Implants, tools, and methods for treatments of pelvic conditions

Information

  • Patent Grant
  • 9351723
  • Patent Number
    9,351,723
  • Date Filed
    Friday, June 29, 2012
    12 years ago
  • Date Issued
    Tuesday, May 31, 2016
    8 years ago
Abstract
Described are various embodiments of surgical procedures, systems, implants, devices, tools, and methods, useful for treating pelvic conditions in a male or female, the pelvic conditions including incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), and other conditions caused by muscle and ligament weakness, the devices and tools including devices and tools for anchoring an implant to tissue.
Description
TECHNICAL FIELD

The present invention relates generally to implants, tools, devices, systems, apparatuses, and related methods for treating pelvic conditions including but not limited to incontinence and prolapse conditions in men and women, for example, as can be treated by sacral colpopexy procedures.


BACKGROUND

Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population. Examples of common pelvic ailments include incontinence (e.g., urinary or fecal), pelvic tissue prolapse (e.g., female vaginal prolapse), and conditions of the pelvic floor.


Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others. Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine. Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.


Other pelvic floor disorders include cystocele, rectocele, enterocele, and prolapse such as anal, uterine and vaginal vault prolapse. Pelvic disorders such as these can result from weakness or damage to normal pelvic support systems.


In its severest forms, vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina, and is often associated with a rectocele, cystocele or enterocele. An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons. One known method of repairing vaginal vault prolapse is by suturing to the supraspinous ligament or attaching the vaginal vault through mesh or fascia to the sacrum. In particular, abdominal sacral colpopexy procedures are considered to be particularly effective treatments; however, such procedures can be relatively invasive and are somewhat complicated.


An additional consideration is that many patients suffering from vaginal vault prolapse also require a surgical procedure to correct stress urinary incontinence that is either symptomatic or latent. Unfortunately, in order to correct one or more of these issues, the procedures that are often used involve lengthy surgical procedure times and/or lengthy recovery periods. Some of these treatments include, for example, abdominal sacralcolpopexy (SCP), which may be performed laparoscopically, and transvaginal sacralcolpopexy (TSCP), wherein these procedures are performed using a variety of different instruments, implants, and surgical methods. It is known to repair vaginal vault prolapse by suturing the vaginal vault (e.g., by stitches) to the supraspinous ligament or by attaching the vaginal vault through mesh or fascia to the sacrum.


There is ongoing need to provide physicians with improved methods and associated instruments for treating pelvic conditions including incontinence, vaginal prolapse (e.g., vaginal vault prolapse), and other pelvic organ prolapse conditions, wherein such methods can include those that are minimally invasive, safe, and highly effective.


SUMMARY

Tools, systems, and methods as described herein can be used to treat pelvic conditions such as incontinence (various forms such as fecal incontinence, stress urinary incontinence, urge incontinence, mixed incontinence, etc.), vaginal prolapse (including various forms such as enterocele, cystocele, rectocele, apical or vault prolapse, uterine descent, etc.), and other conditions caused by muscle and ligament weakness, hysterectomies, and the like. In accordance with the invention, sacral colpopexy procedures can be performed through an abdominal opening, laparoscopically, or transvaginally, which procedures will require different approaches, each of which can use certain embodiments of devices and/or methods of the invention.


One procedure that can be used to treat vaginal prolapse conditions is sacral colpopexy. An aspect of certain sacral colpopexy procedures is to place a fixation element (e.g., an anchor such as a bone anchor or soft tissue anchor) into tissue of a posterior pelvic region to secure an implant to the tissue. This aspect of the procedure requires a surgeon to place a tissue anchor at a location deep inside a posterior pelvic region.


Surgical tools and procedural improvements are disclosed herein. Certain embodiments of tools and methods are used for attaching sutures, mesh, or other devices to the anatomy, such as for treating incontinence and/or prolapse. Embodiments of the tools can be used for deploying sutures through a retractor and into the peritoneum, for example. This can be useful for a number of different procedures that require suturing in the peritoneal space, such as sacral colpopexy (e.g., for attaching mesh material to the sacral promontory and for closing the peritoneal membrane over the mesh), high uterosacral suspension procedures (e.g., for passing suture through a tissue structure and fixating the suture to that tissue structure), McCall culdoplasty (i.e., a method of supporting the vaginal cuff by attaching the uterosacral and cardinal ligaments to the peritoneal surface with suture material that can be drawn toward the midline to help close off the cul-de-sac), uterosacral suspension procedures, and the like.


In accordance with the invention, a suturing instrument is disclosed, which is designed to allow for a relatively simple procedure for passing a suture through tissue in a tightly confined space. In one embodiment, the suturing instrument provides for semi-automated, one-handed operation, which also provides for improved needle control. In a particular embodiment, the instrument includes a curved needle with a hook tip that is operated by a slider in a handle. Movement of the slider toward and away from a distal end of the instrument causes the needle to pierce and retract from the target tissue in a predetermined sequence, thereby positioning suture material in a desired configuration in the tissue.


A suture passer is also disclosed, in accordance with the invention, which is designed to allow for a relatively simple procedure for passing a suture through tissue in a tightly confined space, such as during the process of performing a sacral colpopexy procedure. The suture passer generally includes a needle that has a hypo tube that allows a suture to be “injected” through the hypo. The needle/hypo can engage with tissue like a traditional needle, and then a suture can be advanced through the needle by using pressurized air or water to force the needle through the hypo. The needle can then be disengaged from the tissue, leaving the suture connected to the tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:



FIG. 1 is a perspective view of an embodiment of a suturing instrument, in accordance with the invention;



FIG. 2 is a perspective view of the distal end of the suturing instrument of FIG. 1, with a suture and instrument components in a first position;



FIG. 3 is a perspective view of the distal end of the suturing instrument of FIG. 1, with a suture and instrument components in a second position;



FIG. 4 is a perspective view of the distal end of the suturing instrument of FIG. 1, with a suture and instrument components in a third position;



FIG. 5 is a side view of an embodiment of a suture passer, in accordance with the invention;



FIG. 6 is a perspective view of an embodiment of a suture passer in accordance with the invention, with a suture and suture passer components in a first position;



FIG. 7 is a perspective view of the suture passer of FIG. 6, with a suture and suture passer components in a second position; and



FIG. 8 is a perspective view of the suture passer of FIG. 6, with a suture and suture passer components in a third position.





DETAILED DESCRIPTION

Pelvic floor disorders include cystocele, rectocele, enterocele, and uterine and vaginal vault prolapse, levator defects, among others, in male and female patients. These disorders typically result from weakness or damage to normal pelvic support systems. The most common etiologies include childbearing, removal of the uterus, connective tissue defects, prolonged heavy physical labor and postmenopausal atrophy.


Vaginal vault prolapse is the distension of the vaginal apex, in some cases to an orientation outside of the vagina. Vaginal vault prolapse is often associated with a rectocele, cystocele or enterocele. It is known to repair vaginal vault prolapse by suturing the vaginal vault (e.g., by stitches) to the supraspinous ligament or by attaching the vaginal vault through mesh or fascia to the sacrum. Many patients suffering from vaginal vault prolapse also require a concurrent or subsequent surgical procedure to correct stress urinary incontinence that is either symptomatic or latent.


In order to place a sling to stabilize or support the bladder neck or urethra, such as for the treatment of incontinence, surgical procedures and devices are often used. There are a variety of different sling procedures, where the slings used for pubovaginal procedures vary widely in the types of material and anchoring methods. In some cases, the sling is placed under the bladder neck and secured via suspension sutures to a point of attachment (e.g., bone) through an abdominal and/or vaginal incision. Examples of sling procedures are disclosed, for example, in U.S. Pat. Nos. 5,112,344; 5,611,515; 5,842,478; 5,860,425; 5,899,909; 6,039,686, 6,042,534 and 6,110,101.


A sacral colpopexy is one procedure used for providing vaginal vault suspension. It may be performed through an abdominal incision, a vaginal incision, or laparoscopically. A sacral colpopexy entails suspension (by use of an implant such as a strip of mesh) of the vaginal cuff to a region of sacral anatomy such as the sacrum (such as may be accomplished using bone screws that are implanted into the sacrum), a nearby sacrospinous ligament, uterosacral ligament, or anterior longitudinal ligament at the sacral promontory. An implant such as a synthetic mesh can be carefully customized or assembled into a special shape by the surgeon. In some sacral colpopexy procedures that also involve a hysterectomy, an implant can alternatively be attached to posterior vaginal tissue that remains after removal of the uterus and cervix, and also to anatomy to support the vaginal tissue at or around the sacrum, such as to uterosacral ligaments or to the sacrum itself (i.e., to a component of the sacral anatomy).


As used herein, the term “anchor” refers to any structure that can connect an implant to tissue of a pelvic region. The tissue may be bone, or a soft tissue such as a muscle, fascia, ligament, tendon, or the like. The anchor may be any known or future-developed structure, or a structure described herein, useful to connect an implant to such tissue, including but not limited to a clamp, a suture, a soft tissue anchor such as a self-fixating tip, a bone anchor, any of the structures described herein to be useful to connect an implant to soft tissue or bone of a pelvic region, or the like.


The suturing instruments described herein are directed to the surgical treatment of a pelvic condition including prolapse (e.g., any form of vaginal prolapse), urinary and fecal incontinence, levator defects, etc., in a male or female patient. To treat such conditions, one or more implants can be implanted in a male or a female, which implants can include a tissue support portion that can be used to support a urethra or other pelvic tissue, along with one or more extension portions (otherwise known as an end portion or arm) attached or attachable to the tissue support portion. An implant may include portions, pieces, or sections that are synthetic or made of biologic material (e.g., porcine, cadaveric, etc.). Extension portions may be a synthetic mesh, for example, such as a polypropylene mesh, a suture, a biodegradable suture, etc. The tissue support portion may be synthetic (e.g., a polypropylene mesh) or biologic. Examples of implant products that may be similar to those useful according to the present description, include those sold commercially by American Medical Systems, Inc., of Minnetonka Minn., under the trade names “Apogee”, “Perigee”, and “Elevate” for use in treating pelvic prolapse (including vaginal vault prolapse, cystocele, enterocele, etc.), and under the trade names “Sparc”, “Bioarc”, “Monarc”, “MiniArc”, “InVance”, and “AdVance” for treating urinary incontinence.


