Implants for bone fixation or fusion

Information

  • Patent Grant
  • 10166033
  • Patent Number
    10,166,033
  • Date Filed
    Friday, September 18, 2015
    9 years ago
  • Date Issued
    Tuesday, January 1, 2019
    6 years ago
Abstract
Implants for the fusion or fixation of two bone segments are described. For example, the implants can be used for the fusion or fixation of the sacroiliac joint. The implants can include fenestrations, have a rectilinear overall cross-sectional area, and have a curvature. Some implants can also be used to rescue failed implants.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

Embodiments of the invention relate generally to bone implants that can be used to fuse two bone segments together.


BACKGROUND

Many types of hardware are available both for the fixation of bones that are fractured and for the fixation of bones that are to be fused (arthrodesed).


For example, the human hip girdle (see FIGS. 1 and 2) is made up of three large bones joined by three relatively immobile joints. One of the bones is called the sacrum and it lies at the bottom of the lumbar spine, where it connects with the L5 vertebra. The other two bones are commonly called “hip bones” and are technically referred to as the right ilium and-the left ilium. The sacrum connects with both hip bones at the sacroiliac joint (in shorthand, the SI-Joint).


The SI-Joint functions in the transmission of forces from the spine to the lower extremities, and vice-versa. The SI-Joint has been described as a pain generator for up to 22% of lower back pain patients.


To relieve pain generated from the SI-Joint, sacroiliac joint fusion is typically indicated as surgical treatment, e.g., for degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. Currently, screws and screws with plates are used for sacro-iliac fusion. At the same time the cartilage has to be removed from the “synovial joint” portion of the SI-Joint. This requires a large incision to approach the damaged, subluxed, dislocated, fractured, or degenerative joint. The large incision and removal of tissue can cause significant trauma to the patient, resulting in pain and increasing the time to heal after surgery.


In addition, screw type implants tend to be susceptible to rotation and loosening, especially in joints that are subjected to torsional forces, such as the SI-Joint. Excessive movement of the implant after implantation may result in the failure of the implant to incorporate and fuse with the bone, which may result in the need to remove and replace the failed implant.


Consequently, it would be desirable to provide an implant for bone fusion or fixation that resists rotation, can be implanted using a minimally invasive procedure, and/or that can be used to rescue a failed implant.


SUMMARY OF THE DISCLOSURE

The present invention relates generally to bone implants that can be used to fuse two bone segments together.


In some embodiments, an implant for the fixation or fusion of the SI-Joint is provided. The implant can include an elongate body having a longitudinal axis and a noncircular cross-sectional profile transverse to the longitudinal axis, the elongate body having a proximal end and a distal end, wherein the elongate body is curved along the longitudinal axis from the proximal end to the distal end of the elongate body.


In some embodiments, the noncircular cross-sectional profile has one or more apices. In some embodiments, the noncircular cross-sectional profile is substantially rectilinear. In some embodiments, the noncircular cross-sectional profile is triangular.


In some embodiments, the elongate body has a curvature between about 5 and 45 degrees. In some embodiments, the elongate body has a curvature between about 15 and 30 degrees.


In some embodiments, the elongate body has a plurality of fenestrations. In some embodiments, the fenestrations are located on a distal portion of the elongate body.


In some embodiments, a method of implanting a curved implant across a joint or fracture between a first bone segment and a second bone segment is provided. The method can include forming a curved insertion path from the first bone segment, across the joint or fracture between the first bone segment and the second bone segment, and to the second bone segment, wherein the curved insertion path has a predetermined radius of curvature along its length; and inserting a curved implant having a matching radius of curvature into the curved insertion path and into the first bone segment, across the joint or fracture, and into the second bone segment.


In some embodiments, the method further includes inserting a curved guidewire alone the curved insertion path. In some embodiments, the curved guidewire is rotated into the curved insertion path.


In some embodiments, the method further includes disposing a drill bit over the curved guidewire; and drilling a curved bore along the curved guidewire.


In some embodiments, the method further includes disposing a broach over the curved guidewire; and shaping the curved bore with the broach to form the insertion path.


In some embodiments, both the shaped insertion path and the curved implant have a transverse cross-sectional profile that is rectilinear. In some embodiments, both the shaped insertion path and the curved implant have a transverse cross-sectional profile that is defined by at least one apex. In some embodiments, both the shaped insertion path and the curved implant have a transverse cross-sectional profile that is triangular. In some embodiments, both the shaped insertion path and the curved implant have a transverse cross-sectional profile that is rectangular.


In some embodiments, the method further includes disposing a sharp tipped broach over the curved guidewire; and creating a curved and shaped bore along the curved guidewire using the sharp tipped broach.


In some embodiments, an implant for the fixation or fusion of the SI-Joint is provided. The implant can include an elongate body have a longitudinal axis and a noncircular cross-sectional profile transverse to the longitudinal axis, the elongate body having a proximal end and a distal end, wherein the elongate body comprises one or more faces that extend from the proximal end to the distal end of the elongate body, each face having a slot extending from the distal end of the elongate body towards the proximal end of the elongate body along the longitudinal axis; and a rib slidably disposed in each slot.


In some embodiments, the slot is selected from the group consisting of a dovetail slot and a t-slot.


In some embodiments, the rib is made of a material selected from the group consisting of bone graft, metal, metal alloy, hydroxyapatite, ceramic, and polymer.


In some embodiments, the elongate body has three faces and a triangular cross-sectional profile transverse to the longitudinal axis.


In some embodiments, the rib is wedge shaped.


In some embodiments, the rib is positioned in a central portion of the implant and offset from both the proximal end and the distal end of the elongate body.


In some embodiments, an implant for the fixation or fusion of the SI-Joint is provided. The implant can include an elongate body have a longitudinal axis and a noncircular cross-sectional profile transverse to the longitudinal axis having one or more apices, wherein a portion of the one or more apices is removed to form a face along the one or more apices, the face having a slot that extends along the longitudinal axis; and a rib slidably disposed in the slot.


In some embodiments, the rib is made of a material selected from the group consisting of bone graft, metal, metal alloy, hydroxyapatite, ceramic, and polymer.


In some embodiments, the rib is sized and configured to restore the shape of the removed portion of the one or more apices.


In some embodiments, an implant for the fixation or fusion of the SI-Joint is provided. The implant can include an elongate body have a longitudinal axis and a noncircular cross-sectional profile transverse to the longitudinal axis, the elongate body having a proximal end and a distal end, wherein the elongate body comprises one or more faces that extend from the proximal end to the distal end of the elongate body; an elongate rib disposed along the one or more faces of the elongate body; and a wire cage configured to secure the elongate rib to the elongate body.


In some embodiments, the wire cage comprises a first opening to receive the elongate body and a second opening to receive the elongate rib.


In some embodiments, an implant for the fixation or fusion of the SI-Joint is provided. The implant can include an elongate body have a longitudinal axis and a noncircular cross-sectional profile transverse to the longitudinal axis, the elongate body having a proximal end and a distal end, wherein the elongate body comprises one or more faces that extend from the proximal end to the distal end of the elongate body; and one or more fenestrations located on a distal portion of the elongate body.


In some embodiments, the one or more fenestrations are located along a central portion of the one or more faces of the elongate body.


In some embodiments, the elongate body comprises at least one apex and the one or more fenestrations are located at the distal end of the at least one apex.


In some embodiments, the one or more fenestrations are circular.


In some embodiments, the one or more fenestrations are oblong.


In some embodiments, the elongate body is tapered such that the distal end has a smaller diameter or width than the proximal end.


In some embodiments, the elongate body comprises a plurality of walls that form the one or more faces and define a lumen having a noncircular cross-sectional profile.


In some embodiments, the noncircular cross-sectional profile of both the elongate body and the lumen is triangular.


In some embodiments, the noncircular cross-sectional profile of both the elongate body and the lumen is rectangular.


In some embodiments, the elongate body is coated with hydroxyapatite.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1 and 2 are, respectively, anterior and posterior anatomic views of the human hip girdle comprising the sacrum and the hip bones (the right ilium, and the left ilium), the sacrum being connected with both hip bones at the sacroiliac joint (in shorthand, the SI-Joint).



FIGS. 3 and 4 are embodiments of various straight implants that can be used for the fusion or fixation of a joint or two bone segments.



