The present invention relates generally to implants, tools, devices, systems, and related methods for treating pelvic conditions including but not limited to incontinence and prolapse conditions in men and women.
Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population. Examples of common pelvic ailments include incontinence (e.g., fecal and urinary), pelvic tissue prolapse (e.g., female vaginal prolapse), and conditions of the pelvic floor.
Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others. Other pelvic floor disorders include cystocele, rectocele, enterocele, and prolapse such as anal, uterine and vaginal vault prolapse. A cystocele is a hernia of the bladder, usually into the vagina and introitus. Pelvic disorders such as these can result from weakness or damage to normal pelvic support systems.
Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.
In its severest forms, vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons. These procedures often involve lengthy surgical procedure times.
The tension of an implant (i.e., “sling”) is typically adjusted during an implantation procedure in a manner to take up slack in the sling and impart desirable and efficacious tension and positioning of the implanted sling and the supported tissue. New and improved methods and devices of intra-operative adjustment of an implant are always desirable.
Devices, systems, and methods as described can be applied to treat pelvic conditions such as incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), levator defects, and other conditions caused by muscle and ligament weakness, hysterectomies, and the like.
Various surgical implants, tools, and methods that relate to useful or advantageous surgical procedures are described herein. Certain embodiments of methods and implants involve an implant that includes an adjusting mechanism such as a suture (inclusive of a line, cinch, strand, suture, filament, or the like) to adjust a length of an implant (e.g., a length of an extension portion or other portion or piece of an implant), intra-operatively. Other embodiments of method and implants involve methods of placing a suture (inclusive of a suture, strand, suture, filament, or the like), at a length of an implant or an extension portion of an implant, intra-operatively, i.e., during a surgical procedure, to adjust a length of the implant or extension portion.
Described devices and methods involve pelvic implants, including surgical implants (also referred to generally herein as “slings”) that include a central support portion and two or more end portions extending from the central support portion to sling ends. Herein, the terms “sling,” “implant,” and “incontinence sling” without further qualification are used interchangeably to include various forms of pelvic implants for supporting different pelvic tissues, and specifically include urethral slings adapted to be placed through a tissue pathway in a male or female patient, disposing the central support portion below the urethra or bladder neck (hereafter collectively referred to as the urethra for convenience) (and above the vaginal wall in a female patient) to alleviate urinary incontinence, and fecal slings adapted to be placed through a tissue pathway disposing the central support portion inferior to the anus, the anal sphincter, or the lower rectum (hereafter collectively referred to as the anus for convenience) to alleviate fecal incontinence.
In accordance with the present description, such slings can include features or be used according to methods that allow for intra-operative adjustment of the tension applied to the urethra, anus, or other supported tissue, to enhance efficacy of the implant and method of treatment and for improved patient comfort. Various specific embodiments of the implants and methods are described herein. The various embodiments are applicable to both male and female patients to address issues of incontinence in both, to address issues of prolapse repair in female patients, and to address perineal floor descent and fecal incontinence in both. Also, surgical techniques such as forming suprapubic, retropubic, transobturator, “inside-out,” and “outside-in” tissue pathways between two skin incisions, or a tissue pathway formed from a single incision through the vagina or perineal floor (in male or female patients), are also contemplated for placement of a sling.
In various embodiments, sling tension or length of one or two extension portions of an implant can be adjusted by use of a suture that is located or can be placed at a location that can be accessed intra-operatively. Various sutures and tools for placing a suture, and various configurations of a suture passing through an extension portion, can be useful to decrease a length of an implant or extension portion, or to increase an amount of tension in an implant or extension portion. Optionally, an implant or method can involve the use of a suture at two opposing locations of an implant, each location being accessible through a surgical incision used to place an implant during a surgical implantation procedure. The two sutures may be used in a coordinated manner, meaning that the tension or length of both of the two opposing extension portions are adjusted together. Such coordinated adjustment can advantageously allow a surgeon or other user to adjust the placement, length, or tension of an implant in a manner that does not cause a urethra or other tissue to become located at a non-anatomical position relative to a midline of the patient. Stated differently, two opposing extension portions of an implant can be adjusted together to prevent the urethra or other supported tissue from being moved in a left or a right direction within the patient, which will maintain a correct anatomical position of the urethra or other supported tissue, e.g., at a midline of the patient.
In one aspect, the invention relates to a pelvic implant useful to treat a pelvic condition. The implant includes: a tissue support portion and two opposing extension portions, and a suture passing through an extension portion between a midline of the implant and a distal end of the extension portion. The suture is passed through the mesh such that pulling a loose end of the suture causes a length of the extension portion to decrease.
In another aspect the invention relates to a combination that includes a pelvic implant and a suture passer, the combination being useful to treat a pelvic condition. The combination includes an implant comprising a tissue support portion and two opposing mesh extension portions. The suture passer includes a proximal end, a shaft, and a shaft distal end. The shaft distal end includes a suture passer and a mesh holder. The mesh holder is capable of engaging mesh and holding the mesh between jaws of the suture passer, and the suture passer is capable of passing a suture through the mesh held between the jaws.
In another aspect the invention relates to a method of treating a pelvic condition. The method includes providing a pelvic implant useful to treat a pelvic condition, the implant including: a tissue support portion, a first extension portion and a second extension portion and a suture passing through an extension portion between a midline of the implant and a distal end of the extension portion, the suture being passed through the mesh such that pulling a loose end of the suture causes a length of the extension portion to decrease. The method also includes placing the implant in a patient to support tissue, and adjusting a length of the extension portion by tightening the suture.
In yet another aspect the invention relates to a method of treating a pelvic condition. The method includes: providing an implant that includes a tissue support portion, a first mesh extension portion, and a second mesh extension portion; providing a suture passer that includes a proximal end, a shaft, and a shaft distal end, the shaft distal end including a suture passer and a mesh holder, wherein the mesh holder is capable of engaging mesh and holding the mesh between jaws of the suture passer, and the suture passer is capable of passing a suture through the mesh held between the jaws; placing the implant in a patient to support tissue; using the suture passer to place a suture at an extension portion; and adjusting a length of the extension portion by tightening the suture.
All drawings are not to scale.
Pelvic floor disorders include urinary and fecal incontinence, prolapse, cystocele, rectocele, enterocele, uterine and vaginal vault prolapse, levator defects, and others, in male and female patients. These disorders typically result from weakness or damage to normal pelvic support systems. Common etiologies include childbearing, removal of the uterus, connective tissue defects, prolonged heavy physical labor and postmenopausal atrophy.
Vaginal vault prolapse is the distension of the vaginal apex, in some cases to an orientation outside of the vagina. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons.
Vaginal vault prolapse is often associated with a rectocele, cystocele, or enterocele. It is known to repair vaginal vault prolapse by suturing to the supraspinous ligament or to attach the vaginal vault through mesh or fascia to the sacrum. Many patients suffering from vaginal vault prolapse also require a surgical procedure to correct stress urinary incontinence that is either symptomatic or latent.
Sling procedures for treating urinary incontinence include surgical methods that place a supportive implant such as a sling to stabilize or support the bladder neck or urethra. Various different supportive implants and sling procedures are known. Slings and methods can differ based on the type of sling material and anchoring methods used, and placement and technique for placing and supporting the sling, including tissue to be supported. In some cases, a sling is placed under the bladder neck and secured via suspension sutures to a point of attachment (e.g. bone) through an abdominal or vaginal incision. Other techniques place a supportive portion of a sling below a urethra or bladder neck, and support the sling by placement of ends at or through obturator foramen tissue. Examples of sling procedures are disclosed in U.S. Pat. Nos. 5,112,344; 5,611,515; 5,842,478; 5,860,425; 5,899,909; 6,039,686, 6,042,534 and 6,110,101.
As used herein the terms “anchor,” “tissue fastener,” and “self-fixating tip,” refer interchangeably and non-specifically to any structure that can connect an implant to supportive tissue of a pelvic region. The supportive tissue may preferably be a soft tissue such as a muscle, fascia, ligament, tendon, or the like. The anchor may be any known or future-developed structure useful to connect an implant to such tissue, including but not limited to a clamp, a suture, a soft tissue anchor such as a self-fixating tip, and the like.
An implant can include a tissue support portion (or “support portion”) that can be used to support a urethra (including a bladder neck), bladder, vagina, levator, rectum, sphincter, or other pelvic tissue. Supporting a “urethra” refers to supporting tissue that includes the urethra (which can refer to the bladder neck), and that can optionally include tissue adjacent to a urethra such as bulbospongiosus muscle, corpus spongiosum, or both. According to specific methods involving treatment of urinary incontinence, a support portion may be placed below bulbospongiosus muscle to support both bulbospongiosus muscle and corpus spongiosum (along with the urethra), or alternately bulbospongiosus muscle may be dissected and a support portion may be placed to contact corpus spongiosum tissue (to support the urethra).
An implant can additionally include one or more extension portion (otherwise known as an “end” portion or “arm”) attached or attachable to the tissue support portion. Normally for treating incontinence an implant can include two opposing extension portions. Extension portions are elongate pieces of material (e.g., mesh, molded implant material, suture, or biologic material) that extend from the tissue support portion and are connected to the tissue support portion, and are useful to attach to supportive tissue in the pelvic region (e.g., using an anchor such as a self-fixating tip or another form of tissue fastener) to thereby provide support for the tissue support portion and the supported tissue. Generally for treating incontinence, two extension portions can extend from opposite ends of a tissue support portion as elongate “ends,” “arms,” or “extensions,” and may attach to supportive tissue in the pelvic region by extending through a tissue path to an internal anchoring point (see, e.g., Applicant's copending United States Patent Application Publication number US 2010/256442, filed Aug. 8, 2008, by Ogdahl, entitled SURGICAL ARTICLES AND METHODS FOR TREATING PELVIC CONDITIONS, the entirety of which is incorporated herein by reference), or may extend to an external incision, such as through an obturator foramen and through an external incision at a groin or inner thigh (see, e.g., Applicant's copending United States Patent Publication Number US 2006/0287571, the entirety of which is incorporated herein by reference). Also see U.S. Patent Publication number US 2011/0034759 and WO 2010/093421, PCT/US2010/057879, filed Nov. 23, 2010, and PCT/US2010/059739, filed Dec. 9, 2010, the entireties of which are incorporated hereby by reference.