Implants as described can include a tissue fastener at one or both of its ends and can be sutured in one or more additional locations, such as by directly suturing mesh to a target tissue location. A tissue fastener at a distal end or portion of an extension portion can be any of various types, including: a self-fixating tip that is inserted into soft tissue and frictionally retained; soft tissue anchors; biologic adhesive; a soft tissue clamp that can generally include opposing, optionally biased, jaws that close to grab tissue; and opposing male and female connector elements that engage to secure an end of an extension portion to tissue. (See International Patent Application No. PCT/US2007/014120; U.S. patent application Ser. Nos. 12/223,846 and 12/669,099; and WO 2009/075800, the entireties of which are all incorporated herein by reference). An implant may also have one or more extension portions that do not include a tissue fastener, such as may be used if the distal end is designed to be secured to tissue by other methods (e.g., suturing), or is intended to pass through an obturator foramen and a tissue path around a pubic ramus bone, in which case the extension portion may optionally include a connector, dilator, or dilating connector, which connects to an elongate tool that can be used to either push or pull the connector, dilator, or dilating connector through a tissue path (e.g., to a medial incision).


According to various systems as described, one or more suturing instruments may be incorporated or used with an implant or method as described. Examples of useful tools include those that are illustrated in FIGS. 1-4, wherein like structure is generally described with like reference numbers and/or terms. In particular, a suturing instrument 10 is illustrated, which can be used for vaginal vault suspension and attachment of sutures and/or associated implants to the sacral promontory, for example. The instrument can be used for attaching sutures, mesh, or other devices to treat incontinence, prolapse, and/or other pelvic disorders, such as for treating pelvic conditions (e.g., a sacral colpopexy performed transvaginally, laparoscopically, or abdominally). Suturing instrument 10 generally includes a distal end 12, a proximal end 14, a slider rod 16, a connecting rod 18, and a handle 20 at the proximal end 14. The handle 20 further includes a slider or slider mechanism 22 that is located at a proximal end of the slider rod 16 and connecting rod 18. Slider mechanism 22 is moveable in an axial direction (e.g., toward and away from the distal end 12, along a longitudinal axis of the instrument 10) during the suturing process.


Slider mechanism 22 may further include an upper contoured surface 24 or other surface treatment that provides for friction between the user's finger and the surface of the slider mechanism 22. Such a surface 24 may be provided with ridges, as shown, or can instead include a rough or textured surface, which can provide for more controlled movement of the slider relative to the handle, particularly when the user's hand is covered with a surgical glove, for example.


Connecting rod 18 includes a base member 30 extending from its distal end, which may be adhered, friction fit, or otherwise mounted to the connecting rod 18. A needle 32 is connected to the base member 30 about a hinge point 36, as can best be seen in FIG. 2. The needle 32 can have a number of different configurations, such as a curved shaft 37 with flared head member 38 that extends radially outward relative to the outer surface of the shaft 37, as shown, or the needle 32 can instead have a different configuration than illustrated, such as a shaft that is more straight or curved than shown and/or a head portion that is configured differently than shown. In any case, it is desirable for the needle 32 to have a distal needle tip 34 that is sufficiently sharp that it can pierce through a ligament or other tissue structure in a similar manner as other standard needles associated with sutures can penetrate such a ligament or tissue structure.


Slider rod 16 includes a base member 40 extending from its distal end, which may be adhered, friction fit, or otherwise mounted to the slider rod 16. First and second extending arms 42, 44 extend from a distal end of the base member 40 and are spaced from each by the width of a gap 50 that extends in a direction of the width of the base member 40. Extending arms 42, 44 each have a distal aperture 46, 48, respectively, which are adjacent to their distal ends. The arms 42, 44 preferably extend from the base member 40 at an angle relative to the longitudinal axis of the suturing instrument 10, as shown, although it is understood that the angle can be greater or smaller than shown. In addition, it is contemplated that the extension angle can be different for each of the arms 42, 44. In any case, the configuration of the arms 42, 44 can be selected or designed to allow the needle 32 to engage with suture material in a manner in accordance with the present invention, wherein one such method is described below. That is, the illustrated configuration of the arms 42, 44 is only one representative configuration of these arms, wherein it is understood that the functional capability of the arms can be accomplished with a number of different configurations.


With this embodiment, suturing instrument 10 is essentially provided as a four-bar linkage that includes the curved needle 32 that is integrated into a crank, wherein the axis of the crank is mounted at the end of a shaft. The other end of the shaft is mounted to a slider in the handle, and the connecting rod connects the crank to the body of the handle. The needle/crank is caused to rotate by movement of the slider relative to the handle, which can be facilitated via a shaft (not visible) extending between hinge point 36 and crank attachment point 54.


In one embodiment of the suturing instrument 10, the proximal end of the instrument (e.g., the handle 20) extends from the proximal end of the slider rod 16 and connecting rod 18, wherein the length of the rods 16, 18 is sufficient to allow a user to grasp and manipulate the proximal end (e.g., at the handle) as the instrument is extended through an incision or opening (e.g., through a vaginal or abdominal incision) to place the distal end of the rods 16, 18 generally at a location of a posterior pelvic region, (e.g., to place the distal shaft end at a location for placing an anchor at a component of sacral anatomy, such as an anterior longitudinal ligament at a sacral promontory). The connecting rod 18 has a longitudinal axis, and the slider rod 16 similarly has a longitudinal axis. The axes of the connecting rod 18 and slider rod 16 of a particular suturing instrument 10 can be generally parallel to each other, as shown, or can be at least slightly offset relative to each other.


The suturing instruments of the invention allow for a relatively simple manner of passing a suture through tissue in confined locations, such as can be encountered when maneuvering the device for a sacral colpopexy procedure, for example. In one method of the invention, the needle 32 is positioned as illustrated in FIG. 2, with the slider rod 16 in a forward or distal position. A piece of suture material 60 is passed through the apertures 46, 48 of the extending arms 44, 42, respectively, and the loose ends of the suture 60 can be pulled back toward the proximal end of the instrument 10. At this point, the needle 32 will be spaced from a bottom surface of the arms 42, 44 and from the bottom of gap 50 so that the sharp distal needle tip 34 is exposed. In this position, the needle 32 can be considered to be facing in a generally “forward” direction, where it is available to contact and penetrate tissue.


In another step of the suturing process, the needle 32 can then be rotated about the hinge point 36 by moving the slider 22 relative to the handle 20 (e.g., with the thumb). This movement of the needle 32 about the hinge point 36 will move the needle tip 34 toward the gap 50 between the extending arms 42, 44, as is illustrated in FIG. 3. When the instrument 10 is positioned in this way relative to a target tissue, movement of the slider 22 relative to a distal end 12 of the instrument 10 will cause the needle 32 to arc around the backside of a membrane or target tissue to pierce or penetrate the tissue in a first location. The needle 32 will then continue along this path until it emerges from the front of the target tissue at a second location and until it is positioned in the gap 50 between the extending arms 42, 44 of the base member 40 and adjacent to a portion of the suture that extends across that gap 50. The flared head member 38 can then engage or capture the piece of suture material that is extending across the gap 50 between the arms 42, 44. That is, when the needle 32 includes a flared portion as shown in the figures, the suture 60 can be captured by or engaged (i.e., “hooked”) with the flared head member 38 of the needle 32, although it is understood that the needle 32 can have a different end configuration that also facilitates engagement between a portion of needle and the suture material 60 at this point in the suturing process, such as other contoured needle configurations.


After the suture 60 is engaged with the tip area of the needle 32, the slider 22 can then be moved in the opposite direction to cause the needle 32 rotate back toward the position illustrated in FIG. 2. In this way, the loop of suture material 60 is pulled backwards through both of the holes that were pierced by the needle during the first steps of the operation, so that the suture is generally positioned as is illustrated in FIG. 4. The suturing instrument 10 can then be withdrawn from the surgical site, pulling the loop of suture material along with it. In this way, a surgeon will have control of the two free ends of suture material that extend through the target tissue, along with the looped end of suture that has been pulled through the tissue.


In one embodiment, the slider 22 is configured to slide within an elongated slot or groove 52 of the handle 20, and also to lock within the groove 52 with a dovetail type of connection, as is illustrated in FIG. 1. In this way, the slider 22 can be assembled to the handle 20 by simply sliding it into the proximal end of the groove 52. If desired, the slider 22 can be prevented from becoming disassembled from the handle by placing a blocking component at its proximal end, such as a cap. In addition, while the slider 22 is illustrated as being a generally rectangular block with a generally planar face that is generally coplanar with the adjacent surfaces of the handle 20, the slider 22 can be configured differently, if desired. For example, the slider 22 can be raised relative to the surface of the handle 20, or can instead be recessed relative to the surface of the handle 20. In yet another alternative, the slider 22 can be replaced with a different type of device that can cause the needle 32 to be activated, such as a rotating knob or other feature that is operatively connected to the needle 32 to provide movement of the needle 32 in the manner illustrated and described herein.



FIGS. 5-8 illustrate exemplary embodiments of the invention that include suture passers that allow for a relatively simple manner of passing a suture through tissue in confined locations, such as can be encountered during a sacral colpopexy procedure (e.g., transvaginal, laparoscopic, or abdominal sacral colpopexy). As is illustrated in FIG. 5, a suture passer 100 is illustrated, which generally includes a hypotube 104 that extends from a syringe 102. Syringe 102 contains a length of suture material 106, a distal end of which is shown as extending from an end of the hypotube 104. This suture material 106 can be forced from the tube 104 by pressure created in the hypotube 104 that pushes the suture material 106 from the distal end of the tube 104, for example.



