Implementing and optimizing secure socket layer intercept

Information

  • Patent Grant
  • 10834132
  • Patent Number
    10,834,132
  • Date Filed
    Wednesday, July 25, 2018
    6 years ago
  • Date Issued
    Tuesday, November 10, 2020
    4 years ago
Abstract
Provided are methods and systems for intercepting encrypted data packets. A system for intercepting encrypted data packets includes a first device and a second device. The first device serves a client-side data traffic associated with a client device and the second device serves a server-side data traffic associated with a server. The first device is configured to intercept at least one encrypted data packet. The first device is further configured to decrypt the encrypted packet to produce at least one decrypted data packet. The first device provides the decrypted data packet to one or more monitoring devices for inspection of the decrypted data packet. The second device is configured to receive, from the one or more monitoring devices, the at least one decrypted data packet. The second device is further operable to re-encrypt the decrypted data packet to produce the at least one encrypted data packet.
Description
TECHNICAL FIELD

This disclosure relates generally to computer and network security and, more particularly, to implementing and optimizing secure socket layer (SSL) intercept.


BACKGROUND

The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


An SSL is a cryptographic protocol designed for providing communication security over the Internet. The SSL uses asymmetric cryptography for authenticating a counterparty with which the SSL is communicating, symmetric encryption for confidentiality, and message authentication codes for message integrity. The SSL is widely used for instant messaging and Voice over Internet Protocol, and in applications such as browsing, e-mail, Internet faxing, and others.


Firewall, Intrusion Prevention System (IPS) and Intrusion Detection System (ID S) security appliances usually can only inspect plain text traffic or clear text traffic and have difficulties inspecting the SSL traffic because data packets of the SSL traffic are encrypted. Thus, traditional Packet Capture forensic tools may not be effective when inspecting SSL traffic. Without the ability to inspect SSL traffic, confidential information may be compromised and content can be infected with the help of malware and botnets. Some security appliances have internal SSL decryption/encryption support to inspect incoming and outgoing traffic for security threats. However, such appliances normally use one device for both incoming and outgoing data traffic. This takes its toll on the performance of the device as decryption and encryption of the SSL traffic requires complicated and time- and resource-consuming computations. Therefore, inspection of the SSL traffic for malware, extracted data, or hidden threats by such device may be unsatisfactory.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


The present disclosure is related to approaches for intercepting encrypted data packets. Specifically, a system for intercepting encrypted data packets may include a first device and a second device. The first device may serve a client-side data traffic associated with a client device and the second device may serve a server-side data traffic associated with a server. The first device may be configured to intercept at least one encrypted data packet. The first device may be further configured to decrypt the at least one encrypted packet to produce at least one decrypted data packet. The first device may provide the at least one decrypted data packet to one or more monitoring devices for inspection of the at least one decrypted data packet. The second device may be configured to receive, from the one or more monitoring devices, the at least one decrypted data packet. The second device may be further operable to re-encrypt the at least one decrypted data packet to produce the at least one encrypted data packet.


According to another approach of the present disclosure, there is provided a method for intercepting encrypted data packets. The method may commence with intercepting, by a first device serving a client-side data traffic associated with a client device, at least one encrypted data packet. The method may continue with decrypting, by the first device, the at least one encrypted packet to produce at least one decrypted data packet. The method may include providing, by the first device, the at least one decrypted data packet to one or more monitoring devices for inspection of the at least one decrypted data packet. The method may further include receiving, by a second device serving a server-side data traffic associated with a server, the at least one decrypted data packet from the one or more monitoring devices. The at least one decrypted data packet may be re-encrypted, by the second device, to produce the at least one encrypted data packet.


In further example embodiments of the present disclosure, the method operations are stored on a machine-readable medium comprising instructions, which, when implemented by one or more processors, perform the recited operations. In yet further example embodiments, hardware systems or devices can be adapted to perform the recited operations. Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements.



FIG. 1 shows an environment, within which methods and systems for intercepting encrypted data packets can be implemented.



FIG. 2 is a schematic diagram showing SSL communications between a client and a server.



FIG. 3 is a schematic diagram showing interception of SSL communications between a client and a server.



FIG. 4 is a schematic diagram showing interception of SSL communications between a client and a server.



FIG. 5 is a block diagram illustrating a system for intercepting encrypted data packets.



FIG. 6 is a process flow diagram of a method for intercepting encrypted data packets.



FIG. 7 is a diagram illustrating SSL interception packet flow.



FIG. 8 is a diagram illustrating SSL interception packet flow.



FIG. 9 shows a diagrammatic representation of a computing device for a machine, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein can be executed.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


The techniques of the embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive or computer-readable medium. It should be noted that methods disclosed herein can be implemented by a computer (e.g., a desktop computer, tablet computer, laptop computer), game console, handheld gaming device, cellular phone, smart phone, smart television system, and so forth.


As outlined in the summary, the embodiments of the present disclosure are directed to intercepting encrypted data packets. A system for intercepting encrypted data packets can be responsible for intercepting and inspecting encrypted data packets communicated between a client and a server. The system may distribute the load caused by the decryption and encryption of SSL traffic between several devices. According to the present disclosure, a client may access a server using the SSL. The client-side SSL traffic can be intercepted by a first device. A decision as to whether to trigger an interception of the SSL traffic can be made based on either Transmission Control Protocol (TCP) port number (443) or more generic SSL traffic detection methods. The first device may intercept the SSL traffic using wildcard Virtual Internet Protocol (VIP) address. Upon interception of the client-side SSL traffic, the first device may decrypt the client-side SSL traffic to produce clear text traffic. As used herein, “clear text” is the form of a message or data, which is sent or stored without cryptographic protection in a form that is understandable without additional processing.