In exemplary uses, each extension portion can extend from the location of attachment with the tissue support portion of the implant, through pelvic tissue, and to a location of supportive tissue within the pelvic region. The supportive tissue can be at an end of a tissue path used to perform a desired implant procedure, such as at a location near an external incision in the skin used to perform the procedure, e.g., at a location at or near an end of an extension portion placed according to a retropubic procedure or a transobturator procedure for placing a sling for treating urinary or fecal incontinence, at tissue of an obturator foramen or rectus fascia, at a ligament such as a sacrospinous ligament, etc.
An implant may include portions, pieces, or sections that are synthetic or of biologic material (e.g., porcine, cadaveric, etc.). Extension portions may be, e.g., a synthetic mesh such as a polypropylene mesh. The tissue support portion may be synthetic (e.g., a polypropylene mesh or a molded material) or biologic. Examples of implant products that may be similar to those useful according to the present description include those sold commercially by American Medical Systems, Inc., of Minnetonka Minn., under the trade names Apogee®, Perigee®, and Elevate® for use in treating pelvic prolapse (including vaginal vault prolapse, cystocele, enterocele, etc.), and Sparc®, Bioarc®, Monarc®, MiniArc®, InVance™, and AdVance™ for treating urinary incontinence.
An example of a particular type of pelvic implant is the type that includes supportive portions including or consisting of a tissue support portion and two or four extension portions extending from the tissue support portion. An implant that has exactly two or four extension portions can be of the type useful for treating urinary incontinence or vaginal prolapse. The term “supportive portions” refers to portions of an implant that function to support tissue after the implant has been implanted and specifically includes extension portions and tissue support portions, and does not include optional or appurtenant features of an implant such as a sheath, tensioning suture, tissue fastener, or self-fixating tip or other type of connector for attaching the implant to an insertion tool.
Dimensions of a tissue support portion can be any dimensions useful to support a specific tissue, e.g., urethral or vaginal tissue, for treating a pelvic condition such as incontinence, prolapse, or another pelvic condition. A tissue support portion for use in treating incontinence can be of sufficient length to support and optionally partially surround a urethra or urethra-supporting tissue. A width of a tissue support portion may optionally and preferably be greater than a width of extension portions and can be sufficiently wide to increase contact area and frictional forces between a tissue support portion and a tissue in contact with the tissue support portion. Exemplary lengths of a tissue support portion can be in the range from 0.5 to 2 inches, such as from 0.75 to 1.5 inches. Exemplary widths of a tissue support portion can be in the range from 0.4 or 0.5 to 4 centimeters, such as from 1 to 2.5 or 3 centimeters.
An implant (e.g., sling) for placement against a corpus spongiosum for treatment of urinary incontinence in a male patient may optionally and preferably include a widened central support to provide increased contact and frictional engagement with the corpus spongiosum. See, for example, Assignee's copending United States Patent Publication Number US 2006/0287571 and U.S. Pat. No. 7,422,557, the entireties of these applications being incorporated herein by reference.
Dimensions of extension portions can allow the extension portion to reach between a tissue support portion placed to support a pelvic tissue such as tissue of a urethra, vagina, anal sphincter, levator, etc. (at an end of the extension portion connected to the tissue support portion) and a location at which the distal end of the extension portion attaches to supportive tissue at or about the pelvic region. Exemplary lengths of an extension portion for use in treating incontinence by placing ends of an extension portion at tissue of an obturator foramen, for example, measured between a connection or boundary between the extension portion and the tissue support portion and a distal end of the extension portion, can be, e.g., from 0.5 to 2.5 inches, preferably from 0.5 to 1.5 inches. These or other lengths will be useful for implants designed to treat other conditions.
Implants as described can include a tissue fastener at a distal end or a distal portion of an extension portion, which is the end or portion not attached to a tissue support portion. (The term “distal” as used in this context generally refers to location at an end of an extension portion away from a tissue support portion.) A tissue fastener at a distal end or portion of an extension portion can be any of various types, including: a self-fixating tip that is inserted into soft tissue and frictionally retained; soft tissue anchors; biologic adhesive; a soft tissue clamp that can generally include opposing, optionally biased, jaws that close to grab tissue; and opposing male and female connector elements that engage to secure an end of an extension portion to tissue. (See International Patent Application No. PCT/US2007/014120, entitled “Surgical Implants, Tools, and Methods for Treating Pelvic Conditions, filed Jun. 15, 2007; U.S. patent application Ser. No. 12/223,846, filed Aug. 8, 2008, entitled SURGICAL ARTICLES AND METHODS FOR TREATING PELVIC CONDITIONS; U.S. patent application Ser. No. 12/669,099, filed Jan. 14, 2010, entitled PELVIC FLOOR TREATMENTS AND RELATED TOOLS AND IMPLANTS; and WO 2009/075800, the entireties of which are incorporated herein by reference.) An implant may also have one or more extension portion that does not include a tissue fastener, for example if the distal end is designed to be secured to tissue by other methods (e.g., suturing), or is intended to pass through an obturator foramen and a tissue path around a pubic ramus bone, in which case the extension portion may optionally include a connector, dilator, or dilating connector, which connects to an elongate tool that can be used to either push or pull the connector, dilator, or dilating connector through a tissue path (e.g., to a medial incision).
One embodiment of a tissue fastener is a self-fixating tip. A “self-fixating tip” in general can be a structure (sometimes referred to as a soft tissue anchor) connected at a distal end of an extension portion that can be implanted into supportive tissue (e.g., muscle, fascia, ligament, or other soft tissue) in a manner that will maintain the position of the self-fixating tip and support the attached implant. Exemplary self-fixating tips can also be designed to engage an end of an insertion tool (e.g., elongate needle, elongate tube, etc.) so the insertion tool can be used to push the self-fixating tip through and into tissue for implantation, preferably also through an incision to reach the interior of the pelvic region, e.g., at a location of an obturator foramen or other supportive tissue. The insertion tool may engage the self-fixating tip at an internal channel of the self-fixating tip, at an external location such as at an external surface of the base, at a lateral extension, or otherwise as desired, e.g., in a manner to allow the insertion tool to push the self-fixating tip through an incision in a patient and through and into supportive tissue.
Exemplary self-fixating tips can include one or more lateral extensions that allow the self-fixating tip to be inserted into soft tissue and to become effectively anchored in supportive tissue. A lateral extension may be moveable or fixed. The size of the self-fixating tip and optional lateral extensions can be useful to penetrate and become anchored into the tissue. Exemplary self-fixating tips are described in Assignee's copending international patent application PCTUS2007/004015, filed Feb. 16, 2007, titled Surgical Articles and Methods for Treating Pelvic Conditions, the entirety of which is incorporated herein by reference. Other structures may also be useful.
According to exemplary embodiments, a self-fixating tip can have structure that includes a base having a proximal base end and a distal base end. The proximal base end can be connected (directly or indirectly, such as by a connective suture) to a distal end of an extension portion. The base extends from the proximal base end to the distal base end and can optionally include an internal channel extending from the proximal base end at least partially along a length of the base toward the distal base end. The optional internal channel can be designed to interact with (i.e., engage, optionally by means of a release mechanism that can be selectively engaged and released) a distal end of an insertion tool to allow the insertion tool to be used to place the self-fixating tip at a location within pelvic tissue of the patient. A self-fixating tip can be made out of any useful material, generally including materials that can be molded or formed to a desired structure and connected to or attached to a distal end of an extension portion of an implant. Useful materials can include plastics such as polyethylene, polypropylene, and other thermoplastic or thermoformable materials, as well as metals, ceramics, and other types of biocompatible and optionally bioabsorbable or bioresorbable materials. Exemplary bioabsorbable materials include, e.g., polyglycolic acid (PGA), polylactide (PLA), copolymers of PGA and PLA.
According to various systems as described, an insertion tool may be used with implants and methods as described. Examples of useful tools include those that generally include one or more (stationary or moveable) thin elongate, relatively rigid shaft or needle that extends from a handle. The handle is located at a proximal end of the device and attaches to one end (a proximal end) of a shaft. A distal end of the shaft can be adapted to engage a portion of an implant such as a tissue fastener (e.g., a self-fixating tip), in a manner that allows the insertion tool to engage and push the tissue fastener through a tissue passage and connect the tissue fastener to supportive tissue. Examples of this type of tool can be used with a self-fixating tip that includes an internal channel designed to be engaged by a distal end of an insertion tool to allow the self-fixating tip to be pushed into tissue. Other general types of insertion tools will also be useful, but may engage a self-fixating tip or other tissue fastener in an alternate manner, e.g., that does not involve an internal channel.
Exemplary insertion tools for treatment of incontinence and vaginal prolapse are described, e.g., in U.S. patent application Ser. Nos. 10/834,943, 10/306,179; 11/347,553; 11/398,368; 10/840,646; PCT application number 2006/028828; PCT application number 2006/0260618; WO 2010/093421, and US Patent Publication No. 2010-0256442 the entireties of these documents being incorporated herein by reference. These and similar tools can be used as presented in the referenced documents, or with modifications to provide features identified in the present description.