FIGS. 6-8 illustrate another embodiment of a suture passer 120, which includes two arms 122, 124 at a proximal end of the passer that are moveable relative to each other about a hinge 128, which causes a corresponding movement of components at a distal end 130 of the passer. Each of the arms 122, 124 contains or is associated with a tube that can transport pressurized air, water, or other fluid through its length. As with the embodiment of FIG. 5, the suture passer 120 operates by pressurizing a substance, such as water, and pushing it through a tube, such as a hydrotube.


When a suture material 126 is loaded or otherwise positioned relative to a hydrotube of suture passer 120, the force of the pressurized substance will push the suture material through the length of that tube. Suture material 126 can thereby be transported from the proximal end of suture passer 120 to the distal end 130 of the passer, such as can be facilitated by friction between pressurized water and the suture that pushes the suture material through the tube, for example. In one embodiment, the pressure is high enough that the suture material is then forced through the target tissue in the patient, thereby replacing the function of a needle or other similar component. The suture can then be grasped or otherwise manipulated relative to its location in the patient, and then the suture passer can be pulled from the patient and/or used for additional suturing procedures. In order to operate in this manner, the area of the tube that is in contact with the tissue (e.g., at the distal end 130) can be hollow with relatively sharp ends that can puncture the tissue or otherwise maintain the passer in its desired location relative to the tissue.


With continued reference to FIGS. 6-8, the distal end of arm 124 includes an extending member 134, which may be a needle, a tube, or another thin structure. The distal end of the arm 122 can include a corresponding extending member, such as a member that can engage with the extending member 134, or can include an aperture that can cooperate with the extending member 134 of arm 124. In any case, the arms 122, 124 can be manipulated relative to each other about the hinge 128 to bring the extending member at the distal end 130 in contact with a corresponding feature of the arm 122 (e.g., aperture, tube, or another feature) during the suturing process, as is illustrated in FIG. 8, for example. In this way, the suture can be moved through one of the arms 122, 124, through one of the tips at the distal end 130 of the passer, and through the desired tissue location. The suture can then be captured by an opposing surface at the distal end 130, and then the suture can be pulled through the tissue and additional suturing operations can be performed, if desired.


Suturing instruments described herein can thereby be used for securing implants that are capable of supporting pelvic tissue, and can therefore be useful in conjunction with numerous methods of treating pelvic conditions, such as treating a levator hiatus, anal incontinence, etc. The implants and tools described herein can be made of conventional materials. For example, the various mesh members and portions can be constructed of polymer materials, such as a thin film or sheet material of polypropylene, polyethylene, fluoropolymers or like compatible materials, both permanent and absorbable, and the suturing instrument components can be made of standard surgical-grade materials, such as polymeric materials, stainless steel, and the like.


The disclosed systems, their various components, structures, features, materials and methods may have a number of suitable configurations as shown and described in the previously-incorporated references. Various methods and tools for introducing, deploying, anchoring and manipulate device, implants, and the like as disclosed in the references incorporated herein are envisioned for use with the present invention as well.


All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated, and include those references incorporated within the identified patents, patent applications and publications.

Claims
  • 1. A suturing instrument comprising: a handle comprising an actuation member;a connecting rod extending distally from a proximal end of the handle, wherein the connecting rod comprises a pivot point adjacent to its distal end;a needle operatively attached to the suturing instrument only at the pivot point of the connecting rod, wherein the needle is independently rotatable about the pivot point relative to a longitudinal axis of the connecting rod;a slider rod extending distally from the proximal end of the handle, the slider rod being adjacent to the connecting rod and comprising a longitudinal axis, wherein the longitudinal axis of the connecting rod is spaced from the longitudinal axis of the slider rod, and wherein the slider rod and the connecting rod are linearly positionable relative to each other along their respective longitudinal axes;a base member extending from a distal end of the slider rod; andat least two arms extending from a distal end of the base member of the slider rod, wherein each of the arms comprises an aperture,wherein a distance between the pivot point of the needle and the base member of the slider rod is changeable during movement of the slider rod and the connecting rod relative to each other.
  • 2. The suturing instrument of claim 1, wherein the actuation member is a sliding member positionable within a groove of the handle.
  • 3. The suturing instrument of claim 1, wherein the needle comprises a curved shaft member and a flared end portion extending from the curved shaft member.
  • 4. The suturing instrument of claim 1, wherein the at least two arms are spaced from each other to provide a gap between their inner surfaces.
  • 5. The suturing instrument of claim 4, wherein the needle comprises a suture engagement member adjacent to its distal tip, and wherein the needle is rotatable so that its suture engagement member is positioned between the at least two arms of the base member of the slider rod.
  • 6. The suturing instrument of claim 1, further comprising a needle base member extending from the distal end of the connecting rod, wherein the needle is rotatably attached to the needle base member.
  • 7. The suturing instrument of claim 1, wherein the longitudinal axis of the connecting rod is generally parallel to the longitudinal axis of the slider rod.
  • 8. A method of suturing tissue comprising the steps of: preparing a suturing instrument for a suturing process, wherein the suturing instrument comprises: a handle comprising an actuation member;a connecting rod extending distally from a proximal end of the handle, wherein the connecting rod comprises a pivot point adjacent to its distal end;a needle operatively attached to the suturing instrument only at the pivot point of the connecting rod, wherein the needle is independently rotatable about the pivot point relative to a longitudinal axis of the connecting rod;a slider rod extending distally from the proximal end of the handle, the slider rod being adjacent to the connecting rod and comprising a longitudinal axis, wherein the longitudinal axis of the connecting rod is spaced from the longitudinal axis of the slider rod, and wherein the slider rod and the connecting rod are linearly slideable relative to each other along their respective longitudinal axes;a base member extending from a distal end of the slider rod; andat least two arms extending from a distal end of the base member of the slider rod, wherein each of the arms comprises an aperture;wherein a distance between the pivot point of the needle and the base member of the slider rod is changeable during movement of the slider rod and the connecting rod relative to each other;loading a suture material through the apertures of the at least two arms of the slider rod;engaging the needle with a target tissue to penetrate the tissue in two spaced locations with the pivot point of the needle in a first longitudinal position relative to the base member of the slider rod;engaging the needle with the suture material adjacent to the apertures of the at least two arms;pulling the suture material through the two spaced locations in the tissue with the needle, wherein the pivot point of the needle is in a second longitudinal position that is proximal to the first longitudinal position relative to the base member of the slider rod.
  • 9. The method of claim 8, wherein the suturing instrument further comprises a gap between the at least two arms such that when the suture material is loaded through the apertures of the at least two arms, the suture material extends across the gap.
  • 10. The method of claim 9, wherein the step of engaging the needle with the suture material further comprises engaging an engagement portion of the needle with a suture material extending across the gap.
  • 11. The method of claim 8, wherein the needle comprises a curved shaft.
  • 12. The method of claim 8, wherein the actuation member comprises a slider operatively connected to the connecting rod, wherein the suturing instrument comprises a first configuration in which the slider is in an actuation position and a second configuration in which the slider is in a resting position.
  • 13. The method of claim 12, wherein movement of the slider from the first configuration to the second configuration comprises movement of the slider in a generally parallel direction to the longitudinal axis of the connecting rod.
  • 14. The method of claim 8, wherein the needle comprises a suture engagement member adjacent to its distal tip, and wherein the needle is rotatable so that its suture engagement member is positioned between the at least two arms of the base member of the slider rod.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/503,009, filed Jun. 30, 2011 and titled “Implants, Tools, and Methods for Treatments of Pelvic Conditions”, and U.S. Provisional Patent Application No. 61/506,833, filed Jul. 12, 2011, and titled, “Implants, Tools, and Methods for Treatments of Pelvic Conditions,” which are incorporated herein by reference in their entirety.

