978-3-540-77754-0, le-lex publishing Services, oHG, Leipzip, Germany. |
Lin, Z. et al, Gene Expression Profiles of Human Chondrocytes during Passaged Monolayer Cultivation, J. Orthopaedic Research, 2008, pp. 1230-1237, vol. 26. |
Liu, L.S. et al, an osteoconductive collagen/hyaluronate matrix for bone regeneration, Biomaterials, 1999, pp. 1097-1108, vol. 20. |
Lui, X. et al, In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes, Biomaterials, 2010, pp. 9406-9414, vol. 31. |
Loeb, L., Autotransplantation and homoiotransplantation of cartilage in the guinea-pig, Am J. Pathology, 1926a, pp. 111-122, vol. 2. |
Lucas, P.A. et al, Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle, J. Biomed Mater Res: Applied Biomaterials, 1989, pp. 23-39, vol. 23, No. A1. |
Luyten, F.P. And Reddi, A.H., Articular cartilage repair: potential role of growth and differentiation factors, Biological Regulation of the Chondrocytes, pp. 227-236, Chapter 9, ISBN: 0-8493-6733-6, CRC Press, Inc., Boca Raton, Florida, United States. |
Mackay, A. M. et al, Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow, Tissue Engineering, 1998, pp. 415-430, vol. 4, No. 4. |
Malemud, C. J. and Sokoloff, L., The effect of chondrocyte growth factor on membrane transport by articular chondrocytes in monolayer culture, Connective Tissue Research, 1978, pp. 1-9, vol. 6. |
Mandl, E.W. et al, Serum-free medium supplemented with high-concentration FGF2 for cell expansion culture of human ear chondrocytes promotes redifferentiation capacity, Tissue Engineering, 2002, pp. 573-582, vol. 8, No. 4. |
Mandl, E.W. et al, Multiplication of human chondrocytes with low seeding densities accelerates cell yield without losing redifferentiation capacity, Tissue Engineering, 2004, pp. 109-120, vol. 10, No. 1/2. |
Maracacci, M. et al, Articular Cartilage Engineering with Hyalograft C, 3-year clinical results, Clinical Orthopaedics and Related Research, 2005, pp. 96-105, No. 435. |
Marlovits, S. et al, Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle, Knee Surg Sports Traumatol Arthrosc, 2005, pp. 451-457, vol. 13. |
Marlovits, S. et al, Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes, JBJS, 2004, pp. 286-295, vol. 86-B. |
Mathiowitz, E. et al, Biologically erodable microspheres as potential oral drug delivery systems, Letters to Nature, 1997, pp. 410-414, vol. 386. |
Mcdermott, A.G.P. et al, Fresh Small-Fragment Osteochondral Allografts Long-term Follow up Study on First 100 cases, Clinical Orthopaedics and Related Research, 1985, pp. 96-102, No. 197. |
McKibbin, B., Immature Joint Cartilage and the Homograft Reaction, JBJS, 1971, pp. 123-135, vol. 53B, No. 1. |
McNickle, A.G. et al, Overview of Existing Cartilage Repair Technology, Sports Med Arthrosc Rev, 2008, pp. 196-201, vol. 16, No. 4. |
McQueen, A. et al, Flow effects on the viability and lysis of suspended mammalian cells, Biotechnology Letters, 1987, pp. 831-836, vol. 9, No. 12. |
Merchuk, J.C., Shear Effects on Suspended Cells, Advances in Biochemical Engineering Biotechnology, 1988, pp. 1988-1995, vol. 44, Springer-Verlag, Berlin Heidelberg, Germany. |
Merchuk, J.C., Why use air-lift bioreactors?, TIBTECH, 1990, pp. 66-71, vol. 8. |
Mienaltowski, M.J. et al, Differential gene expression associated with postnatal equine articular cartilage maturation, BMC Musculoskeletal Disorders, 2008, pp. 149-162, vol. 9. |
Mow, V.C. et al, Experimental Studies on Repair of Large Osteochondral Defects at a High Weight Bearing Area of the Knee Joint: A Tissue Engineering Study, Transactions of the ASME, 1991, pp. 198-207, vol. 113. |
Nixon, A.J. et al, Isolation, propagation, and cryopreservation of equine articular chondrocytes, Am J Vet Res, 1992, pp. 2364-2370, vol. 53, No. 12. |
Nixon, A.J. et al, Temporal matrix synthesis and histologic features of a chondrocyte-laden porous collagen cartilage analogue, AM J Vet Res, 1993, pp. 349-356, vol. 54, No. 2. |
Nixon, A.J. and Fortier, L.A., New Horizons in Articular Cartilage Repair, AAEP Proceedings, 2001, pp. 217-226, vol. 47. |
Obradovic, B. et al, Integration of engineered cartilage, J. Orthopaedic Research, 2001, pp. 1089-1097, vol. 19. |
O'Driscoll, S. W. and Salter, R.B., The Repair of Major Osteochondral Defects in Joint Surfaces by Neochondrogenesis with Autogenous Osteoperiosteal Grafts Stimulated by Continuous Passive Motion an experimental investigation in the rabbit, J. Orthopaedic Research, 2001, pp. 1089-1097, vol. 19. |
Papoutsakis, E.T., Fluid-mechanical damage of animal cells in bioreactors, TIBTECH, 1991, pp. 427-437, vol. 9. |
Pavesio, A. et al, Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings, Tissue engineering of cartilage and bone, 2003, pp. 203-217, Wiley, Chichester, West Sussex, England. |
Peretti, G.M. et al, Bonding of Cartilage Matrices with Cultured Chondrocytes: An Experimental Model, JBJS, 1998, pp. 89-95, vol. 16. |
Peretti, G.M. et al, Cell-based bonding of articular cartilage: An extended study, J Biomed Mater Res A, 2003, pp. 517-524, vol. 64, No. 3. |
Pieter, A. et al, Effect of purified growth factors on rabbit articular chondrocytes in monolayer culture, Arthritis and Rheumatism, 1982, pp. 1217-1227, vol. 25, No. 10. |
Reginato, A.M. et al, Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate, Arthritis and Rheumatism, 1994, pp. 1338-1349, vol. 37, No. 9. |
Robinson, D. et al, Regenerating Hyaline Cartilage in Articular Defects of Old Chickens Using Implants of Embryonal Chick Chondrocytes Embedded in a New Natural Delivery Substance, Calcif Tissue Int, 1990, pp. 246-253, vol. 46. |
Ronga, M. et al, Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee, J. Arthroscopic and Related Surgery, 2004, pp. 79-84, vol. 20, No. 1. |
Ronga, M. et al, Tissue engineering techniques for the treatment of a complex knee injury, J. Arthroscopic and Related Surgery, 2006, pp. 576.e1-576.e3, vol. 22, No. 5. |
Rosier, R.N. et al, Transforming growth factor beta: an autocrine regulator of chondrocytes, Connective Tissue Research, 1989, pp. 295-301, vol. 20. |
Rosselot, G. et al, Development of a serum-free system to study the effect of growth hormone and insulinlike growth factor-I on cultured postembryonic growth plate chondrocytes, In Vitro Cell Dev Biol, 1992, pp. 235-244, vol. 28A. |
Russlies, M. et al, A cell-seeded biocomposite for cartilage repair, Ann Anat, 2002, pp. 317-323, vol. 184. |
Saini, S. and Wick, T.M., Concentric cylinder bioreactor for production of tissue engineered cartilage: Effect of sedding density and hydrodynamic loading on construct development, Biotechnol Prog, 2003, pp. 510-521, vol. 19. |
Salter, R. B., The biological concept of continuous passive motion of synovial joints: The first 18 years of basic research and its clinical application, CPM of Synovial Joints, 1990, pp. 335-353, Chapter 23, Raven Press Ltd, New York, United States. |
Schmidt, T.A. et al, Synthesis of proteoglycan 4 by chondrocyte subpopulations in cartilage explants, monolayer cultures, and resurfaced cartilage cultures, Arthritis and Rheumatism, 2004, pp. 2849-2857, vol. 50, No. 9. |
Schwan, B.L., Human Amniotic Membrane Transplantation for the Treatment of Ocular Surface Disease, Human Amniotic Membrane Transplantation, 2002, pp. 1-7. |
Schwarz, R.P. et al, Cell Culture for Three-Dimensional Modeling in Rotating-Wall Vessels: An Application of Simulated Microgravity, J. Tiss. Cult. Meth., 1992, pp. 51-58, vol. 14. |
Shahgaldi, B.F. et al, Repair of Cartilage Lesions Using Biological Implants, JBJS, 1991, pp. 57-64, vol. 73-B. |
Smtih, R.L. et al, Effects of Fluid-Induced Shear on Articular Chondrocyte Morphology and Metabolism In Vitro, JBJS, 1995, pp. 824-831, vol. 13. |
Sokoloff, L. et al, Sulfate Incorporation by Articular Chondrocytes in Monolayer Culture, Arthritis and Rheumatism, 1970, pp. 118-124, vol. 13, No. 2. |
Sokoloff, L. et al, In vitro culture of articular chondrocytes, Federation Proc, 1973, pp. 1499-1502, vol. 32. |
Song, C.X. et al, Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery, J. Controlled Release, 1997, pp. 197-212, vol. 43. |