FIG. 5 illustrates an axial section view of the SI-Joint with an implant for the fixation of the SI-Joint using a lateral approach that goes laterally through the ilium, the SI-Joint, and into the sacrum.



FIG. 6 illustrates an axial section view of the SI-Joint with an implant for the fixation of the SI-Joint using a postero-lateral approach entering from the posterior iliac spine of the ilium, angling through the SI-Joint, and terminating in the sacral alae.



FIGS. 7A-7M illustrate perspective views of alternative embodiments of implants that can be used for the fusion or fixation of a joint or two bone segments.



FIG. 8 is a cross-sectional view of an embodiment of an implant having a triangular thru cannula.



FIGS. 9A-9B illustrate an embodiment of an implant with larger dimensions and truncated corners.



FIGS. 10A-10B illustrate an embodiment of an implant with a plurality of ribs.



FIG. 10C illustrates another embodiment of an implant with a plurality of ribs that are formed by osteoconductive materials such as bone, metal, metal alloy, ceramic, and polymer.



FIGS. 10D-10F illustrate additional embodiments of various implants with ribs.



FIGS. 11A-11C illustrate additional embodiments of implants with ribs.



FIGS. 12A and 12B illustrate an embodiment of an implant with a double triangle cross-sectional profile.



FIGS. 13A and 13B illustrate another embodiment of an implant with ribs.



FIGS. 14A and 14B illustrate another embodiment of a triangular implant with curved sides.



FIGS. 15A and 15B illustrate an embodiments of an implant that has been coated with a titanium plasma spray and a hydroxyapatite coating.



FIG. 16 illustrates the use of curved tooling for the implantation of a curved implant.



FIGS. 17A-17C illustrate various views of a modified broach for creating a bore in bone suitable for receiving an implant with ribs.





DETAILED DESCRIPTION


FIG. 3 and FIG. 4 illustrate straight implants 10 with a solid elongate body 12 that can be used for the fixation or fusion of two bone segments. The implant 10 shown in FIG. 3 is cylindrical and can optionally have screw threads along the exterior of the implant body. As mentioned above, cylindrical screw type implants can suffer from excessive rotation. One solution to this problem is the implant 10 in FIG. 4, which has a non-cylindrical cross-sectional area. For example, as shown, the implant 10 can have a triangular cross-sectional area, although other rectilinear cross-sectional profiles may be used as well, including rectangular, hexagonal and the like. Non-cylindrical implants need not have a strict rectilinear cross-sectional profile in order to resist rotation. A cross-sectional area that is non-circular will generally suffice. For example, a tear drop shaped cross-sectional area, or a cross-sectional area with at least one apex, can resist rotation. Other non-circular cross-sectional geometries that may not have a rectilinear component can also work, such as oval cross-sections.



FIG. 5 illustrates insertion of the implant 10 of FIG. 4 across the SI-Joint using a lateral approach that goes laterally through the ilium, across the SI-Joint, and into the sacrum. FIG. 6 illustrates insertion of the same implant across the SI-Joint using a postero-lateral approach entering from the posterior iliac spine of the ilium, angling through the SI-Joint, and terminating in the sacral alae. Many of the implants described herein can be inserted across the SI-Joint in a similar manner.


Implant Variations



FIGS. 7A and 7B illustrate implants 10 that are similar to the implant 10 illustrated in FIG. 4. The implants 10 in FIGS. 7A and 7B have an elongate body 12 and a triangular cross-sectional area transverse to a longitudinal axis that extends through the elongate body 12. The corners or apices 14 of the implant 10 can be rounded and the distal ends 16 of the implants can be tapered to facilitate insertion. The implants 10 can have a cylindrical lumen 18 that extends the length of the elongate body 12. The difference between the implants 10 in FIGS. 7A and 7B is the size of the implants, in particular with respect to the implant diameter, which can be described with reference to an inscribed circle within the cross-sectional area of the implant. The implant 10 in FIG. 7A has a 7.0 mm inscribed diameter, while the implant in FIG. 7B has a 7.5 mm inscribed diameter. As illustrated, the length of both the implants is 55 mm. It should be noted that the dimensions of the implants described herein can vary. For example, the inscribed diameter can vary between about 3 mm to 14 mm, and the length can vary between about 20 mm to 90 mm, or between about 20 mm to 220 mm.



FIGS. 7C-7F illustrate implants 10 with fenestrations 20. FIG. 7C illustrates an implant 10 that is similar to the implant described in FIG. 7B except that this implant also has elliptical fenestrations 20 located in the distal portion of the implant. Distal fenestrations will preferentially allow for bony through-growth within the sacral portion of the implant. The elliptical fenestrations 20 can be positioned in the center of each face 22 of the elongate body 12 such that the major axis of the ellipse is aligned with the longitudinal axis of the implant. Each face 22 can have between 1 to 4 fenestrations. As illustrated, each face 22 has two fenestrations 20 which are 30 degree ellipses. The ellipse can have a degree between about 5 and 90 degrees, where the degree specifies the angle with which a circle is viewed, meaning a 90 degree ellipse specifies a circle while a zero degree ellipse specifies a line. In FIG. 7D, the fenestrations 20 are still centered on each face but are moved all the way to the distal end 16 of the implant such that the fenestrations 20 extend proximally along the face 22 from the distal end 16. In FIG. 7E, the fenestrations 20 are located at the distal end 16 of the implant but are located at the apices 14 of the implant rather than the center of each face 22. In FIG. 7F, the fenestrations 20 are circular.


The shape, size, number and location of the fenestrations can affect the strength of the implant and its ability to resist or tolerate compressive, tensile, bending, torsional, and shear forces. Other fenestration shapes include rectilinear shapes, such as square, rectangular, triangular, and the like. Other locations for the fenestrations include the middle and proximal portions of the implant. Other fenestration locations will allow for bony through-growth in those portions of the implant, such as the ilium portion of the implant. The depth of the fenestrations can penetrate to the lumen or can stop before reaching the lumen. In some embodiments, the size of the fenestrations facilitates the use of bone graft material or other biologic aids. For example, the fenestrations can be between about 1-10 mm in length and about 1-5 mm in width.



FIGS. 7G and 7H illustrate curved implants 10, where the elongate body 12 has a curvature along its length from the proximal end of the implant to the distal end of the implant. The arc can range from 20 mm to 90 mm, and the radius of curvature can range from about 25 mm to about 1000 mm. The arc can be between about 5 to 45 degrees, or about 15 to 30 degrees. The curved implants 10 can have a cross-sectional area that includes one or more apices. For example, as illustrated, the overall cross-sectional area is triangular. In some embodiments, the curved implant 10 can have an overall cross-sectional area that is circular, such that the implant can be a curved rod. The curved implant 10 can have a curved lumen 18 with a curvature that matches the curvature of the implant, as illustrated in FIG. 7G. Alternatively, the curved implant 10 can have a straight lumen 18, as illustrated in FIG. 7H. In other embodiments, the curved implant 10 can have a curved lumen 18 with a curvature that is different from the curvature of the implant 10. The curvature of the implant can improve resistance to twisting forces, rotation, and pull out forces as compared to a straight rod. The method of implantation of the curved implants 10 may be substantially different from the implantation of straight implants, as further described below. Curved implants have also been described in co-pending U.S. patent application No. 14/216,938, which is herein incorporated by reference in its entirety for all purposes.



FIG. 7I illustrates an implant 10 that can have a tapered elongate body 12. The elongate body 12 can be tapered from the proximal end 15 to the distal end 16 of the implant. In some embodiments, the taper can be constant such that the faces 22 of the implant are flat. In other embodiments, the taper can result in concave or convex faces 22. For example, in some embodiments, the proximal end 15 can inscribe an 8.5 mm diameter circle, while the distal end can inscribe a 7.5 mm circle. In some embodiments, the difference in diameters between the proximal end and the distal end can be between about 0.5 mm to about 3 mm, or between about 1-2 mm. The taper can facilitate the initial insertion of the implant 10 into a bore, while also providing enhanced securement and friction fit or press-fit within the bore as the wider portion of the implant is driven into the bore.



