Impression procedure

Information

  • Patent Grant
  • 11166114
  • Patent Number
    11,166,114
  • Date Filed
    Tuesday, May 7, 2019
    5 years ago
  • Date Issued
    Tuesday, November 2, 2021
    3 years ago
Abstract
Improved methods are described for the creation of impressions for use in the manufacture of hearing aid components. In addition methods for manufacturing components of hearing aid systems using improved ear canal impressions are described.
Description
BACKGROUND OF THE INVENTION

Impressions are used in the hearing aid industry to provide models of the hearing aid user's ear canal. These impressions taken of the lateral end of the ear canal may be used to create ear tips (the portion of the hearing aid that fits into the lateral end of the ear canal) which conform to the actual shape of the user's ear canal. These custom ear tips generally provide better fit and comfort than ear tips which are not custom fitted to the customer's particular ear canal shape. In contact hearing aid systems which include hearing aid components (e.g., contact hearing devices) which are positioned on and conform to the shape of the user's tympanic membrane (ear drum), impressions may be taken that extend from the lateral end of the ear canal (e.g., near the pinna) to the medial end of the canal (e.g., at or near the tympanic membrane). These full canal impressions may be used to manufacture both custom ear tips and custom contact hearing aid components, such as contact hearing devices, for the user's tympanic membrane. The methods of taking these full canal impressions, along with the characteristics of the materials used to take the impressions will have an impact on the overall fit, comfort and utility of the components manufactured using that full impression. As used herein, ear tip may refer to a conventional hearing aid ear tip (e.g., including a receiver) or to a light tip which may be a component of a contact hearing system.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of embodiments of the present inventive concepts will be apparent from the more particular description of preferred embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same or like elements. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the preferred embodiments.



FIG. 1 illustrates an impression being taken with the subject in a supine position and a health care professional injecting the impression material into the subject's ear canal.



FIG. 2 illustrates an impression being taken with the subject in an upright position and a health care professional injecting the impression material into the subject's ear canal.



FIG. 3 illustrates a scanned image of the medial end of a lateral ear canal impression.



FIG. 4 illustrates a scanned image of a lateral ear canal impression with a portion of the medial end removed.



FIG. 5 illustrates a scanned image of a lateral ear canal impression overlaid over a scanned image of a full canal impression.



FIG. 6 illustrates a digital model of a lateral impression including an overlapping region.



FIG. 7 illustrates a digital model of a combined medial and lateral impression, including an overlapping region.



FIG. 8 illustrates a digital model of a combined medial and lateral impression, including a junction.



FIG. 9 illustrates a digital model of a combined medial and lateral impression after the junction has been smoothed.



FIG. 10 illustrates an impression kit according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates an impression being taken with the subject in a supine position and a health care professional 190 injecting the impression material into the subject's ear canal. In one embodiment of the invention, two different impressions are taken and digitally scanned. In this embodiment, the different impressions represent two different (although overlapping) portions of the ear canal anatomy and are made using two different viscosities of impression material. In this embodiment, the first impression (Impression 1) may be either: a) an impression of the whole ear canal, down to and including the tympanic membrane or b) an impression of the medial portion of the ear canal from approximately the beginning of the bony canal to and including the tympanic membrane. The Impression 1 impressions may be made using a low viscosity impression material with the subject lying in a supine position (the supine position is chosen to prevent the low viscosity impression material from running out of the subject's ear before it cures). The use of a low viscosity material for Impression 1 enables the impression to reflect the fine detail of the anatomy of the medial ear canal since it flows easily into all areas of the medial ear canal.



FIG. 2 illustrates an impression being taken with the subject in an upright position and a health care professional 190 injecting the impression material into the subject's ear canal. In embodiments of the invention, the second impression (Impression 2) is an impression of the lateral portion of the ear canal wherein the impression extends from a point in the subject's bony canal (but not as deep as the tympanic membrane) to the subject's concha bowl. Impression 2 is made using a high viscosity material with the subject in an upright (sitting) position to obtain an impression of the lateral ear canal which is most representative of the shape of the ear canal when the subject is in the position where he/she is most likely to be when using the hearing aids (e.g., sitting or standing). As the impression material cures, the high viscosity material exerts pressure on the tissue in the lateral ear canal, causing slight compression of the tissue in the lateral ear canal, thus creating an ear tip which fits snugly into the lateral ear canal and will not migrate out of the ear canal. The pressure is created by the viscosity of the high viscosity impression material and the force it exerts on the ear canal.