Specchia, N. et al, Fetal chondral homorgrafts in the repair of articular cartilage defects, Bulletin Hospital for Joint Disease, 1996, pp. 230-235, vol. 54, No. 4. |
Stathopoulos, N.A. and Hellums, J.D., Shear Stress Effects on Human Embryonic Kidney Cells In Vitro, Biotechnology and Bioengineering, 1985, pp. 1021-1026, vol. XXVII. |
Stewart, M.C. et al, Phenotypic stability of articular chondrocytes in vitro: the effects of culture models, bone morphogenetic protein 2, and Serum Supplementation, Journal of Bone and Mineral Research, 2000, pp. 166-174, vol. 15, No. 1. |
Stiles, C.D. et al, Dual control of cell growth by somatomedins and platelet-derived growth factor, PNAS, 1979, pp. 1279-1283, vol. 76, No. 3. |
Langer, F. and Gross, A.E., Immunogenicity of Allograft Articular Cartilage, JBJS, 1974, pp. 297-304, vol. 56-A, No. 2. |
Langer, F. et al, The Immunogenicity of Fresh and Frozen Allogeneic Bone, JBJS, 1975, pp. 216-220, vol. 57-A, No. 2. |
Lavrishcheva, G.I., Filling Bone Cavities with Minced Cartilage, Ortopediia travmatologiia I protezirovanie, 1955, pp. 80, vol. 1. |
Lee, J.W., Preplanned correction of enophthalmos using diced cartilage grafts, British J. Plastic Surg, 2000, pp. 17-23, vol. 53. |
Lemperg, R., et al, Transplantation of diced rib cartilage to the hip joint. Experimental study on adult dogs, Acta Soc Med Ups, 1965, pp. 197-212, vol. 70, No. 3. |
Lennert, K.H. and Haas, H.G., Fibrin Adhesive in the Surgical Treatment of the Pseudoarthrosis of the Scaphoid Bone—Methods and Results, Unfallchirurgie, 1988, pp. 158-160, vol. 14, No. 3. |
Leopold, G., XIV. Experimental Studies into the Etiology of Tumors, Archiv f. path. Anat., 1881, pp. 283-324, vol. LXXXV, No. 2. |
Limberg, A.A., Supporting and Contour Plastic Repair by Needle Administration of Minced Carthage, Vestnik khirurgii imeni I.I. Grekova, 1957, pp. 68-73, vol. 78, No. 4. |
Limberg, A.A., The use of diced cartilage by injection with a needle. Part 1. Clinical investigations, Plast Reconstr Surg Transplant Bull., 1961, pp. 523-536, vol. 28. |
Limberg, A.A., The use of diced cartilage by injection with a needle. Part 2. Morphologic Changes in the Diced Human Cartilage After Auto- and Homoplasty, Plast Reconstr Surg Transplant Bull., 1961, pp. 649-655, vol. 28. |
Loeb, L, Autotransplantation and Homoiotransplantation of Cartilage in the Guinea-Pig, Am. J. Pathology, 1926, pp. 111-122, vol. II. |
Lu, Y. et al, Minced Cartilage without Cell Culture Serves as an Effective Intraoperative Cell Source for Cartilage Repair, J Orthop Res., 2006, pp. 1261-1270, vol. 24, No. 6. |
Lucht, U. et al, Fibrin sealant in bone transplantation. No effects on blood flow and bone formation in dogs, Acta Orthop Scand., 1986, pp. 19-24, Vol. 57, No. 1. |
Mahomed, M.N. et al, The long-term success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint, Orthopedics, 1992, pp. 1191-1199, vol. 15, No. 10. |
Maletius, W. and Lundberg, M., Refixation of large chondral fragments on the weight-bearing area of the knee joint: a report of two cases, Arthroscopy., 1994, pp. 630-633, vol. 10, No. 6. |
Mankin, H.J., Localization of Tritiated Thymidine in Articular Cartilage of Rabbits: II. Repair in Immature Cartilage, JBJS, 1962, pp. 688-698, vol. 44. |
Mankin, H.J., Localization of Tritiated Thymidine in Articular Cartilage of Rabbits: III. Mature Articular Cartilage, JBJS, 1963, pp. 529-540, vol. 45. |
Mankin, H.J., Current Concepts Review, The Response of Articular Cartilage to Mechanical Injury, JBJS, 1982, pp. 460-466, vol. 64, No. 3. |
Marcacci, M. et al, Articular cartilage engineering with Hyalograft C: 3-year clinical results, Clin Orthop Relat Res., 2005, pp. 96-105, No. 435. |
Marcacci, M. et al, Use of autologous grafts for reconstruction of osteochondral defects of the knee, Orthopedics, 1999, pp. 595-600, vol. 22, No. 6. |
Marchac, D. and Sandor, G., Face lifts and sprayed fibrin glue: an outcome analysis of 200 patients, Br J Plast Surg., 1994, pp. 306-309, vol. 47, No. 5. |
Marchac, D. et al, Fibrin glue fixation in forehead endoscopy: evaluation of our experience with 206 cases, Plast Reconstr Surg., 1997, pp. 713-714, vol. 100, No. 3. |
Matras, H., Fibrin Seal: The State of the Art, J. Oral Maxilofac Surg, 1985, pp. 605-611, vol. 43. |
Matsusue, Y. et al, Biodegradable Pin Fixation of Osteochondral Fragments of the Knee, Clin Ortho Rel Res, 1996, pp. 166-173, No. 322. |
McDermott, A.G.P. et al, Fresh Small-Fragment Osteochondral Allografts, Clin Orthop Relat Res., 1985, pp. 96-102, No. 197. |
McKibbin, B, Immature Joint Cartilage and the Homograft Reaction, JBJS, 1971, pp. 123-135, vol. 53B, No. 1. |
Meachim, G. and Roberts, C., Repair of the joint surface from subarticular tissue in the rabbit knee, J Anat., 1971, pp. 317-327, vol. 109, Part 2. |
Meyers, M.H. and Herron, M., A Fibrin Adhesive Seal for the Repair of Osteochondral Fracture Fragments, Clin Ortho Rel Res, 1984, pp. 258-263, No. 182. |
Mitchell, N. and Shepard, N., The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone, JBJS, 1976, pp. 230-233, vol. 58, No. 2. |
Mithofer, K. et al, Functional outcome of knee articular cartilage repair in adolescent athletes, Am J Sports Med., 2005, pp. 1147-1153, vol. 33, No. 8. |
Miura, Yet al, Brief exposure to high-dose transforming growth factor-beta1 enhances periostea1 chondrogenesis in vitro: a preliminary report, JBJS, 2002, pp. 793-799, vol. 84-A, No. 5. |
Murray, M.M. and Spector, M, The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro, Biomaterials, 2001, pp. 2393-2402, vol. 22. |
Nageotte, J., The Organization of Matter in its Connections with Life. Studies of General Anatomy and Experimental Morphology on teh Connective Tissue and the Nerve, L'Organisation De La Matiere, 1922, pp. 95-98. |
Niekisch, V.R., English Summary only of Possible methods of using fibrin-glue protection in maxillo facial surgery, Zahn Mund Kieferheilkd Zentralbl, 1980, pp. 555-561, vol. 68, No. 6. |
Nixon, A.J., et al, Isolation, propagation, and cryopreservation of equine articular chondrocytes, AM J Vet Res, 1992, pp. 2364-2370, vol. 53, No. 12. |
Nixon, A.J., and Fortier, L.A, New Horizons in Articular Cartilage Repair, AAEP Proceedings, 2001, pp. 217-226, vol. 47. |
O'Driscoll, S.W. et al, The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit, J Bone Joint Surg Am, 1986, pp. 1017-1035, vol. 68, No. 7. |
O'Driscoll, S.W. and Salter, R.B., The Repair of Major Osteochondral Defects in Joint Surfaces by Neochondrogenesis with Autogenous Osteoperiosteal Grafts Stimulated by Continuous Passive Motion, Clin Ortho Rel Res, 1986, pp. 131-140, No. 208. |
Oegema, T.R. and Thompson, R.C. Jr, Characterization of a hyaluronic acid-dermatan sulfate proteoglycan complex from dedifferentiated human chondrocyte cultures, J Biol Chem., 1981, pp. 1015-1022, vol. 256, No. 2. |
Ohlsen, L. and Widenfalk, B., The Early Development of Articular Cartilage After Perichondrial Grafting, Scand J. Plast Reconstr Surg, 1983, pp. 163-177, vol. 17. |
Outerbridge, H.K. et al, The Use of a Lateral Patellar Autologous Graft for the Repair of a Large Osteochondral Defect in the Knee, J Bone Joint Surg Am., 1995, pp. 65-72, vol. 77, No. 1. |
Paar, O. et al,Cartilage Adhesion at the Knee Joint, Clinical Follow up Examination, Akt. Traumatol, 1984, pp. 15-19, vol. 14. |
Paccola, C.A. et al, Fresh Immature Articular Cartilage Allografts—A Study on the Integration of Chondral and Osteochondral Grafts Both in Normal and in Papain-Treated Knee Joints of Rabbits, Arch Orthop Traumat Surg., 1979, pp. 253-259, vol. 93. |
Park, J.J. et al, Comparison of the Bonding Power of Various Autologous Fibrin Tissue Adhesives, Am J Otology, 1997, pp. 655-659, vol. 18, No. 5. |
Park, M.S., Tympanoplasty using autologous crushed cartilage, Rev Laryngol Otol Rhinol, 1995, pp. 365-368, vol. 116, No. 5. |
Pascone, M. and Dioguardi, D., Fibrin Sealant in Plastic Surgery of the Head, Plastic Surgery Nerve Repair Burns, Fibring Sealing in Surgical and Nonsurgical Fields, 1995, pp. 11-15, vol. 3, Springer-Verlag, Berlin Heidelberg. |
Passl, R. et al, Problems of Pure Homologous Articular Cartilage Transplantation, Verh Anat Ges, 1976, pp. 675-678, vol. 70. |