FIGS. 7J-7M illustrate implants 10 with a hollow interior in place of the lumen such that the elongate body 12 is formed by a plurality of walls. The walls can have a thickness between about 0.5 mm to about 5 mm, or between about 1 mm to about 3 mm. For example, the implants 10 illustrated in FIGS. 7J and 7K have a wall thickness of 1 mm while the implants 10 illustrated in FIGS. 7L and 7M have a wall thickness of 2 mm. The hollow interior of the implant 10 can be filled and packed with bone graft material and/or another biologic aid to promote bone growth into and throughout the implant 10. The biologic aid can contain bone growth promoters such as bone morphogenetic proteins (BMPs) and/or anti-inflammatory agents, analgesic agents, antibiotics, and anti-microbial agents. In addition, bone graft material and/or a biologic aid can be introduced into the bone cavity and/or the joint or space between the two bones through the hollow interior and fenestrations 20. The fenestrations can be between 1 to 10 mm in length. For example, as illustrated, the fenestrations 20 can be 1.5, 2, 3.5 or 4 mm in length. In some embodiments, the distal end 16 of the walls 13 can be sharpened into chisel or blade-like edges such that the implant can be driven into and through the bone at the implantation site without the need of a pre-formed bore. In some embodiments, a pilot bore can be drilled and the implant can be hammered or tapped into the pilot bore without the need of shaping the pilot bore with a broach. The thickness of the walls 13 can be designed to provide enough strength to accommodate the forces exerted on the implant after implantation. FIG. 8 illustrates a cross-sectional view of an implant 10 with 3 mm thick walls, which provides additional strength to the implant 10. A round guide pin can be used to guide placement of the implant 10, or alternatively, a triangular (or rectilinear or another geometry) pin can be used to guide implant placement. Using a triangular or rectilinear guide pin can allow the operator to align the rotational placement of the implant by simply aligning the guide pin. Implants with fenestrations and a hollow interior defined by a plurality of walls have also been described in U.S. Publication No. 2013/0296953, which is herein incorporated by reference in its entirety.



FIGS. 9A and 9B illustrate a series of implants 10, 10′ where the tips of the apices 14, 14′ can be aligned. The smaller of the two implants 10 can be a standard triangular or rectilinear implant as illustrated in solid lines in FIG. 9A, while the larger implant 10′ is illustrated in dotted lines in the same figure. As illustrated, the apices 14, 14′ of the two implants 10, 10′ are located in the same location, but the apices 14′ of the larger implant 10′ are more rounded or blunt and the faces 22′ are spaced further apart such that the larger implant 10′ inscribes a larger circle than the smaller implant 10 even though the apices 14, 14′ are located at the same location. In other embodiments, there can be some variation between the location of the apices while the other features are still retained, such as the rounder apices and larger inscribed circle. This geometry can reduce implant to implant interference when implanting a plurality of implants across the limited space of a single joint. In addition, this geometry may be particularly useful for the rescue of a failed implant where one implant needs to be replaced without interfering with the other neighboring implants. The replacement implant should be larger in size to ensure a tight fit into the replacement bore while also not extending too far as to interfere with neighboring implants.


Other implants that may be particularly suitable for the rescue of failed implants or can be used as new implants are shown in FIGS. 10A-13B. For example, FIGS. 10A and 10B illustrate a cylindrical implant 10 with a plurality of ribs 24 that extend from the elongate body 12 of the implant. As illustrated, the implant 10 can have a number of ribs 24 that equals the number of sides of the cavity or the implant that is being rescued or replaced. For example, a three rib 24 implant 10 can be used to rescue or replace a triangular implant or a cylindrical implant. The cylinder portion of the implant 10 can have a diameter that roughly matches the size of the inscribed circle of the triangular implant or the size of the cylindrical implant. In this arrangement, the ribs 24 can be located in bone while the cylindrical portion can be located in the cavity after the old implant is removed. In some embodiments, the ribs 24 can be about 1-5 mm wide and 2-8 mm high. The ribs 24 can have a rectilinear overall cross-sectional profile or can have a rounded profile or can have a profile that is a combination of the two.



FIG. 10C illustrates another embodiment of an implant 10 with a plurality of ribs 24. In this embodiment, the implant 10 has an elongate body 12 with a rectilinear overall cross-section profile, which can be triangular as shown, or can be rectangular or square or another shape. Each face 12 of the elongate body 12 can have a rib 24 which can be located along the center or central portion of the face 12. The ribs 24 can extend the full length of the elongate body or can extend only partially along the length of the elongate body. In some embodiments, the ribs 24 can extend from the proximal ends of the elongate body 12. In other embodiments, the ribs 24 can extend from the distal ends of the elongate body 12. In some embodiments, the ribs 24 can be located along a central portion of the elongate body 12 and be offset from both ends of the implant. The ribs 24 can be tapered to an edge such that the ribs are wedge shaped. The ribs 24 can be attached to the elongate body 12 in a variety of ways. For example, if the ribs 24 are made of a different material than the elongate body, such as being made from a bone graft material including cortical or dense cancellous bone, the ribs 24 can be attached using a dovetail joint or a t-slot fastener. If the ribs 24 are made of the same material as the elongate body 24, the ribs 24 can be attached as described above, or can be fabricated along with the body such that the ribs 24 are integral with the elongate body. The ribs can be made of a variety of materials including bone, metal, metal alloy, ceramic, hydroxyapatite and polymer. The ribs 24 can be designed to cross the joint or fracture during or after implantation.



FIG. 10D illustrates another embodiment of an implant with ribs similar to the embodiment shown in FIG. 10C. The implant 10 has dovetail grooves 26 that run along a length of the elongate body 12 of the implant 10. In this embodiment, the grooves 26 are located on and centered on the face 22 of the elongate body, extending from the distal end of the implant and extending towards the proximal end of the implant. In this embodiment, the grooves 26 terminate before reaching the proximal end of the implant so that when the ribs 24 are fully inserted into the dovetail groove, the ribs 24 are located along a central portion of the elongate body 12 such that the ribs 24 are offset from both ends of the implant. The ribs 24 are designed to fit within the dovetail groove and extend outwards in a wedge shape. In this embodiment, the ribs 24 can terminate in a flat or rounded end instead of a point. The distal ends of both the implant and the ribs can be tapered to narrow in the distal direction to facilitate insertion of the implant. In some embodiments, the width of the base of the rib that fits into the groove can be about ⅛ to ¾, or about ¼ to ½ the width of the face of the implant.



FIG. 10E illustrates another embodiment of an implant with ribs. The ribs 24 can be located along the faces 22 of the implant 10, and can have a similar shape and configuration as the ribs described in FIG. 10D. However, instead of using a dovetail groove to secure the ribs 24, the implant 10 has a frame structure 28 for securing the ribs 24 to the faces 22 of the implant. The frame structure 28 can have an implant securing portion 30 that can be attached to the implant. For example, the implant securing portion 30 can be sized and shaped to receive the implant, or in other words, it can have an opening that matches the cross-sectional profile of the implant. The implant securing portion 30 can also have one or more rib securing portions 32 for securing the ribs 24 against the faces 22 of the implant. The rib securing portion 32 can have an opening sized and shaped to receive a portion of the rib 24. For an elongate, wedge shaped rib, the opening of the rib securing portion can have a length at least equal to the length of the rib while having a width that is less than the width of the base of the rib. Such a configuration allows the rib to extend partially through the opening of the rib securing portion. In some embodiments, the rib securing portions 32 can be biased towards the faces 22 of the implant such that when the ribs are secured within the rib securing portions, the ribs are pressed against the faces of the implant. The frame structure 28 can be configured to center the ribs on the faces of the implant. In some embodiments, the frame structure 28 can be made of a wire or ribbon cage structure that can slide over the implant to secure one or more ribs to the faces of the implant. The frame can be made of a metal, plastic, or composite material. In some embodiments, the frame can be secured to the implant with an adhesive, by welding it to the implant, or by fitting the frame in grooves or slots in the implant. Similarly, the ribs can also be secured to the implant and/or frame using adhesives, by welding, or by fitting it into a groove or slot.