An insertion tool can optionally include a release mechanism by which a tissue fastener (e.g., a self-fixating tip) can be securely and releasable engaged with a distal end of an insertion tool such that the tissue fastener can be selectively secured to the distal end mechanically, then selectively released. With a releasable engagement, a tissue fastener (e.g., self-fixating tip) can be released from the distal end by releasing the engagement (e.g., mechanical engagement) by movement of an actuator at the proximal end of the insertion tool, such as at the handle. For example, an internal channel (or external surface) of a self-fixating tip can include an engaging surface designed to engage a mechanism at a distal end of an insertion tool shaft, while the self-fixating tip is placed at, on, or over the distal end. As an example, an internal or external surface of a self-fixating tip can include a depression, ring, edge, or ledge, that can be rounded, angular, etc. A mechanical detent such as a pin, ball, spring, lever, deflector, or other surface or extension located at the distal end of the insertion tool can be moved, deflected, or extended relative to the distal end of the insertion tool to contact the surface of the self-fixating tip to securely and releasably hold the self-fixating tip at the distal end of the insertion tool and selectively prevent removal of the tip from the distal end until removal is desired. The detent (or other surface or mechanism) can be caused to extend (or retract) from the distal end of the insertion tool by actuating a trigger or other mechanism located at the proximal end (e.g., handle or a proximal location of a shaft) of the insertion tool, to secure (or release) the self-fixating tip. Upon placement of the self-fixating tip at a desired location during a surgical implantation procedure, the insertion tool operator can release the self-fixating tip by use of the trigger or other mechanism at the handle to disengage the detent and cause the tip to become loose. The insertion tool can then be removed from the tissue path and the self-fixating tip can remain in a desired implanted location.
One exemplary form of implant useful for treatment of urinary incontinence is a “mini-sling,” or “single incision sling,” (e.g., as marketed by American Medical Systems under the trade name MINIARC™). Designs described herein are also useful for female pelvic floor repair products, male incontinence, for treating prolapse (e.g., vaginal prolapse), levator defects, anal incontinence, and other pelvic conditions. Devices and methods as described can be suitable for these and similar slings in the treatment of male and female urinary and fecal incontinence and to effect pelvic floor, perineal floor, and pelvic prolapse repairs that involve a variety of surgical approaches. For example, female pelvic floor repair slings may be implanted by techniques that involve transvaginal, transobturator, suprapubic, pre-pubic, or transperineal exposures or pathways. Male urinary incontinence slings may be implanted by techniques that involve transobturator, suprapubic, or transperineal pathways. Embodiments of the described devices and methods may be useful in treating fecal incontinence, by use of a transvaginal, transobturator, suprapubic or perineal floor pathway. In fecal incontinence applications, the disclosed embodiments can be used to correct the anorectal angle in the rectum to re-establish continence in patients. The above methods can, but are not necessarily limited to, use of helical needles of the type described in U.S. Pat. No. 6,911,003 or C-shaped needles or elongate needles of the type used to perform suprapubic procedures.
Referring to
Alternate sling 10A includes sutures 21 pre-installed at portions 30L and 30R. Sutures 21 can be placed at each of portions 30L and 30R of mesh 20, as desired, by passing through mesh 20 in two passes to form a loop, or three passes to produce a cinch in a portion 30L and 30R, or four passes to form a loop, upon tightening of suture 21, or by other useful configurations (see, e.g.,
Still referring to
Self-fixating tips 8 include a base, internal channel (not shown), and from two to four lateral extensions. Self-fixating tips 8, as illustrated, are designed to be inserted through a central (e.g., vaginal or perineal) incision in a patient by using insertion tool 60 (see
Sling 10 is designed to be implanted and then left in place chronically, and includes an elongated, rectangular (as shown at
In use, implant 10 (without pre-installed sutures) or 10A (with pre-installed sutures) can be initially placed with approximate positioning and effect (e.g., supportive force, approximation, or both) to support selected pelvic tissue. Subsequently, lengths of opposing extension portions 42 and 44 can be adjusted by use of one or more suture, either one or more pre-installed suture or one or more suture added intra-operatively, as described. Each self-fixating tip 8 can be placed within supportive tissue such as tissues of a patient's two opposing obturator foramen while the tissue support portion of the implant supports a urethra, bladder neck, vaginal tissue, etc.
With reference to a transvaginal method of treating urinary incontinence, as shown at
Still referring to
If the implant includes pre-installed sutures, 21, such as with implant 10A of
In preferred embodiments, using any type of pre-installed or non-pre-installed suture, two opposing sutures at portions 13L and 13R can be used in coordination to adjust lengths of opposing extension portions 42 and 44, meaning that the tension or length of both of the two opposing extension portions 42 and 44 are adjusted in a coordinated manner (e.g., simultaneously or non-simultaneously but alternately and in succession). Such coordinated use of two sutures, one at each of portion 13L and 13R, can advantageously allow the surgeon to adjust the placement, length, or tension of implant 10 in a manner that does not cause urethra 58 (or other supported tissue) to become located at a non-anatomical position relative to a midline of the patient. Stated differently, using sutures to adjust lengths at both of opposing portions 13L and 13R, together (optionally but not necessarily simultaneously using two adjusting tools), can effectively prevent urethra 58 or other supported tissue from being moved in a left or a right direction within the patient during adjustment, to maintain a correct anatomical position of the urethra or other supported tissue, e.g., at a midline of the patient.
If the implant does not include pre-installed sutures, such as is illustrated with implant 10 of
Referring to
Suture manipulation member 124 is a manually actuated component for passing a suture 21 and dart (not shown) assembly between the jaws. Preferably, the suture manipulation member 124 comprises a pair of firing members that are positioned so that they are within easy reach of either the surgeon's thumb or index finger. Preferably, members 124 move in unison so as one pulls back on one member they both move back. Instrument 110 may conveniently be fired with either the surgeon's index finger or thumb for advancement of the dart.
Tool 110 affords an initial probe or grasp of an implant material so that a surgeon can determine an appropriate amount (length) of implant material such as mesh 20 e.g., of one of portions 30L and 30R, to include between an entry and exit of a suture, which in turn controls the size of a loop, cinch, or other collection of mesh 20 formed by tightening suture 21 after passing suture 21 through mesh 20 one or more times. The amount (length) of implant material placed between entry and exit points of a suture 21, controlled at least in part by placement of jaws 152 and 154 of tool 110, also affects the amount of adjustment (reduction) in length of an extension portion 42 or 44 that can be accomplished by partially or fully tightening the suture passing through the mesh. Specifically, in use, jaws 152 and 154 can be used to grab an amount of mesh 20 of a portion 30L and 30R, between a location of a suture entry and a suture exit. The suture may pass two, three, or four times through the mesh so that when tightened partially or completely, the suture that will produce a desired reduction in length of the mesh, and an extension portion 42 or 44. The jaw manipulating levers 122 afford a manually controlled grasping force that is independent of the actuator for passing the dart and suture assembly. The jaws 152 and 154 are operatively associated with the jaw manipulating levers 122 for movement between open and closed positions. Preferably, jaws 152 and 154 have separate pivot points 151 and 153 to provide a substantially parallel relationship between the gripping surfaces 148. Jaws 152 and 154 can be opened and closed repeatedly, as needed, allowing a surgeon to grasp and test different lengths of mesh therebetween, until a desired amount of mesh is identified for a desired degree of length reduction of an extension portion.
Upon identification of a desired amount (length) of mesh to grasp between jaws 154 and 154, along with a suture entry location, suture exit location, and number of passes through mesh 20, useful to achieve a desired degree of length reduction, suture manipulation member 124 can be actuated to pass a dart and suture 21 assembly through mesh 20 of portion 30L or 30R. As illustrated at
Optionally a tool such as suture passer 110 may include additional functionality at a distal end of shaft 130, at or near jaws 152 and 154 to assist in forming a loop, fold, or cinch in mesh 20. For example, a distal end of shaft 130 may include moveable rods or supports capable of manipulating mesh of an implant to produce a fold, loop, or cinch, in the mesh, or to gather the mesh, or to produce multiple folds or loops, by use of the an actuating mechanism at the proximal end. The distal structure can be any useful structure, such as one or more stationary or moveable arm or extensions capable of grasping and folding or looping a piece of mesh or other implant material. Upon creating of the one or more loop, fold, or cinch, etc., the loop or fold can be secured in place by passing through the mesh, as described (alternately by use of an adhesive, staple, or the like). According to this tool embodiment, the distal end of shaft 130 includes multi-functional structure capable of gathering mesh to form the one or more loop, fold, or cinch, and also securing the fold, loop, or cinch by placement of a securing device such as a suture, staple, or the like.
Alternately, but not illustrated, a suture may pass only once or twice through a mesh, or make any other useful number of passes. Any of the described or illustrated configurations of passing a suture 21 through a mesh 20 may be useful for either a pre-installed suture or a non-pre-installed suture, meaning a suture that is passed through the mesh before implant 10 is placed through a surgical incision and at a location to support pelvic tissue, or after implant 10 is placed through a surgical incision and at a location to support pelvic tissue, respectively. Any illustrated, described, or otherwise useful configuration can place a suture along a length of elongate mesh (e.g., an extension portion of an implant), the suture being situated within or about the mesh in a manner such that pulling the suture will cause the length of the mesh to be shortened. The embodiment at
The disclosed systems, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references. Various methods and tools for introducing, deploying, anchoring and manipulate device, implants, and the like as disclosed in the previously-incorporated references are envisioned for use with the present invention as well.
All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated, and include those references incorporated within the identified patents, patent applications and publications.