Punzet, G. et al, Morphological and Therapeutic Aspects of Osteochondrosis dissecans and Aseptic Bone Necroses, Acta Medica Austriaca, 1978, pp. 17-18, Suppl. No. 11. |
Passl, R. et al, Fibrin Gluing of Cartilage Surfaces—Experimental Studies and Clinical Results, Med. u. Sport, 1979, pp. 23-28, vol. 19 (1/2). |
Passl, R. et al, Homologous Cartilage Transplants in Animal Experiments, 4th Orthopedics Symposium, Heidelberg, 1981, pp. 102-105, Horst Cotta and Arnim Braun (eds), Georg Thieme Verlag Stuttgart, New York. |
Schaffer, D.J. et al, English abstract only of foreign patent No. WO00/74741 A2, international filing date, Jun. 8, 2000, one page. |
Schaffer, D.J. et al, English abstract only of foreign patent No. WO00/74741 A3, international filing date, Jun. 8, 2000, one page. |
Cherubine, P. et al, English abstract only of Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report, J. Orthop Surg (Hong)Kong), 3002, pp. 10-5, vol. 11, No. 1. |
Yamamoto, K, et al, English abstract only of Japanese publication No. 2006230749A, publication date Sep. 7, 2006, one page. |
Verwerd, C.D.A. et al, Wound Healing of Autologous Implants in the Nasal Septal Cartilage, ORL, 1991, pp. 310-314, vol. 53. |
Wilflingseder, P., Cancellous Bone Grafts, S Afr Med J., 1957, pp. 1267-1271, vol. 31, No. 50. |
Wilfingseder, P., Treatment of Mandibular Facial Dysostosis, S Afr Med J., 1957, pp. 1296-1298, vol. 31, No. 51. |
Pirsig, W., English Abstract only of Regeneration of septal cartilage in children after septoplasty. A histological study, Acta Otolaryngol, 1975, pp. 451-459, vol. 79, No. 5-6. |
Passl, R. et al, Homologous articular cartilage transplantation in animal experiments. Preliminary studies on sheep (author's transl), Arch Orthop Unfallchir., 1976, pp. 243-256, vol. 86, No. 2. |
Hunter, W., VI. Of the Structure and Difeafes of Articulating Cartilages, Academiae Grypeswaldensis Bibliotheca, 1775, pp. 514-521, vol. 1. |
Wikipedia print out of website—http://en.wikipedia.org/wiki/Alpha-2-Macroglobulin, 8 pages. |
Kallio, K.E., Arthroplastia Cutanea, Discussion by T. Heirtom, ACTA Orhtopaedica Scandinavica, 1957, pp. 327-328, vol. 26. |
Peer, L.A., Transplanation of Tissues—Cartilage, Bone, Fascia, Tendon, and Muscle, The Williams & Wilkins Company, 1955, pp. 69-137 and 392-393, vol. 1, Baltimore, Maryland, USA. |
Mannhelm, A., Abstract—Free Autoplastic Cartilage Transplantation, J. Am Med Assoc., 1926, pp. 2132, vol. 87, No. 25. |
Nehrer, S. and Minas, T., Treatment of Articular Cartilage Defects, Investigative Radiology, 2000, pp. 639-646, vol. 35, No. 10. |
Prudden, T.M., Experimental studies on the transplantation of cartilage, Am. J. M. Sc., 1881, pp. 360-370, vol. 82. |
Shands, A.R., Jr., The regeneration of hyaline cartilage in joints. An experimental study, Arch. Surg., 1931, pp. 137-178, vol. 22. |
Cheung, H.S. and Haak, M.H., Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study, Biomaterials, 1989, pp. 63-67, vol. 10. |
Sittinger, M. et al, Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture, Biomaterials, 1994, pp. 451-456, vol. 15, No. 6. |
Polettini, B., English abstract only Experimental Grafts of Cartilage and Bone, J.A.M.A., 1923, p. 360, vol. 80. |
Braun, A and Heine, W.D., Abstract of The Use of Fibrin Adhesive In Fixation of Osteochondral Fragments, Year unknown, Canadian Orthopaedic Research Society, pp. 215-216. |
Rohrbach, JM et al, Abstract only of Biological corneal replacement an alternative to keratoplasty and keratoprosthesis? A pilot study with heterologous hyaline cartilage in the rabbit model, 1995, Klin Monatsbl. Augenheilkd., pp. 191-196, vol. 207, No. 3. |
Fontana, A et al, Abstract only of Cartilage chips synthesized with fibrin glue in rhinoplasty, Aestetic Plast Surg, 1991, pp. 237-240, vol. 15, No. 3. |
Mainil-Varlet, P et al, Abstract only of Articular cartilage repair using a tissue engineered cartilage like implant: an animal study, Osteoarthritis Cartilage, 2001, pp. s:6-15, vol. 9. |
Erol, Oo, the Turkish delight: a pliable graft for rhinoplasty, Plast Reconstro Surg, 2000, pp. 2229-2241, vol. 105, No. 6. |
DeGroot, J. et al, Age related decrease in Proteoglycan synthesis of human articular chondrocytes, 1999, Arthritis & Rheumatism, pp. 1003-1009, vol. 42, No. 5. |
Feder, J. et al, The promise of chondral repair using neocartilage, 2004, Tissue engineering in musculoskeletal clinical practice, 1st Edition, American Academy of Orthopaedic Surgeons, pp. 219-226, Chapter 22, Section 3. |
Morales, T.I., Review: Chondrocyte moves: clever strategies?, Osteoarthritis and Cartilage, 2007, pp. 861-871, vol. 15. |
Namba, R.S. et al, Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model, 1998, JBJS, pp. 4-10, vol. 80, No. 1. |
Williamson, A.K., et al, Compressive properties and function composition relationships of developing bovine articular cartilage, J. Orthopaedic Research, 2001, pp. 1113-1121, vol. 19. |
Specchia, N. et al, Fetal chondral homografts in the repair of articular cartilage defects, Bulletin Hospital for Joint Diseases, 1996, pp. 230-235, vol. 54, No. 4. |
Brown, K.R. et al, English Abstract of Japanese publication No. 2003-102755, 1 page. |
Lapchinsky, A.G., et al., English abstract only of Apparatus for grinding cartilage in plastic surgery, 1960, primenenija Moskva, pp. 209-213, No. 4. |
Imbert, L. et al, English translated Abstract only of Research on cartilage grafts hetero-plastic, 1916, Rev. de chir., pp. 111-128, vol. 52. |
Iwamoto, Y. et al, English abstract of WO2005/011765, published Feb. 10, 2005, 1 page. |
Ochi, M. et al, English abstract of Japanese publication No. 2002-233567, 1 page. |
Sengupta, S. and Lumpur, K, The fate of transplants of articular cartilage in the rabbit, 1974, JBJS, pp. 167-177, vol. 56B, No. 1. |
Didier R., English translated Abstract only of the production of cartilage and bone grafts in living and dead rabbits, 1928, Compt. rend. Soc de biol, pp. 443-445, vol. 98. |
Egkher, E., Indications and Limits of Fibrin Adhesive Applied to Traumatological Patients, Traumatology and Orthopaedics, 1986, pp. 144-151, vol. 7, Springer-Verlag, Berlin Heidelberg. |
Erikson, U. et al, English abstract only, A roentgenological method for the determination of renal blood flow. A preliminary report, Acta Soc Med Ups, 1965, pp. 213-216, vol. 70, No. 3. |
Erol, O.O., The Turkish Delight: A Pliable Graft for Rhinoplasty, Plast. Reconstr. Surg., 2000, pp. 2229-2241, vol. 105. |
Evans, C.H., et al, Experimental Arthritis Induced by Intraarticular Injection of Allogenic Cartilageinous Particles into Rabbit Knees, Arthritis and Rheumatism, 1984, pp. 200-207, vol. 27, No. 2. |
Farrior, R.T., Implant Materials in Restoration of Facial Contour, Laryngoscope, 1966, pp. 934-954, vol. 76, No. 5. |
Feldman, M.D., et al, Compatibility of Autologous Fibrin Adhesive With Implant Materials, Arch Otolaryngol Head Neck Surg, 1988, pp. 182-185, vol. 114. |
Fontana, A., et al, Cartilage Chips Synthesized with Fibrin Glue in Rhinoplasty, Aesth Plast Surg, 1991, pp. 237-240, vol. 15. |
Furukawa, T. et al, Biochemical Studies on Repair Cartilage Resurfacing Experimental Defects in the Rabbit Knee, J Bone Joint Surg Am, 1980, pp. 79-89, vol. 62, No. 1. |
Gaudernak, T., et al, Clinical Experiences Using Fibrin Sealant in the Treatment of Osteochondral Fractures, Fibrin Sealant in Operative Medicine-Traumatology and Orthopaedics, 1986, pp. 91-102, vol. 7, Springer-Verlag, Berlin Heidelberg. |
Gerngross, H. et al, Experimental Studies on the Influence of Fibrin Adhesive, Factor XIII, and Calcitonin on the Incorporation and Remodeling of Autologous Bone Grafts, Arch Orthop Trauma Surg, 1986, pp. 23, 31, vol. 106. |
Gersdorff, M.C.H., and Robillard, T.A., “How I Do It”—Otology and Neurotology. A Specific Issue and Its Solution. A New Procedure for Bone Reconstruction in OTO-Microsurgery: A Mixture of Bone Dust and Fibrinogen Adhesive, Laryngoscope, 1985, pp. 1278-1280, vol. 95. |
Ghadially, J.A. and Ghadially, F.N., Evidence of Cartilage Flow in Deep Defects in Articular Cartilage, Virchows Arch B. Cell Path, 1975, pp. 193-204, vol. 18. |