FIG. 10F illustrates another embodiment of an implant with ribs, this time with the ribs located along the apices of the implant. In this embodiment in particular, the ribs 24 are generally made of a different material than the implant. For example, the ribs can be made of a bone graft material, such as autograft or allograft bone, metal, metal alloy, hydroxyapatite, a ceramic, a polymer, or some other material or a combination of materials. However, in other embodiments, the ribs can be made of the same or similar material as the implant. In this embodiment, a portion of each apex can be removed to allow the ribs to form the apices of the implant. For example, the distal and central portion of the apices can be removed, leaving a proximal portion of the apices to remain. In other embodiments, the entire apex can be removed. In other embodiments, the proximal and central portion of the apices can be removed, leaving a distal portion of the apices to remain. A dovetail groove 26 can extend along the removed portion of the apex. The ribs 24 can have a trapezoidal joint portion extending along the length of the ribs that fits within the dovetail groove 26 in a sliding dovetail joint. The portion of the rib 24 extending outside the joint can by sized and shaped to replace a missing portion of the apex. For example, the outside portion of the rib 24 can be triangular or trapezoidal shaped with a rounded off end and with sides that are flush with the faces 22 of the implant. The distal end of the rib 24 can be tapered or beveled.



FIGS. 11A-11C illustrated alternative embodiments of implants 10 with ribs 24. As illustrated, the implants 10 can have a plurality of ribs 24, or even a single rib. The ribs 24 can have a rectilinear overall cross-sectional profile or a curvilinear overall cross-sectional profile or a combination of the two.



FIGS. 12A and 12B illustrate an embodiment of an implant with a double triangle overall cross-sectional profile. This implant 10 may be particularly suitable for the rescue of a failed triangular implant. The double triangle implant 10 can be inserted into the cavity such that one of the two triangles is aligned with the cavity while the other triangle penetrates into the bone.



FIGS. 13A and 13B illustrates a cylindrical implant 10 with two large curvilinear ribs 24 that are located on opposite sides of the elongate body 12 of the implant 10. This embodiment can be used to rescue a cylindrical implant or a rectilinear implant as long as the ribs 24 are large enough to extend into bone.



FIGS. 14A and 14B illustrate an implant 10 with a triangular overall cross-sectional profile with curved sides or faces 22. The faces 22 can be concave as shown, or can alternatively be convex. An advantage of a convex design is bony preservation, i.e. less bone is removed to prepare the hole for this implant. An advantage of the concave or convex design is the increased surface area compared to an implant with flat surfaces. In some embodiments, the implant 10 can have additional sides or faces or fewer sides or faces. In some embodiments, some of the sides or faces are convex, some of the sides or faces are concave, and/or some of the sides and faces are flat.



FIGS. 15A and 15B illustrate an implant 10 that is coated with both a titanium plasma spray (TPS) and a hydroxyapatite coating. The TPS coating can provide a roughened and porous surface that facilitates and promotes bony ingrowth and can also provide a roughened surface that can serve as a substrate for the hydroxyapatite coating, which can further promote bony ingrowth and fusion with native bone. The hydroxyapatite coating can be applied over the entire implant, including the exterior surfaces and the interior surfaces, or the hydroxyapatite coating can be applied preferentially on certain surfaces, such as the exterior surface or even just the distal, middle, and/or proximal portions of the implant. The thickness of the TPS coating can be between about 100 and 1500 μm and the thickness of the hydroxyapatite coating can be between about 10 and 1000 μm. These coatings can be applied on any of the implants described herein including implants that are manufactured via 3-D printing or additive manufacturing.


Methods of Implantation


The methods of implantation of the various implants described herein are described in U.S. Patent Publication No. 2011/0087294, U.S. Pat. Nos. 8,425,570, 8,444,693, 8,414,648, and 8,470,004, and co-pending U.S. Provisional Application No. 61/891,326, each of which is herein incorporated by reference in its entirety for all purposes. These methods are particularly suited for use with straight implants.


Referring to FIGS. 17A-17C, a modified broach 1700 can be used to cut out and/or shape a bore for an implant with ribs, such as the implants described in FIGS. 10C-10E, for example. The broach can have a distal cutting head portion 1702 with sharp, pointed cutting elements 1704 at the distal end of the cutting head portion. This allows the broach to be used both with a drill to shape a pilot bore and without a drill to form the bore directly over the guide pin. A plurality of cutting elements 1706 are arranged in a progressively expanding outward pattern that matches the cross-sectional shape and size of the implant. In addition, secondary cutting elements 1708, which may be removably or permanently attached to the broach, can be added to cutting head 1702 to cut out slots for the ribs of the implant. The secondary cutting elements 1708 can be positioned between the apices of the cutting elements 1706 to match the position of the ribs on the implant. The secondary cutting elements 1708 can also have a plurality of staggered cutting edges and surfaces that successively increase in size and shape to match the size and shape of the ribs of the implant. The broach 1700 can also have a lumen 1710 extending along the length of the broach for receiving a guide pin. The broach can be used with a modified soft tissue protector that allows the broach to pass through with the secondary cutting elements.


The curved implants illustrated in FIGS. 7G and 7H may require modifications to the method of insertion protocols. Because the implants are curved, it may not be possible or desirable to attempt to hammer or tap the implant into the bone along a straight path using a straight guide pin, a straight drill, a straight broach and the like. Instead, it may be desirable to create and form a curved insertion path that matches the curvature of the implant.


For example, the tooling used to create the curved insertion path can have a radius of curvature that matches the radius of curvature of the implant. For example, some or all of the tooling and the implant can have a matching radius of curvature, as shown in FIG. 16. The tooling, which can include a guide pin or guidewire 160, a tool guide, a drill bit, a broach, and impact hammer and the like can be rotatably secured by an arm with a length equal to the radius of curvature, with one end of the arm attached to a pivot and the other end used to secure the tools and/or implant.


The rotating arm can be used to drive a curved guide pin into the bone to create a curved path through the bone, such as the ilium and the sacrum. A relatively short drill bit with a lumen for receiving the guide pin can be disposed over the curved guide pin to drill out a curved pilot bore. In some embodiments, the drill bit can be secured by the pivoting arm at the end of a curved guide and can be used to drill the curved pilot bore without the insertion of the curved guide pin.


For a curved implant with a circular overall cross section, the curved implant can then be advanced over the curved guide pin and into the curved insertion path that is formed by the curved pilot bore. In some embodiments, the curved implant can be held by the pivoting arm and inserted into the curved insertion path without the aid of a guide pin by rotating the curved arm.


For a rectilinear implant or more broadly a noncircular implant, the curved pilot bore can be shaped using an appropriately shaped broach that matches the cross-sectional shape of the implant. A curved broach, or a short broach, can be advanced over the curved guide pin if present, otherwise the curved broach or short broach can be held in the pivoting arm and advanced through the pilot bore by rotation of the pivoting arm. As the broach is advanced, it shapes the pilot bore into a shape that matches the shape of the implant. In some embodiments, a broach with a sharp distal tip can be used to create a bore without the need of drilling out a pilot bore. Examples of sharp tipped broaches are disclosed in U.S. application Ser. No. 14/216,790, which is herein incorporated by reference in its entirety. The sharp tipped broach can be advanced over the guide pin and can be tapped directly into the bone to form the curved bore.


The curved implant can then be advanced over the curved guide pin and into the curved insertion path that is formed by the curved pilot bore. In some embodiments, the curved implant can be held by the pivoting arm and inserted into the curved insertion path without the aid of a guide pin by rotating the curved arm.


More generally, the implants described herein can be used to fuse any two bone segments, such as two bones that form a joint or two bones resulting from a fracture.


Implant Rescue


In some cases, an implant will fail to properly fuse with the native bone, which can result in a loose implant and can threaten the stability of the fused bone segments. One solution is to remove the implant and replace it with another implant. The old implant can be removed by chiseling the implant out of bone using a bladed revision tool, such as previously described in co-pending U.S. patent application Ser. No. 14/217,008, which is herein incorporated by reference in its entirety for all purposes.


The implant can then be pulled out of the bone leaving an empty cavity. The cavity is generally of the same shape of the implant, but may be slightly larger due to the bone cutting process. Therefore, the replacement implant that is selected to replace the old implant can be of similar shape but with slightly larger dimensions. For example, an implant that inscribes an 8 mm circle may be suitable as a replacement for an implant that inscribes a 7.5 mm circle. Similarly, a tapered implant such as the tapered implant shown in FIG. 7I can be used. The narrow distal end of the tapered implant can be more easily inserted into the cavity and as the tapered implant is inserted into the cavity, the wider proximal portion can form a secure fit in the cavity.