In one embodiment of the invention, once the impressions are made they may be shipped back to the manufacturer where they are cleaned and placed into a digital scanner. The digital scanner is used to make digital models of the impressions, which digital models may be representative of all or sections of the subject's ear canal. Where Impression 1 is an impression of the whole ear canal, down to and including the tympanic membrane, the output of the scanner for Impression 1 is a digital model of the full ear canal which includes a medial portion representative of the shape, size and surface structure of the entire ear canal, including the medial portion, tympanic membrane and sulcus region. Where Impression 1 is an impression of the medial end of the ear canal, down to and including the tympanic membrane, the output of the scanner for Impression 1 is a digital model of the medial end of the ear canal representative of the shape, size and surface structure of the tympanic membrane and sulcus region. The output of the scanner for Impression 2 is a digital model which includes a first portion representative of the shape, size and surface structure of the lateral end of the ear canal and may also include a second portion representing a medial end of Impression 2.


Once Impression 1 and Impression 2 are complete, and have been scanned using, for example, a digital scanner, digital representations of Impression 1 and Impression 2 are created. The resulting scans are combined by the technique described below to create a single digital representation of the ear canal of the subject, including digital features representative of the surface of the subject's ear canal. The resulting digital representation will represent the subject's ear canal from the concha bowl to the tympanic membrane. This single digital representation combines the representation resulting from the use of a high viscosity impression material to create a model of the lateral ear canal (higher pressure conforms to soft tissue of lateral ear canal) and the representation resulting from the use of a low viscosity impression material to create a model of the medial portion of the ear canal (lower viscosity allows it to flow evenly into the farthest reaches of the ear canal without creating bubbles or missing areas which might ruin the impression and make it difficult to create a resulting product). The low viscosity impression material further allows the impression to capture the fine detail of the tympanic membrane and sulcus region.


As illustrated in FIGS. 3 and 4, once the scans are completed, the digital model (scan) of Impression 2 may be “cleaned up” (i.e., digitally altered) to, for example, remove data which is not representative of the anatomy of the subject. This extraneous data may result from impression material at the medial end of the impression which did not contact any portion of the ear canal. In the digital model, this additional data, which is not representative of the actual shape of the subject's ear canal be referred to as noise. See, for example, the portion of digital model 20 labeled 10 in FIG. 3, this portion of digital model 20 has been removed in FIG. 4.


Once the extraneous data is removed from digital model 2, the corresponding portions of the data files for models 1 and 2 may be overlaid to obtain a best fit alignment for the overall impressions. This best fit analysis may be performed either manually or electronically. In either case, the two models are overlaid and the features are used to get a best fit alignment. See, for example, FIG. 5 where digital model 20 of the medial end of the subject's ear canal is overlaid over digital model 30 of the entire ear canal of the subject. In FIG. 5, the two digital models are manipulated until the corresponding alignment regions of digital model 20 and digital model 30 align as closely as possible. The required manipulation may be done either manually or using alignment algorithms.


Once digital models 20 and 30 are in rough alignment, an alignment region 40 may be identified on digital model 20 as illustrated in FIG. 6. The alignment region 40 generally extends from the medial end 50 of digital model 20 to a starting point 60 representative of a predefined portion of the bony canal of the subject, which may be, for example, the beginning of the bony canal. The starting point 60 for the alignment region 40 may, alternatively, be defined with respect to other features of the ear canal, such as, for example, being defined as medial to the second bend. In FIG. 6, alignment region 40 extends from starting point 60 to medial end 50 of digital model 20. The bony canal is selected as alignment region 40 because it is an area where the two digital scans overlap. In addition the bony canal is the region of the ear canal least subject to changes in shape resulting from body position and/or pressure from the impression material, particularly the high viscosity impression material resulting from the curing process. The bony canal region is, therefore, believed to be the region in which the two digital models are most likely to be identical and/or similar enough to enable the two digital scans to be aligned. Thus, the alignment region is likely to be substantially the same in digital model 20 and digital model 30.