Ghadially, J.A. et al, Long-Term Results of Deep Defects in Articular Cartilage, Virchows Arch B. Cell Path, 1977, pp. 125-136, vol. 25. |
Ghazavi, M.T. et al, Fresh Osteochondral Allografts for Post-Traumatic Osteochondral Defects of the Knee, JBJS, 1997, pp. 1008-1013, vol. 79-B. |
Gibson, T. et al, The Long-Term Survival of Cartilage Homografts In Man, British Journal of Plastic Surgery, 1958, pp. 177-187, vol. 11. |
Gooding, C.R. et al, Abstract only of A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered, Knee, 2006, pp. 203-210, vol. 13, No. 3. |
Greco, F. et al, Experimental Investigation into Reparative Osteogenesis With Fibrin Adhesive, Arch Orthop Trauma Surg, 1988, pp. 99-104, vol. 107. |
Hamra, S.T., Crushed Cartilage Grafts over Alar Dome Reduction in Open Rhinoplasty, Plast Reconstr Surg., 1993, pp. 352-356, vol. 92, No. 2. |
Hangody, L. et al, English Abstract only, Autogenous Osteochondralf Craft Technique for Replacing Knee Cartilage Defects in Dogs, Autogenous Osteochondral Mosaicplasty, Orthop Int, 1997, pp. 175-181, vol. 5, No. 3. |
Hangody, L. and Fules, P., Autologous Osteochondral Mosaicplasty for the Treatment of Full-Thickness Defects of Weght-Bearing Joints: Ten Years of Experimental and clinical Experience, JBJS, 2003, pp. 25-32, vol. 85. |
Hangody, L. et al, Mosaicplasty for the Treatment of Articular Defects of the Knee and Ankle, Clin Orthopaedics and Rel Res, 2001, pp. S328-S336, No. 391S. |
Harbin, M. and Moritz, A.R., Autogenous Free Cartilage Transplanted into Joints, Archives of Surgery, 1930, pp. 885-896, vol. 20, No. 6. |
He, Q. et al, Repair of flexor tendon defects of rabbit with tissue engineering method, Chinese Journal of Traumatology, 2002, pp. 200-208, vol. 5, No. 4. |
Helidonis, E. et al, Laser Shaping of Composite Cartilage Grafts, Am. J. Otolaryngology, 1993, pp. 410-412, vol. 14, No. 6. |
Homminga, G.N. et al, Perichondral Grafting for Cartilage Lesions of the Knee, British Editorial Society of Bone and Joint Surgery, 1990, pp. 1003-1007, vol. 72B. |
Homminga, G.N., Repair of Chrondral Lesions of the Knee with a Perichondrial Graft, Fibrin Sealant in Operative Medicine-Orthopedic Surgery Maxillofacial Surgery, 1986, pp. 61-69, vol. 4, Springer-Verlag, Berlin Heidelberg. |
Hoover, N. W. et al, Skin Arthroplasty of the Hip, An Experimental Study in Dogs, JBJS, 1961, pp. 1155-1166, vol. 43-A, No. 8. |
Horas, U. et al, Autologous Chondrocyte Implantation and Osteochondral Cylinder Transplantation in Cartilage Repair of the Knee Joint: A Prospective, Comparative Trial, JBJS, 2003, pp. 185-192, vol. 85. |
Horton, W.A. et al, Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis, PNAS, 1992, pp. 4583-4587, vol. 89. |
Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthritis and Cartilage, 2001, pp. 432-463, vol. 10. |
Hurtig, M.B. et al, Effects of Lesion Size and Location on Equine Articular Cartilage Repair, Can J. Vet Res, 1988, pp. 137-146, vol. 52. |
Hurtig, M.B., Use of autogenous cartilage particles to create a model of naturally occurring degenerative joint disease in the horse, Equine Vet J Suppl, 1988, pp. 19-22, No. 6. |
Imhoff, A.B., et al, English Abstract only of Autologous Osteochondral transplantation on various joints, Orthopade, 1999, pp. 33-44, vol. 28, No. 1. |
Ishida, T., English Abstract only of The Use of a Fibrin Adhesive for a Cartilage Graft Basic and Clinical Studies, Japanese J. of Plastic and Reconstructive Surgery, 1990, pp. 215-230, vol. 33, No. 1. |
Ishizaki, Y. et al, Autocrine Signals Enable Chondrocytes to Survive in Culture, J. Cell Biol. 1994, pp. 1069-1077, vol. 126, No. 4. |
Ito, Y. et al, Localization of chondrocyte precursors in periosteum, Osteoarthritis and Cartilage, 2001, pp. 215-223, vol. 9. |
Ittner, G. et al, English Abstract only of Treatment of flake fracture of the talus, Z. Orthop lhre Grenzgeb, 1989, pp. 183-186, vol. 127, No. 2. |
Jakob, R.P. et al, Autologous Osteochondral Grafting in the Knee: Indication, Results and Reflections, Clinical Orthopaedics and Rel Res, 2002, pp. 170.184, No. 401. |
Jin, C.Z. et al, Human Amniotic Membrane as a Delivery Matrix for Articular Cartilage Repair, Tissue Engineering, 2007, pp. 693-702, vol. 13, No. 4. |
Johnson, L.L., Arthroscopic Abrasion Arthroplasty Historical and Pathologic Perspective: Present Status, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 1986, pp. 54-69, vol. 2, No. 1. |
Kanzaki, J. et al, Use of Fibrin Glue in Intracranial Procedures Following Acoustic Neuroma Surgery: Application in Facial Nerve Reconstruction and Prevention of Cerebrospinal Fluid Rhinorrhea, Fibrin Sealing in Surgical and Nonsurgical Fields-Neurosurgery Ophthalmic Surgery Ent, 1994, pp. 162-168, vol. 5, Springer-Verlag, Berlin Heidelberg. |
Kaplonyi, G. et al, The use of fibrin adhesive in the repair of chondral and osteochondral injuries, Injury, 1988, pp. 267-272, vol. 19. |
Kawamura, M. and Urist, M.R., Human Fibrin Is a Physiologic Delivery System for Bone Morphogenetic Protein, Clin Ortho Rel Res, 1988, pp. 302-310, No. 235. |
Keller, J. et al, Fixation of osteochondral fractures, Acta Orthop Scand, 1985, pp. 323-326, vol. 56. |
Kettunen, K.O., Skin Arthroplasty In The Light Of Animal Experiments With Special Reference To Functional Metaplasia of Connective Tissue, Acta Ortho Scand, 1958, pp. 9-69, Suppl. XXIX. |
Kirilak, Y. et al, Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors, Int. J. Mol. Med, 2006, pp. 551-558, vol. 17, No. 4. |
Knutsen, G. et al, Autologous Chondrocyte Implantation Compared with Microfracture in the Knee. A Randomized Trial, JBJS, 2004, pp. 455-464, vol. 86. |
Kon, E. et al, Second Generation Issues in Cartilage Repair, Sports Med Arthrosc Rev., 2008, pp. 221-229, vol. 16. |
Korhonen, R.K. et al, Importance of the superficial tissue layer for the indentation stiffness of articular cartilage, Medical Eng. Phys, 2002, pp. 99-108, vol. 24. |
Lane, J.M. et al, Joint Resurfacing in the Rabbit Using an Autologous Osteochondral Graft, JBJS, 1977, pp. 218-222, vol. 59-A, No. 2. |
Wagner, P.D. and Westen, E., et al, Improved blood buffering in high-altitude natives?, J Appl Physiol, 2002, pp. 2214-2215, vol. 93. |
Wakitani, S., et al, Repair of Rabbit Articular Surfaces With Allograft Chondrocytes Embedded in Collagen Gel, JSJS, 1989, pp. 74-80, vol. 71-B. |
Wei, X., et al, The Effect of Sodium Selenite on Chondrocytes in Monolayer Culture, Arthritis and Rheumatism, 1986, pp. 660-664, vol. 29, No. 5. |
Welsh, F., The alar cartilage morseler: a new instrument, Br. J. Plastic Surgery, 1983, pp. 483-484, vol. 36. |
Wilfilingseder, P., Cranioplasties by means of diced cartilage and split rib grafts, Min Chir, 1983, pp. 837-843, vol. 38, No. 12. |
Wischhofer, E., et al, English abstract only of The Behaviour of Autologous Spongiosa Transplants from the Dial Crest With and Without Fibrinadhesive in the Canine Femoral Epiphysis, Unfallheilkunde, 1982, ppl. 250-252, vol. 85. |
Xu, J.W. et al, Injectable Tissue-Engineered Cartilage with Different Chondrocyte Sources, Plast. Reconstr. Surg., 2004, pp. 1361-1371, vol. 113. |
Yamamoto, E. et al, Use of Micro-Sliced Homograft Cartilage Plates in Tympanoplasty, Acta Otolaryngol, 1985, pp. 123-129, vol. 419. |
Yamashita, F. et al, The Transplantation of an Autogeneic Osteochondral Fragment for Osteochondritis Dissecans of the Knee, Clin Ortho Rel Res, 1985, pp. 43-50, vol. 201. |
Yilmaz, S. et al, Viability of Diced, Crushed Cartilage Grafts and the Effects of Surgicel (Oxidized Regenerated Cellulose) on Cartilage Grafts, Plast. Reconstru. Surg. 2001, pp. 1054-1060, vol. 108. |
Young, F., Autogenous Cartilage Grafts, An Experimental Study, Surgery, 1941, pp. 7-20, vol. 10. |
Young, F., The use of autogenous rib cartilage grafts to repair surface defects in dog joints, Surgery, 1940, pp. 254-263, vol. 7. |
Zahn, F., On the Fate of Tissues Implanted in the Organism, Int. Med. Congr. in Geneva, Biology Section—Meeting of Sep. 11, 1877, pp. 1-4. |
Zalzal, G.H. et al, Cartilage Grafts-Present Status, Head and Neck Surgery, 1986, pp. 363-374, vol. 8. |