Alternatively, an implant with a different shape can be inserted into the cavity such that at least one or more portions of the new implant extends into the existing host bone surrounding the cavity. For example, removal of a triangular implant leaves a cavity with a triangular cross-section. Any of the implants illustrated in FIGS. 9A-14B can be inserted into the cavity. For example, any of the implants with ribs can be selected such that the ribs are embedded into the bone surrounding the cavity after insertion into the cavity. In addition, any gaps remaining in the cavity from differences in geometry between the implant and the cavity can be filled with bone graft material and/or a biologic aid. The number of ribs can correspond to the number of sides of the cavity and can be positioned such that each rib is aligned with the center of each side of the cavity.


The implant may be directly tapped into the cavity using a slap hammer or other impact device. In other embodiments, the cavity can be additionally shaped to better receive the implant. For example, a specialized broach with cutouts for the ribs can be used to cut slots into the bone surrounding the cavity, and then the implant can be inserted by aligning the ribs of the implant with the newly cut slots.


The implants can be made of a metal such as titanium, titanium alloy, steel, steel alloy, and the like. Alternatively, the implants can be made of a ceramic, polymer, or bone graft material.


It is understood that this disclosure, in many respects, is only illustrative of the numerous alternative device embodiments of the present invention. Changes may be made in the details, particularly in matters of shape, size, material and arrangement of various device components without exceeding the scope of the various embodiments of the invention. Those skilled in the art will appreciate that the exemplary embodiments and descriptions thereof are merely illustrative of the invention as a whole. While several principles of the invention are made clear in the exemplary embodiments described above, those skilled in the art will appreciate that modifications of the structure, arrangement, proportions, elements, materials and methods of use, may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the scope of the invention. In addition, while certain features and elements have been described in connection with particular embodiments, those skilled in the art will appreciate that those features and elements can be combined with the other embodiments disclosed herein.

Claims
  • 1. A method of implanting a curved implant across a joint or fracture between a first bone segment and a second bone segment, the method comprising: forming a curved insertion path from the first bone segment, across the joint or fracture between the first bone segment and the second bone segment, and to the second bone segment, wherein the curved insertion path has a predetermined radius of curvature along its length;inserting a curved guidewire along the curved insertion path;disposing a drill bit over the curved guidewire;drilling a curved bore along the curved guidewire;disposing a broach over the curved guidewire;shaping the curved bore with the broach to form the insertion path; andinserting a curved implant having a matching radius of curvature into the curved insertion path and into the first bone segment, across the joint or fracture, and into the second bone segment.
  • 2. The method of claim 1, wherein the curved guidewire is rotated into the curved insertion path.
  • 3. The method of claim 1, wherein both the shaped insertion path and the curved implant have a transverse overall cross-sectional profile that is rectilinear.
  • 4. The method of claim 1, wherein both the shaped insertion path and the curved implant have a transverse overall cross-sectional profile that is defined by at least one apex.
  • 5. The method of claim 1, wherein both the shaped insertion path and the curved implant have a transverse overall cross-sectional profile that is triangular.
  • 6. The method of claim 1, wherein both the shaped insertion path and the curved implant have a transverse overall cross-sectional profile that is rectangular.
  • 7. The method of claim 1, wherein the curved implant comprises an elongate body with a plurality of fenestrations.
  • 8. The method of claim 7, wherein the fenestrations are located on a distal portion of the elongate body.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claim priority to U.S. Provisional Patent Application No. 62/052,318, filed Sep. 18, 2014, titled “IMPLANTS FOR BONE FIXATION OR FUSION,” which is herein incorporated by reference in its entirety for all purposes.