US Referenced Citations (323)
Number Name Date Kind
2738790 Todt et al. Mar 1956 A
3124136 Usher Mar 1964 A
3182662 Shirodkar May 1965 A
3311110 Singerman et al. Mar 1967 A
3384073 Van Winkle, Jr. May 1968 A
3472232 Earl Oct 1969 A
3580313 McKnight May 1971 A
3763860 Clarke Oct 1973 A
3789828 Schulte Feb 1974 A
3815576 Balaban Jun 1974 A
3858783 Kapitanov et al. Jan 1975 A
3924633 Cook et al. Dec 1975 A
3995619 Glatzer Dec 1976 A
4019499 Fitzgerald Apr 1977 A
4037603 Wendorff Jul 1977 A
4128100 Wendorff Dec 1978 A
4172458 Pereyra Oct 1979 A
4235238 Ogiu et al. Nov 1980 A
4246660 Wevers Jan 1981 A
4441497 Paudler Apr 1984 A
4509516 Richmond Apr 1985 A
4548202 Duncan Oct 1985 A
4632100 Somers et al. Dec 1986 A
4775380 Seedhom et al. Oct 1988 A
4857041 Annis et al. Aug 1989 A
4865031 O'Keeffe Sep 1989 A
4873976 Schreiber Oct 1989 A
4920986 Biswas May 1990 A
4932962 Yoon et al. Jun 1990 A
4938760 Burton et al. Jul 1990 A
4969892 Burton et al. Nov 1990 A
5007894 Enhorning Apr 1991 A
5012822 Schwarz May 1991 A
5013292 Lemay May 1991 A
5013316 Goble et al. May 1991 A
5019032 Robertson May 1991 A
5032508 Naughton et al. Jul 1991 A
5036867 Biswas Aug 1991 A
5053043 Gottesman et al. Oct 1991 A
5085661 Moss Feb 1992 A
5112344 Petros May 1992 A
5123428 Schwarz Jun 1992 A
5141520 Goble et al. Aug 1992 A
5149329 Richardson Sep 1992 A
5188636 Fedotov Feb 1993 A
5209756 Seedhom et al. May 1993 A
5250033 Evans et al. Oct 1993 A
5256133 Spitz Oct 1993 A
5269783 Sander Dec 1993 A
5281237 Gimpelson Jan 1994 A
5328077 Lou Jul 1994 A
5337736 Reddy Aug 1994 A
5362294 Seitzinger Nov 1994 A
5368595 Lewis Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5370662 Stone et al. Dec 1994 A
5376097 Phillips Dec 1994 A
5383904 Totakura et al. Jan 1995 A
5386836 Biswas Feb 1995 A
5403328 Shallman Apr 1995 A
5413598 Moreland May 1995 A
5439467 Benderev et al. Aug 1995 A
5474518 Velazquez Dec 1995 A
5474543 McKay Dec 1995 A
5518504 Polyak May 1996 A
5520700 Beyar et al. May 1996 A
5520703 Essig May 1996 A
5522820 Caspari et al. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5544664 Benderev et al. Aug 1996 A
5562689 Green et al. Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5582188 Benderev et al. Dec 1996 A
5591163 Thompson Jan 1997 A
5591206 Moufarrege Jan 1997 A
5611515 Benderev et al. Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5633286 Chen May 1997 A
5643320 Lower et al. Jul 1997 A
5669935 Rosenman et al. Sep 1997 A
5683349 Makower et al. Nov 1997 A
5697931 Thompson Dec 1997 A
5709708 Thal Jan 1998 A
5725541 Anspach, III et al. Mar 1998 A
5741282 Anspach, III et al. Apr 1998 A
5782916 Pintauro et al. Jul 1998 A
5785640 Kresch et al. Jul 1998 A
5807403 Beyar et al. Sep 1998 A
5836314 Benderev et al. Nov 1998 A
5836315 Benderev et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5842478 Benderev et al. Dec 1998 A
5860425 Benderev et al. Jan 1999 A
5899909 Claren et al. May 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5922026 Chin Jul 1999 A
5925047 Errico et al. Jul 1999 A
5934283 Willem et al. Aug 1999 A
5935122 Fourkas et al. Aug 1999 A
5944732 Raulerson et al. Aug 1999 A
5954057 Li Sep 1999 A
5972000 Beyar et al. Oct 1999 A
5980558 Wiley Nov 1999 A
5984927 Wenstrom, Jr. Nov 1999 A
5988171 Sohn et al. Nov 1999 A
5997554 Thompson Dec 1999 A
6010447 Kardjian Jan 2000 A
6027523 Schmieding Feb 2000 A
6030393 Corlew Feb 2000 A
6031148 Hayes et al. Feb 2000 A
6036701 Rosenman Mar 2000 A
6039686 Kovac Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042536 Tihon et al. Mar 2000 A
6042583 Thompson et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6050937 Benderev Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6068591 Bruckner et al. May 2000 A
6071290 Compton Jun 2000 A
6074341 Anderson et al. Jun 2000 A
6077216 Benderev et al. Jun 2000 A
6099538 Moses Aug 2000 A
6099551 Gabbay Aug 2000 A
6099552 Adams Aug 2000 A
6106545 Egan Aug 2000 A
6110101 Tihon et al. Aug 2000 A
6117067 Gil-Vernet Sep 2000 A
6127597 Beyar et al. Oct 2000 A
6168611 Risvi Jan 2001 B1
6183484 Matsutani Feb 2001 B1
6200330 Benderev et al. Mar 2001 B1
6221005 Bruckner et al. Apr 2001 B1
6241736 Sater et al. Jun 2001 B1
6264676 Gellman et al. Jul 2001 B1
6273852 Lehe et al. Aug 2001 B1
6302840 Benderev Oct 2001 B1
6306079 Trabucco Oct 2001 B1
6322492 Kovac Nov 2001 B1
6328686 Kovac Dec 2001 B1
6328744 Harari et al. Dec 2001 B1
6334446 Beyar Jan 2002 B1
6352553 van der Burg et al. Mar 2002 B1
6382214 Raz et al. May 2002 B1
6387041 Harari et al. May 2002 B1
6406423 Scetbon Jun 2002 B1
6406480 Beyar et al. Jun 2002 B1
6414179 Banville Jul 2002 B1
6423080 Gellman et al. Jul 2002 B1
6451024 Thompson et al. Sep 2002 B1
6475139 Miller Nov 2002 B1
6478727 Scetbon Nov 2002 B2
6482214 Sidor, Jr. et al. Nov 2002 B1
6491703 Ulmsten Dec 2002 B1
6494906 Owens Dec 2002 B1
6502578 Raz et al. Jan 2003 B2
6506190 Walshe Jan 2003 B1
6530943 Hoepffner et al. Mar 2003 B1
6575897 Ory Jun 2003 B1
6582443 Cabak et al. Jun 2003 B2
6592515 Thierfelder Jul 2003 B2
6592610 Beyar Jul 2003 B2
6596001 Stormby et al. Jul 2003 B2
6599235 Kovac Jul 2003 B2
6599323 Melican et al. Jul 2003 B2
6602260 Harari et al. Aug 2003 B2
6612977 Staskin Sep 2003 B2
6638210 Berger Oct 2003 B2
6638211 Suslian et al. Oct 2003 B2
6638284 Rousseau et al. Oct 2003 B1
6641524 Kovac Nov 2003 B2
6641525 Rocheleau Nov 2003 B2
6648921 Anderson Nov 2003 B2
6652450 Neisz et al. Nov 2003 B2
6673010 Skiba et al. Jan 2004 B2
6685629 Therin Feb 2004 B2
6689047 Gellman et al. Feb 2004 B2
6691711 Raz Feb 2004 B2
6699175 Miller Mar 2004 B2
6702827 Lund Mar 2004 B1
6752814 Gellman et al. Jun 2004 B2
6755781 Gellman Jun 2004 B2
6802807 Anderson Oct 2004 B2
6830052 Carter et al. Dec 2004 B2
6881184 Zappala Apr 2005 B2
6884212 Thierfelder et al. Apr 2005 B2
6893448 O'Quinn et al. May 2005 B2
6908425 Luscombe Jun 2005 B2
6908473 Skiba et al. Jun 2005 B2
6911002 Fierro Jun 2005 B2
6911003 Anderson et al. Jun 2005 B2
6932759 Kammerer Aug 2005 B2
6936052 Gellman et al. Aug 2005 B2
6936054 Chu Aug 2005 B2
6953428 Gellman et al. Oct 2005 B2
6960160 Browning Nov 2005 B2
6971986 Staskin et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6981944 Jamiolkowski Jan 2006 B2
6981983 Rosenblatt et al. Jan 2006 B1
6991597 Gellman et al. Jan 2006 B2
7014607 Gellman Mar 2006 B2
7025063 Snitkin Apr 2006 B2
7025772 Gellman et al. Apr 2006 B2
7037255 Inman May 2006 B2
7048682 Neisz et al. May 2006 B2
7056333 Walshe Jun 2006 B2
7070556 Anderson Jul 2006 B2
7070558 Gellman et al. Jul 2006 B2
7083568 Neisz et al. Aug 2006 B2
7083637 Tannhauser Aug 2006 B1
7087065 Ulmsten et al. Aug 2006 B2
7112210 Ulmsten et al. Sep 2006 B2
7121997 Kammerer et al. Oct 2006 B2
7131943 Kammerer Nov 2006 B2
7131944 Jacquetin Nov 2006 B2
7175591 Kaladelfos Feb 2007 B2
7198597 Siegel et al. Apr 2007 B2
7226407 Kammerer Jun 2007 B2
7226408 Harai et al. Jun 2007 B2
7229404 Bouffier Jun 2007 B2
7229453 Anderson Jun 2007 B2
7235043 Gellman et al. Jun 2007 B2
7261723 Smith et al. Aug 2007 B2
7297102 Smith et al. Nov 2007 B2
7299803 Kovac Nov 2007 B2
7303525 Watschke et al. Dec 2007 B2
7326213 Benderev et al. Feb 2008 B2
7347812 Mellier Mar 2008 B2
7351197 Montpetit et al. Apr 2008 B2
7357773 Watschke et al. Apr 2008 B2
7364541 Chu et al. Apr 2008 B2
7371245 Evans et al. May 2008 B2
7387634 Benderev Jun 2008 B2
7393320 Montpetit et al. Jul 2008 B2
7407480 Staskin Aug 2008 B2
7410460 Benderev Aug 2008 B2
7413540 Gellman et al. Aug 2008 B2
7422557 Arnal Sep 2008 B2
7431690 Merade et al. Oct 2008 B2
7494495 Delorme et al. Feb 2009 B2
7500945 Cox Mar 2009 B2
7513865 Bourne et al. Apr 2009 B2
7527588 Zaddem et al. May 2009 B2
7588598 Delorme et al. Sep 2009 B2
7601118 Smith et al. Oct 2009 B2
7611454 De Leval Nov 2009 B2
7621864 Suslian et al. Nov 2009 B2
7637860 MacLean Dec 2009 B2
7686759 Sater Mar 2010 B2
7691050 Gellman et al. Apr 2010 B2
7722527 Bouchier et al. May 2010 B2
7722528 Arnal et al. May 2010 B2
7740576 Hodroff Jun 2010 B2
7753839 Siegel et al. Jul 2010 B2
7762942 Neisz et al. Jul 2010 B2
7766926 Bosley et al. Aug 2010 B2
7789821 Browning Sep 2010 B2
7981024 Levy Jul 2011 B2
8172745 Rosenblatt May 2012 B2
20010049467 Lehe et al. Dec 2001 A1
20020007222 Desai Jan 2002 A1
20020028980 Thierfelder et al. Mar 2002 A1
20020128670 Ulmsten et al. Sep 2002 A1
20020147382 Neisz et al. Oct 2002 A1
20020151909 Gellman et al. Oct 2002 A1
20020161382 Neisz Oct 2002 A1
20030004581 Rousseau Jan 2003 A1
20030036676 Scetbon Feb 2003 A1
20030065402 Anderson et al. Apr 2003 A1
20030176875 Anderson Sep 2003 A1
20030220658 Hatch et al. Nov 2003 A1
20040015057 Rocheleau et al. Jan 2004 A1