Zilch, V.H. and Talke, M., Gluing Small Osteochondral Fragments with Fibrin Glue in Hand Surgery. Clinical Experiences, Handchirurgie, 1980, pp. 77-81, vol. 12. |
Zilch, V.H., Animal Experiments Investigating the Fixation of Small Osteochondral Fragments by Means of Fibrin Glue, Handchirurgie, 1980, pp. 71-75, vol. 12. |
Zilch, H. and Friedebold, G., English summary only of Fixing of Osteochondral Fragments with Fibrinogen Clue. Clinical Experiences, Akt. Traumatol., 1981, pp. 136, vol. 11. |
Zilch, H. and Talke, M., English summary only of Fibrin sealant in cases of little osteochondral fragments of the upper limb, Ann. Chir. Main, 1987, pp. 173-176, vol. 6, No. 2. |
Zilch, H. and Talke, M., English summary only of Fixation of Small Osteochondral Fragments with the Fibrinogen Adhesive, Clinical Report, Ann. Chir. Main, 1980, pp. 77-81, vol. 12. |
Adkisson, H.D., IV et al, In Vitro Generation of Scaffold Independent Neocartilage, Clin Ortho Rel Res, 2001, pp. S280-S294, No. 391S. |
Caruso, E. et al, Repopulation of Laser-Perforated Chondroepiphyseal Matrix with Xenogeneic Chondrocytes: An Experimental Model, JBJS, 1996, pp. 102-107, vol. 14. |
Cheng, N.C. et al, Chondogenic Differentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Cartilage Extracellular Matrix, Tissue Engineering, Part A, 2009, pp. 231-241, vol. 15, No. 2. |
Davis, J.S., Some of the Problems of Plastic Surgery, Ann Surg., 1917, pp. 88-94, vol. 66, No. 1. |
Davis, W.B. and Gibson, T., Absorption of Autogenous Cartilage Grafts In Man, British Journal of Plastic Surgery, 1957, pp. 177-185, vol. 9. |
Gelse, K. et al, Paracrine Effect of Transplanted Rib Chondrocyte Spheroids Supports Formation of Secondary Cartilage Repair Tissue, J. Ortho Res, 2009, pp. 1216-1225, vol. 27. |
Hendrickson, D.A. et al, Chondrocyte-Fibrin Matrix Transplants for Resurfacing Extensive Articular Cartilage Defects, J. Ortho Res, 1994, pp. 485-497, vol. 12 No. 4. |
Homminga, G.N. et al, Chondrocyte behavior in fibrin glue in vitro, Acta Orthop Scand, 1993, pp. 441-445, vol. 64, No. 4. |
Howard, R.D., et al, Long-term fate and effects of exercise on sternal cartilage autografts used for repair of large osteochondral defects in horses, Am J Vet Res, 1994, pp. 1158-1167, vol. 55, No. 8. |
Hutchinson, J., Observations on bone transplants in the anterior chamber of the eye, Glasgow Med J., 1949, pp. 357-363, vol. 30, No. 10. |
Jeffries, D.J.R., and Evans, P.H.R., Cartilage regeneration following septal surgery in young rabbits, J. Laryngology and Otology, 1984, pp. 577-583, vol. 98. |
Gu, J.D., et al, True Denisity of Normal and Enzymatically Treated Bovine Articular Cartilage, Trans Orthop Res Soc., 1999, pp. 642, vol. 24. |
Kim, M.K. et al, Autologous chondrocyte implantation in the knee using fibrin, Knee Surg. Sports Traumatol. Arthrosc., 2010, pp. 528-534, vol. 18. |
Libera, J., et al, Cartilage Engineering, Fundamentals of Tissue Engineering and Regenerative Medicine, 2009, pp. 233-242, Chapter 18, Springer-Verlag, Berlin Heidelberg. |
Liu, X., et al, In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes, Biomaterials, 2010, pp. 9406-9414, vol. 31. |
Longacre, J.J. et al, Further observations of the behavior of autogenous split-rib grafts in reconstruction of extensive defects of the cranium and face, Plas Reconstr Surg, 1957, pp. 281-296, vol. 20, No. 4. |
Marmotti, A., et al, One-Step osteochondral repair with cartilage fragments in a composite scaffold, Knee Surg Sports Traumatol Arthrosc., Feb 21, 2012, [Epub ahead of print], 12 pages. |
McKibbin B. and Holdsworth, F.W., The dual nature of epiphysial cartilage, J Bone Joint Surg Br., 1967, pp. 351-361, vol. 49, No. 2. |
Medawar, P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye, Br J Exp Pathol., 1948, pp. 58-69, vol. 29, No. 1. |
Munirah, S. et al, Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs: an experimental study in sheep, J Bone Joint Surg Br., 2007, pp. 1099-1109, vol. 89, No. 8. |
Nehrer, S. et al, Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair, Eur J Radiol., 2006, pp. 3-8, vol. 57, No. 1. |
Obradovic, B., et al, Integration of engineered cartilage, J Orthop Res., 2001, pp. 1089-1097, vol. 19, No. 6. |
Verwoerd, C.D.A. et al, Stress and woundhealing of the cartilaginous nasal septum, Acta Otolaryngol., 1989, pp. 441-445, vol. 107, No. 5-6. |
Pierce, A. et al, Surgicel: macrophage processing of the fibrous component, Int J Oral Maxillofac Surg., 1987, pp. 338-345, vol. 16, No. 3. |
Roemhildt, M.L. et al, Material properties of articular cartilage in the rabbit tibial plateau, J. Biomech, 2006, pp. 2331-2337, vol. 39, No. 12. |
Schubert, T. et al, Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model, International Journal of Molecular Medicine, 2009, pp. 455-460, vol. 23. |
Selktar, D., Lecture Bulletin Nature's Healing Matrix, Technion Focus, May 2006, 1 page. |
Silverman, R.P., et al, Adhesion of Tissue-Engineered Cartilage to Native Cartilage, Plast. Reconstr Surg, 2000, pp. 1393-1398, vol. 105. |
Sin, Y.M. et al, Studies on the mechanism of cartilage degradation, J Pathol., 1984, pp. 23-30, vol. 142, No. 1. |
Van Susante, J.L.C. et al, Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat, Biomaterials, 1999, pp. 1167-1175, vol. 20, No. 13. |
Dupertuis, S.M., Growth of Young Human Autogenous Cartilage Grafts, Plast Reconstr Surg, 1946, pp. 486-493, vol. 5, No. 6. |
Albrecht, F. et al, Closure of Osteochondral Lesions Using Chondral Fragments and Fibrin Adhesive, Arch Orthop Trauma Surg, 1983, pp. 213-217, vol. 101. |
Albrecht, F., English Abstract of German article Closure of joint cartilage defects using cartilage fragments and fibrin glue, Fortschr Med., 1983, pp. 1650-1652, vol. 101, No. 37. |
Dupertuis, S.M., Actual Growth of Young Cartilage Transplants in Rabbits, Archives of Surgery, 1941, pp. 32-63, vol. 43. |
Eberlin, J.L. et al, Osteocartilagenous Reconstruction, Plastic Surgery Nerve Repair Burns, Fibrin Sealing in Surgical and Nonsurgical Fields, 1995, pp. 20-24, vol. 3 Springer-Verlag, Berlin, Heidelberg. |
De Kleine, E.H., The Chondrojet, A Simplified Method for Handling of Diced Cartilage, Plast Reconstr Surg, 1946, pp. 95-102, vol. 3, No. 1. |
Aston, J.E. and Bentley G., Repair of Articular Surfaces By Allografts of Articular and Growth-Plate Cartilage, J Bone Joint Surg Br.,1986, pp. 29-35, vol. 68, No. 1. |
Bacsich, P. and Wyburn, G.M., XXXVIII. The Significance of the Mucoprotein Content on the Survival of Homografts of Cartilage and Cornea, 1947, P.R.S.E., pp. 321-327, vol. LXII, B, Part III. |
Bayliss, M.T. and Roughley, P.J., The properties of proteoglycan prepared from human articular cartilage by using associative caesium chloride gradients of high and low starting densities, Biochem. J., 1985, pp. 111-117, vol. 232. |
Bently, G. and Greer, R.B. III, Homotransplantation of Isolated Epiphyseal and Articular Cartilage Chondrocytes into Joint Surfaces of Rabbits, Nature, 1971, pp. 385-388, vol. 230. |
Berlet, G.C. et al, Treatment of Unstable Osteochondritis Dissecans Lesions of the Knee Using Autogenous Osteochondral Grafts (Mosaicplasty), J. Arthroscopic and Related Surgery, 1999, pp. 312-316, vol. 15, No. 3. |
Decher, H., Reduction of Radical Cavities by Means of Homologous Cartilage Chips, Larying. Rhinol. Otol., 1985, pp. 423-426, vol. 64. |
Bodo, G. et al, Arthroscopic Autologous Osteochondral Mosaicplasty for the Treatment of Subchondral Cystic Lesion in the Medial Femoral Condyle in a Horse, Acta Veterinaria Hungarica, 2000, pp. 343-354, vol. 48, Vo. 3. |
Craigmyle, M.B.L., Cellular Survival in Long-Term Cartilage Grafts in the Rabbit, Transplantation Bulletin, 1958, pp. 123, vol. 5, No. 1. |
Craigmyle, M.B.L., An Autoradiographic and Histochemical Study of Long-Term Cartilage Grafts in the Rabbit, J. of Anatomy, 1954, pp. 467-473, vol. 92, Part 3. |
Coster, D.J. and Galbraith, J.E.K., Diced cartilage grafts to correct enophthalmos, British J. Ophthalmology, 1980, pp. 135-136, vol. 64. |
Cooke, M.E. et al, Manuscript entitled Structured three-dimensional co-culture of mesenchymal stem cells with chondrocyts promotes chondrogenic differentiation without hypertrophy, pp. 1-19. |