Port translation can be used to allow the first device to notify the second device that the SSL traffic was intercepted. More specifically, the first device can perform a TCP port 443 translation, and the encrypted traffic from TCP port 443 can become the clear text traffic to a configurable port having an unused port number, such as port 8080. Thus, the second device can receive an indication that the SSL traffic is intercepted and needs to be re-encrypted. The clear text traffic may be sent by the first device to a monitoring device for inspection. The monitoring device can receive the clear text traffic from the first device and inspect the received clear text traffic for security threats. The monitoring device may use conventional procedures for inspection of the clear text traffic. Upon inspection, in absence of any security threats, the monitoring device may send the inspected clear text traffic to a second device. The second device may receive the clear text traffic from the monitoring device and encrypt the clear text traffic to produce the SSL traffic. After encryption, the second device may send the SSL traffic to the server.


Upon receiving and processing of the SSL traffic, the server may send an encrypted response, i.e., server-side SSL traffic, to the client. The server-side SSL traffic can be intercepted by the second device. The second device can also use the wildcard VIP address to intercept the server-side SSL traffic. Upon interception of the server-side SSL traffic, the second device may decrypt the server-side SSL traffic to produce clear text traffic. The clear text traffic may be sent by the second device to the monitoring device for inspection. The monitoring device can receive the clear text traffic from the second device and inspect the received clear text traffic for security threats. Upon inspection, in absence of any security threats, the monitoring device may send the inspected clear text traffic to the first device. The first device may receive the clear text traffic from the monitoring device and encrypt the clear text traffic to produce the SSL traffic. After the encryption, the first device may send the SSL traffic to the client. Therefore, the client-side SSL traffic can be handled by the first device and the server-side SSL traffic can be processed by the second device. Thus, the optimal performance of SSL communication between the client and the server is provided by distributing the computation-sensitive SSL traffic processing between two devices, namely the first device and the second device.


Furthermore, Firewall, IPS, IDS, and other security vendors can easily insert their security devices, namely monitoring devices, in the middle of each client-server and server-client connections. In particular, a monitoring device can be placed between the first device and the second device. Thus, a security device can be used without any modifications unaware of the SSL to clear text conversions.


Referring now to the drawings, FIG. 1 illustrates an environment 100 within which methods and systems for intercepting encrypted data packets can be implemented. The environment 100 may include a network 110, a client 120, a server 130, and a system 500 for intercepting encrypted data packets. The client 120 may include a network machine or a network resource that sends client-side SSL traffic 140 to the server 130. The server 130, in turn, may send server-side SSL traffic 150 to the client 120. The client 120 and the server 130 may communicate with each other using the network 110.


The network 110 may include the Internet or any other network capable of communicating data between devices. Suitable networks may include or interface with any one or more of, for instance, a local intranet, a Personal Area Network, a Local Area Network, a Wide Area Network, a Metropolitan Area Network, a virtual private network, a storage area network, a frame relay connection, an Advanced Intelligent Network connection, a synchronous optical network connection, a digital T1, T3, E1 or E3 line, Digital Data Service connection, Digital Subscriber Line connection, an Ethernet connection, an Integrated Services Digital Network line, a dial-up port such as a V.90, V.34 or V.34bis analog modem connection, a cable modem, an Asynchronous Transfer Mode connection, or a Fiber Distributed Data Interface or Copper Distributed Data Interface connection. Furthermore, communications may also include links to any of a variety of wireless networks, including Wireless Application Protocol, General Packet Radio Service, Global System for Mobile Communication, Code Division Multiple Access or Time Division Multiple Access, cellular phone networks, Global Positioning System, cellular digital packet data, Research in Motion, Limited duplex paging network, Bluetooth radio, or an IEEE 802.11-based radio frequency network. The network 110 can further include or interface with any one or more of an RS-232 serial connection, an IEEE-1394 (FireWire) connection, a Fiber Channel connection, an IrDA (infrared) port, a Small Computer Systems Interface connection, a USB (Universal Serial Bus) connection or other wired or wireless, digital or analog interface or connection, mesh or Digi® networking. The network 110 may include a network of data processing nodes that are interconnected for the purpose of data communication.


The system 500 may intercept both the client-side SSL traffic 140 and the server-side SSL traffic 150, perform encryption and decryption steps, and inspect the decrypted traffic for security threats as described in further detail below.



FIG. 2 is a schematic diagram 200 of SSL communications between clients and servers. Clients 210 and servers 220 may communicate with each other using an SSL encrypted connection 230. The outgoing traffic, or requests, of the clients 210 may be directed by a switch 240 located within a client network to a firewall 250. Similarly, the incoming traffic, or responses, of the servers 220, may be directed by a router 260 to the firewall 250. The firewall 250 may control the incoming traffic and the outgoing traffic based on predetermined criteria. The firewall 250 may not allow passage of data packets that do not match the predetermined criteria. The firewall 250 may send the requests of the clients 210 and the responses of the servers 220 to monitoring devices 270, 280. The monitoring devices 270, 280 may be responsible for malware detection and security forensics investigations related to the data packets of the incoming traffic and the outgoing traffic. However, when the incoming traffic or the outgoing traffic is the SSL traffic, i.e., is encrypted, neither the firewall 250, nor the monitoring devices 270, 280 can inspect the incoming traffic or the outgoing traffic. Therefore, both on a client side and a server side, attackers 290, 295 may take advantage of the fact that SSL traffic is not inspected and may send malicious data packets.



FIG. 3 is a schematic diagram 300 of interception of SSL communications between clients and servers. In order to facilitate detection of malicious data packets in the incoming traffic and the outgoing traffic, the SSL encrypted connection between the clients 210 and the servers 220 may include a client-side SSL encrypted connection 310, and a server-side SSL encrypted connection 320. Specifically, the clients 210 may send the outgoing traffic to the servers 220 using the client-side SSL encrypted connection 310. Similarly, the servers 220 may send the incoming traffic to the clients 210 using the server-side SSL encrypted connection 320. Both the outgoing traffic and the incoming traffic may be intercepted and decrypted into clear text 330 for further inspection by the firewall 250 or the monitoring devices 270, 280.