20040073235 Lund Apr 2004 A1
20040225181 Chu et al. Nov 2004 A1
20040267088 Kammerer Dec 2004 A1
20050000523 Beraud Jan 2005 A1
20050004427 Cervigni Jan 2005 A1
20050004576 Benderev Jan 2005 A1
20050038451 Rao et al. Feb 2005 A1
20050055104 Arnal et al. Mar 2005 A1
20050131391 Chu et al. Jun 2005 A1
20050131393 Chu et al. Jun 2005 A1
20050199249 Karram Sep 2005 A1
20050245787 Cox et al. Nov 2005 A1
20050256530 Petros Nov 2005 A1
20050277806 Cristalli Dec 2005 A1
20050278037 Delorme et al. Dec 2005 A1
20050283189 Rosenblatt et al. Dec 2005 A1
20060015010 Jaffe et al. Jan 2006 A1
20060028828 Phillips Feb 2006 A1
20060058578 Browning Mar 2006 A1
20060089524 Chu Apr 2006 A1
20060089525 Mamo et al. Apr 2006 A1
20060122457 Kovac Jun 2006 A1
20060173237 Jacquetin Aug 2006 A1
20060195007 Anderson Aug 2006 A1
20060195011 Arnal Aug 2006 A1
20060217589 Wan et al. Sep 2006 A1
20060229493 Weiser et al. Oct 2006 A1
20060229596 Weiser et al. Oct 2006 A1
20060252980 Arnal et al. Nov 2006 A1
20060287571 Gozzi Dec 2006 A1
20070015953 MacLean Jan 2007 A1
20070078295 Iandgrebe Apr 2007 A1
20070173864 Chu Jul 2007 A1
20080039678 Montpetit et al. Feb 2008 A1
20080140218 Staskin et al. Jun 2008 A1
20080207988 Hanes Aug 2008 A1
20080300607 Meade et al. Dec 2008 A1
20090005634 Rane Jan 2009 A1
20090012353 Beyer Jan 2009 A1
20090221868 Evans Sep 2009 A1
20100022822 Walshe Jan 2010 A1
20100114123 Nason May 2010 A1
20100179575 Von Pechmann et al. Jul 2010 A1
20100261950 Lund Oct 2010 A1
20100280627 Hanes, II Nov 2010 A1
20100305581 Hart Dec 2010 A1
20110124954 Ogdahl May 2011 A1
20110174313 Von Pechmann et al. Jul 2011 A1
20120016185 Sherts et al. Jan 2012 A1
Foreign Referenced Citations (106)
Number Date Country
2002241673 Nov 2005 AU
2404459 Aug 2005 CA
2305815 Feb 1973 DE
4220283 May 1994 DE
19544162 Apr 1997 DE
10211360 Sep 2003 DE
20016866 Mar 2007 DE
0248544 Dec 1987 EP
0470308 Feb 1992 EP
0650703 Jun 1994 EP
0643945 Jul 1994 EP
0632999 Jan 1995 EP
1093758 Apr 2001 EP
1060714 Sep 2002 EP
1342450 Sep 2003 EP
2787990 Jul 2000 FR
2852813 Jan 2004 FR
2268690 Jan 1994 GB
2353220 Oct 2000 GB
1299162 Apr 1998 IT
1225547 Apr 1986 SU
1342486 Oct 1987 SU
WO9317635 Sep 1993 WO
WO9319678 Oct 1993 WO
WO9511631 May 1995 WO
WO9525469 Sep 1995 WO
WO9716121 May 1997 WO
WO9730638 Aug 1997 WO
WO9747244 Dec 1997 WO
WO9819606 May 1998 WO
WO9835606 Aug 1998 WO
WO9835616 Aug 1998 WO
WO9835632 Aug 1998 WO
WO9842261 Oct 1998 WO
WO9853746 Dec 1998 WO
WO9916381 Apr 1999 WO
WO9937217 Jul 1999 WO
WO9952450 Oct 1999 WO
WO9953844 Oct 1999 WO
WO9959477 Nov 1999 WO
WO9959477 Nov 1999 WO
WO0064370 Feb 2000 WO
WO0013601 Mar 2000 WO
WO0018319 Apr 2000 WO
WO0027304 May 2000 WO
WO0040158 Jul 2000 WO
WO0057812 Oct 2000 WO
WO0066030 Nov 2000 WO
WO0074594 Dec 2000 WO
WO0074613 Dec 2000 WO
WO0074633 Dec 2000 WO
WO0106951 Feb 2001 WO
WO0126581 Apr 2001 WO
WO0139670 Jun 2001 WO
WO0145588 Jun 2001 WO
WO0145589 Jun 2001 WO
WO0156499 Aug 2001 WO
WO0228312 Apr 2002 WO
WO0228315 Apr 2002 WO
WO0230293 Apr 2002 WO
WO0232284 Apr 2002 WO
WO0234124 May 2002 WO
WO02398090 May 2002 WO
WO020238079 May 2002 WO
WO02058563 Aug 2002 WO
WO02062237 Aug 2002 WO
WO02069781 Sep 2002 WO
WO02071953 Sep 2002 WO
WO02078552 Oct 2002 WO
WO20089704 Nov 2002 WO
WO03017848 Mar 2003 WO
WO03028585 Apr 2003 WO
WO03030778 Apr 2003 WO
WO03037215 May 2003 WO
WO03041613 May 2003 WO
WO03047435 Jun 2003 WO
WO03068107 Aug 2003 WO
WO03075792 Sep 2003 WO
WO03092546 Nov 2003 WO
WO03096929 Nov 2003 WO
WO2004012626 Feb 2004 WO
WO2004016196 Feb 2004 WO
WO2004017862 Mar 2004 WO
WO2004017862 Mar 2004 WO
WO2004034912 Apr 2004 WO
WO2005037132 Apr 2005 WO
WO2005079702 Sep 2005 WO
WO2005122954 Dec 2005 WO
WO2006015031 Feb 2006 WO
WO2006108145 Oct 2006 WO
WO2007011341 Jan 2007 WO
WO2007014241 Feb 2007 WO
WO2007016083 Feb 2007 WO
WO2007027592 Mar 2007 WO
WO2007059199 May 2007 WO
WO2007081955 Jul 2007 WO
WO2007097994 Aug 2007 WO
WO2007137226 Nov 2007 WO
WO2007146784 Dec 2007 WO
WO2007149348 Dec 2007 WO
WO2007149555 Dec 2007 WO
WO2008057261 May 2008 WO
WO2008124056 Oct 2008 WO
WO2009005714 Jan 2009 WO
WO2009017680 Feb 2009 WO
WO2011082350 Jul 2011 WO
Non-Patent Literature Citations (202)
Entry
“Access Instrument System with AlloSling Fascia” (5 pages with two pages of Instructions for Use).
“Introducing: AlloSling Fascia The Natural Choice for Suburethral Sling Procedures”. Advertisement from UroMed Corporation (1 page).
“We're staying ahead of the curve” Introducting the IVS Tunneller Device for Tension Free Procedures, Tyco Healthcare, 3 pages (2002).
Advantage A/T™, Surgical Mesh Sling Kit, Boston Scientific, 6 pages (2002).
Albert H. Aldridge, B.S., M.D. F.A.C.S., Transplantation of Fascia for Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, V. 44, pp. 398-411, (1948).
AlloSource product literature (11pages).
Amundsen, Cindy L. et al., Anatomical Correction of Vaginal Vault Prolapse by Uterosacral Ligament Fixation in Women Who Also Require a Pubovaginal Sling, The Journal of Urology, vol. 169, pp. 1770-1774, (May 2003).
Araki, Tohru et al., The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck, The Journal of Urology, vol. 144, pp. 319-323 (Aug. 1990).
Asmussen, M. et.al., Simultaneous Urethro-Cystometry With a New Technique, Scand J Urol Nephrol 10, p. 7-11 (1976).
Beck, Peter R. et al., Treatment of Urinary Stress Incontinence With Anterior Colporrhaphy, Obstetrics and Gynecology, vol. 59 (No. 3), pp. 269-274 (Mar. 1982).
Benderev, Theodore V., MD, A Modified Percutaneous Outpatient Bladder Neck Suspension System, Journal of Urology, vol. 152, pp. 2316-2320 (Dec. 1994).
Benderev, Theodore V., MD, Anchor Fixation and Other Modification of Endoscopic Bladder Neck Suspension, Urology, vol. 40, No. 5, pp. 409-418 (Nov. 1992).
Bergman, Arieh et al., Three Surgical Procedure for Genuine Stress Incontinence: Five-Year Follow-Up of a Prospective Randomized Study, Am J Obstet Gynecol, vol. 173 No. 1, pp. 66-71 (Jul. 1995).
Blaivas, Jerry et al., Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence, The Journal of Urology, vol. 145, pp. 1214-1218 (Jun. 1991).
Blaivas, Jerry et al., Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment, Surgical Forum, pp. 473-475, (1984).
Blaivas, Jerry, Commentary: Pubovaginal Sling Procedure, Experience with Pubovaginal Slings, pp. 93-101 (1990).
Boyles, Sarah Hamilton et al., Procedures for Urinary Incontinence in the United States, 1979-1997, Am J Obstet Gynecol, vol. 189, n. 1, pp. 70-75 (Jul. 2003).
Bryans, Fred E., Marlex Gauze Hammock Sling Operation with Cooper's Ligament Attachment in the Management of Recurrent Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, vol. 133, pp. 292-294 (Feb. 1979).
Burch, John C., Urethrovaginal Fixation to Cooper's Ligament for Correction of Stress Incontinence, Cyctocele, and Prolapse, Am. J. Obst. & Gyn, vol. 31, pp. 281-290 (1961).
Capio™ CL—Transvaginal Suture Capturing Device—Transvaginal Suture Fixation to Cooper's Ligament for Sling Procedures, Boston Scientific, Microvasive®, 8 pages, (2002).
Cervigni, Mauro et al., The Use of Synthetics in the Treatment of Pelvic Organ Prolapse, Voiding Dysfunction and Female Urology, vol. 11, pp. 429-435 (2001).
Choe, Jong M. et al., Gore-Tex Patch Sling: 7 Years Later, Urologym, vol. 54, pp. 641-646 (1999).
Comparison of Tissue Reaction of Monofilament and Multifilament Polypropylene Mesh—A Case Report, Tyco Healthcare, United States Surgical, 4 pages (no date).
Cook/Ob Gyn®, Urogynecology, Copyright Cook Urological Inc., pp. 1-36 (1996).
Dargent, D. et al., Insertion of a Suburethral Sling Through the Obturator Membrane in the Treatment of Female Urinary Incontinence, Gynecol Obstet Fertil, vol. 30, pp. 576-582 (2002).
Das, Sakti et al., Laparoscopic Colpo-Suspension, The Journal of Urology, vol. 154, pp. 1119-1121 (Sep. 1995).
Debodinance, Philipp et al., “Tolerance of Synthetic Tissues in Touch With Vaginal Scars Review to the Point of 287 Cases”, Europeon Journal of Obstetrics & Gynecology and Reproductive Biology 87 (1999) pp. 23-30.
Decter, Ross M., Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned, The Journal of Urology, vol. 150, pp. 683-686 (Aug. 1993).
Delancey, John, MD, Structural Support of the Urethra as it Relates to Stress Urinary Incontinence: The Hammock Hypothesis, Am J Obstet Gynecol, vol. 170 No. 6, pp. 1713-1723 (Jun. 1994).
Delorme, Emmanuel, Trans-Obturator Sling: A Minimal Invasive Procedure to Treat Female Stress Urinary Incontinence, Progres en Urologie, vol. 11, pp. 1306-1313 (2001) English Abstract attached.
Diana, et al., Treatment of Vaginal Vault Prolapse With Abdominal Sacral Colpopexy Using Prolene Mesh, American Journal of Surgery, vol. 179, pp. 126-128, (Feb. 2000).