The present non-provisional patent Application claims priority under 35 USC §119(e) from United States Provisional Patent Application having Ser. No. 61/468,069, filed Mar. 28, 2011, entitled “IMPLANTS, TOOLS, AND METHODS FOR TREATMENTS OF PELVIC CONDITIONS,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2738790 | Todt et al. | Mar 1956 | A |
3124163 | Usher | Mar 1964 | A |
3182662 | Shirodkar | May 1965 | A |
3311110 | Singerman et al. | Mar 1967 | A |
3384073 | Van Winkle, Jr. | May 1968 | A |
3472232 | Earl | Oct 1969 | A |
3580313 | McKnight | May 1971 | A |
3613679 | Bijou | Oct 1971 | A |
3763860 | Clarke | Oct 1973 | A |
3789828 | Schulte | Feb 1974 | A |
3815576 | Balaban | Jun 1974 | A |
3858783 | Kapitanov et al. | Jan 1975 | A |
3924633 | Cook et al. | Dec 1975 | A |
3995619 | Glatzer | Dec 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4128100 | Wendorff | Dec 1978 | A |
4172458 | Pereyra | Oct 1979 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4246660 | Wevers | Jan 1981 | A |
4441497 | Paudler | Apr 1984 | A |
4509516 | Richmond | Apr 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4632100 | Somers et al. | Dec 1986 | A |
4775380 | Seedhom et al. | Oct 1988 | A |
4857041 | Annis et al. | Aug 1989 | A |
4865031 | O'Keeffe | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4920986 | Biswas | May 1990 | A |
4932962 | Yoon et al. | Jun 1990 | A |
4938760 | Burton et al. | Jul 1990 | A |
4969892 | Burton et al. | Nov 1990 | A |
5007894 | Enhorning | Apr 1991 | A |
5012822 | Schwarz | May 1991 | A |
5013292 | Lemay | May 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5019032 | Robertson | May 1991 | A |
5032508 | Naughton et al. | Jul 1991 | A |
5036867 | Biswas | Aug 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5149329 | Richardson | Sep 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5250033 | Evans et al. | Oct 1993 | A |
5256133 | Spitz | Oct 1993 | A |
5269783 | Sander | Dec 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5328077 | Lou | Jul 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5362294 | Seitzinger | Nov 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5370650 | Tovey et al. | Dec 1994 | A |
5370662 | Stone et al. | Dec 1994 | A |
5376097 | Phillips | Dec 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5386836 | Biswas | Feb 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5413598 | Moreland | May 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5474518 | Velazquez | Dec 1995 | A |
5474543 | McKay | Dec 1995 | A |
5518504 | Polyak | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5520703 | Essig | May 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5544664 | Benderev et al. | Aug 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5582188 | Benderev et al. | Dec 1996 | A |
5591163 | Thompson | Jan 1997 | A |
5591206 | Moufarrege | Jan 1997 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5633286 | Chen | May 1997 | A |
5643320 | Lower et al. | Jul 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5697931 | Thompson | Dec 1997 | A |
5709708 | Thal | Jan 1998 | A |
5725541 | Anspach, III et al. | Mar 1998 | A |
5732475 | Sacks et al. | Mar 1998 | A |
5741282 | Anspach, III et al. | Apr 1998 | A |
5782916 | Pintauro et al. | Jul 1998 | A |
5785640 | Kresch et al. | Jul 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5836314 | Benderev et al. | Nov 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5925047 | Errico et al. | Jul 1999 | A |
5934283 | Willem et al. | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5980558 | Wiley | Nov 1999 | A |
5984927 | Wenstrom, Jr. | Nov 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
5997554 | Thompson | Dec 1999 | A |
6010447 | Kardjian | Jan 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6030393 | Corlew | Feb 2000 | A |
6031148 | Hayes et al. | Feb 2000 | A |
6036701 | Rosenman | Mar 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042536 | Tihon et al. | Mar 2000 | A |
6042583 | Thompson et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6050937 | Benderev | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6068591 | Bruckner et al. | May 2000 | A |
6071290 | Compton | Jun 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6077216 | Benderev et al. | Jun 2000 | A |
6099538 | Moses | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6106545 | Egan | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6117067 | Gil-Vernet | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6142968 | Pigg et al. | Nov 2000 | A |
6168611 | Risvi | Jan 2001 | B1 |
6174279 | Girard | Jan 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6221005 | Bruckner et al. | Apr 2001 | B1 |
6241736 | Sater et al. | Jun 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6302840 | Benderev | Oct 2001 | B1 |
6306079 | Trabucco | Oct 2001 | B1 |
6322492 | Kovac | Nov 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6328744 | Harari et al. | Dec 2001 | B1 |
6334446 | Beyar | Jan 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6406480 | Beyar et al. | Jun 2002 | B1 |
6414179 | Banville et al. | Jul 2002 | B1 |
6423080 | Gellman et al. | Jul 2002 | B1 |
6432074 | Ager et al. | Aug 2002 | B1 |
6451024 | Thompson et al. | Sep 2002 | B1 |
6475139 | Miller | Nov 2002 | B1 |
6478727 | Scetbon | Nov 2002 | B2 |
6482214 | Sidor, Jr. et al. | Nov 2002 | B1 |
6491703 | Ulmsten | Dec 2002 | B1 |
6494906 | Owens | Dec 2002 | B1 |
6502578 | Raz et al. | Jan 2003 | B2 |
6506190 | Walshe | Jan 2003 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6575897 | Ory | Jun 2003 | B1 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6592515 | Thierfelder | Jul 2003 | B2 |
6592610 | Beyar | Jul 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6599323 | Melican et al. | Jul 2003 | B2 |
6602260 | Harari et al. | Aug 2003 | B2 |
6612977 | Staskin | Sep 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6638211 | Suslian et al. | Oct 2003 | B2 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6641524 | Kovac | Nov 2003 | B2 |
6641525 | Rocheleau | Nov 2003 | B2 |
6648921 | Anderson | Nov 2003 | B2 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6673010 | Skiba et al. | Jan 2004 | B2 |
6682475 | Cox et al. | Jan 2004 | B2 |
6685629 | Therin | Feb 2004 | B2 |
6689047 | Gellman et al. | Feb 2004 | B2 |
6691711 | Raz | Feb 2004 | B2 |
6699175 | Miller | Mar 2004 | B2 |
6702827 | Lund | Mar 2004 | B1 |
6752814 | Gellman et al. | Jun 2004 | B2 |
6755781 | Gellman | Jun 2004 | B2 |
6802807 | Anderson | Oct 2004 | B2 |
6830052 | Carter et al. | Dec 2004 | B2 |
6881184 | Zappala | Apr 2005 | B2 |
6884212 | Thierfelder et al. | Apr 2005 | B2 |
6908425 | Luscombe | Jun 2005 | B2 |
6908473 | Skiba et al. | Jun 2005 | B2 |
6911002 | Fierro | Jun 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6932759 | Kammerer | Aug 2005 | B2 |
6936052 | Gellman et al. | Aug 2005 | B2 |
6953428 | Gellman et al. | Oct 2005 | B2 |
6960160 | Browning | Nov 2005 | B2 |
6971986 | Staskin et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6981944 | Jamiolkowski | Jan 2006 | B2 |
6981983 | Rosenblatt et al. | Jan 2006 | B1 |
6991597 | Gellman et al. | Jan 2006 | B2 |
7014607 | Gellman | Mar 2006 | B2 |
7025063 | Snitkin | Apr 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7037255 | Inman | May 2006 | B2 |
7048682 | Neisz et al. | May 2006 | B2 |
7056333 | Walshe | Jun 2006 | B2 |
7070556 | Anderson | Jul 2006 | B2 |
7070558 | Gellman et al. | Jul 2006 | B2 |
7083568 | Neisz et al. | Aug 2006 | B2 |
7083637 | Tannhauser | Aug 2006 | B1 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7112210 | Ulmsten et al. | Sep 2006 | B2 |
7121997 | Kammerer et al. | Oct 2006 | B2 |
7131943 | Kammerer | Nov 2006 | B2 |
7131944 | Jacquetin | Nov 2006 | B2 |
7175591 | Kaladelfos | Feb 2007 | B2 |
7198597 | Siegel et al. | Apr 2007 | B2 |
7226407 | Kammerer | Jun 2007 | B2 |
7226408 | Harai et al. | Jun 2007 | B2 |
7229404 | Bouffier | Jun 2007 | B2 |
7229453 | Anderson | Jun 2007 | B2 |
7235043 | Gellman et al. | Jun 2007 | B2 |
7261723 | Smith et al. | Aug 2007 | B2 |
7285103 | Nathanson | Oct 2007 | B2 |
7297102 | Smith et al. | Nov 2007 | B2 |
7299803 | Kovac | Nov 2007 | B2 |
7303525 | Watschke et al. | Dec 2007 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7347812 | Mellier | Mar 2008 | B2 |
7351197 | Montpetit et al. | Apr 2008 | B2 |
7357773 | Watschke et al. | Apr 2008 | B2 |
7364541 | Chu et al. | Apr 2008 | B2 |
7371245 | Evans et al. | May 2008 | B2 |
7377926 | Topper et al. | May 2008 | B2 |
7387634 | Benderev | Jun 2008 | B2 |
7393320 | Montpetit et al. | Jul 2008 | B2 |
7407480 | Staskin | Aug 2008 | B2 |
7410460 | Benderev | Aug 2008 | B2 |
7413540 | Gellman et al. | Aug 2008 | B2 |
7422557 | Arnal | Sep 2008 | B2 |
7431690 | Merade et al. | Oct 2008 | B2 |