FIG. 4 is a schematic diagram 400 of interception of SSL communication between clients and servers by a system for intercepting encrypted data packets. The system for intercepting encrypted data packets may include a first device 410 and a second device 420. In some example embodiments, the monitoring devices 270, 280 may also be included into the system for intercepting encrypted data packets. The clients 210 may send the outgoing traffic to the servers 220 using the client-side SSL encrypted connection 310. The outgoing traffic of the clients 210 may be directed by the switch 240 located in a client network to the first device 410. The first device 410 may receive the outgoing traffic of the clients 210 and decrypt the outgoing traffic of the clients 210. In an example embodiment, the decrypted traffic may be in the form of clear text 330. The first device 410 may send the clear text 330 to the monitoring devices 270, 280 for inspection for malware or botnets. Upon inspection of the clear text 330, the monitoring devices 270, 280 may send the clear text 330 to the second device 420. The second device 420 may receive the clear text 330 and encrypt the clear text 330 to provide the encrypted outgoing traffic of the clients 210. The second device 420 may further send the encrypted outgoing traffic of the clients 210 to the servers 220.


Similarly, the servers 220 may send the incoming traffic to the clients 210 using the server-side SSL encrypted connection 320. The incoming traffic of the servers 220 may be directed by the router 260 to the second device 420. The second device 420 may receive the incoming traffic from the servers 220 and decrypt the incoming traffic. In an example embodiment, the decrypted traffic may be in the form of the clear text 330. The second device 420 may send the clear text 330 to the monitoring devices 270, 280 for inspection for malware or botnets. Upon inspection of the clear text 330, the monitoring devices 270, 280 may send the clear text 330 to the first device 410. The first device 410 may receive the clear text 330 and encrypt the clear text 330 to provide the encrypted incoming traffic from the servers 220. The first device 420 may further send the encrypted incoming traffic to the clients 210.



FIG. 5 shows a block diagram illustrating various modules of an example system 500 for intercepting encrypted data packets. Specifically, the system 500 may include a first device 502, a second device 504, and a monitoring device 506. The first device 502 may be operable to intercept at least one encrypted data packet forwarded by at least one client device of an organization to a server. The at least one data packet may be intercepted by the first device 502 using a wildcard VIP address. In an example embodiment, in order for the client device to trust the first device 502, an interception proxy authority certificate can be installed on the at least one client device by the organization to enable secure communications between the at least one client device and the first device 502. In fact, the organization may install the interception proxy authority certificate on all client devices within an organization network to ensure trusted communications between the client devices and the first device. The interception proxy authority certificates may be installed in local root stores associated with the client devices.


In an example embodiment, the at least one encrypted data packet is encrypted according to an SSL protocol. The first device 502 may be further operable to decrypt the at least one encrypted packet. As a result of decryption, at least one decrypted data packet may be produced. In an example embodiment, the at least one decrypted data packet includes a clear text. The first device 502 may be operable to provide the at least one decrypted data packet to the monitoring device 506.


The monitoring device 506 may include at least one of the following: a firewall, an IPS, an IDS, and so forth. The monitoring device 506 may be operable to inspect the at least one decrypted data packet received from the first device 502. The inspection of the at least one decrypted data packet can be performed based on predetermined criteria. In an example embodiment, the predetermined criteria include inspections for malware or botnets. The monitoring device 506 may be operable to provide the inspected decrypted data packet to the second device 504.


The second device 504 may be operable to receive the at least one decrypted data packet from the monitoring device 506. The second device 504 may be further operable to re-encrypt the at least one decrypted data packet. As a result of re-encryption, the at least one encrypted data packet may be produced. The second device 504 may send the at least one encrypted data packet to the server. In an example embodiment, the second device 504 is further operable to replace a secure certificate associated with the server to enable secure communications between the second device 504 and the server.


In a further example embodiment, an organization may want, for example, for budget reasons, to perform SSL traffic inspection using one device instead of two devices. In this case, the first device and the second device may run on different partitions of a third device.


Thus, by using the first device 502 for decryption and the second device 504 for encryption, in view of time- and resource-consuming computations required for decryption and encryption, the system 500 may queue the performance of the SSL communication between the client and the server. Furthermore, the first device 502 and the second device 504 can provide inspection of SSL traffic from both sides: from the client to the server and from the server to the client.


Additionally, in the case when the monitoring device 506 is a third-party monitoring device, the third-party monitoring device can be readily interconnected between the first device 502 and the second device 504. That means that security devices of firewall, IPS, IDS, or other security vendors can be deployed in the middle between the first device 502 and the second device 504. The clear text traffic can be provided to the monitoring device 506, as well as from the monitoring device 506. Therefore, no decryption or encryption is performed by the monitoring device 506.



FIG. 6 shows a process flow diagram of a method 600 for intercepting encrypted data packets, according to an example embodiment. In some embodiments, the operations may be combined, performed in parallel, or performed in a different order. The method 600 may also include additional or fewer operations than those illustrated. The method 600 may be performed by processing logic that may comprise hardware (e.g., decision making logic, dedicated logic, programmable logic, and microcode), software (such as software run on a general-purpose computer system or a dedicated machine), or a combination of both.


The method 600 may commence with intercepting, by a first device, at least one encrypted data packet at operation 602. The at least one data packet may be intercepted using a wildcard VIP address. In an example embodiment, the at least one encrypted data packet is received from at least one client device of an organization. In a further example embodiment, an interception proxy authority certificate is installed on the at least one client device by the organization to enable secure communications between the at least one client device and the first device. The at least one encrypted data packet may be encrypted according to an SSL protocol. Upon interception of the at least one encrypted data packet, the at least one encrypted packet may be decrypted by the first device at operation 604. As a result of decryption, at least one decrypted data packet may be produced. In an example embodiment, the at least one decrypted data packet includes clear text.