Eglin et al., Transobturator Subvesical Mesh. Tolerance and short-term results of a 103 case continuous series, Gynecologie Obstetrique & Fertilite, vol. 31, Issue 1, pp. 14-19 (Jan. 2003).
Enzelsberger, H. et al., Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stres Incontinence, Acta Obstet Gynecol Scand, 69, pp. 51-54 (1990).
Eriksen, Bjarne C. et al., Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence, Acta Obstet Gyneol Scand, 69, pp. 45-50 (1990).
Falconer, C. et al., Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinence Women, International Urogynecology Journal, pp. 133-137 (1966).
Falconer, C. et al., Influence of Different Sling Materials of Connective Tissue Metabolism in Stress Urinary Incontinent Women, International Urogynecology Journal, Supp. 2, pp. S19-S23 (2001).
Farnsworth, B.N. Posterior Intravaginal Slingplasty (Infracoccygeal Sacropexy) for Sever Posthysterectomy Vaginal Vault Prolapse—A Preliminary Report on Efficacy and Safety, Int Urogynecology J, vol. 13, pp. 4-8 (2002).
Farquhar, Cynthia M. et al., Hysterectomy Rates in the United States 1990-1997, Obstetrics & Gynecology, vol. 99, n. 2, pp. 229-234 (Feb. 2002).
Fidela, Marie R. et al., Pelvic Support Defects and Visceral and Sexual Function in Women Treated With Sacrospinous Ligament Suspension and Pelvic Reconstruction, Am J Obstet Gynecol, vol. 175, n. 6 (Dec. 1996).
Flood, C.G. et al., Anterior Colporrhaphy Reinforce With Marlex Mesh for the Treatment of Cycstoceles, International Urogynecology Journal, vol. 9, pp. 200-204 (1998).
Gilja, Ivan et al., A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch), The Journal of Urology, vol. 153, pp. 1455-1457 (May 1995).
Gittes, Ruben F. et al., No-Incision Pubovaginal Suspension for Stress Incontinence, The Journal of Urology, vol. 138 (Sep. 1987)
Guner, et al., Transvaginal Sacrospinous Colpopexy for Marked Uterovaginal and Vault Prolapse, Inter J of Gynec & Obstetrics, vol. 74, pp. 165-170 (2001).
Gynecare TVT Tension-Free Support for Incontinence, The tension-free solution to female Incontinence, Gynecare Worldwide,6 pages, (2002).
Handa, Victoria L. et al, Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report, Obstetrics & Gynecology, vol. 88 No. 6, 5 pages (Dec. 1996).
Heit, Michael et al., Predicting Treatment Choice for Patients With Pelvic Organ Prolapse, Obstetrics & Gynecology, vol. 101, n. 6, pp. 1279-1284 (Jun. 2003).
Henrikson, L. et al., A Urodynamic Evaluation of the Effects of Abdominal Urethrocystopexy and Vaginal Sling Urethroplasty in Women With Stress Incontinence, Am. J. Obstet. Gynecol. vol. 131, No. 1, pp. 77-82 (Mar. 1, 1978).
Hodgkinson, C. Paul et.al., Urinary Stress Incontinence in the Female, Department of Gynecology and Obstetrics, Henry Ford Hospital, vol. 10, No. 5, p. 493-499, (Nov. 1957).
Holschneider, C. H., et al., The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence: A 15-year Review, Obstetrics & Gynecology, vol. 83, No. 4, pp. 573-578 (Apr. 1994).
Horbach, Nicollette S., et al., Instruments and Methods, A Suburethral Sling Procedure with Polytetrafluoroethylene for the Tretment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure, Obstetrics & Gynecology, vol. 71, No. 4, pp. 648-652 (Apr. 1998).
Ingelman-Sunberg, A. et al., Surgical Treatment of Female Urinary Stress Incontinence, Contr. Gynec. Obstet., vol. 10, pp. 51-69 (1983).
Intramesh L.I.F.T. Siliconized polyester, Cousin Biotech, 1 page (no date).
Intramesh® L.I.F.T.® Polypropylene Less Invasive Free Tape, Cousin Biotech, 2 pages (no date).
IVS Tunneller—A Universal instrument for anterior and posterior intra-vaginal tape placement, Tyco Healthcare, 4 pages (Aug. 2002).
IVS Tunneller—ein universelles Instrument fur die Intra Vaginal Schlingenplastik, Tyco Healthcare, 4 pages (2001).
IVS Tunneller, AMA, (no date) 4 pages.
IVS Tunneller, Australian Medical Design Breakthrough for GSI, mixed incontinence and vault prolapse, AMA Medical Products, 4 pages (no date).
Jeffcoate, T.N.A. et al., The Results of the Aldridge Sling Operation for Stress Incontinence, Journal of Obstetrics and Gynaecology, pp. 36-39 (1956).
Jones, N.H.J. Reay et al., Pelvic Connective Tissue Resilience Decreases With Vaginal Delivery, Menopause and Uterine Prolapse, Br J Surg, vol. 90, n. 4, pp. 466-472 (Apr. 2003).
Julian, Thomas, The Efficacy of Marlex Mesh in the Repair of Sever, Recurrent Vaginal Prolapse of the Anterior Midvaginal Wall, Am J Obstet Gynecol, vol. 175, n. 6, pp. 1472-1475 (Dec. 1996).
Karram, Mickey et al., Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent for Severe Stress Urinary Incontinence, vol. 75, pp. 461-463 (Mar. 1990).
Karram, Mickey M. et al., Chapter 19 Surgical Treatment of Vaginal Vault Prolapse, Urogynecology and Reconstructive Pelvic Surgery, (Walters & Karram eds.) pp. 235-256 (Mosby 1999).
Kersey, J., The Gauze Hammock Sling Operation in the Treatment of Stress Incontintence, British Journal of Obstetrics and Gynaecology, vol. 90, pp. 945-949 (Oct. 1983).
Klutke, Carl et al., The Anatomy of Stress Incontinence: Magentic Resonance Imaging of the Female Bladder Neck and Urethra, The Journal of Urology, vol. 143, pp. 563-566 (Mar. 1990).
Klutke, John James et al., Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure, Obstetrics & Gynecology, vol. 88, No. 2, pp. 294-296 (Aug. 1996).
Klutke, John M.D. et al, The Promise of tension-free vaginal tape for female SUI, Contemporary Urology, 7 pages (Oct. 2000).
Korda, A. et al., Experience With Silastic Slings for Female Urinary Incontience, Aust NZ J. Obstet Gynaecol, vol. 29, pp. 150-154 (May 1989).
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence, Obstetrics & Gynecology, vol. 89, No. 4, pp. 624-627 (Apr. 1997).
Kovac, S. Robert, et al, Pubic bone Suburethral Stabilization sling: A Long Term Cure for SUI?, Contemporary OB/GYN, 10 pages (Feb. 1998).
Kovac, S. Robert, Follow-up of the Pubic Bone Suburethral Stabilization Sling Operation for Recurrent Urinary Incontinence (Kovac Procedure), Journal of Pelvic Surgery, pp. 156-160 (May 1999).
Kovac, Stephen Robert, M.D., Cirriculum vitae, pp. 1-33 (Jun. 18, 1999).
Leach, Gary E., et al., Female Stress Urinary Incontinence Clinical Guidelines Panel Report on Surgical Management of Female Stress Urinary Incontinence, American Urological Association, vol. 158, pp. 875-880 (Sep. 1997).
Leach, Gary E., MD, Bone Fixation Technique for Transvaginal Needle Suspension, Urology vol. XXXI, No. 5, pp. 388-390 (May 1988).
Lichtenstein, Irving L. et al, The Tension Free Hernioplasty, The American Journal of Surgery, vol. 157, pp. 188-193 (Feb. 1989).
LigiSure Atlas™, Tyco Healthcare, Valleylab®, 2 pages (no date).
Loughlin, Kevin R. et al., Review of an 8-Year Experience With Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Incontinence, The Journal of Uroloyg, vol. 143, pp. 44-45 (1990).
Luber, Karl M. et al., The Demographics of Pelvic Floor Disorders: Current Observations and Future Projections, Am J Obstet Gynecol, vol. 184, n. 7, pp. 1496-1503 (Jun. 2001).
Mage, Technique Chirurgicale, L'Interpostion D'UN Treillis Synthetique Dans La Cure Par Voie Vaginale Des Prolapsus Genitaux, J Gynecol Obstet Biol Reprod, vol. 28, pp. 825-829 (1999).
Marchionni, Mauro et al., True Incidence of Vaginal Vault Prolapse—Thirteen Years of Experience, Journal of Reproductive Medicine, vol. 44, n. 8, pp. 679-684 (Aug. 199).
Marinkovic, Serege Peter et al., Triple Compartment Prolapse: Sacrocolpopexy With Anterior and Posterior Mesh Extensions, Br J Obstet Gynaecol, vol. 110, pp. 323-326 (Mar. 2003).
Marshall, Victor Fray et al. The Correction of Stress Incontinence by Simple Vesicourethral Suspension, Surgery, Gynecology and Obstetrics, vol. 88, pp. 509-518 (1949).
McGuire, Edward J. et al., Pubovaginal Sling Procedure for Stress Incontinence, The Journal of Urology, vol. 119, pp. 82-84 (Jan. 1978).
McGuire, Edward J. et al., Abdominal Procedures for Stress Incontinence, Urologic Clinics of North America, pp. 285-290, vol. 12, No. 2 (May 1985).
McGuire, Edward J. et al., Experience With Pubovaginal Slings for Urinary Incontinence at the University of Michigan, Journal of Urology, vol. 138, pp. 90-93 (1987).
McGuire, Edwared J. et al., Abdominal Fascial Slings, Slings, Raz Female Urology, p. 369-375 (1996).
McGuire, Edwared J., M.D., The Sling Procedure for Urinary Stress Incontinence, Profiles in Urology, pp. 3-18.
McGuire™ Suture Buide, The McGuire™ Suture Guide, a single use instrument designed for the placement of a suburethral sling, Bard, 2 pages (2001).