US Referenced Citations (580)
Number Name Date Kind
1951278 Ericsson Mar 1934 A
2136471 Schneider Nov 1938 A
2243717 Moreira May 1941 A
2414882 Longfellow Jul 1947 A
2562419 Ferris Jul 1951 A
2675801 Bambara et al. Apr 1954 A
2697433 Zehnder Dec 1954 A
3076453 Tronzo Feb 1963 A
3506982 Steffee Apr 1970 A
3694821 Moritz Oct 1972 A
3709218 Halloran Jan 1973 A
3744488 Cox Jul 1973 A
4059115 Jumashev et al. Nov 1977 A
4156943 Collier Jun 1979 A
4292964 Ulrich Oct 1981 A
4341206 Perrett et al. Jul 1982 A
4344190 Lee et al. Aug 1982 A
4399813 Barber Aug 1983 A
4423721 Otte et al. Jan 1984 A
4475545 Ender Oct 1984 A
4501269 Bagby Feb 1985 A
4569338 Edwards Feb 1986 A
4612918 Slocum Sep 1986 A
4622959 Marcus Nov 1986 A
4630601 Harder et al. Dec 1986 A
4638799 Moore Jan 1987 A
4657550 Daher Apr 1987 A
4743256 Brantigan May 1988 A
4773402 Asher et al. Sep 1988 A
4787378 Sodhi Nov 1988 A
4790303 Steffee Dec 1988 A
4834757 Brantigan May 1989 A
4846162 Moehring Jul 1989 A
4877019 Vives Oct 1989 A
4878915 Brantigan Nov 1989 A
4898186 Ikada et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4950270 Bowman et al. Aug 1990 A
4961740 Ray et al. Oct 1990 A
4969888 Scholten et al. Nov 1990 A
4981481 Kranz et al. Jan 1991 A
5034011 Howland Jul 1991 A
5034013 Kyle et al. Jul 1991 A
5035697 Frigg Jul 1991 A
5041118 Wasilewski Aug 1991 A
5053035 McLaren Oct 1991 A
5059193 Kuslich Oct 1991 A
5066296 Chapman et al. Nov 1991 A
5102414 Kirsch Apr 1992 A
5108397 White Apr 1992 A
5122141 Simpson et al. Jun 1992 A
5139498 Astudillo Ley Aug 1992 A
5139500 Schwartz Aug 1992 A
5147367 Ellis Sep 1992 A
5147402 Bohler et al. Sep 1992 A
5190551 Chin Mar 1993 A
5197961 Castle Mar 1993 A
5242444 MacMillan Sep 1993 A
5298254 Prewett et al. Mar 1994 A
5334205 Cain Aug 1994 A
5380325 Lahille et al. Jan 1995 A
5390683 Pisharodi Feb 1995 A
5433718 Brinker Jul 1995 A
5443466 Shah Aug 1995 A
5458638 Kuslich et al. Oct 1995 A
5470334 Ross et al. Nov 1995 A
5480402 Kim Jan 1996 A
5569249 James et al. Oct 1996 A
5591235 Kuslich Jan 1997 A
5593409 Michelson Jan 1997 A
5609635 Michelson Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5626616 Speece May 1997 A
5643264 Sherman et al. Jul 1997 A
5645599 Samani Jul 1997 A
5658337 Kohrs et al. Aug 1997 A
5667510 Combs Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5672178 Petersen Sep 1997 A
5683391 Boyd Nov 1997 A
5709683 Bagby Jan 1998 A
5713904 Errico et al. Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5725581 Brånemark Mar 1998 A
5743912 LaHille et al. Apr 1998 A
5759035 Ricci Jun 1998 A
5766174 Perry Jun 1998 A
5766252 Henry et al. Jun 1998 A
5766261 Neal et al. Jun 1998 A
5788699 Bobst et al. Aug 1998 A
5800440 Stead Sep 1998 A
5868749 Reed Feb 1999 A
5897556 Drewry et al. Apr 1999 A
5928239 Mirza Jul 1999 A
5941885 Jackson Aug 1999 A
5961522 Mehdizadeh Oct 1999 A
5961554 Janson et al. Oct 1999 A
6010507 Rudloff Jan 2000 A
6015409 Jackson Jan 2000 A
6053916 Moore Apr 2000 A
6056749 Kuslich May 2000 A
6086589 Kuslich et al. Jul 2000 A
6096080 Nicholson et al. Aug 2000 A
6120504 Brumback et al. Sep 2000 A
6143031 Knothe et al. Nov 2000 A
6197062 Fenlin Mar 2001 B1
6210442 Wing et al. Apr 2001 B1
6214049 Gayer et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6224607 Michelson May 2001 B1
6241732 Overaker et al. Jun 2001 B1
6264657 Urbahns et al. Jul 2001 B1
6270528 McKay Aug 2001 B1
6287343 Kuslich et al. Sep 2001 B1
6302885 Essiger Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306140 Siddiqui Oct 2001 B1
6319253 Ackeret et al. Nov 2001 B1
6406498 Tormala et al. Jun 2002 B1
6409768 Tepic et al. Jun 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6471707 Miller et al. Oct 2002 B1
6485518 Cornwall et al. Nov 2002 B1
6497707 Bowman et al. Dec 2002 B1
6517541 Sesic Feb 2003 B1
6520969 Lambrecht et al. Feb 2003 B2
6524314 Dean et al. Feb 2003 B1
6527775 Warburton Mar 2003 B1
6558386 Cragg May 2003 B1
6565566 Wagner May 2003 B1
6575899 Foley et al. Jun 2003 B1
6575991 Chesbrough et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6582431 Ray Jun 2003 B1
6595998 Johnson et al. Jul 2003 B2
6602293 Biermann et al. Aug 2003 B1
6605090 Trieu et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6620163 Michelson Sep 2003 B1
6635059 Randall et al. Oct 2003 B2
6666868 Fallin Dec 2003 B2
6669529 Scaries Dec 2003 B1
6673075 Santilli Jan 2004 B2
6692501 Michelson Feb 2004 B2
6723099 Goshert Apr 2004 B1
6740118 Eisermann et al. May 2004 B2
6743257 Castro Jun 2004 B2
D493533 Blain Jul 2004 S
6793656 Mathews Sep 2004 B1
6827740 Michelson Dec 2004 B1
6984235 Huebner Jan 2006 B2
6991461 Gittleman Jan 2006 B2
7118579 Michelson Oct 2006 B2
7175663 Stone Feb 2007 B1
7211085 Michelson May 2007 B2
7223269 Chappuis May 2007 B2
7314488 Reiley Jan 2008 B2
7335205 Aeschlimann et al. Feb 2008 B2
7338500 Chappuis Mar 2008 B2
7452359 Michelson Nov 2008 B1
7452369 Barry Nov 2008 B2
7481831 Bonutti Jan 2009 B2
7527649 Blain May 2009 B1
7534254 Michelson May 2009 B1
7537616 Branch et al. May 2009 B1
7569054 Michelson Aug 2009 B2
7569059 Cerundolo Aug 2009 B2
7601155 Petersen Oct 2009 B2
7648509 Stark Jan 2010 B2
7686805 Michelson Mar 2010 B2
7699852 Frankel et al. Apr 2010 B2
7708761 Petersen May 2010 B2
7727235 Contiliano et al. Jun 2010 B2
7758646 Khandkar et al. Jul 2010 B2
7780704 Markworth et al. Aug 2010 B2
7837735 Malone Nov 2010 B2
7850732 Heinz Dec 2010 B2
7857832 Culbert et al. Dec 2010 B2
7887565 Michelson Feb 2011 B2
7901439 Horton Mar 2011 B2
7909832 Michelson Mar 2011 B2
7922765 Reiley Apr 2011 B2
7942879 Christie et al. May 2011 B2
8052728 Hestad Nov 2011 B2
8062365 Schwab Nov 2011 B2
8066705 Michelson Nov 2011 B2
8066709 Michelson Nov 2011 B2
8080046 Suddaby Dec 2011 B2
8142481 Warnick Mar 2012 B2
8142503 Malone Mar 2012 B2
8162981 Vestgaarden Apr 2012 B2
8202305 Reiley Jun 2012 B2
8308779 Reiley Nov 2012 B2
8317862 Troger et al. Nov 2012 B2
8348950 Assell et al. Jan 2013 B2
8388667 Reiley et al. Mar 2013 B2
8394129 Morgenstern Lopez Mar 2013 B2
8398635 Vaidya Mar 2013 B2
8414648 Reiley Apr 2013 B2
8425570 Reiley Apr 2013 B2
8430930 Hunt Apr 2013 B2
8439925 Marino et al. May 2013 B2
8444693 Reiley May 2013 B2
8470004 Reiley Jun 2013 B2
8529608 Terrill et al. Sep 2013 B2
8608802 Bagga et al. Dec 2013 B2
D697209 Walthall et al. Jan 2014 S
8641737 Matthis et al. Feb 2014 B2
8672986 Klaue et al. Mar 2014 B2
8734462 Reiley et al. May 2014 B2
8778026 Mauldin Jul 2014 B2
8840623 Reiley Sep 2014 B2
8840651 Reiley Sep 2014 B2
8858601 Reiley Oct 2014 B2
8920477 Reiley Dec 2014 B2
8945190 Culbert et al. Feb 2015 B2
8945193 Kirschman Feb 2015 B2
8951254 Mayer et al. Feb 2015 B2
8951293 Glazer et al. Feb 2015 B2
8951295 Matityahu et al. Feb 2015 B2
8961571 Lee et al. Feb 2015 B2
8986348 Reiley Mar 2015 B2
9039743 Reiley May 2015 B2
9044321 Mauldin et al. Jun 2015 B2
9060876 To et al. Jun 2015 B1
9089371 Faulhaber Jul 2015 B1
D738498 Frey et al. Sep 2015 S
9131955 Swofford Sep 2015 B2
9149286 Greenhalgh et al. Oct 2015 B1
9198676 Pilgeram et al. Dec 2015 B2
9220535 Röbling et al. Dec 2015 B2
9314348 Emstad Apr 2016 B2
9358057 Whipple et al. Jun 2016 B1
9375243 Vestgaarden Jun 2016 B1
9452065 Lawson Sep 2016 B1
9492284 Ginn et al. Nov 2016 B2
9498264 Harshman et al. Nov 2016 B2
9510872 Donner et al. Dec 2016 B2
9517095 Vaidya Dec 2016 B2
9522028 Warren et al. Dec 2016 B2
9526548 Asfora Dec 2016 B2
9554909 Donner Jan 2017 B2
9566095 Lorio Feb 2017 B2
9566100 Asfora Feb 2017 B2