The at least one decrypted data packet may be provided to a monitoring device at operation 606. In an example embodiment, the monitoring device includes at least one of the following: a firewall, an IPS, an IDS, and so forth. The monitoring device may inspect the at least one decrypted data packet based on predetermined criteria. In an example embodiment, the predetermined criteria include inspections for malware or botnets.


At operation 608, a second device may receive the at least one decrypted data packet from the monitoring device. Upon receiving of the decrypted data packet, the second device may re-encrypt the at least one decrypted data packet at operation 610. As a result of re-encryption, the at least one encrypted data packet may be produced. The second device may forward the encrypted data packet to the server.


The method 600 may optionally comprise replacing, by the second device, a secure certificate associated with the server to enable secure communication between the second device and the server. In a further example embodiment, the first device and the second device run on different partitions of a third device.


In a further example embodiment, the method 600 may include determining the necessity of interception an encrypted data packet or providing the encrypted data packet directly to the server. The determining may be based on a Server Name Indication (SNI). The SNI is known to be an extension to the SSL protocol, by which a client indicates which host name the client is attempting to connect to at the start of the handshaking procedure. The first device may check the database for the SNI associated with the client. The SNI may be present in a “Client Hello” message sent by the client. Based on the checking, in case the SNI is marked as trusted in the database, the first device may bypass the encrypted data packet to the server without interception. If the SNI is absent from the database, the first device may intercept the encrypted data packet.


In a further example embodiment, in case the server requests for the certification of the client, the encrypted data packet from the server may be sent without interception. Furthermore, in some embodiments, the client certificate authentication may be parsed.



FIG. 7 is a diagram 700 illustrating SSL interception packet flow, according to an example embodiment. Typically, an SSL session between the client and the server commences with a handshake procedure that includes a process of negotiation that dynamically sets parameters of a communications channel established between the client and the server. The establishment of the SSL session with interception of the packet flow is described in further detail below.


According to an example embodiment, a client 210 sends a “SYNchronize” message 705 to a first device 410. The first device 410 receives the “SYNchronize” message 705 from the client 210 and sends a “SYNchronize-ACKnowledgement” message 710 to the client 210. The client 210 receives the “SYNchronize-ACKnowledgement” message 710 from the first device 410 and sends an “ACKnowledgement” message 715 to the first device 410. The client 210 further sends a “Client Hello” message 720 to the first device 410.


Upon receiving the “Client Hello” message 720 from the client 210, the first device 410 checks whether a certificate associated with the server 220 is present in a database. The database can save the certificates based on the Internet Protocol address, port number, and SNI of the server 220. Upon determining that the certificate is missing in the database, the first device 410 sends a “SYNchronize” message 725 to a server 220. The second device 420 receives the “SYNchronize” message 725 from the first device 410 and sends a “SYNchronize-ACKnowledgement” message 730 to the first device 410. The first device 410 receives the “SYNchronize-ACKnowledgement” message 730 from the second device 420 and sends an “ACKnowledgement” message 735 to the server 220. The first device 410 can further send a “Client Hello” message 740 to the server 220. In response to receiving the “Client Hello” message 740, the server 220 sends a “Server Hello” message 745 to the first device 410. The server 220 can further send a “Server Certificate” message 750 that includes a certificate of the server 220. Furthermore, the server 220 sends other messages 755 stipulated by a handshake procedure to the first device 410. Upon receiving all handshake messages 755 from the server 220, the first device 410 sends a “Server Hello” message 760 to the client 210.


Furthermore, in an example embodiment, before sending the “Server Hello” message 760 to the client 210, the first device 410 may “fake”, i.e., replace, the certificate associated with the server 220 and received in the “Server Certificate” message 750 with another certificate. The certificate associated with the server 220 may be inserted into the cache by the first device 410. In other words, the certificate that the client 210 gets from the first device 410 is different from the certificate provided by the server 220 to the first device 410. In an example embodiment, the certificate replacement procedure is performed within a network of the organization. By using the certificate replacement procedure, the organization may be able to monitor which type of traffic is initiated from clients inside the network of the organization to servers outside the network of the organization.


In an example embodiment, the replacement of the certificate of the server is performed as follows. An issuer name of the certificate may be replaced with SSL intercept Certification Authority (CA) name. The public key can be replaced with SSL intercept CA public key. Most of the certificate extensions are removed. Subject alternative name is the only extension kept. Further, the certificate can be signed with SSL intercept CA private key.



FIG. 8 is a diagram 800 illustrating SSL interception packet flow, according to an example embodiment. A client 210 sends a “SYNchronize” message 805 to a first device 410. The first device 410 receives the “SYNchronize” message 805 from the client 210 and sends a “SYNchronize-ACKnowledgement” message 810 to the client 210. The client 210 receives the “SYNchronize-ACKnowledgement” message 810 from the first device 410 and sends an “ACKnowledgement” message 815 to the first device 410. The client 210 further sends a “Client Hello” message 820 to the first device 410.


Upon receiving the “Client Hello” message 820 from the client 210, the first device 410 checks whether a certificate associated with the server 220 is present in a database. The database can save the certificates based on the Internet Protocol address, port number, and SNI of the server 220. Upon determining that the certificate is present in the database, the first device 410 sends a “Server Hello” message 825 to the client 210 according to the handshake procedure. Furthermore, the first device 410 may “fake”, i.e., replace, the certificate associated with the server 220 with another certificate and insert another certificate into a “Server Certificate” message 830. In other words, the first device 210 does not use the certificate of the server 220 present in the database, but inserts another certificate into the “Server Certificate” message 830. The first device 410 can send the “Server Certificate” message 830 to the client 210. In other words, the certificate that the client 210 gets in the “Server Certificate” message 830 from the first device 410 is different from the certificate associated with the server 220 and stored in the database.