McIndoe, G. A. et al., The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence, Aust. N Z Journal of Obstet Gynecology, pp. 236-239 (Aug. 1987).
McKiel, Charles F. Jr., et al, Marshall-Marchetti Procedure Modification, vol. 96, pp. 737-739 (Nov. 1966).
Migliari, Roberto et al., Tension-Free Vaginal Mesh Repair for Anterior Vaginal Wall Prolapse, Eur Urol. vol. 38, pp. 151-155 (Oct. 1999).
Migliari, Roberto et al., Treatment Results Using a Mixed Fiber Mesh in Patients with Grade IV Cystocele, Journal of Urology, vol. 161, pp. 1255-1258 (Apr. 1999).
Mitek Brochure, Therapy of Urinary Stess Incontinence in Women Using Mitek GIII Anchors, By Valenzio C. Mascio, MD.
Moir, J. Chassar et.al., The Gauze-Hammock Operation, The Journal of Obstetrics and Gynaecology of British Commonwealth, vol. 75 No. 1, pp. 1-9 (Jan. 1968).
Morgan, J. E., A Sling Operation, Using Marlex Polypropylene Mesh, for the Treatment of Recurrent Stress Incontinence, Am. J. Obst. & Gynecol, pp. 369-377 (Feb. 1970).
Morgan J. E. et al., The Marlex Sling Operation for the Treatment of Recurrent Stress Urinary Incontinence: A 16-Year Review, American Obstetrics Gynecology, vol. 151, No. 2, pp. 224-226 (Jan. 1998).
Morley, George W. et al., Sacrospinous Ligament Fixations for Eversion of the Vagina, Am J Obstet Gyn, vol. 158, n. 4, pp. 872-881 (Apr. 1988).
Narik, G. et.al., A Simplified Sling Operation Suitable for Routine Use, Gynecological and Obstetrical Clinic, University of Vienna, vol. 84, No. 3, p. 400-405, (Aug. 1, 1962).
Natale, F. et al., Tension Free Cyctocele Repair (TCR): Long-Term Follow-up, International Urogynecology Journal, vol. 11, supp. 1, p. S51 (Oct. 2000).
Nichols, David H., The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence, Obstetrics and Gynecology, vol. 41, pp. 88-93 (Jan. 1973).
Nicita, Giullo, A New Operation for Genitourinary Prolapse, Journal of Urology, vol. 160, pp. 741-745 (Sep. 1998).
Niknejad, Kathleen et al., Autologous and Synthetic Urethral Slings for Female Incontinence, Urol Clin N Am, vol. 29, pp. 597-611 (2002).
Norris, Jeffrey P. et al., Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach, Journal of Endourology, vol. 10, pp. 227-230 (Jun. 1996).
O'Donnell, Pat, Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence, Journal Arkansas Medical Society, vol. 88, pp. 389-392 (Jan. 1992).
Ostergard, Donald R. et al., Urogynecology and Urodynamics Theory and Practice, pp. 569-579 (1996).
Paraiso et al., Laparoscopic Surgery for Enterocele, Vaginal Apex Prolapse and Rectocele, Int. Urogynecol J, vol. 10, pp. 223-229 (1999).
Parra, R. O., et al, Experience With a Simplified Technique for the Treatment of Female Stress Urinary Incontinence, British Journal of Urology, pp. 615-617 (1990).
Pelosi, Marco Antonio III et al., Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence, Journal of Laparoendoscopic & Advaned Surgical Techniques, vol. 9, No. 1 pp. 45-50 (1999).
Pereyra, Armand J. et al, Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence, Obstetrics and Gynecology, vol. 59, No. 5, pp. 643-648 (May 1982).
Pereyra, Armand J., M.D., F.A.C.S., A Simplified Surgical Procedure for Correction of Stress Incontinence in Women, West.J.Surg., Obst. & Gynec, p. 223-226, (Jul.-Aug. 1959).
Peter E. Papa Petros et al., Cure of Stress Incontinence by Repair of External Anal Sphincter, Acta Obstet Gynecol Scand, vol. 69, Sup 153, p. 75 (1990).
Peter Petros et al., Anchoring the Midurethra Restores Bladder-Neck Anatomy and Continence, The Lancet, vol. 354, pp. 997-998 (Sep. 18, 1999).
Petros, Peter E. Papa et al., An Anatomical Basis for Success and Failure of Female Incontinence Surgery, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 55-60 (1993)
Petros, Peter E. Papa et al., An Analysis of Rapid Pad Testing and the History for the Diagnosis of Stress Incontinence, Acta Obstet Gynecol Scand, vol. 71, pp. 529-536 (1992).
Petros, Peter E. Papa et al., An Integral Therory of Female Urinary Incontinence, Acta Obstetricia et Gynecologica Scandinavica, vol. 69 Sup. 153, pp. 7-31 (1990).
Petros, Peter E. Papa et al., Bladder Instability in Women: A Premature Activation of the Micturition Reflex, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 235-239 (1993).
Petros, Peter E. Papa et al., Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather Than Urethral Closure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 37-39 (1990).
Petros, Peter E. Papa et al., Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 61-62 (1990).
Petros, Peter E. Papa et al., Further Development of the Intravaginal Slingplasty Procedure—IVS III—(With Midline “Tuck”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 69-71 (1993).
Petros, Peter E. Papa et al., Medium-Term Follow-Up of the Intravaginal Slingplasty Operation Indicates Minimal Deterioration of Urinary Continence With Time, (3 pages) (1999).
Petros, Peter E. Papa et al., Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 69-70 (1990).
Petros, Peter E. Papa et al., Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 5-28 (1993).
Petros, Peter E. Papa et al., Part II: The Biomechanics of Vaginal Tissue and Supporting Ligaments With Special Relevance to the Pathogenesis of Female Urinary Incontinence, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 29-40 plus cover sheet (1993).
Petros, Peter E. Papa et al., Part III: Surgical Principles Deriving From the Theory, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 41-52 (1993).
Petros, Peter E. Papa et al. Part IV: Surgical Appliations of the Theory—Development of the Intravaginal Sling Pklasty (IVS) Procedure, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 53-54 (1993).
Petros, Peter E. Papa et al., Pelvic Floor Rehabilitation According to the Integrated Theory of Female Urinary Incontinence, Chapter 7, pp. 249-258 (book chapter).
Petros, Peter E. Papa et al., Pinch Test for Diagnosis of Stress Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 33-35 (1990).
Petros, Peter E. Papa et al., Pregnancy Effects on the Intravaginal Sling Operation, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 77-79 (1990).
Petros, Peter E. Papa et al., The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 43-51 (1990).
Petros, Peter E. Papa et al., The Combined Intravaginal Sling and Tuck Operation an Ambulatory Procedure for Cure of Stress and Urge Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 53-59 (1990).
Petros, Peter E. Papa et al., The Development of the Intravaginal Slingplasty Procedure: IVS II—(With Bilateral “Tucks”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 61-67 (1993).
Petros, Peter E. Papa et al., The Free Graft Procedure for Cure of the Tethered Vagina Syndrome, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 85-87 (1993).
Petros, Peter E. Papa et al.,The Further Development of the Intravaginal Slingplasy Procedure—IVS IV—(With “Double Breasted” Unattached Vaginal Flap Repair and “Free” Vaginal Tapes), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 73-75 (1993).
Petros, Peter E. Papa et al., The Further Development of the Intravaginal Slingplasty Procedure—IVS V—(With “double Breasted” Unattached Vaginal Flap Repair and Permanent Sling)., Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 77-79 (1993).
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Operation, A Minimally Invase Technique for Cure of Urinary Incontinence in the Female, Aust. NZ J Obstet Gynaecol, vol. 36, n. 4, pp. 453-461 (1996).
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Procedure: IVS VI—Further Development of the “Double Breasted” Vaginal Flap Repair—Attached Flap, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 81-84 (1993).
Petros, Peter E. Papa et al., The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvic Pain and Abnormal Urinary Symptoms Deriving From Laxity in the Posterior Fornix of Vagina, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 89-93 (1993).
Petros, Peter E. Papa et al., The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 71-73 (1990).
Petros, Peter E. Papa et al., The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 63-67 (1990).
Petros, Peter E. Papa et al., The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 41-42 (1990).
Petros, Peter E. Papa et al., Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure, Scandinavian Journal of Neurourology and Urodynamics, pp. 337-350 (1995).
Petros, Peter E. Papa, Development of Generic Models for Ambulatory Vaginal Surgery—Preliminary Report,International Urogynecology Journal, pp. 20-27 (1998).