7494495 | Delorme et al. | Feb 2009 | B2 |
7500945 | Cox | Mar 2009 | B2 |
7513865 | Bourne et al. | Apr 2009 | B2 |
7527588 | Zaddem et al. | May 2009 | B2 |
7588598 | Delorme et al. | Sep 2009 | B2 |
7601118 | Smith et al. | Oct 2009 | B2 |
7611454 | De Leval | Nov 2009 | B2 |
7621864 | Suslian et al. | Nov 2009 | B2 |
7637860 | MacLean | Dec 2009 | B2 |
7686759 | Sater | Mar 2010 | B2 |
7691050 | Gellman et al. | Apr 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722528 | Arnal et al. | May 2010 | B2 |
7740576 | Hodroff | Jun 2010 | B2 |
7753839 | Siegel et al. | Jul 2010 | B2 |
7762942 | Neisz et al. | Jul 2010 | B2 |
7766926 | Bosley et al. | Aug 2010 | B2 |
7789821 | Browning | Sep 2010 | B2 |
8172745 | Rosenblatt | May 2012 | B2 |
20010049467 | Lehe et al. | Dec 2001 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020128670 | Ulmsten et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151909 | Gellman et al. | Oct 2002 | A1 |
20020161382 | Neisz | Oct 2002 | A1 |
20030004581 | Rousseau | Jan 2003 | A1 |
20030023250 | Watschke et al. | Jan 2003 | A1 |
20030036676 | Scetbon | Feb 2003 | A1 |
20030045774 | Staskin et al. | Mar 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030176875 | Anderson | Sep 2003 | A1 |
20040015057 | Rocheleau et al. | Jan 2004 | A1 |
20040073235 | Lund | Apr 2004 | A1 |
20040225181 | Chu et al. | Nov 2004 | A1 |
20040267088 | Kammerer | Dec 2004 | A1 |
20050000523 | Beraud | Jan 2005 | A1 |
20050004427 | Cervigni | Jan 2005 | A1 |
20050004576 | Benderev | Jan 2005 | A1 |
20050038451 | Rao et al. | Feb 2005 | A1 |
20050055104 | Arnal et al. | Mar 2005 | A1 |
20050119671 | Reydel et al. | Jun 2005 | A1 |
20050131391 | Chu et al. | Jun 2005 | A1 |
20050131393 | Chu et al. | Jun 2005 | A1 |
20050199249 | Karram | Sep 2005 | A1 |
20050245787 | Cox et al. | Nov 2005 | A1 |
20050256530 | Petros | Nov 2005 | A1 |
20050277806 | Cristalli | Dec 2005 | A1 |
20050278037 | Delorme et al. | Dec 2005 | A1 |
20050283189 | Rosenblatt et al. | Dec 2005 | A1 |
20060015010 | Jaffe et al. | Jan 2006 | A1 |
20060053903 | Berenyi et al. | Mar 2006 | A1 |
20060058578 | Browning | Mar 2006 | A1 |
20060089524 | Chu | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060122457 | Kovac | Jun 2006 | A1 |
20060173237 | Jacquetin | Aug 2006 | A1 |
20060195007 | Anderson | Aug 2006 | A1 |
20060195011 | Arnal | Aug 2006 | A1 |
20060217589 | Wan et al. | Sep 2006 | A1 |
20060229493 | Weiser et al. | Oct 2006 | A1 |
20060229596 | Weiser et al. | Oct 2006 | A1 |
20060252980 | Arnal et al. | Nov 2006 | A1 |
20060287571 | Gozzi | Dec 2006 | A1 |
20070015953 | MacLean | Jan 2007 | A1 |
20070078295 | Landgrebe | Apr 2007 | A1 |
20070173864 | Chu | Jul 2007 | A1 |
20080039678 | Montpetit et al. | Feb 2008 | A1 |
20080072404 | Wetter | Mar 2008 | A1 |
20080251002 | Burleigh | Oct 2008 | A1 |
20080300607 | Meade et al. | Dec 2008 | A1 |
20090005634 | Rane | Jan 2009 | A1 |
20090012353 | Beyer | Jan 2009 | A1 |
20090082792 | Koyfman et al. | Mar 2009 | A1 |
20090171143 | Chu et al. | Jul 2009 | A1 |
20090221868 | Evans | Sep 2009 | A1 |
20090240104 | Ogdahl et al. | Sep 2009 | A1 |
20090259092 | Ogdahl et al. | Oct 2009 | A1 |
20100261950 | Lund | Oct 2010 | A1 |
20110124954 | Ogdahl | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2002241673 | Nov 2005 | AU |
2404459 | Aug 2005 | CA |
2305815 | Feb 1973 | DE |
4220283 | May 1994 | DE |
19544162 | Apr 1997 | DE |
10211360 | Sep 2003 | DE |
20016866 | Mar 2007 | DE |
0248544 | Dec 1987 | EP |
0470308 | Feb 1992 | EP |
0650703 | Jun 1994 | EP |
0643945 | Jul 1994 | EP |
0632999 | Jan 1995 | EP |
1093758 | Apr 2001 | EP |
1060714 | Sep 2002 | EP |
1342450 | Sep 2003 | EP |
2787990 | Jul 2000 | FR |
20852813 | Jan 2004 | FR |
2268690 | Jan 1994 | GB |
2353220 | Oct 2000 | GB |
1299162 | Apr 1998 | IT |
1225547 | Apr 1986 | SU |
1342486 | Oct 1987 | SU |
WO9317635 | Sep 1993 | WO |
WO9319678 | Oct 1993 | WO |
WO9511631 | May 1995 | WO |
WO9525469 | Sep 1995 | WO |
WO9716121 | May 1997 | WO |
WO9730638 | Aug 1997 | WO |
WO9747244 | Dec 1997 | WO |
WO9819606 | May 1998 | WO |
WO9835606 | Aug 1998 | WO |
WO9835616 | Aug 1998 | WO |
WO9835632 | Aug 1998 | WO |
WO9842261 | Oct 1998 | WO |
WO9853746 | Dec 1998 | WO |
WO9916381 | Apr 1999 | WO |
WO9937217 | Jul 1999 | WO |
WO9952450 | Oct 1999 | WO |
WO9953844 | Oct 1999 | WO |
WO9959477 | Nov 1999 | WO |
WO0064370 | Feb 2000 | WO |
WO0013601 | Mar 2000 | WO |
WO0018319 | Apr 2000 | WO |
WO0027304 | May 2000 | WO |
WO0040158 | Jul 2000 | WO |
WO0057812 | Oct 2000 | WO |
WO0066030 | Nov 2000 | WO |
WO0074594 | Dec 2000 | WO |
WO0074613 | Dec 2000 | WO |
WO0074633 | Dec 2000 | WO |
WO0106951 | Feb 2001 | WO |
WO0126581 | Apr 2001 | WO |
WO0139670 | Jun 2001 | WO |
WO0145588 | Jun 2001 | WO |
WO0145589 | Jun 2001 | WO |
WO0156499 | Aug 2001 | WO |
WO0228312 | Apr 2002 | WO |
WO0228315 | Apr 2002 | WO |
WO0230293 | Apr 2002 | WO |
WO0232284 | Apr 2002 | WO |
WO0234124 | May 2002 | WO |
WO0238079 | May 2002 | WO |
WO0239890 | May 2002 | WO |
WO02058563 | Aug 2002 | WO |
WO02062237 | Aug 2002 | WO |
WO02069781 | Sep 2002 | WO |
WO02071953 | Sep 2002 | WO |
WO02078552 | Oct 2002 | WO |
WO02089704 | Nov 2002 | WO |
WO03017848 | Mar 2003 | WO |
WO03003778 | Apr 2003 | WO |
WO03028585 | Apr 2003 | WO |
WO03037215 | May 2003 | WO |
WO03041613 | May 2003 | WO |
WO03047435 | Jun 2003 | WO |
WO03068107 | Aug 2003 | WO |
WO03075792 | Sep 2003 | WO |
WO03092546 | Nov 2003 | WO |
WO03096929 | Nov 2003 | WO |
WO2004012626 | Feb 2004 | WO |
WO2004016196 | Feb 2004 | WO |
WO2004017862 | Mar 2004 | WO |
WO2004034912 | Apr 2004 | WO |
WO2005037132 | Apr 2005 | WO |
WO2005079702 | Sep 2005 | WO |
WO2005122954 | Dec 2005 | WO |
WO2006015031 | Feb 2006 | WO |
WO2006108145 | Oct 2006 | WO |
WO2007011341 | Jan 2007 | WO |
WO2007014241 | Feb 2007 | WO |
WO2007016083 | Feb 2007 | WO |
WO2007027592 | Mar 2007 | WO |
WO2007059199 | May 2007 | WO |
WO2007081955 | Jul 2007 | WO |
WO2007097994 | Aug 2007 | WO |
WO2007137226 | Nov 2007 | WO |
WO2007146784 | Dec 2007 | WO |
WO2007149348 | Dec 2007 | WO |
WO2007149555 | Dec 2007 | WO |
WO2008057261 | May 2008 | WO |
WO2008124056 | Oct 2008 | WO |
WO2009005714 | Jan 2009 | WO |
WO2009017680 | Feb 2009 | WO |
Entry |
---|
“We're staying ahead of the curve” Introducing the IVS Tunneller Device for Tension Free Procedures, Tyco Healthcare, 3 pages (2002). |
Advantage A/T™, Surgical Mesh Sling Kit, Boston Scientific, 6 pages (2002). |
Albert H. Aldridge, B.S., M.D., F.A.C.S., Transplantation of Fascia for Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, V. 44, pp. 398-411, (1948). |
Amundsen, Cindy L. et al., Anatomical Correction of Vaginal Vault Prolapse by Uterosacral Ligament Fixation in Women Who Also Require a Pubovaginal Sling, The Journal of Urology, vol. 169, pp. 1770-1774, (May 2003). |
Araki, Tohru et al., The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck, The Journal of Urology, vol. 144, pp. 319-323 (Aug. 1990). |
Asmussen, M. et.al., Simultaneous Urethro-Cystometry With a New Technique, Scand J Urol Nephrol 10, p. 7-11 (1976). |
Beck, Peter R. et al., Treatment of Urinary Stress Incontinence With Anterior Colporrhaphy, Obstetrics and Gynecology, vol. 59 (No. 3), pp. 269-274 (Mar. 1982). |
Benderev, Theodore V., MD, A Modified Percutaneous Outpatient Bladder Neck Suspension System, Journal of Urology, vol. 152, pp. 2316-2320 (Dec. 1994). |
Benderev, Theodore V., MD, Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension, Urology, vol. 40, No. 5, pp. 409-418 (Nov. 1992). |
Bergman, Arieh et al., Three Surgical Procedures for Genuine Stress Incontinence: Five-Year Follow-Up of a Prospective Randomized Study, Am J Obstet Gynecol, vol. 173 No. 1, pp. 66-71 (Jul. 1995). |
Blaivas, Jerry et al., Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence, The Journal of Urology. vol. 145, pp. 1214-1218 (Jun. 1991). |
Blaivas, Jerry et al., Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment, Surgical Forum, pp. 473-475, (1984). |
Blaivas, Jerry, Commentary: Pubovaginal Sling Procedure, Experience with Pubovaginal Slings, pp. 93-101 (1990). |
Boyles, Sarah Hamilton et al., Procedures for Urinary Incontinence in the United States, 1979-1997, Am J Obstet Gynecol, vol. 189, n. 1, pp. 70-75 (Jul. 2003). |
Bryans, Fred E., Marlex Gauze Hammock Sling Operation With Cooper's Ligament Attachment in the Management of Recurrent Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology. vol. 133, pp. 292-294 (Feb. 1979). |
Burch, John C., Urethrovaginal Fixation to Cooper's Ligament for Correction of Stress Incontinence, Cystocele, and Prolapse, Am. J. Obst. & Gyn, vol. 31, pp. 281-290 (1961). |
Capio™ CL—Transvaginal Suture Capturing Device—Transvaginal Suture Fixation to Cooper's Ligament for Sling Procedures, Boston Scientific, Microvasive®, 8 pages, (2002). |