FIG. 9 illustrates an example computer system 900 that may be used to implement embodiments of the present disclosure. The computer system 900 may serve as a computing device for a machine, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein can be executed. The computer system 900 can be implemented in the contexts of the likes of computing systems, networks, servers, or combinations thereof. The computer system 900 includes one or more processor units 910 and main memory 920. Main memory 920 stores, in part, instructions and data for execution by processor 910. Main memory 920 stores the executable code when in operation. The computer system 900 further includes a mass data storage 930, portable storage medium drive(s) 940, output devices 950, user input devices 960, a graphics display system 970, and peripheral devices 980. The methods may be implemented in software that is cloud-based.


The components shown in FIG. 9 are depicted as being connected via a single bus 990. The components may be connected through one or more data transport means. Processor unit 910 and main memory 920 are connected via a local microprocessor bus, and mass data storage 930, peripheral device(s) 980, portable storage device 940, and graphics display system 970 are connected via one or more I/O buses.


Mass data storage 930, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 910. Mass data storage 930 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 920.


Portable storage device 940 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, CD, DVD, or USB storage device, to input and output data and code to and from the computer system 900. The system software for implementing embodiments of the present disclosure is stored on such a portable medium and input to the computer system 900 via the portable storage device 940.


User input devices 960 provide a portion of a user interface. User input devices 960 include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 960 can also include a touchscreen. Additionally, the computer system 900 includes output devices 950. Suitable output devices include speakers, printers, network interfaces, and monitors.


Graphics display system 970 includes a liquid crystal display or other suitable display device. Graphics display system 970 receives textual and graphical information and processes the information for output to the display device.


Peripheral devices 980 may include any type of computer support device to add additional functionality to the computer system.


The components provided in the computer system 900 of FIG. 9 are those typically found in computer systems that may be suitable for use with embodiments of the present disclosure and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computer system 900 can be a personal computer, handheld computing system, telephone, mobile computing system, workstation, tablet, phablet, mobile phone, server, minicomputer, mainframe computer, or any other computing system. The computer may also include different bus configurations, networked platforms, multi-processor platforms, and the like. Various operating systems may be used including UNIX, LINUX, WINDOWS, MAC OS, PALM OS, ANDROID, IOS, QNX, and other suitable operating systems.


It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the embodiments provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit, a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a Compact Disk Read Only Memory (CD-ROM) disk, DVD, Blu-ray disc, any other optical storage medium, RAM, Programmable Read-Only Memory, Erasable Programmable Read-Only Memory, Electronically Erasable Programmable Read-Only Memory, flash memory, and/or any other memory chip, module, or cartridge.


In some embodiments, the computer system 900 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computer system 900 may itself include a cloud-based computing environment, where the functionalities of the computer system 900 are executed in a distributed fashion. Thus, the computer system 900, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.


In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.


The cloud may be formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 900, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.