9592131 Sandstrom et al. Mar 2017 B2
9603613 Schoenefeld et al. Mar 2017 B2
9615856 Arnett et al. Apr 2017 B2
9636226 Hunt May 2017 B2
9662124 Assell et al. May 2017 B2
9757154 Donner et al. Sep 2017 B2
9763695 Mirda Sep 2017 B2
20010012942 Estes et al. Aug 2001 A1
20010046518 Sawhney Nov 2001 A1
20010047207 Michelson Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20020038123 Visotsky et al. Mar 2002 A1
20020049497 Mason Apr 2002 A1
20020077641 Michelson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020120275 Schmieding et al. Aug 2002 A1
20020128652 Ferree Sep 2002 A1
20020143334 von Hoffmann et al. Oct 2002 A1
20020143335 von Hoffmann et al. Oct 2002 A1
20020151903 Takei et al. Oct 2002 A1
20020169507 Malone Nov 2002 A1
20020183858 Contiliano et al. Dec 2002 A1
20020198527 Mückter Dec 2002 A1
20030018336 Vandewalle Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030050642 Schmieding et al. Mar 2003 A1
20030065332 TenHuisen et al. Apr 2003 A1
20030074000 Roth et al. Apr 2003 A1
20030078660 Clifford et al. Apr 2003 A1
20030083668 Rogers et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030097131 Schon et al. May 2003 A1
20030139815 Grooms Jul 2003 A1
20030181979 Ferree Sep 2003 A1
20030181982 Kuslich Sep 2003 A1
20030199983 Michelson Oct 2003 A1
20030229358 Errico et al. Dec 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20030233147 Nicholson et al. Dec 2003 A1
20040010315 Song Jan 2004 A1
20040024458 Senegas et al. Feb 2004 A1
20040034422 Errico et al. Feb 2004 A1
20040073216 Lieberman Apr 2004 A1
20040073314 White et al. Apr 2004 A1
20040082955 Zirkle Apr 2004 A1
20040087948 Suddaby May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127990 Bartish, Jr. et al. Jul 2004 A1
20040138750 Mitchell Jul 2004 A1
20040138753 Ferree Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040176287 Harrison et al. Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20040210221 Kozak et al. Oct 2004 A1
20040225360 Malone Nov 2004 A1
20040230305 Gorensek et al. Nov 2004 A1
20040260286 Ferree Dec 2004 A1
20040267369 Lyons et al. Dec 2004 A1
20050015059 Sweeney Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050033435 Belliard et al. Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050055023 Sohngen et al. Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050107878 Conchy May 2005 A1
20050124993 Chappuis Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050137605 Assell et al. Jun 2005 A1
20050143837 Ferree Jun 2005 A1
20050149192 Zucherman et al. Jul 2005 A1
20050159749 Levy et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050246021 Ringeisen et al. Nov 2005 A1
20050251146 Martz et al. Nov 2005 A1
20050277940 Neff Dec 2005 A1
20060036247 Michelson Feb 2006 A1
20060036251 Reiley Feb 2006 A1
20060054171 Dall Mar 2006 A1
20060058793 Michelson Mar 2006 A1
20060058800 Ainsworth et al. Mar 2006 A1
20060062825 Maccecchini Mar 2006 A1
20060084986 Grinberg et al. Apr 2006 A1
20060089656 Allard et al. Apr 2006 A1
20060111779 Petersen May 2006 A1
20060129247 Brown et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060161163 Shino Jul 2006 A1
20060178673 Curran Aug 2006 A1
20060195094 McGraw Aug 2006 A1
20060217717 Whipple Sep 2006 A1
20060241776 Brown et al. Oct 2006 A1
20060271054 Sucec et al. Nov 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20070027544 McCord et al. Feb 2007 A1
20070049933 Ahn et al. Mar 2007 A1
20070066977 Assell et al. Mar 2007 A1
20070083265 Malone Apr 2007 A1
20070088362 Bonutti et al. Apr 2007 A1
20070093841 Hoogland Apr 2007 A1
20070106383 Abdou May 2007 A1
20070149976 Hale et al. Jun 2007 A1
20070156144 Ulrich et al. Jul 2007 A1
20070156241 Reiley et al. Jul 2007 A1
20070156246 Meswania et al. Jul 2007 A1
20070161989 Heinz et al. Jul 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070233146 Henniges et al. Oct 2007 A1
20070250166 McKay Oct 2007 A1
20070265621 Matthis et al. Nov 2007 A1
20070270879 Isaza et al. Nov 2007 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080021461 Barker et al. Jan 2008 A1
20080021480 Chin et al. Jan 2008 A1
20080065093 Assell et al. Mar 2008 A1
20080065215 Reiley Mar 2008 A1
20080109083 Van Hoeck et al. May 2008 A1
20080140082 Erdem et al. Jun 2008 A1
20080147079 Chin et al. Jun 2008 A1
20080154374 Labrom Jun 2008 A1
20080161810 Melkent Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080234758 Fisher et al. Sep 2008 A1
20080255562 Gil et al. Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080255622 Mickiewicz et al. Oct 2008 A1
20080255664 Hogendijk et al. Oct 2008 A1
20080255666 Fisher et al. Oct 2008 A1
20080255667 Horton Oct 2008 A1
20080275454 Geibel Nov 2008 A1
20080306554 McKinley Dec 2008 A1
20090012529 Blain et al. Jan 2009 A1
20090018660 Roush Jan 2009 A1
20090024174 Stark Jan 2009 A1
20090036927 Vestgaarden Feb 2009 A1
20090043393 Duggal et al. Feb 2009 A1
20090082869 Slemker et al. Mar 2009 A1
20090099602 Aflatoon Apr 2009 A1
20090099610 Johnson et al. Apr 2009 A1
20090105770 Berrevoets et al. Apr 2009 A1
20090118771 Gonzalez-Hernandez May 2009 A1
20090131986 Lee et al. May 2009 A1
20090138053 Assell May 2009 A1
20090157119 Hale Jun 2009 A1
20090163920 Hochschuler et al. Jun 2009 A1
20090187247 Metcalf, Jr. et al. Jul 2009 A1
20090216238 Stark Aug 2009 A1
20090259261 Reiley Oct 2009 A1
20090270929 Suddaby Oct 2009 A1
20090287254 Nayet et al. Nov 2009 A1
20090312798 Varela Dec 2009 A1
20090324678 Thorne et al. Dec 2009 A1
20100016903 Matityahu Jan 2010 A1
20100022535 Lee et al. Jan 2010 A1
20100076502 Guyer et al. Mar 2010 A1
20100081107 Bagambisa et al. Apr 2010 A1
20100094290 Vaidya Apr 2010 A1
20100094295 Schnieders et al. Apr 2010 A1
20100106194 Bonutti et al. Apr 2010 A1
20100106195 Serhan et al. Apr 2010 A1
20100114174 Jones et al. May 2010 A1
20100114317 Lambrecht et al. May 2010 A1
20100131011 Stark May 2010 A1
20100145461 Landry et al. Jun 2010 A1
20100160977 Gephart et al. Jun 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100198267 Vaidya Aug 2010 A1
20100268228 Petersen Oct 2010 A1
20100280619 Yuan et al. Nov 2010 A1
20100280622 McKinley Nov 2010 A1
20100286778 Eisermann et al. Nov 2010 A1
20100331851 Huene Dec 2010 A1
20100331893 Geist et al. Dec 2010 A1
20110009869 Marino et al. Jan 2011 A1
20110022089 Assell et al. Jan 2011 A1
20110029019 Ainsworth et al. Feb 2011 A1
20110040362 Godara et al. Feb 2011 A1
20110046737 Teisen Feb 2011 A1
20110060373 Russell et al. Mar 2011 A1
20110060375 Bonutti Mar 2011 A1
20110066190 Schaller et al. Mar 2011 A1
20110082551 Kraus Apr 2011 A1
20110093020 Wu Apr 2011 A1
20110098747 Donner et al. Apr 2011 A1
20110098816 Jacob et al. Apr 2011 A1
20110098817 Eckhardt et al. Apr 2011 A1
20110106175 Rezach May 2011 A1
20110118796 Reiley et al. May 2011 A1
20110153018 Walters et al. Jun 2011 A1
20110160866 Laurence et al. Jun 2011 A1
20110178561 Roh Jul 2011 A1
20110184478 Reiley Jul 2011 A1
20110184518 Trieu Jul 2011 A1
20110184519 Trieu Jul 2011 A1
20110184520 Trieu Jul 2011 A1
20110196372 Murase Aug 2011 A1
20110230966 Trieu Sep 2011 A1
20110238181 Trieu Sep 2011 A1
20110257755 Bellemere et al. Oct 2011 A1
20110264229 Donner Oct 2011 A1
20110295272 Assell et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110313532 Hunt Dec 2011 A1
20120083887 Purcell et al. Apr 2012 A1
20120095560 Donner Apr 2012 A1
20120101530 Robling et al. Apr 2012 A1
20120179256 Reiley Jul 2012 A1
20120191191 Trieu Jul 2012 A1