Chesterman, P.J. et al, Homotransplantation of Articular Cartilage and Isolated Chondrocytes, An Experimental Study in Rabbits, JBJS, 1968, pp. 184-197. |
Breadon, G.E., et al, Autografts of Uncrushed and Crushed Bone and Cartilage, Bone and Cartilage Autografts, 1979, pp. 75-80, vol. 105. |
Brighton, C.T., et al, Articular Cartilage Preservation and Storage I. Application of Tissue Culture Techniques to the Storage of Viable Articular Cartilage, Arthritis Rheum., 1979, pp. 1093-1101, vol. 22, No. 10. |
Brittberg, M. et al, Treatment of Deep Cartilage Defects in the Knee With Autologous Chondrocyte Transplantation, The New England Journal of Medicine, 1994, pp. 889-895, vol. 331, No. 14. |
Brittberg, M. Autologous Chondrocyte Transplantation, Clinical Orthopaedics and Related Research, 1999, pp. S147-S155, No. 367S. |
Brittberg, M. et al, Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation, N Engl J Med., 1994, pp. 889-895, vol. 331, No. 14. |
Brodkin, H.A. and Peer, L.A., Diced Cartilage for Chest Wall Defects, 1954, pp. 97-102, vol. 28, No. 1. |
Brown, B.L. et al, Transplantation of Fresh Allografts (Homografts) of Crushed and Uncrushed Cartilage and Bone: A 1-Year Analysis in Rabbits, The Laryngoscope, 1980, pp. 1521-1532, vol. 90. |
Bruns, J. et al, Long-Term Follow up Results after Gluing Osteochondral Fragments in Patients with Osteochondrosis Dissecans Langenbecks Arch Chir, 1993, pp. 160-166, vol. 378. |
Bruns, J. et al, Autologous rib perichondrial grafts in experimentally induced osteochondral lesions in the sheep-knee joint: morphological results, Virchows Archiv A. Pathol Anat, 1992, pp. 1-8, vol. 421. |
Bruns, J. and Henne-Bruns, D., Autologous Perichondrial Transplantation for the Repair of Experimentally Induced Cartilage Defects in the Sheep Knee—Two Glueing Techniques, Orthopedic Surgery Maxillofacial Surgery, Fibrin Sealing in Surgical and Nonsurgical fields, Oct. 27, 1994, pp. 50-60, Springer, Berlin, Heidelberg. |
Buckwalter, J.A., Articular Cartilage Injuries, Clinical Orthopaedics and Related Research, 2002, pp. 21-37, vol. 402. |
Bujia, J. et al, Culture and Cryopreservation of Chondrocytes from Human Cartilage Relevance for Cartilage Allografting in Otolaryngology, ORL, 1992, pp. 80-84, vol. 54. |
Bujia, J., Determination of the Viability of Crushed Cartilage Grafts: Clinical Implications for Wound Healing in Nasal Surgery, Ann Plast Surg, 1994, pp. 261-265, vol. 32. |
Cherubino, P. et al, Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report, J. Ortho Surg, 2003, pp. 10-15, vol. 11, No. 1. |
Calandruccio, R. A. and Gilmer, W.S., Proliferation, Regeneration, and Repair of Articular Cartilage of Immature Animals, JBJS, 1962, pp. 431-455, vol. 44A, No. 3. |
Chen, F.S. et al, Repair of Articular Cartilage Defects: Part II. Treatment Options, Am. J. Ortho, 1999, pp. 88-96. |
Passl, R. and Plenk, H. Jr, Histological observations after replantation of articular cartilage, Unfallchirurgie, 1986, pp. 194-199, vol. 12, No. 4. |
Passl, R. and Plenk, H. Jr, Fibrin Sealing of Cartilage Surfaces, Beitr. Orthop. Traumatol, 1989, pp. 503-507, vol. 36, No. 10. |
Pech, A., et al, Tissuecol in Septorhinoplasties, Ann. Oto-Laryng., 1988, pp. 629-634, vol. 105. |
Peer, L.A., Extended Use of Diced Cartilage Grafts, Meeting of the American Association of Plastic Surgeons, Apr. 21, 23, 1954, pp. 178-185. |
Peer, LA., The Fate of Living and Dead Cartilage Transplanted in Humans, Surg, Gynec, and Obst., 1939, pp. 603-610, vol. 68. |
Peer, L.A., Fate of Autogenous Septal Cartilage After Transplantation in Human Tissues, Archv of Otolaryngology, 1941, pp. 696-709, vol. 34, No. 4. |
Peer, LA., The Neglected Septal Cartilage Graft (With Experimental Observations on the Growth of Human Cartilage Grafts), Arch Otolaryngol Head Neck Surg.,1945, pp. 384-396, vol. 42, No. 5. |
Peretti, G.M. et al, Bonding of Cartilage Matrices with Cultured Chondrocytes: An Experimental Model, J. Orthopaedic Res, 1998, pp. 89-95, vol. 16. |
Peretti, G.M. et al, Biomechanical Analysis of a Chondrocyte-Based Repair Model of Articular Cartilage, Tissue Engineering, 1999, pp. 317-326, vol. 5, No. 4. |
Peretti, G.M. et al, Cell-Based Tissue-Engineered Allogeneic Implant for Cartilage Repair, Tissue Engineering, 2000, pp. 567-576, vol. 6, No. 5. |
Peretti, G.M. et al, Cell-Based bonding of articular cartilage: An extended Study, J. Biomed Mater Res, 2003, pp. 517-524, vol. 64A. |
Peretti, G.M. et al, In vitro bonding of pre-seeded chondrocytes, Sport Sci Health, 2007, pp. 29-33, vol. 2. |
Phemister, D.B. and Miller, E.M., The Method of New Joint Formation in Arthroplasty, Surgery, Gynecology and Ostetrics, 1918, pp. 406-447, vol. 26. |
Pierce, G.W. and O'Connor, G.B., XXXVI. Reconstruction Surgery of the Nose, Ann. Otol. Rhin. And Laryng., 1938, pp. 437-452, vol. 47. |
Piragine, F. et al, Use of Bovine Heterologous Cartilage and Fibrin Sealant in Middle Ear Reconstructive Surgery, Neurosurgery Ophthalmic Surgery ENT, Fibrin Sealing in Surgical and Nonsurgical Fields, 1994, pp. 193-198, vol. 5, Springer-Verlag, New York, USA. |
Pitman, M.I. et al, the Use of Adhesives in Chondrocyte Transplantation Surgery: In-Vivo Studies, Bull Hosp Jt Dis Orthop Inst., 1989, pp. 213-220, vol. 49, No. 2. |
Plaga, B.R. et al, Fixation of osteochondral fractures in rabbit knees. A comparison of Kirschner wires, fibrin sealant, and polydioxanone pins, J Bone Joint Surg Br., 1992, pp. 292-296, vol. 74, No. 2. |
Plenk, H. Jr and Passl, R., Trans- and Replantation of Articular Cartilage Using the Fibrinogen Adhesive System, Gastpar, H. (ed.): Biology of the articular cartilage in health and disease, 1980, pp. 439-447, Schattauer, Stuttgart- New York, USA. |
Plenk, H. Jr and Passl, R., Articular Cartilage Transplants in Experiments and Clinical Practice, ACA, Acta Chirurgica Austriaca 21st Seminar of the Austrian Association of Surgical Research, Nov. 13 to 15, 1997, pp. 1-4, vol. 29, Suppl. No. 137. |
Pridie, K.H., A method of resurfacing osteoarthritic knee joints, JBJS, 1959, pp. 618-619, vol. 41B, No. 3. |
Prin, A. et al, Effect of purified growth factors on rabbit articular chondrocytes in Monolayer Culture, I. DNA Synthesis, Arthritis & Rheumatism, 1982, pp. 1217-1227, vol. 25, No. 10. |
Prudden, T., Article IV., Experimental Studies on the Transplantation, American Journal of the Medical Sciences: Oct. 1881, pp. 360-370, vol. 82, No. 164. |
Vachon, A., et al, Neochondrogenesis in free intra-articular, periosteal, and perichondrial autografts in horses, Am J Vet Res, 1989, pp. 1787-1794, vol. 50, No. 10. |
Redl, H. et al, Methods of Fibrin Seal Application, Thorac. Cardiovasc. Surgeon, 1982, pp. 223-227, vol. 30. |
Roberts, S. et al, Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology, Arthritis Res and Therapy, 2003, pp. R60-R73, vol. 5. |
Robinson, D. et al, Regenerating hyaline cartilage in articular defects of old chickens using implants of embryonal chick chondrocytes embedded in a new natural delivery substance, Calcif Tissue Int., 1990, pp. 246-253, vol. 46, No. 4. |
Ruano-Ravina, A. and Diaz, M.J., Autologous chondrocyte implantation: a systematic review, Osteoarthritis and Cartilage, 2006, pp. 47-51, vol. 14. |
Rudderman, R.H., et al, The Fate of Fresh and Preserved, Noncrushed and Crushed Autogenous Cartilage in the Rabbit Model, Ann Plast Surg, 1994, pp. 250-254, vol. 32. |
Rupp, G. et al, Fibrin Adhesion of Transposed Autologous Cartilage Bone Grafts to Repair Knee-Joint Defects, Langenbeck's Archives of Surgery, 1978, pp. 676-677, vol. 347, No. 1. |
Saidi, K. et al, Articular Knee Transplant in the Rabbit: Experimental Study and Clinical Projections, Union Medicale du Canada, 1971, pp. 88-99, vol. 100, No. 1. |
Salter, R.B., et al, The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in ARticular Cartilage, JBJS, 1980, pp. 1232-1251, vol. 62-A, No. 8. |
Sampath, T.K., et al, In vitro transformation of mesenchymal cells derived from embryonic muscle into cartilage in response to extracellular matrix components of bone, Proc Natl Acad Sci U S A, 1984, pp. 3419-3423, vol. 81, No. 11. |