Thus, methods and systems for intercepting encrypted data packets have been described. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A system for intercepting encrypted data packets, the system comprising: a first device serving a client-side data traffic associated with a client device, the first device being a hardware device configured to: intercept at least one encrypted data packet;decrypt the at least one encrypted packet to produce at least one decrypted data packet; andprovide the at least one decrypted data packet to one or more monitoring devices for inspection of the at least one decrypted data packet, wherein the providing of the at least one decrypted data packet to the one or more monitoring devices includes: providing the at least one decrypted data packet to a firewall, the firewall filtering incoming data packets and outgoing data packets using predetermined criteria, wherein the firewall is configured to filter the at least one decrypted data packet, wherein the firewall includes: a first monitoring device of the one or more monitoring devices, the first monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a malware; anda second monitoring device of the one or more monitoring devices, the second monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a botnet;wherein the at least one decrypted data packet is forwarded by the firewall to the first monitoring device and the second monitoring device; anda second device serving a server-side data traffic associated with a server, the first device and the second device being separate hardware devices, the second device being a hardware device configured to: receive, from the one or more monitoring devices, the at least one decrypted data packet, wherein the receiving the at least one decrypted data packet by the second device from the one or more monitoring devices includes: receiving, by the second device, the at least one decrypted data packet from the firewall, the at least one decrypted data packet being received by the firewall from one of the first monitoring device and the second monitoring device upon the inspection; andre-encrypt the at least one decrypted data packet to produce the at least one encrypted data packet.
  • 2. The system of claim 1, wherein the at least one encrypted data packet is encrypted according to a Secure Socket Layer (SSL) protocol.
  • 3. The system of claim 1, wherein the at least one encrypted data packet is received from the client device of an organization.
  • 4. The system of claim 3, wherein an interception proxy authority certificate is installed on the client device by the organization to enable secure communications between the client device and the first device.
  • 5. The system of claim 1, wherein the second device is further configured to replace a secure certificate associated with the server to enable secure communication between the second device and the server.
  • 6. The system of claim 1, wherein the one or more monitoring devices are configured to perform one or more of the following: inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a malware and inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a botnet.
  • 7. The system of claim 1, wherein the first device and the second device run on different partitions of a third device.
  • 8. The system of claim 1, wherein the at least one decrypted data packet includes a clear text.
  • 9. A method for intercepting encrypted data packets, the method comprising: intercepting, by a first device serving a client-side data traffic associated with a client device, at least one encrypted data packet;decrypting, by the first device, the at least one encrypted packet to produce at least one decrypted data packet;providing, by the first device, the at least one decrypted data packet to one or more monitoring devices for inspection of the at least one decrypted data packet, wherein the providing of the at least one decrypted data packet to the one or more monitoring devices includes: providing the at least one decrypted data packet to a firewall, the firewall filtering incoming data packets and outgoing data packets using predetermined criteria, wherein the firewall is configured to filter the at least one decrypted data packet, wherein the firewall includes: a first monitoring device of the one or more monitoring devices, the first monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a malware; anda second monitoring device of the one or more monitoring devices, the second monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a botnet;wherein the at least one decrypted data packet is forwarded by the firewall to the first monitoring device and the second monitoring device;receiving, by a second device serving a server-side data traffic associated with a server, from the one or more monitoring devices, the at least one decrypted data packet, the first device and the second device being separate hardware devices, wherein the receiving the at least one decrypted data packet by the second device from the one or more monitoring devices includes: receiving, by the second device, the at least one decrypted data packet from the firewall, the at least one decrypted data packet being received by the firewall from one of the first monitoring device and the second monitoring device upon the inspection; andre-encrypting, by the second device, the at least one decrypted data packet to produce the at least one encrypted data packet.
  • 10. The method of claim 9, wherein the at least one encrypted data packet is encrypted according to an SSL protocol.
  • 11. The method of claim 9, wherein the at least one decrypted data packet comprises an indication that the at least one decrypted data packet requires re-encryption, wherein the re-encrypting of the at least one decrypted data packet by the second device is based on the indication.
  • 12. The method of claim 11, wherein an interception proxy authority certificate is installed on the client device to enable secure communications between the client device and the first device.
  • 13. The method of claim 9, further comprising replacing, by the second device, a secure certificate associated with the server to enable secure communication between the second device and the server.
  • 14. The method of claim 9, wherein the one or more monitoring devices include at least one of the following: an intrusion prevention system and an intrusion detection system.
  • 15. The method of claim 9, wherein the first device and the second device run on different partitions of a third device.
  • 16. The method of claim 9, wherein the at least one data packet is intercepted using a wildcard virtual Internet Protocol address.
  • 17. A system for intercepting encrypted data packets, the system comprising: a first device serving a client-side data traffic associated with a client device, the first device being a hardware device configured to: intercept at least one encrypted data packet;decrypt the at least one encrypted packet to produce at least one decrypted data packet; andprovide the at least one decrypted data packet to a firewall, the firewall filtering incoming data packets and outgoing data packets using predetermined criteria, wherein the firewall is configured to filter the at least one decrypted data packet, wherein the firewall includes: a first monitoring device of the one or more monitoring devices, the first monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a malware; anda second monitoring device of the one or more monitoring devices, the second monitoring device being configured to inspect the at least one decrypted data packet to determine whether the at least one decrypted data packet includes a botnet;wherein the at least one decrypted data packet is forwarded by the firewall to the first monitoring device and the second monitoring device for inspection of the at least one decrypted data packet; anda second device serving a server-side data traffic associated with a server, the second device being a hardware device configured to: receive the at least one decrypted data packet from the firewall, the at least one decrypted data packet being received by the firewall from one of the first monitoring device and the second monitoring device upon the inspection; andre-encrypt the at least one decrypted data packet to produce the at least one encrypted data packet.
Parent Case Info