20120197311 Kirschman Aug 2012 A1
20120253398 Metcalf et al. Oct 2012 A1
20120259372 Glazer et al. Oct 2012 A1
20120271424 Crawford Oct 2012 A1
20120296428 Donner Nov 2012 A1
20120323285 Assell et al. Dec 2012 A1
20130018427 Pham et al. Jan 2013 A1
20130030456 Assell et al. Jan 2013 A1
20130030529 Hunt Jan 2013 A1
20130035727 Datta Feb 2013 A1
20130053852 Greenhalgh et al. Feb 2013 A1
20130053854 Schoenefeld et al. Feb 2013 A1
20130053902 Trudeau Feb 2013 A1
20130053963 Davenport Feb 2013 A1
20130085535 Greenhalgh et al. Apr 2013 A1
20130096683 Kube Apr 2013 A1
20130116793 Kloss May 2013 A1
20130123850 Schoenefeld et al. May 2013 A1
20130123935 Hunt et al. May 2013 A1
20130131678 Dahners May 2013 A1
20130144343 Arnett et al. Jun 2013 A1
20130158609 Mikhail et al. Jun 2013 A1
20130172736 Abdou Jul 2013 A1
20130190614 Swofford Jul 2013 A1
20130197590 Assell et al. Aug 2013 A1
20130203088 Baerlecken et al. Aug 2013 A1
20130218215 Ginn et al. Aug 2013 A1
20130218282 Hunt Aug 2013 A1
20130226301 Reiley Aug 2013 A1
20130231746 Ginn et al. Sep 2013 A1
20130237988 Mauldin Sep 2013 A1
20130238031 Reiley Sep 2013 A1
20130245703 Warren et al. Sep 2013 A1
20130245763 Mauldin Sep 2013 A1
20130267836 Mauldin et al. Oct 2013 A1
20130267961 Mauldin et al. Oct 2013 A1
20130267989 Mauldin et al. Oct 2013 A1
20130296953 Mauldin et al. Nov 2013 A1
20140012340 Beck et al. Jan 2014 A1
20140031934 Trieu Jan 2014 A1
20140031935 Donner et al. Jan 2014 A1
20140031939 Wolfe et al. Jan 2014 A1
20140046380 Asfora Feb 2014 A1
20140074175 Ehler et al. Mar 2014 A1
20140088596 Assell et al. Mar 2014 A1
20140088707 Donner et al. Mar 2014 A1
20140121776 Hunt May 2014 A1
20140135927 Pavlov et al. May 2014 A1
20140142700 Donner et al. May 2014 A1
20140200618 Donner et al. Jul 2014 A1
20140207240 Stoffman et al. Jul 2014 A1
20140222150 Reiley Aug 2014 A1
20140249589 Reiley et al. Sep 2014 A1
20140257294 Gedet et al. Sep 2014 A1
20140257408 Trieu et al. Sep 2014 A1
20140257415 Reiley Sep 2014 A1
20140276846 Mauldin et al. Sep 2014 A1
20140276851 Schneider et al. Sep 2014 A1
20140277165 Katzman et al. Sep 2014 A1
20140277460 Schifano et al. Sep 2014 A1
20140277462 Yerby et al. Sep 2014 A1
20140277463 Yerby et al. Sep 2014 A1
20140288605 Mesiwala et al. Sep 2014 A1
20140288649 Hunt Sep 2014 A1
20140288650 Hunt Sep 2014 A1
20140296982 Cheng Oct 2014 A1
20140330382 Mauldin Nov 2014 A1
20140364917 Sandstrom et al. Dec 2014 A1
20150005832 Reiley Jan 2015 A1
20150012051 Warren et al. Jan 2015 A1
20150039037 Donner et al. Feb 2015 A1
20150080951 Yeh Mar 2015 A1
20150080972 Chin et al. Mar 2015 A1
20150094765 Donner et al. Apr 2015 A1
20150105828 Reckling et al. Apr 2015 A1
20150112444 Aksu Apr 2015 A1
20150150683 Donner et al. Jun 2015 A1
20150173805 Donner et al. Jun 2015 A1
20150173904 Stark Jun 2015 A1
20150182268 Donner et al. Jul 2015 A1
20150190149 Assell et al. Jul 2015 A1
20150190187 Parent et al. Jul 2015 A1
20150216566 Mikhail et al. Aug 2015 A1
20150238203 Asfora Aug 2015 A1
20150238205 Reiley Aug 2015 A1
20150250595 Mauldin et al. Sep 2015 A1
20150250611 Schifano et al. Sep 2015 A1
20150250612 Schifano Sep 2015 A1
20150313720 Lorio Nov 2015 A1
20150320450 Mootien et al. Nov 2015 A1
20150320451 Mootien et al. Nov 2015 A1
20150320469 Biedermann et al. Nov 2015 A1
20150342753 Donner et al. Dec 2015 A1
20150351923 Emstad Dec 2015 A1
20160000488 Cross, III Jan 2016 A1
20160022429 Greenhalgh et al. Jan 2016 A1
20160095721 Schell et al. Apr 2016 A1
20160100870 Lavigne et al. Apr 2016 A1
20160106477 Hynes et al. Apr 2016 A1
20160106479 Hynes et al. Apr 2016 A1
20160120661 Schell et al. May 2016 A1
20160143671 Jimenez May 2016 A1
20160175113 Lins Jun 2016 A1
20160184103 Fonte et al. Jun 2016 A1
20160242820 Whipple et al. Aug 2016 A1
20160249940 Stark Sep 2016 A1
20160287301 Mehl et al. Oct 2016 A1
20160310188 Marino et al. Oct 2016 A1
20160310197 Black et al. Oct 2016 A1
20160324643 Donner et al. Nov 2016 A1
20160374727 Greenhalgh et al. Dec 2016 A1
20170020585 Harshman et al. Jan 2017 A1
20170049488 Vestgaarden Feb 2017 A1
20170128214 Mayer May 2017 A1
20170135733 Donner et al. May 2017 A1
20170143513 Sandstrom et al. May 2017 A1
20170209155 Petersen Jul 2017 A1
20170224393 Lavigne et al. Aug 2017 A1
20170246000 Pavlov et al. Aug 2017 A1
20170273729 Reiley Sep 2017 A1
20180104071 Reckling et al. Apr 2018 A1
Foreign Referenced Citations (38)
Number Date Country
1128944 Aug 1996 CN
1190882 Aug 1998 CN
1909848 Feb 2007 CN
101795632 Aug 2010 CN
102361601 Feb 2012 CN
1287796 Mar 2003 EP
59200642 Nov 1984 JP
05-176942 Jul 1993 JP
05184615 Jul 1993 JP
09149906 Oct 1997 JP
10-85231 Apr 1998 JP
11318931 Nov 1999 JP
2002509753 Apr 2002 JP
2003511198 Mar 2003 JP
2003533329 Nov 2003 JP
2003534046 Nov 2003 JP
2004121841 Apr 2004 JP
2004512895 Apr 2004 JP
2004516866 Jun 2004 JP
2006506181 Feb 2006 JP
2008540036 Nov 2008 JP
2009521990 Jun 2009 JP
2010137016 Jun 2010 JP
WO9731517 Aug 1997 WO
WO 0117445 Mar 2001 WO
WO0238054 May 2002 WO
WO03007839 Jan 2003 WO
WO0402344 Jan 2004 WO
WO2004043277 May 2004 WO
WO2005009729 Feb 2005 WO
WO2006003316 Jan 2006 WO
WO2006023793 Mar 2006 WO
WO2009029074 Mar 2009 WO
WO2010105196 Sep 2010 WO
WO2011110865 Sep 2011 WO
WO2011149557 Dec 2011 WO
WO2013000071 Jan 2013 WO
WO2013119907 Aug 2013 WO
Non-Patent Literature Citations (15)
Entry
Reiley, Mark A.; U.S. Appl. No. 12/357,483 entitled “Systems and methods for the fixation or fusion of bone in the hand and wrist,” filed Jan. 22, 2009 (abandoned).
Schneider et al.; U.S. Appl. No. 14/859,005 entitled “Matrix implant,” filed Sep. 18, 2015.
Acumed; Acutrak Headless Compressioin Screw (product information); 12 pgs; © 2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/Ivanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf.
Al-Khayer et al.; Percutaneous sacroiliac joint arthrodesis, a novel technique; J Spinal Disord Tech; vol. 21; No. 5; pp. 359-363; Jul. 2008.
Khurana et al.; Percutaneous fusion of the sacroiliac joint with hollow modular anchorage screws, clinical and radiological outcome; J Bone Joint Surg; vol. 91-B; No. 5; pp. 627-631; May 2009.
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998.
Richards et al.; Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra; Journal of Osteoporosis; 2010(ID 504078); 5 pgs; Jun. 9, 2010.
Wise et al.; Minimally invasive sacroiliac arthrodesis, outcomes of a new technique; J Spinal Disord Tech; vol. 21; No. 8; pp. 579-584; Dec. 2008.
Sand et al.; U.S. Appl. No. 15/085,765 entitled “Neuromonitoring systems and methods for bone fixation or fusion procedures,” filed Mar. 30, 2016.
Reiley et al.; U.S. Appl. No. 15/195,955 entitled “Apparatus, systems, and methods for the fixation or fusion of bone,” filed Jun. 28, 2016.
Mauldin et al.; U.S. Appl. No. 15/208,588 entitled “System, device, and methods for joint fusion,” filed Jul. 12, 2016.
Lu et al.; Mechanical properties of porous materials; Journal of Porous Materials; 6(4); pp. 359-368; Nov. 1, 1999.
Reiley et al.; U.S. Appl. No. 15/461,304 entitled “Systems and methods for the fixation or fusion of bone,” filed Mar. 16, 2017.
Schneider et al.; U.S. Appl. No. 15/593,208 entitled “Matrix implant,” filed May 11, 2017.
Mesiwala et al.; U.S. Appl. No. 15/903,410 entitled “Implants for spinal fixation or fusion,” filed Feb. 23, 2018.
Related Publications (1)
Number Date Country
20160081810 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62052318 Sep 2014 US