Schlag, G. and Redl, H., Fibrin Sealant in Orthopedic Surgery, Clin Ortho Rel Res, 1988, pp. 269-285, vol. 227. |
Schlag, G. and Redl, H., Fibrin adhesive system in bone healing, Acta Orthop Scand., 1983, pp. 655-658, vol. 54, No. 4. |
Schobel, H., Compound Prosthesis and Cartilage Layer: Two New Applications of Fibrin Sealing in Reconstructive Middle Ear Surgery, Neurosurgery Ophthalmic Surgery ENT, Fibrin Sealing in Surgical and Nonsurgical Fields, 1994, pp. 186-192, vol. 5, Springer-Verlag, New York, USA |
Schreiber, R.E. et al, A Method for Tissue Engineering of Cartilage by Cell Seeding on Bioresorbable Scaffolds, Ann N Y Acad Sci., 1999, pp. 398-404, vol. 875. |
Schwam, B.L., Human Amniotic Membrane Transplantation for the Treatment of Ocular Surface Disease, Northeast Florida Medicine Journal, http://www.dcmsonline.org/jax-medicine/2002journals/augsept2002/amniotic.htm, 2002, print date Mar. 3, 2009, pp. 1-7. |
Schwartz, E.R., et al, Sulfate Metabolism in Human Chondrocyte Cultures, J. Clin Investigation, 1974, pp. 1056-1063, vol. 54. |
Schwarz, N., et al, The Influence of Fibrin Sealant on Demineralized Bone Matrix-Dependent Osteoinduction, Clin Ortho Rel Re, 1989, pp. 282-287, No. 238. |
Shoemaker, S. et al, Effects of fibrin sealant on incorporation of autograft and xenograft tendons within bone tunnels. A preliminary study, JAm J Sports Med., 1989, pp. 318-324, vol. 17, No. 3. |
Silverman, R.P., et al, Injectable Tissue-Engineered Cartilage Using a Fibrin Glue Polymer, American Society of Plastic Surgeons, 1999, pp. 1809-1818, vol. 103, No. 7. |
Simms, G.F., et al, Diced Homologous Cartilage in Hernioplasty, Jour. Med. Soc. J.J., 1952, pp. 406-407, vol. 49, No. 9. |
Sosna, A. and Vavra, J., Use of Fibrin Glue in Orthopedics, Acta Chir. Orthop. Traum., 1984, pp. 8-91, vol. 51, No. 2. |
Specchia, N. et al, Fetal chondral homografts in the repair of articular cartilage defects, Blletin Hospital for Joint Diseases, 1996, pp. 230-235, vol. 54, No. 4. |
Stoksted, P. and Ladefoged, C., Crushed cartilage in nasal reconstruction, J. Laryngology and Otology, 1986, pp. 897-906, vol. 100. |
Tanaka, H. et al, A Study on Experimental Homocartilage Transplantation, Arch Orthop Traumat Surg, 1980, pp. 165-169, vol. 96. |
Tanaka, H. and Shinno, N., Histochemical Studies on Regeneration of Articular Cartilage, Tokushima J Exp Med., 1971, pp. 63-73, vol. 18. |
Temenoff, J.S. and Mikos, A.G., Review: Tissue engineering for regeneration of articular cartilage, Biomaterials, 2000, pp. 431-440, vol. 21, No. 5. |
Tuan, R.S., A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects, Arthritis Res Ther., 2007, pp. 109 (1-4), vol. 9, No. 5. |
Peretti, G.M. et al, A Biomechanical Analysis of an Engineered Cell-Scaffold Implant for Cartilage Repair, 2001, Ann Plast Surg, pp. 533-537, Vol. 46. |
“U.S. Appl. No. 10/374,772, 1.132 Declaration of Julia Hwang filed Jan. 5, 2009”, 3 pgs. |
“U.S. Appl. No. 10/374,772, Response filed Jan. 6, 2009 to Non-Final Office Action mailed Sep. 2, 2008”, 5 pgs. |
“U.S. Appl. No. 11/010,799, Examiner Interview Summary mailed Apr. 5, 2010”, 4 pgs. |
“U.S. Appl. No. 11/010,779, Examiner Interview Summart mailed Dec. 7, 2009”, 3 pgs. |
“U.S. Appl. No. 11/010,779, Non Final Office Action mailed Feb. 17, 2010”, 4 pgs. |
“U.S. Appl. No. 11/010,779, Non Final Office Action mailed Apr. 15, 2009”, 8 pgs. |
“U.S. Appl. No. 11/010,779, Notice of Allowance mailed Jul. 8, 2010”, 4 pgs. |
“U.S. Appl. No. 11/010,779, Response filed Feb. 12, 2009 to Restriction Requirement mailed Jan. 12, 2009”, 3 pgs. |
“U.S. Appl. No. 11/010,779, Response filed Apr. 19, 2010 to Non Final Office Action mailed Feb. 17, 2010”, 13 pgs. |
“U.S. Appl. No. 11/010,779, Response filed Jul. 15, 2009 to Non Final Office Action mailed Apr. 15, 2009”, 16 pgs. |
“U.S. Appl. No. 11/010,779, Response filed Dec. 3, 2009 to Non Final Office Action mailed Apr. 15, 2009”, 13 pgs. |
“U.S. Appl. No. 11/010,779, Restriciton Requirement mailed Jan. 12, 2009”, 16 pgs. |
“U.S. Appl. No. 11/613,250, Advisory Action mailed Jul. 9, 2008”, 13 pgs. |
“U.S. Appl. No. 11/613,250, Final Office Action mailed Apr. 15, 2008”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Non Office Action mailed Mar. 28, 2011”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Non Final Office Action mailed May 28, 2009”, 12 pgs. |
“U.S. Appl. No. 11/613,250, Non Final Office Action mailed Sep. 20, 2007”, 17 pgs. |
“U.S. Appl. No. 11/613,250, Non Final Office Action mailed Sep. 21, 2010”, 15 pgs. |
“U.S. Appl. No. 11/613,250, Non Final Office Action mailed Oct. 16, 2008”, 11 pgs. |
“U.S. Appl. No. 11/613,250, Non Final Office Action mailed Dec. 23, 2009”, 15 pgs. |
“U.S. Appl. No. 11/613,250, Notice of Allowance mailed Dec. 23, 2011”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Jan. 16, 2009 to Non Final Office Action mailed Oct. 16, 2008”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Jan. 19, 2011 to Non Final Office Action mailed Sep. 21, 2010”, 13 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Mar. 23, 2010 to Non Final Office Action mailed Dec. 23, 2009”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Jun. 16, 2008 to Final Office Action mailed Apr. 15, 2008”, 19 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Aug. 28, 2009 to Non Final Office Action mailed May 28, 2009”, 12 pgs. |
“U.S. Appl. No. 11/613,250, Response filed Sep. 28, 2011 to Non Final Office Action mailed Mar. 28, 2011”, 9 pgs. |
“U.S. Appl. No. 11/613,250, Reponse filed Dec. 20, 2007 to Non Final Office Action mailed Sep. 20, 2007”, 19 pgs. |
“U.S. Appl. No. 11/613,319, Advisory Action mailed Jan. 19, 2010”, 3 pgs. |
“U.S. Appl. No. 11/613,319, Final Office Action mailed Jun. 18, 2012”, 11 pgs. |
“U.S. Appl. No. 11/613,319, Final Office Action mailed Oct. 26, 2009”, 7 pgs. |
“U.S. Appl. No. 11/613,319, Information Disclosure Statement mailed Mar. 20, 2007”, 9 pgs. |
“U.S. Appl. No. 11/613,319, Information Disclosure Statement mailed Jun. 30, 2008”, 6 pgs. |
“U.S. Appl. No. 11/613,319, Information Disclosure Statement mailed Sep. 3, 2010”, 5 pgs. |
“U.S. Appl. No. 11/613,319, Information Disclosure Statement mailed Dec. 20, 2007”, 6 pgs. |
“U.S. Appl. No. 11/613,319, Non Final Office Action mailed Mar. 13, 2009”, 7 pgs. |
“U.S. Appl. No. 11/613,319, Non Final Office Action mailed Dec. 29, 2011”, 9 pgs. |
“U.S. Appl. No. 11/613,319, Response filed Jan. 26, 2009 to Restriction Requirement mailed Dec. 26, 2008”, 7 pgs. |
“U.S. Appl. No. 11/613,319, Response filed Jan. 26, 2010 to Advisory Action mailed Jan. 19, 2010”, 9 pgs. |
“U.S. Appl. No. 11/613,319, Reponse filed Mar. 29, 2012 to Non Final Office Action mailed Dec. 29, 2011”, 15 pgs. |
“U.S. Appl. No. 11/613,319, Reponse filed Jun. 11, 2009 to Non Final Office Action mailed Mar. 13, 2009”, 8 pgs. |
“U.S. Appl. No. 11/613,319, Response filed Sep. 17, 2012 to Final Office Action mailed Jun. 18, 2012”, 19 pgs. |
“U.S. Appl. No. 11/613,319, Response filed Dec. 7, 2009 to Final Office Action mailed Oct. 26, 2009”, 8 pgs. |
“U.S. Appl. No. 11/613,319, Restriction Requirement mailed Dec. 26, 2008”, 6 pgs. |
“U.S. Appl. No. 11/613,456, Advisory Action mailed Aug. 11, 2009”, 3 pgs. |
“U.S. Appl. No. 11/613,456, Final Office Action mailed Jun. 4, 2009”, 7 pgs. |
“U.S. Appl. No. 11/613,456, Non Final Office Action mailed Jan. 23, 2009”, 6 pgs. |
“U.S. Appl. No. 11/613,456, Non Final Office Action mailed Sep. 11, 2009”, 5 pgs. |
“U.S. Appl. No. 11/613,456, Notice of Allowance mailed Jan. 19, 2010”, 5 pgs. |
“U.S. Appl. No. 11/613,456, Response filed Apr. 3, 2009 to Non Final Office Action mailed Jan. 23, 2009”, 8 pgs. |
“U.S. Appl. No. 11/613,456, Response filed Aug. 4, 2009 to Final Office Action mailed Jun. 4, 2009”, 9 pgs. |
“U.S. Appl. No. 11/613,456, Response filed Nov. 6, 2008 to Restriction Requirement mailed Oct. 7, 2008”, 7 pgs. |
“U.S. Appl. No. 11/613,456, Response filed Dec. 7, 2009 to Non Final Office Action mailed Sep. 11, 2009”, 9 pgs. |
“U.S. Appl. No. 11/613,456, Restriction Requirement mailed Oct. 7, 2008”, 6 pgs. |
“U.S. Appl. No. 12/101,553, Response filed Aug. 15, 2011 to Restriction Requirement mailed Jul. 13, 2011”, 11 pgs. |