Cervigni, Mauro et al., The Use of Synthetics in the Treatment of Pelvic Organ Prolapse, Voiding Dysfunction and Female Urology, vol. 11, pp. 429-435 (2001). |
Choe, Jong M. et al., Gore-Tex Patch Sling: 7 Years Later, Urology, vol. 54, pp. 641-646 (1999). |
Cook/Ob Gyn®, Urogynecology, Copyright Cook Urological Inc., pp. 1-36 (1996). |
Dargent, D. et al., Insertion of a Suburethral Sling Through the Obturator Membrane in the Treatment of Female Urinary Incontinence, Gynecol Obstet Fertil, vol. 30, pp. 576-582 (2002). |
Das, Sakti et al., Laparoscopic Colpo-Suspension, The Journal of Urology, vol. 154, pp. 1119-1121 (Sep. 1995). |
Debodinance, Philipp et al., “Tolerance of Synthetic Tissues in Touch With Vaginal Scars: Review to the Point of 287 Cases”, Europeon Journal of Obstetrics & Gynecology and Reproductive Biology 87 (1999) pp. 23-30. |
Decter, Ross M., Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned, The Journal of Urology, vol. 150, pp. 683-686 (Aug. 1993). |
Delancey, John, MD, Structural Support of the Urethra as It Relates to Stress Urinary Incontinence: The Hammock Hypothesis, Am J Obstet Gynecol, vol. 170 No. 6, pp. 1713-1723 (Jun. 1994). |
Delorme, Emmanuel, Trans-Obturator Sling: A Minimal Invasive Procedure to Treat Female Stress Urinary Incontinence, Progres en Urologie. vol. 11, pp. 1306-1313 (2001) English Abstract attached. |
Diana, et al., Treatment of Vaginal Vault Prolapse With Abdominal Sacral Colpopexy Using Prolene Mesh, American Journal of Surgery. vol. 179, pp. 126-128, (Feb. 2000). |
Eglin et al., Transobturator Subvesical Mesh. Tolerance and short-term results of a 103 case continuous series, Gynecologie Obstetrique & Fertilite, vol. 31, Issue 1, pp. 14-19 (Jan. 2003). |
Enzelsberger, H. et al., Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stress Incontinence, Acta Obstet Gynecol Scand, 69, pp. 51-54 (1990). |
Eriksen, Bjarne C. et al., Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence, Acta Obstet Gynecol Scand, 69, pp. 45-50 (1990). |
Falconer, C. et al., Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinence Women, International Urogynecology Journal, pp. 133-137 (1966). |
Falconer, C. et al., Influence of Different Sling Materials of Connective Tissue Metabolism in Stress Urinary Incontinent Women, International Urogynecology Journal, Supp. 2, pp. S19-S23 (2001). |
Farnsworth, B.N., Posterior Intravaginal Slingplasty (Infracoccygeal Sacropexy) for Sever Posthysterectomy Vaginal Vault Prolapse—A Preliminary Report on Efficacy and Safety, Int Urogynecology J, vol. 13, pp. 4-8 (2002). |
Farquhar, Cynthia M. et al., Hysterectomy Rates in the United States 1990-1997, Obstetrics & Gynecology, vol. 99, n. 2, pp. 229-234 (Feb. 2002). |
Fidela, Marie R. et al., Pelvic Support Defects and Visceral and Sexual Function in Women Treated With Sacrospinous Ligament Suspension and Pelvic Reconstruction, Am J Obstet Gynecol, vol. 175, n. 6 (Dec. 1996). |
Flood, C.G. et al., Anterior Colporrhaphy Reinforce With Marlex Mesh for the Treatment of Cystoceles, International Urogynecology Journal, vol. 9, pp. 200-204 (1998). |
Gilja, Ivan et al., A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch), The Journal of Urology, vol. 153, pp. 1455-1457 (May 1995). |
Gittes, Ruben F. et al., No-Incision Pubovaginal Suspension for Stress Incontinence, The Journal of Urology, vol. 138 (Sep. 1987). |
Guner, et al., Transvaginal Sacrospinous Colpopexy for Marked Uterovaginal and Vault Prolapse, Inter J of Gynec & Obstetrics, vol. 74, pp. 165-170 (2001). |
Gynecare TVT Tension-Free Support for Incontinence. The tension-free solution to female Incontinence, Gynecare Worldwide,6 pages, (2002). |
Handa, Victoria L. et al, Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report, Obstetrics & Gynecology, vol. 88 No. 6, 5 pages (Dec. 1996). |
Heit, Michael et al., Predicting Treatment Choice for Patients With Pelvic Organ Prolapse, Obstetrics & Gynecology, vol. 101, n. 6, pp. 1279-1284 (Jun. 2003). |
Henriksson, L. et al., A Urodynamic Evaluation of the Effects of Abdominal Urethrocystopexy and Vaginal Sling Urethroplasty in Women With Stress Incontinence, Am. J. Obstet. Gynecol, vol. 131, No. 1, pp. 77-82 (Mar. 1, 1978). |
Hodgkinson, C. Paul et.al., Urinary Stress Incontinence in the Female, Department of Gynecology and Obstetrics, Henry Ford Hospital, vol. 10, No. 5, p. 493-499, (Nov. 1957). |
Holschneider, C. H., et al., The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence: A 15-year Review, Obstetrics & Gynecology, vol. 83, No. 4, pp, 573-578 (Apr. 1994). |
Horbach, Nicollette S., et al., Instruments and Methods, A Suburethral Sling Procedure with Polytetrafluoroethylene for the Treatment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure, Obstetrics & Gynecology, vol. 71, No. 4, pp. 648-652 (Apr. 1998). |
Ingelman-Sunberg, A. et al., Surgical Treatment of Female Urinary Stress Incontinence, Contr. Gynec. Obstet., vol. 10, pp. 51-69 (1983). |
IVS Tunneller—A Universal instrument for anterior and posterior intra-vaginal tape placement, Tyco Healthcare, 4 pages (Aug. 2002). |
IVS Tunneller—ein universelles Instrument fur die Intra Vaginal Schlingenplastik, Tyco Healthcare, 4 pages (2001). |
Jeffcoate. T.N.A. et al., The Results of the Aldridge Sling Operation for Stress Incontinence, Journal of Obstetrics and Gynaecology, pp. 36-39 (1956). |
Jones, N.H.J. Reay et al., Pelvic Connective Tissue Resilience Decreases With Vaginal Delivery, Menopause and Uterine Prolapse, Br J Surg, vol. 90, n. 4, pp. 466-472 (Apr. 2003). |
Julian, Thomas, The Efficacy of Marlex Mesh in the Repair of Sever. Recurrent Vaginal Prolapse of the Anterior Midvaginal Wall, Am J Obstet Gynecol, vol. 175, n. 6, pp. 1472-1475 (Dec. 1996). |
Karram, Mickey et al., Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent for Severe Stress Urinary Incontinence, vol. 75, pp. 461-463 (Mar. 1990). |
Karram, Mickey M. et al., Chapter 19 Surgical Treatment of Vaginal Vault Prolapse, Urogynecology and Reconstructive Pelvic Surgery, (Walters & Karram eds.) pp. 235-256 (Mosby 1999). |
Kersey, J., The Gauze Hammock Sling Operation in the Treatment of Stress Incontintence, British Journal of Obstetrics and Gynaecology. vol. 90, pp. 945-949 (Oct. 1983). |
Klutke, Carl et al., The Anatomy of Stress Incontinence: Magentic Resonance Imaging of the Female Bladder Neck and Urethra, The Journal of Urology, vol. 143, pp. 563-566 (Mar. 1990). |
Klutke, John James et al., Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure, Obstetrics & Gynecology, vol. 88, No. 2, pp. 294-296 (Aug. 1996). |
Klutke, John M.D. et al, The promise of tension-free vaginal tape for female SUI, Contemporary Urology, 7 pages (Oct. 2000). |
Korda, A. et al., Experience With Silastic Slings for Female Urinary Incontience, Aust NZ J. Obstet Gynaecol, vol. 29, pp. 150-154 (May 1989). |
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence, Obstetrics & Gynecology, vol. 89, No. 4, pp. 624-627 (Apr. 1997). |
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling: A Long Term Cure for SUI?, Contemporary OB/GYN, 10 pages (Feb. 1998). |
Kovac, S. Robert, Follow-up of the Pubic Bone Suburethral Stabilization Sling Operation for Recurrent Urinary Incontinence (Kovac Procedure), Journal of Pelvic Surgery, pp. 156-160 (May 1999). |
Kovac, Stephen Robert, M.D., Cirriculum Vitae, pp. 1-33 (Jun. 18, 1999). |
Leach, Gary E., et al., Female Stress Urinary Incontinence Clinical Guidelines Panel Report on Surgical Management of Female Stress Urinary Incontinence, American Urological Association, vol. 158, pp. 875-880 (Sep. 1997). |
Leach, Gary E., MD, Bone Fixation Technique for Transvaginal Needle Suspension, Urology vol. XXXI, No. 5, pp. 388-390 (May 1988). |
Lichtenstein, Irving L. et al, The Tension Free Hernioplasty, The American Journal of Surgery, vol. 157 pp. 188-193 (Feb. 1989). |
Loughlin, Kevin R. et al., Review of an 8-Year Experience With Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Incontinence, The Journal of Uroloyg, vol. 143, pp. 44-45 (1990). |
Luber, Karl M. et al., The Demographics of Pelvic Floor Disorders; Current Observations and Future Projections, Am J Obstet Gynecol, vol. 184, n. 7, pp. 1496-1503 (Jun. 2001). |
Mage, Technique Chirurgicale, L'Interpostion D'Un Treillis Synthetique Dans La Cure Par Voie Vaginale Des Prolapsus Genitaux, J Gynecol Obstet Biol Reprod, vol. 28, pp. 825-829 (1999). |
Marchionni, Mauro et al., True Incidence of Vaginal Vault Prolapse—Thirteen Years of Experience, Journal of Reproductive Medicine, vol. 44, n. 8, pp. 679-684 (August 199). |
Marinkovic, Serge Peter et al., Triple Compartment Prolapse: Sacrocolpopexy With Anterior and Posterior Mesh Extensions, Br J Obstet Gynaecol, vol. 110, pp. 323-326 (Mar. 2003). |