This present application is a continuation and claims the benefit of U.S. patent application Ser. No. 14/622,840, titled “Implementing and Optimizing Secure Socket Layer Intercept,” and filed Feb. 14, 2015, now U.S. Pat. No. 10,063,591, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (197)
Number Name Date Kind
4001819 Wise Jan 1977 A
4780905 Cruts et al. Oct 1988 A
5101402 Chiu et al. Mar 1992 A
5163088 LoCascio Nov 1992 A
5359659 Rosenthal Oct 1994 A
5414833 Hershey et al. May 1995 A
5511122 Atkinson Apr 1996 A
5584023 Hsu Dec 1996 A
5684875 Ellenberger Nov 1997 A
5757908 Cooper et al. May 1998 A
5805801 Holloway et al. Sep 1998 A
5835727 Wong et al. Nov 1998 A
5892903 Klaus Apr 1999 A
5905859 Holloway et al. May 1999 A
5940002 Finn et al. Aug 1999 A
5960177 Tanno Sep 1999 A
6006272 Aravamudan et al. Dec 1999 A
6170061 Beser Jan 2001 B1
6185681 Zizzi Feb 2001 B1
6205115 Ikebe et al. Mar 2001 B1
6219706 Fan et al. Apr 2001 B1
6237036 Ueno et al. May 2001 B1
6249866 Brundrett et al. Jun 2001 B1
6259789 Paone Jul 2001 B1
6347376 Attwood et al. Feb 2002 B1
6363486 Knapton, III Mar 2002 B1
6449651 Dorfman et al. Sep 2002 B1
6505192 Godwin et al. Jan 2003 B1
6539435 Bolmarcich et al. Mar 2003 B2
6553005 Skirmont et al. Apr 2003 B1
6578147 Shanklin et al. Jun 2003 B1
6594780 Shen et al. Jul 2003 B1
6687746 Shuster Feb 2004 B1
6715081 Attwood et al. Mar 2004 B1
6732279 Hoffman May 2004 B2
6735702 Yavatkar et al. May 2004 B1
6754832 Godwin et al. Jun 2004 B1
6757822 Feiertag et al. Jun 2004 B1
6779117 Wells Aug 2004 B1
6973040 Ricciulli Dec 2005 B1
6988106 Enderwick et al. Jan 2006 B2
7092357 Ye Aug 2006 B1
7194766 Noehring et al. Mar 2007 B2
7200760 Riebe et al. Apr 2007 B2
7221757 Alao May 2007 B2
7234161 Maufer et al. Jun 2007 B1
7277963 Dolson et al. Oct 2007 B2
7372809 Chen et al. May 2008 B2
7392241 Lin et al. Jun 2008 B2
7409712 Brooks et al. Aug 2008 B1
7418733 Connary et al. Aug 2008 B2
7478429 Lyon Jan 2009 B2
7533409 Keane et al. May 2009 B2
7543052 Cesa Klein Jun 2009 B1
7577833 Lai Aug 2009 B2
7596695 Liao et al. Sep 2009 B2
7620733 Tzakikario et al. Nov 2009 B1
7665138 Song et al. Feb 2010 B2
7739494 McCorkendale et al. Jun 2010 B1
7823194 Shay Oct 2010 B2
7845004 Bardsley et al. Nov 2010 B2
7925766 Jayawardena et al. Apr 2011 B2
7953855 Jayawardena et al. May 2011 B2
8010469 Kapoor et al. Aug 2011 B2
8089871 Iloglu et al. Jan 2012 B2
8220056 Owens, Jr. Jul 2012 B2
8239670 Kaufman et al. Aug 2012 B1
8276203 Nakhre et al. Sep 2012 B2
8286227 Zheng Oct 2012 B1
8301802 Wei et al. Oct 2012 B2
8375453 Jackson et al. Feb 2013 B2
8448245 Banerjee et al. May 2013 B2
8478708 Larcom Jul 2013 B1
8555388 Wang Oct 2013 B1
8595845 Basavapatna et al. Nov 2013 B2
8719446 Spatscheck et al. May 2014 B2
8800034 McHugh et al. Aug 2014 B2
8813228 Magee et al. Aug 2014 B2
8832832 Visbal Sep 2014 B1
8881284 Gabriel Nov 2014 B1
8948380 Goto Feb 2015 B2
9129116 Wiltzius Sep 2015 B1
9130996 Martini Sep 2015 B1
9203851 Wang Dec 2015 B1
9215208 Fraize et al. Dec 2015 B2
9245121 Luo et al. Jan 2016 B1
9246926 Erlingsson et al. Jan 2016 B2
9294503 Thompson et al. Mar 2016 B2
9300623 Earl et al. Mar 2016 B1
9537886 Gareau Jan 2017 B1
9571465 Sharifi Mehr et al. Feb 2017 B1
9584318 Yang et al. Feb 2017 B1
9722918 Oshiba Aug 2017 B2
9838358 Dickinson, III Dec 2017 B2
9838425 Jalan et al. Dec 2017 B2
9860271 Thompson et al. Jan 2018 B2
9912555 Oshiba Mar 2018 B2
20010042204 Blaker et al. Nov 2001 A1
20020087708 Low et al. Jul 2002 A1
20020108059 Canion et al. Aug 2002 A1
20020165912 Wenocur et al. Nov 2002 A1
20020188839 Noehring et al. Dec 2002 A1
20030023846 Krishna et al. Jan 2003 A1
20030023876 Bardsley et al. Jan 2003 A1
20030028585 Yeager et al. Feb 2003 A1
20030035547 Newton Feb 2003 A1
20030061507 Xiong et al. Mar 2003 A1
20030069973 Ganesan et al. Apr 2003 A1
20030123667 Weber et al. Jul 2003 A1
20030196081 Savarda et al. Oct 2003 A1
20030200456 Cyr et al. Oct 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040054807 Harvey et al. Mar 2004 A1
20040057579 Fahrny Mar 2004 A1
20040059951 Pinkas et al. Mar 2004 A1
20040059952 Newport et al. Mar 2004 A1
20040091114 Carter et al. May 2004 A1
20040093524 Sakai May 2004 A1
20040111635 Boivie et al. Jun 2004 A1
20040148520 Talpade et al. Jul 2004 A1
20040172538 Satoh et al. Sep 2004 A1
20040187032 Gels et al. Sep 2004 A1
20050021999 Touitou et al. Jan 2005 A1
20050041584 Lau et al. Feb 2005 A1
20050044068 Lin et al. Feb 2005 A1
20050044352 Pazi et al. Feb 2005 A1
20050125684 Schmidt Jun 2005 A1
20050180416 Jayawardena et al. Aug 2005 A1
20050193199 Asokan et al. Sep 2005 A1
20050198099 Motsinger et al. Sep 2005 A1
20050235145 Slick et al. Oct 2005 A1
20050257093 Johnson et al. Nov 2005 A1
20050278527 Liao et al. Dec 2005 A1
20060056297 Bryson et al. Mar 2006 A1
20060061507 Mohamadi Mar 2006 A1
20060137011 Kim Jun 2006 A1
20060143707 Song et al. Jun 2006 A1
20060179319 Krawczyk Aug 2006 A1
20060185014 Spatscheck et al. Aug 2006 A1
20060230444 Iloglu et al. Oct 2006 A1
20060265585 Lai Nov 2006 A1
20070143769 Bu et al. Jun 2007 A1
20070169194 Church et al. Jul 2007 A1
20070180513 Raz Aug 2007 A1
20070186282 Jenkins Aug 2007 A1
20070214088 Graham et al. Sep 2007 A1
20070280114 Chao et al. Dec 2007 A1