“U.S. Appl. No. 12/101,553, Final Office Action mailed Sep. 14, 2012”, 9 pgs. |
“U.S. Appl. No. 12/101,553, Final Office Action mailed Dec. 28, 2012”, 9 pgs. |
“U.S. Appl. No. 12/101,553, Non Final Office Action mailed Nov. 9, 2011”, 8 pgs. |
“U.S. Appl. No. 12/101,553, Response filed May 9, 2012 to Non Final Office Action mailed Nov. 9, 2011”, 14 pgs. |
“U.S. Appl. No. 12/101,553, Restriction Requirement mailed Jul. 13, 2011”, 17 pgs. |
“U.S. Appl. No. 12/751,230, Non Final Office Action mailed Sep. 1, 2010”, 9 pgs. |
“U.S. Appl. No. 12/751,230, Preliminary Amendment filed Mar. 31, 2010”, 7 pgs. |
“U.S. Appl. No. 12/751,230, Response filed Jul. 30, 2010 to Restriction Requirement mailed Jul. 21, 2010”, 5 pgs. |
“U.S. Appl. No. 12/751,230, Restriction Requirement mailed Jul. 21, 2010”, 53 pgs. |
“U.S. Appl. No. 12/861,404, Non Final Office Action mailed May 16, 2012”, 6 pgs. |
“U.S. Appl. No. 12/861,404, Preliminary Amendment filed Aug. 23, 2010”, 6 pgs. |
“U.S. Appl. No. 12/976,689, Non Final Office Action mailed May 17, 2012”, 7 pgs. |
“U.S. Appl. No. 12/976,711, Examiner Interview Summary mailed Nov. 15, 2012”, 3 pgs. |
“U.S. Appl. No. 12/976,711, Non Final Office Action mailed Dec. 12, 2012”, 9 pgs. |
“U.S. Appl. No. 12/976,711, Response filed Aug. 29, 2012 to Restriction Requirement mailed May 29, 2012”, 4 pgs. |
“U.S. Appl. No. 12/976,711, Response filed Dec. 3, 2012 to Restriction Requirement mailed Oct. 4, 2012”, 6 pgs. |
“U.S. Appl. No. 12/976,711, Restriciton Requirement mailed May 29, 2012”, 6 pgs. |
“U.S. Appl. No. 12/976,711, Restriction Requirement mailed Oct. 4, 2012”, 6 pgs. |
“U.S. Appl. No. 13/327,238, Non Final Office Action mailed Jan. 2, 2013”, 8 pgs. |
“U.S. Appl. No. 13/327,238, Preliminary Amendment filed Jun. 1, 2012”, 6 pgs. |
“U.S. Appl. No. 13/327,238, Response filed Dec. 7, 2012 to Restriction Requirement mailed Sep. 7, 2012”, 6 pgs. |
“U.S. Appl. No. 13/327,238, Restriction Requirement mailed Sep. 7, 2012”, 11 pgs. |
“U.S. Appl. No. 13/327,265, Final Office Action mailed Jan. 31, 2013”, 8 pgs. |
“U.S. Appl. No. 13/327,265, Non Final Offie Action mailed Apr. 2, 2012”, 10 pgs. |
“U.S. Appl. No. 13/327,265, Response filed Sep. 4, 2012 to Non Final Office Action mailed Apr. 2, 2012”, 7 pgs. |
“U.S. Appl. No. 13/327,265, Non Final Office Action mailed Feb. 7, 2013”, 9 pgs. |
“U.S. Appl. No. 13/327,265, Preliminary Amendment filed Jun. 1, 2012”, 7 pgs. |
“U.S. Appl. No. 13/428,873, Response filed Oct. 17, 2012 to Non Final Office Action mailed Jul. 18, 2012”, 9 pgs. |
“U.S. Appl. No. 13/428,873, Final Office Action mailed Dec. 12, 2012”, 6 pgs. |
“U.S. Appl. No. 13/428,873, Non Final Office Action mailed Jul. 18, 2012”, 9 pgs. |
“U.S. Appl. No. 13/428,873, Preliminary Amendment filed Mar. 23, 2012”, 6 pgs. |
“Application Serial No. 2008240191, First Examination Report mailed Sep. 21, 2012”. |
“Australian Application Serial No. 2006282754, Office Action mailed Nov. 8, 2011”, 3 pgs. |
“European Application Serial No. 04813849.9, Extended European Search Report mailed Apr. 8, 2008”, 3 pgs. |
“European Application Serial No. 04813849.9, Office Action mailed Feb. 16, 2009”, 5 pgs. |
“European Application Serial No. 04813849.9, Response filed Aug. 20, 2009 to Office Action mailed Feb. 16, 2009”, 18 pgs. |
“European Application Serial No. 07862720.5, Notice of Allowance mailed Feb. 25, 2011”, 6 pgs. |
“European Application Serial No. 07862720.5, Office Action mailed Feb. 26, 2010”, 3 pgs. |
“European Application Serial No. 07862720.5, Response filed Sep. 1, 2010 to Office Action mailed Feb. 26, 2010”, 10 pgs. |
“European Application Serial No. 11154746.9, Response filed Dec. 14, 2012 to Office Action mailed Nov. 15, 2012”, 4 pgs. |
“European Application Serial No. 11154746.9, Search Report mailed May 23, 2011”, 4 pgs. |
“European Application Serial No. 11154747.7, Response filed Dec. 14, 2012 to Office Action mailed Nov. 21, 2012”, 4 pgs. |
“European Application Serial No. 11154747.7, Search Report mailed May 23, 2011”, 4 pgs. |
“European Application Serial No. 11154748.5, Search Report mailed May 24, 2011”, 4 pgs. |
“International Application Serial No. PCT/US2008/60078, International Search Report mailed Sep. 3, 2008”, 1 pg. |
“International Application Serial No. PCT/US2004/041591, Written Opinion mailed Jun. 12, 2006”, 4 pgs. |
“International Application Serial No. PCT/US2006/33687, International Preliminary Report on Patentability mailed Feb. 26, 2008”, 7 pgs. |
“International Application Serial No. PCT/US2006/33687, Written Opinion mailed Aug. 8, 2007”, 6 pgs. |
“International Application Serial No. PCT/US2007/025252, International Preliminary Report on Patentability mailed Jun. 23, 2009”, 8 pgs. |
“International Application Serial No. PCT/US2007/025252, International Search Report mailed Aug. 18, 2008”, 3 pgs. |
“International Application Serial No. PCT/US2007/025252, International Search Report mailed Apr. 18, 2008”, 3 pgs. |
“International Application Serial No. PCT/US2007/025252, Written Opinion mailed Apr. 18, 2008”, 7 pgs. |
“International Application Serial No. PCT/US2007/086468, International Preliminary Report on Patentability mailed Jun. 23, 2009”, 10 pgs. |
“International Application Serial No. PCT/US2007/086468, International Search Report Jun. 5, 2008”, 4 pgs. |
“International Application Serial No. PCT/US2007/086468, Written Opinion mailed Jun. 20, 2009”, 9 pgs. |
“Japanese Application Serial No. 2008-528250, Office Action mailed Jun. 22, 2012”, 5 pgs. |
“Japanese Application Serial No. 2008-528250, Response filed Nov. 22, 2012 to Office Action mailed Jun. 22, 2012”, 9 pgs. |
Alston, et al., “New Method to prepare autlogous fibron glue on demand”, Translational Research vol. 149, (2007), 187-195. |
Chang, et al., “Cartilage-Derived Morphogenetic Proteins”, J. Biol. Chem., 269, (1994), 28227-28234. |
Convery, F.R., et al., “The Repair of Large Osteochondral Defects”, An Experimental Study in Horses, Clin. Orthrop. 82., (1972), 253-262. |
Craigmyle, M B, “Studies of Cartilage autografts and homografts in the rabbit”, British Journal of Plastic Surgery 8 , (1955), 93-100. |
Didier, R, et al., “Production de cartilage et d'os, au sein de greffes vivantes et mortes, chez le lapin”, Comptes Rendus Hebdomadaires, (1928), 5 pp. |
Gibble, et al., “Fibrin glue: the perfect operative sealant”, Transfusion, 1990, vol. 30, No. 8., 741-747. |
Huang, et al., “Tissue Engineering”, vol. 8, No. 3, (2002), 469-481. |
Hunziker, E.B., et al., “Quantitative structural organization of normal adult human articular cartilage”, Osteoarthritis and Cartliage 10, (2002), 564-572. |
Kim, et al., “OsteoArthritis and Cartilage”, vol. 11, (2003), 653-664. |
Langer , F, et al., “Immunogenicity of Allograft Articular Cartiliage”, JBJS, vol. 46-A, No. 2, (1974), 297-304. |
Langer, F, et al., “The Immunogenicity of Fresh and Frozen Allogenic Bone”, JBJS, vol. 57-A, No. 2, (1975), 216-220. |
Lapchinsky, A G, et al., “Instrument for Shredding Cartilage in Plastic Surgeries”, New Surgical Machines and Instruments and their usage, No. 4, Moscow, (1960), 209-213. |
Mannheim, A, “Free Autoploastic Cartilage transplantation—Uber freie autoplastische Knorpeltransplantation”, Arch. F klin Chir, (1926), 668-672. |
Marvin, H M, “The Value of the Xanthine Diuretics in Congestive Heart Failure”, The Journal of the American Medical Association, vol. 87, No. 25, Abstract only, (Dec. 18, 1926), 2131-2132. |
Peer, Lyndon, “Diced Cartilage Grafts—New Method for Repair of Skull Defects, Mastoid Fistula and Other Deformities”, Archives of Otolaryngology, vol. 38, No. 2, (1943), 156-165. |
Polettini, Bruno, “Su neoformazioni carilaginee ed ossee determinate da innesti di frammenti di cartilaginee e d'osso fissati”, (1922), 179-192. |
Verwoerd, C.D.A., et al., “Wound Healing of Aurologous Implants in the Nasal Septal Cartilage”, Department of Otorhinolaryngology and Pathology, ORL vol. 53, (1991), 310-314. |
Wikipedia, “Alpha-2-Macroglobulin”, 8 pp. |
Number | Date | Country | |
---|---|---|---|
20090143867 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60712004 | Aug 2005 | US |