Marshall, Victor Fray et al. The Correction of Stress Incontinence by Simple Vesicourethral Suspension, Surgery, Gynecology and Obstetrics. vol. 88, pp. 509-518 (1949). |
McGuire, Edward J. et al., Pubovaginal Sling Procedure for Stress Incontinence, The Journal of Urology, vol. 119, pp. 82-84 (Jan. 1978). |
McGuire, Edward J. et al., Abdominal Procedures for Stress Incontinence, Urologic Clinics of North America, pp. 285-290, vol. 12, No. 2 (May 1985). |
McGuire, Edward J. et al., Experience With Pubovaginal Slings for Urinary Incontinence at the University of Michigan, Journal of Urology, vol. 138, pp. 90-93(1987). |
McGuire, Edwared J. et al., Abdominal Fascial Slings, Slings, Raz Female Urology, p. 369-375 (1996). |
McGuire™ Suture Buide, The McGuire™ Suture Guide, a single use instrument designed for the placement of a suburethral sling, Bard, 2 pages (2001). |
McIndoe, G. A. et al., The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence, Aust. N Z Journal of Obstet Gynecology, pp. 238-239 (Aug. 1987). |
McKiel, Charles F. Jr., et al, Marshall-Marchetti Procedure Modification, vol. 96, pp. 737-739 (Nov. 1966). |
Migliari, Roberto et al., Tension-Free Vaginal Mesh Repair for Anterior Vaginal Wall Prolapse, Eur Urol, vol. 38, pp. 151-155 (Oct. 1999). |
Migliari, Roberto et al., Treatment Results Using a Mixed Fiber Mesh in Patients With Grade IV Cystocele, Journal of Urology, vol. 161, pp. 1255-1258 (Apr. 1999). |
Mitek Brochure, Therapy of Urinary Stess Incontinence in Women Using Mitek GIII Anchors, by Valenzio C. Mascio, MD. |
Moir, J. Chassar et.al., The Gauze-Hammock Operation, The Journal of Obstetrics and Gynaecology of British Commonwealth, vol. 75 No. 1, pp. 1-9 (Jan. 1968). |
Morgan, J. E., A Sling Operation, Using Marlex Polypropylene Mesh, for the Treatment of Recurrent Stress Incontinence, Am. J. Obst. & Gynecol, pp. 369-377 (Feb. 1970). |
Morgan, J. E. et al., The Marlex Sling Operation for the Treatment of Recurrent Stress Urinary Incontinence: A 16-Year Review, American Obstetrics Gynecology, vol. 151, No. 2, pp. 224-226 (Jan. 1998). |
Morley, George W. et al., Sacrospinous Ligament Fixations for Eversion of the Vagina, Am J Obstet Gyn, vol. 158, n. 4, pp. 872-881 (Apr. 1988). |
Narik, G. et.al., A Simplified Sling Operation Suitable for Routine Use, Gynecological and Obstetrical Clinic, University of Vienna. vol. 84, No. 3, p. 400-405, (Aug. 1, 1962). |
Natale, F. et al., Tension Free Cystocele Repair (TCR): Long-Term Follow-Up, International Urogynecology Journal, vol. 11, supp. 1, p. S51 (Oct. 2000). |
Nichols, David H., The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence, Obstetrics and Gynecology, vol. 41, pp. 88-93 (Jan. 1973). |
Nicita, Giulio, A New Operation for Genitourinary Prolapse, Journal of Urology, vol. 160, pp. 741-745 (Sep. 1998). |
Niknejad, Kathleen et al., Autologous and Synthetic Urethral Slings for Female Incontinence, Urol Clin N Am, vol. 29, pp. 597-611 (2002). |
Norris, Jeffrey P. et al., Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach, Journal of Endourology, vol. 10, pp. 227-230 (Jun. 1996). |
O'Donnell, Pat, Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence, Journal Arkansas Medical Society, vol. 88, pp. 389-392 (Jan. 1992). |
Ostergard, Donald R. et al., Urogynecology and Urodynamics Theory and Practice, pp. 569-579 (1996). |
Paraiso et al., Laparoscopic Surgery for Enterocele, Vaginal Apex Prolapse and Rectocele, Int. Urogynecol J, vol. 10, pp. 223-229 (1999). |
Parra, R. O., et al, Experience With a Simplified Technique for the Treatment of Female Stress Urinary Incontinence, British Journal of Urology, pp. 615-617 (1990). |
Pelosi, Marco Antonio III et al., Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence, Journal of Laparoendoscopic & Advaned Surgical Techniques, vol. 9, No. 1 pp. 45-50 (1999). |
Pereyra, Armand J. et al, Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence, Obstetrics and Gynecology, vol. 59, No. 5, pp. 643-648 (May 1982). |
Pereyra, Armand J., M.D., F.A.C.S., A Simplified Surgical Procedure for Correction of Stress Incontinence in Women, West.J.Surg., Obst. & Gynec, p. 223-226, (Jul.-Aug. 1959). |
Peter E. Papa Petros et al., Cure of Stress Incontinence by Repair of External Anal Sphincter, Acta Obstet Gynecol Scand, vol. 69, Sup 153, p. 75 (1999). |
Peter Petros et al., Anchoring the Midurethra Restores Bladder-Neck Anatomy and Continence, The Lancet, vol. 354, pp. 997-998 (Sep. 18, 1999). |
Petros, Peter E. Papa et al., An Anatomical Basis for Success and Failure of Female Incontinence Surgery, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 55-60 (1993). |
Petros, Peter E. Papa et al., An Analysis of Rapid Pad Testing and the History for the Diagnosis of Stress Incontinence, Acta Obstet Gynecol Scand, vol. 71, pp. 529-536 (1992). |
Petros, Peter E. Papa et al., An Integral Therory of Female Urinary Incontinence, Acta Obstetricia et Gynecologica Scandinavica, vol. 69 Sup. 153, pp. 7-31 (1990). |
Petros, Peter E. Papa et al., Bladder Instability in Women: A Premature Activation of the Micturition Reflex, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 235-239 (1993). |
Petros, Peter E. Papa et al., Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather Than Urethral Closure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 37-39 (1990). |
Petros, Peter E. Papa et al., Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 61-62 (1990). |
Petros, Peter E. Papa et al., Further Development of the Intravagina Slingplasty Procedure—IVS III—(With Midline “Tuck”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, p. 69-71 (1993). |
Petros, Peter E. Papa et al., Medium-Term Follow-Up of the Intravaginal Slingplasty Operation Indicates Minimal Deterioration of Urinary Continence With Time, (3 pages) (1999). |
Petros, Peter E. Papa et al., Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 69-70 (1990). |
Petros, Peter E. Papa et al., Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective, Scandinavian Journal of Neurourology and Urodynamics. Sup 153, pp. 5-28 (1993). |
Petros, Peter E. Papa et al., Part II: The Biomechanics of Vaginal Tissue and Supporting Ligaments With Special Relevance to the Pathogenesis of Female Urinary Incontinence, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 29-40 plus cover sheet (1993). |
Petros, Peter E. Papa et al., Part III: Surgical Principles Deriving From the Theory, Scandinavian Journal of Neurourology and Urodynamics. Sup 153, pp. 41-52 (1993). |
Petros, Peter E. Papa et al., Part IV: Surgical Appliations of the Theory—Development of the Intravaginal Sling Pklasty (IVS) Procedure, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 53-54 (1993). |
Petros, Peter E. Papa et al., Pinch Test for Diagnosis of Stress Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 33-35 (1990). |
Petros, Peter E. Papa et al., Pregnancy Effects on the Intravaginal Sling Operation, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 77-79 (1990). |
Petros, Peter E. Papa et al., The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 43-51 (1990). |
Petros, Peter E. Papa et al., The Combined Intravaginal Sling and Tuck Operation an Ambulatory Procedure for Cure of Stress and Urge Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 53-59 (1990). |
Petros, Peter E. Papa et al., The Development of the Intravaginal Slingplasty Procedure: IVS II—(With Bilateral “Tucks”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 61-67 (1993). |
Petros, Peter E. Papa et al., The Free Graft Procedure for Cure of the Tethered Vagina Syndrome, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 85-87(1993). |
Petros, Peter E. Papa et al., The Further Development of the Intravaginal Slingplasty Procedure—IVS IV—(With “Double Breasted” Unattached Vaginal Flap Repair and “Free” Vaginal Tapes), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, p. 73-75 (1993). |
Petros, Peter E. Papa et al., The Further Development of the Intravaginal Slingplasty Procedure—IVS V—(With “Double Breasted” Unattached Vaginal Flap Repair and Permanent Sling)., Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 77-79 (1993). |
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Operation, A Minimally Invasive Technique for Cure of Urinary Incontinence in the Female, Aust. NZ J Obstet Gynaecol, vol. 36, n. 4, pp. 453-461 (1996). |
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Procedure: IVS VI—Further Development of the “Double Breasted” Vaginal Flap Repair—Attached Flap, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 81-84 (1993). |
Petros, Peter E. Papa et al., The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvic Pain and Abnormal Urinary Symptoms Deriving From Laxity in the Posterior Fornix of Vagina, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 89-93 (1993). |