20070283429 Chen et al. Dec 2007 A1
20080183885 Durrey et al. Jul 2008 A1
20080256623 Worley et al. Oct 2008 A1
20090077663 Sun et al. Mar 2009 A1
20090083537 Larsen et al. Mar 2009 A1
20090168995 Banga et al. Jul 2009 A1
20100131646 Drako May 2010 A1
20100138921 Na et al. Jun 2010 A1
20100284300 Deshpande et al. Nov 2010 A1
20110082947 Szeto et al. Apr 2011 A1
20110093785 Lee et al. Apr 2011 A1
20110131646 Park et al. Jun 2011 A1
20110138177 Qiu et al. Jun 2011 A1
20110153744 Brown Jun 2011 A1
20110188452 Borleske et al. Aug 2011 A1
20110249572 Singhal et al. Oct 2011 A1
20110282997 Prince et al. Nov 2011 A1
20120036272 El Zur Feb 2012 A1
20120042060 Jackowski et al. Feb 2012 A1
20120096546 Dilley et al. Apr 2012 A1
20120110472 Amrhein et al. May 2012 A1
20120144461 Rathbun Jun 2012 A1
20120155274 Wang et al. Jun 2012 A1
20120159623 Choi Jun 2012 A1
20120163186 Wei et al. Jun 2012 A1
20120170753 Pandrangi et al. Jul 2012 A1
20120173684 Courtney et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120227109 Dimuro Sep 2012 A1
20120250866 Matsuo Oct 2012 A1
20120260329 Suffling Oct 2012 A1
20120266242 Yang et al. Oct 2012 A1
20130019025 Chaturvedi et al. Jan 2013 A1
20130103834 Dzerve Apr 2013 A1
20130139245 Thomas May 2013 A1
20130198845 Anvari Aug 2013 A1
20130212265 Rubio Vidales et al. Aug 2013 A1
20130227646 Haggerty et al. Aug 2013 A1
20130243194 Hawkes et al. Sep 2013 A1
20130263256 Dickinson et al. Oct 2013 A1
20140137190 Carey et al. May 2014 A1
20140325648 Liu et al. Oct 2014 A1
20140344925 Muthiah Nov 2014 A1
20150033341 Schmidtler et al. Jan 2015 A1
20150143118 Sheller et al. May 2015 A1
20150220745 Nellitheertha Aug 2015 A1
20150281177 Sun Oct 2015 A1
20160036651 Sureshchandra et al. Feb 2016 A1
20160182509 Kantecki Jun 2016 A1
20160226896 Bhogavilli et al. Aug 2016 A1
Foreign Referenced Citations (14)
Number Date Country
477140 Feb 2002 TW
574655 Feb 2004 TW
576066 Feb 2004 TW
I225999 Jan 2005 TW
I241818 Oct 2005 TW
I252976 Apr 2006 TW
WO1998042108 Sep 1998 WO
WO1999048303 Sep 1999 WO
WO2000062167 Oct 2000 WO
WO2006039529 Apr 2006 WO
WO2014150617 Sep 2014 WO
WO2014151072 Sep 2014 WO
WO2014176461 Oct 2014 WO
WO2015030977 Mar 2015 WO
Non-Patent Literature Citations (19)
Entry
Annexstein, et al., “Indexing Techniques for File Sharing in Scalable Peer-to-Peer Networks,” IEEE, 2002, pp. 10-15.
Castelluccia, et al., “Improving Secure Server Performance by Re-Balancing SSL/TLS Handshakes,” ACM Symposium on Information, Computer and Communications Security, 2006, pp. 26-34.
Dainotti, et al., “Early Classification of Network Traffic through Multi-Classification,” International Workshop on Traffic Monitoring and Analysis, 2011, pp. 122-135.
Dainotti, et al., “TIE: A Community-Oriented Traffic Classification Platform,” International Workshop on Traffic Monitoring and Analysis, 2009, pp. 64-74.
Ganesan, et al., “YAPPERS: A Peer-to-Peer Lookup Service over Arbitrary Topology,” IEEE, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, 2003, vol. 2, pp. 1250-1260.
Hunt, et al., “Network Dispatcher: A Connection Router for Scalable Internet Services,” Proceedings of the Seventh International World Wide Web Conference, <URL:http://www.unizh.ch/home/mazzo/reports/www7conf/fullpapers/1899/com1899.htm>, 1998, pp. 14.
Kaufman, et al., “DoS Protection for UDP-Based Protocols,” ACM conference on Computer and communications security, 2003, pp. 2-7.
Lee, et al., “On the Detection of Signaling DoS Attacks on 3G Wireless Networks,” IEEE International Conference on Computer Communications, 2007, pp. 1289-1297.
Liebergeld, et al., “Cellpot: A Concept for Next Generation Cellular Network Honeypots,” Internet Society, 2014, pp. 1-6.
Ling, et al., “A Content-Based Resource Location Mechanism in PeerIS,” IEEE, 2002, pp. 279-288.
Long, et al., “ID-Based Threshold Decryption Secure Against Adaptive Chosen-Ciphertext Attack,” Computers and Electrical Engineering, 2007, vol. 33, pp. 166-176.
Mutz, “Linux Encryption HOWTO,” http://encryptionhowto.sourceforge.net/Encryption-HOWTO.html, 2000, pp. 49.
Network- vs. Host-Based Intrusion Detection, A Guide to Intrusion Detection Technology, Internet Security Systems [online], <URL:http://documents.iss.net/whitepapers/nvh-ids.pdf>, 1998. pp. 10.
Obimbo, et al., “A Parallel Algorithm for Determining the Inverse of a Matrix for Use in Blockcipher Encryption/Decryption,” J. Supercomput, 2007, vol. 39, pp. 113-130.
Oracle Corporation, Oracle Intelligent Agent User's Guide, Releas 9.2.0, Part No. A96676-01, 2002, pp. 36.
Popek, et al., “Encryption and Secure Computer Networks,” Computer Surveys, 1979, vol. 11 (4), pp. 331-356.
SOL11243: iRules Containing the Rule-INIT iRule Event do not Re-Initialize when a Syntax Error is Corrected, F5 Support, 2010, p. 1.
Spatscheck, et al., “Optimizing TCP Forwarder Performance,” IEEE/ACM Transactions on Networking, 2000, vol. 8 (2), pp. 146-157.
Thanasegaran, et al., “Simultaneous Analysis of Time and Space for Conflict Detection in Time-Based Firewall Policies,” IEEE International Conference on Computer and Information Technology, 2010, pp. 1015-1021.
Related Publications (1)
Number Date Country
20200092329 A1 Mar 2020 US
Continuations (1)
Number Date Country
Parent 14622840 Feb 2015 US
Child 16044893 US