Petros, Peter E. Papa, new Ambulatory Surgical Methods Using an Anatomical Classification of Urinary Dysfunction Improve Stress, Urge and Abnormal Emptying, Int. Urogynecology Journal Pelvic Floor Dystfunction, vol. 8 (5), pp. 270-278, (1997).
Petros, Peter E. Papa, Vault Prolapse II; Restoration of Dynamic Vaginal Supports by Infracoccygeal Sacropexy, an Axial Day-Case Vaginal Procedure, Int Urogynecol J, vol. 12, pp. 296-303 (2001).
Rackley, Raymond R. et al., Tension-Free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures, Techniques in Urology, vol. 7, No. 2, pp. 90-100 (2001).
Rackley, Raymond R. M.D., Synthetic Slings: Five Steps for Successful Placement, Urology Times, p. 46, 48, 49 (Jun. 2000).
Raz, Shlomo, et al., The Raz Bladder Neck Suspension Results in 206 Patients, The Journal of Urology, pp. 845-846 (1992).
Raz, Shlomo, Female Urology, pp. 80-86, 369-398, 435-442 (1996).
Raz, Shlomo, MD, Modified Bladder Neck Suspension for Female Stress Incontinence, Urology, vol. XVII, No. 1, pp. 82-85 (Jan. 1981).
Readjustable REMEEX™ system, Neomedic International, 8 pages (no date).
Richardson, David A. et al., Delayed Reaction to the Dacron Buttress Used in Urethropexy, The Journal of Reproductive Medicine, pp. 689-692, vol. 29, No. 9 (Sep. 1984).
Richter, K., Massive Eversion of the Vagina: Pathogenesis, Diagnosis and Therapy of the “True” Prolapse of the Vaginal Stump, Clin obstet gynecol, vol. 25, pp. 897-912 (1982).
Ridley, John H., Appraisal of the Goebell-Frangenheim-Stoeckel Sling Procedure, American Journal Obst & Gynec., vol. 95, No. 5, pp. 741-721 (Jul. 1, 1986).
Roberts, Henry, M.D., Cystourethrography in Women, Deptment of Obstetrics and Gynaecology, University of Liverpool, May 1952, vol. XXXV, No. 293, pp. 253-259.
SABRE™ Bioabsorbable Sling, Generation Now, Mentor, 4 pages (May 2002).
SABRE™ Surgical Procedure, Mentor, 6 pages (Aug. 2002).
Sanz, Luis E. et al., Modification of Abdominal Sacrocolpopexy Using A Suture Anchor System, The Journal of Reproductive Medicine, vol. 48, n. 7, pp. 496-500 (Jul. 2003).
Seim, Arnfinn et al., A Study of Female Urinary Incontinence in General Practice—Demography, Medical History, and Clinical Findings, Scand J Urol Nephrol, vol. 30, pp. 465-472 (1996).
Sergent, F. et al., Prosthetic Restoration of the Pelvic Diaphragm in Genital Urinary Prolapse Surgery: Transobturator and Infacoccygeal Hammock Technique, J Gynecol Obstet Biol Reprod, vol. 32, pp. 120-126 (Apr. 2003).
Sloan W. R. et al., Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings, The Journal of Urology, vol. 110, pp. 533-536 (Nov. 1973).
Spencer, Julia R. et al., A Comparison of Endoscopic Suspension of the Vesical Neck with Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence, The Journal of Urology, vol. 137, pp. 411-415 (Mar. 1987).
Stamey, Thomas A., M.D., Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females, Ann. Surgery, vol. 192 No. 4, pp. 465-471 (Oct. 1980).
Stanton, Stuart L., Suprapubic Approaches for Stress Incontinence in Women, Journal of American Geriartrics Society, vol. 38, No. 3, pp. 348-351 (Mar. 1990).
Stanton, Stuart, Springer-Veglag, Surgery of Female Incontinence, pp. 105-113 (1986).
Staskin et al., A Comparison of Tensile Strength Among Three Preparations of Irradiated and Non-Irradiated Human Fascia Lata Allografts (2 pages).
Staskin, David R. et al., The Gore-Tex Sling Procedure for Female Sphincteric Incontinence: Indications, Techniques, and Results, World Journal of Urology, vol. 15, pp. 295-299 (1997).
Studdiford, William E., Transplantation of Abdominal Fascia for the Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, pp. 764-775 (1944).
Subak, Leslee L. et al., Cost of Pelvic Organ Prolapse Surgery in the United States, Obstetrics & Gynecology, vol. 98, n. 4, pp. 646-651 (Oct. 2001).
Sullivan, Eugene S. et al., Total Pelvic Mesh Repair A Ten-Year Experience, Dis. Colon Rectum, vol. 44, No. 6, pp. 857-863 (Jun. 2001).
Suport™, Sub-Urethral Perineal Retro-Pubic Tensionless Sling, Matrix Medical (Pty) Ltd, (no date), 1 pg.
Swift, S.E., et al., Case-Control Study of Etiologic Factors in the Development of Sever Pelvic Organ Prolapse, Int Urogynecol J, vol. 12, pp. 187-192 (2001).
T-Sling® (Totally Tension-free) Urinary Incontinence Procedure, Herniamesh, 2 pages (no date).
TVT Tension-free Vaginal Tape, Gynecare, Ethicon, Inc., 23 pages (1999).
Ulmsten, U. et al., A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence, International Urogynecology Journal, vol. 9, pp. 210-213 (1998).
Ulmsten, U. et al., An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 7, pp. 81-86 (May 1996).
Ulmsten, U., Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis a Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 6, pp. 2-3 (1995).
Ulmsten, Ulf et al., A Three Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 345-350 (1999).
Ulmsten, Ulf et al., Different Biochemical Composition of Connective Tissue in Continent, Acta Obstet Gynecol Scand, pp. 455-457 (1987).
Ulmsten, Ulf et al., Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence, Scand J Urol Nephrol, vol. 29, pp. 75-82 (1995).
Ulmsten, Ulf et al., The Unstable Female Urethra, Am. J. Obstet. Gynecol., vol. 144 No. 1, pp. 93-97 (Sep. 1, 1982).
UroMed Access Instrument System for the Sub-urethral Sling Procedure Catalog No. 120235, Directions for Use, (3 pages).
Vesica® Percutaneous Bladder Neck Stabilization Kit, A new Approach to Bladder Neck Suspension, Microvasive® Boston Scientific Corporation, 4 pages (1995).
Vesica® Sling Kits, Simplifying sling Procedures, Microvasive® Boston Scientific Corporation, 4 pages (1998).
Villet, R., Réponse de R. Villet à l'Article De D. Dargent et al., Gynécologie Obstétrique & Fertilité, vol. 31, p. 96 (2003).
Visco, Anthony G. et al., Vaginal Mesh Erosion After Abdominal Sacral Colpopexy, Am J Obstet Gynecol, vol. 184, n. 3, pp. 297-302.
Walters, Mark D., Percutaneous Suburethral Slings: State of the Art, Presented at the conference of the American Urogynecologic Society, Chicago, 29 pages (Oct. 2001).
Waxman, Steve et al., Advanced Urologic Surgery for Urinary Incontinence, The Female Patient, pp. 93-100, vol. 21 (Mar. 1996).
Weber, Anne M. et al., Anterior Vaginal Prolapse: Review of Anatomy and Techniques of Surgical Repair, Obstetrics and Gynecology, vol. 89, n. 2, pp. 311-318 (Feb. 1997).
Webster, George D., Female Urinary Incontinence, Urologic Surgery, pp. 665-679.
Webster, George et al., Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management, The Journal of Urology, vol. 144, pp. 670-673 (Sep. 1990).
Winter, Chester C., Peripubic Urethropexy for Urinary Stress Incontinence in Women, Urology, vol. XX, No. 4, pp. 408-411 (Oct. 1982).
Winters et al., Abdominal Sacral Colpopexy and Abdominal Enteröcele Repair in the Management of Vaginal Vault Prolapse, Urology, vol. 56, supp. 6A, pp. 55-63 (2000).
Woodside, Jeffrey R. et al., Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls, The Journal of Urology, vol. 135, pp. 97-99 (Jan. 1986).
Zacharin, Robert et al., Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique, Obstetrics & Gynecology, vol. 55 No. 2, pp. 141-148 (Feb. 1980).
Zacharin, Robert, The Suspensory Mechanism of the Female Urethra, Journal of Anatomy, vol. 97, Part 3, pp. 423-427 (1963).
Zimmern, Phillippe E. et al., Four-Corner Bladder Neck Suspension, Vaginal Surgery for the Urologist, vol. 2, No. 1, pp. 29-36 (Apr. 1994).
Le point sur l'incontinence urinaire, Expertise et Practiques en Urologie, No. 3. Dr. sophie Conquy [Hospital Cochin, Paris]. pp. 17-19.
Mouly, Patrick et al., Vaginal Reconstruction of a Complete Vaginal Prolapse: The Trans Obturator Repair, Journal of Urology, vol. 169, p. 183 (Apr. 2003).
Pourdeyhimi, B, Porosity of Surgical Mesh Fabrics: New Technology, J. Biomed. Mater. Res.: Applied Biomaterials, vol. 23, No. A1, pp. 145-152 (1989).
Drutz, H.P. et al., Clinical and Urodynamic Re-Evaluation of Combined Abdominovaginal Marlex Sling Operations for Recurrent Stress Urinary Incontinence, International Urogynecology Journal, vol. 1, pp. 70-73 (1990).
Petros, Papa PE et al., An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence, Scandinavian Journal of Urology and Nephrology, Supplement 153: p. 1 (1993).
Horbach, Nicollette, Suburethral Sling Procedures, Genuine Stress Incontinence, Chapter 42, pp. 569-579.
Mentor Porges, Uratape, ICS/IUGA Symp. Jul. 2002.
Related Publications (1)
Number Date Country
20130006275 A1 Jan 2013 US
Provisional Applications (2)
Number Date Country
61503009 Jun 2011 US
61506833 Jul 2011 US