Petros, Peter E. Papa et al., The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 71-73 (1990). |
Petros, Peter E. Papa et al., The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 63-67 (1990). |
Petros, Peter E. Papa et al., The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 41-42 (1990). |
Petros, Peter E. Papa et al., Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure, Scandinavian Journal of Neurourology and Urodynamics, pp. 337-350 (1995). |
Petros, Peter E. Papa, Development of Generic Models for Ambulatory Vaginal Surgery—Preliminary Report,International Urogynecology Journal, pp. 20-27 (1998). |
Petros, Peter E. Papa, New Ambulatory Surgical Methods Using an Anatomical Classification of Urinary Dysfunction Improve Stress, Urge and Abnormal Emptying, Int. Urogynecology Journal Pelvic Floor Dystfunction, vol. 8 (5), pp. 270-278, (1997). |
Petros, Peter E. Papa, Vault Prolapse II; Restoration of Dynamic Vaginal Supports by Infracoccygeal Sacropexy, An Axial Day-Case Vaginal Procedure, Int Urogynecol J, vol. 12, pp. 296-303 (2001). |
Rackley, Raymond R. et al., Tension-Free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures, Techniques in Urology, vol. 7, No. 2, pp. 90-100 (2001). |
Rackley, Raymond R. M.D., Synthetic Slings: Five Steps for Successful Placement, Urology Times, p. 46,48,49 (Jun. 2000). |
Raz, Shlomo, et al., The Raz Bladder Neck Suspension Results in 206 Patients, The Journal of Urology, pp. 845-846 (1992). |
Raz, Shlomo, Female Urology, pp. 80-86, 369-398, 435-442 (1996). |
Raz, Shlomo, MD, Modified Bladder Neck Suspension for Female Stress Incontinence, Urology, vol. XVII, No. 1, pp. 82-85 (Jan. 1981). |
Richardson, David A. et al., Delayed Reaction to the Dacron Buttress Used in Urethropexy, The Journal of Reproductive Medicine, pp. 689-692, vol. 29, No. 9 (Sep. 1984). |
Richter, K., Massive Eversion of the Vagina: Pathogenesis, Diagnosis and Therapy of the “True” Prolapse of the Vaginal Stump, Clin obstet gynecol, vol. 25, pp. 897-912 (1982). |
Ridley, John H., Appraisal of the Goebell-Frangenheim-Stoeckel Sling Procedure, American Journal Obst & Gynec., vol. 95, No. 5, pp. 741-721 (Jul. 1, 1986). |
Roberts, Henry, M.D., Cystourethrography in Women, Deptment of Obstetrics and Gynaecology, University of Liverpool, May 1952, vol. XXXV, No. 293, pp. 253-259. |
SABRE™ Bioabsorbable Sling, Generation Now, Mentor, 4 pages (May 2002). |
SABRE™ Surgical Procedure, Mentor, 6 pages (Aug. 2002). |
Sanz, Luis E. et al., Modification of Abdominal Sacrocolpopexy Using a Suture Anchor System, The Journal of Reproductive Medicine, vol. 48, n. 7, pp. 496-500 (Jul. 2003). |
Seim, Arnfinn et al., A Study of Female Urinary Incontinence in General Practice—Demography, Medical History, and Clinical Findings, Scand J Urol Nephrol, vol. 30, pp. 465-472 (1996). |
Sergent, F. et al., Prosthetic Restoration of the Pelvic Diaphragm in Genital Urinary Prolapse Surgery: Transobturator and Infacoccygeal Hammock Technique, J Gynecol Obstet Biol Reprod, vol. 32, pp. 120-126 (Apr. 2003). |
Sloan W. R. et al., Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings, The Journal of Urology, vol. 110, pp. 533-536 (Nov. 1973). |
Spencer, Julia R. et al., A Comparison of Endoscopic Suspension of the Vesical Neck With Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence, The Journal of Urology, vol. 137, pp. 411-415 (Mar. 1987). |
Stamey, Thomas A., M.D., Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females, Ann. Surgery, vol. 192 No. 4, pp. 465-471 (Oct. 1980). |
Stanton, Stuart L. Suprapubic Approaches for Stress Incontinence in Women, Journal of American Geriatrics Society, vol. 38, No. 3, pp. 348-351 (Mar. 1990). |
Stanton, Stuart, Springer-Veglag, Surgery of Female Incontinence, pp. 105-113 (1986). |
Staskin, David R. et al., The Gore-Tex Sling Procedure for Female Sphincteric Incontinence: Indications, Technique, and Results, World Journal of Urology, vol. 15, pp. 295-299 (1997). |
Studdiford, William E., Transplantation of Abdominal Fascia for the Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, pp. 764-775 (1944). |
Subak, Leslee L. et al., Cost of Pelvic Organ Prolapse Surgery in the United States, Obstetrics & Gynecology, vol. 98, n. 4, pp. 646-651 (Oct. 2001). |
Sullivan, Eugene S. et al., Total Pelvic Mesh Repair a Ten-Year Experience, Dis. Colon Rectum, vol. 44, No. 6, pp. 857-863 (Jun. 2001). |
Swift, S.E., et al., Case-Control Study of Etiologic Factors in the Development of Sever Pelvic Organ Prolapse, Int Urogynecol J, vol. 12, pp. 187-192 (2001). |
TVT Tension-free Vaginal Tape, Gynecare, Ethicon, Inc., 23 pages (1999). |
Ulmsten, U. et al., A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence, International Urogynecology Journal, vol. 9, pp. 210-213 (1998). |
Ulmsten, U. et al., An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 7, pp. 81-86 (May 1996). |
Ulmsten, U., Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis a Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 6, pp. 2-3 (1995). |
Ulmsten, Ulf et al., A Three Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 345-350 (1999). |
Ulmsten, Ulf et al., Different Biochemical Composition of Connective Tissue in Continent, Acta Obstet Gynecol Scand, pp. 455-457 (1987). |
Ulmsten, Ulf et al., Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence, Scand J Urol Nephrol, vol. 29, pp. 75-82 (1995). |
Ulmsten, Ulf et al., The Unstable Female Urethra, Am. J. Obstet. Gynecol., vol. 144 No. 1, pp. 93-97 (Sep. 1, 1982). |
UroMed Access Instrument System for the Sub-urethral Sling Procedure Catalog No. 120235, Directions for Use, (3 pages). |
Vesica® Percutaneous Bladder Neck Stabilization Kit, A New Approach to Bladder Neck Suspenison, Microvasive® Boston Scientific Corporation, 4 pages (1995). |
Vesica® Sling Kits, Simplifying Sling Procedures, Microvasive® Boston Scientific Corporation, 4 pages (1998). |
Villet, R., Réponse De R. Villet À L'Article De D. Dargent et al., Gynécolgie Obstétrique & Fertilité, vol. 31, p. 96 (2003). |
Visco, Anthony G. et al., Vaginal Mesh Erosion After Abdominal Sacral Colpopexy, Am J Obstet Gynecol, vol. 184, n. 3, pp. 297-302 (297-302). |
Walters, Mark D., Percutaneous Suburethral Slings: State of the Art, Presented at the conference of the American Urogynecologic Society, Chicago, 29 pages (Oct. 2001). |
Waxman, Steve et al., Advanced Urologic Surgery for Urinary Incontinence, The Female Patient, pp. 93-100, vol. 21 (Mar. 1996). |
Weber, Anne M. et al., Anterior Vaginal Prolapse: Review of Anatomy and Techniques of Surgical Repair, Obstetrics and Gynecology. vol. 89, n. 2, pp. 311-318 (Feb. 1997). |
Webster, George et al., Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management, The Journal of Urology, vol. 144, pp. 670-673 (Sep. 1990). |
Winter, Chester C., Peripubic Urethropexy for Urinary Stress Incontinence in Women, Urology, vol. XX, No. 4, pp. 408-411 (Oct. 1982). |
Winters et al., Abdominal Sacral Colpopexy and Abdominal Enterocele Repair in the Management of Vaginal Vault Prolapse, Urology, vol. 56, supp. 6A, pp. 55-63 (2000). |
Woodside, Jeffrey R. et al., Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls, The Journal of Urology, vol. 135, pp. 97-99 (Jan. 1986). |
Zacharin, Robert et al., Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique, Obstetrics & Gynecology, vol. 55 No. 2, pp. 141-148 (Feb. 1980). |
Zacharin, Robert, The Suspensory Mechanism of the Female Urethra, Journal of Anatomy, vol. 97, Part 3, pp. 423-427 (1963). |
Zimmern, Phillippe E. et al., Four-Corner Bladder Neck Suspension, Vaginal Surgery for the Urologist, vol. 2, No. 1, pp. 29-36 (Apr. 1994). |
Le point sur l'incontinence urinaire, Expertise et Practiques en Urologie, No. 3. Dr. Sophie Conquy [Hospital Cochin, Paris]. pp. 17-19. |
Mouly, Patrick et al., Vaginal Reconstruction of a Complete Vaginal Prolapse: The Trans Obturator Repair, Journal of Urology, vol. 169, p. 183 (Apr. 2003). |
Pourdeyhimi, B. Porosity of Surgical Mesh Fabrics: New Technology, J. Biomed. Mater. Res.: Applied Biomaterials, vol. 23, No. A1. pp. 145-152 (1989). |
Drutz, H.P. et al., Clinical and Urodynamic Re-Evaluation of Combined Abdominovaginal Marlex Sling Operations for Recurrent Stress Urinary Incontinence, International Urogynecology Journal, vol. 1, pp. 70-73 (1990). |
Petros, Papa PE et al., An Integral Theory and Its Method for the Diagnosis and Management of Female Urinary Incontinence, Scandinavian Journal of Urology and Nephrology, Supplement 153: p. 1 (1993). |
Horbach, Nicollette, Suburethral Sling Procedures, Genuine Stress Incontinence, Chapter 42, pp. 569-579. |
Mentor Porges, Uratape, ICS/IUGA Symp, Jul. 2002. |
Number | Date | Country | |
---|---|---|---|
20120253106 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61468069 | Mar 2011 | US |