Once the alignment region 40 is defined in digital model 20, the alignment region 40 may be locally aligned with the bony canal region 70 of digital model 30 as illustrated in FIG. 7. In embodiments of the invention, the alignment region 40 may be on the order of approximately 3 millimeters. Once the alignment region 40 is fully aligned with bony canal region 70, the portion of digital model 20 which is medial to medial end 50 of digital model 30 is deleted. In embodiments of the invention, a small additional portion of digital model 30 is also deleted, leaving a small gap 100 as illustrated in FIG. 8. In FIG. 9, gap 100 is filled and smoothed to create a complete digital model 80 which incorporates data from digital model 20 as representative of the lateral ear canal and which incorporates data from digital model 30 as representative of the medial ear canal. This combined digital model 80 impression may then be used to design components which reside in the ear canal, such components may include ear tips, light tips, contact hearing devices, tympanic lenses and/or other components of contact hearing systems.


In alternative embodiments of the invention, complete digital model 80 may be made from a hybrid impression wherein the low viscosity impression material is first poured into the subject's ear canal, followed by the high viscosity impression material to create a single impression capturing the ear canal of the subject from the tympanic membrane to the concha bowl.


In alternative embodiments of the invention, the low viscosity impression may be left to fully cure while the subject is supine before moving the subject to an upright position and adding the high viscosity impression material. In this embodiment the low viscosity impression material may be used as an oto-block that prevents the high viscosity impression material from contacting the tympanic membrane and/or the medial end of the subject's ear canal.


In embodiments of the invention, the high viscosity impression material is bonded to the low viscosity impression material prior to removing the hybrid impression from the subject's ear canal.


In embodiments of the invention, one method of taking a hybrid impression of the ear canal of a hearing aid subject involves generating an impression using two separate materials through a predetermined series of steps, including ensuring that elements of the method are performed at predetermined time intervals. In embodiments of the invention, the predetermined time intervals may be determined as a function of characteristics of the impression material being used. In embodiments of the invention, such characteristics may include, for example, the curing time of the impression material. In embodiments of the invention, such characteristics may include, for example, the viscosity of the impression material.


In embodiments of the invention, the method may include the step of raising the subject from a supine to a sitting (or standing) position at a predetermined time or after a predetermined event has occurred, for example within a predetermined interval after initially depositing impression material in the ear canal of the subject. Embodiments of the invention, which include the forgoing step, may be referred to as Seated Hybrid Impressions. In embodiments of the invention, the time interval may be calculated such that the subject is raised before the impression material used in the supine position is fully cured. In embodiments of the invention, the time interval may be calculated such that the subject is raised after the impression material used when the subject is in the supine position has cured to a point where it is sufficiently viscous that it does not flow out of the ear canal. In embodiments of the invention, the timing of raising the subject from a supine position into an upright position is dependent upon the timing of the transition of the impression material from a viscous material to a gel. In embodiments of the invention, a sol to gel transition, in which the material is transformed from what is technically a liquid (sol) into a solid (gel) is the preferred point for raising the subject from a supine to an upright position. In embodiments of the invention, it may be possible to raise the subject before the impression material transitions from a liquid to a solid. For example, the subject may be raised when the impression material's viscosity increases enough to prevent the impression material from flowing out of the ear when the subject is raised to the upright position.


In embodiments of the invention, materials which are suitable for creating impressions of the medial end of the ear canal include materials which initially have a low viscosity, such as, for example, a viscosity of less than 10 centipoise (“cPs”) and/or a viscosity of between approximately 10 cPs and 20,000 cPs. Impression materials suitable for use in low viscosity applications of the present invention may be referred to herein as Low Viscosity Impression Materials or LVIM. In embodiments of the invention, materials suitable for use as an LVIM may have a hardness of approximately 15±2 Shore A. In embodiments of the invention, materials suitable for use as an LVIM may have an Elongation at break of greater than approximately 250%. In embodiments of the invention, the viscosity values set forth above represent the viscosity of the impression material as it is initially deposited in the ear canal of the subject using, for example impression dispensing gun 110. In embodiments of the invention, wherein the impression material is a two part material which is mixed prior to injecting it into the subject's ear canal, the viscosity values set forth above represent the viscosity of the impression material immediately following the mixing of the two materials which comprise the two part impression material.


In embodiments of the invention, materials which are suitable for creating impressions of the lateral end of the ear canal include materials which have a higher viscosity than the Low Viscosity Impression Materials, such as, for example, a viscosity of more than 100 cPs and/or a viscosity of between approximately 100 and 100,000 cPs. Impression materials suitable for use in high viscosity applications of the present invention may be referred to herein as High Viscosity Impression Materials or HVIM. In embodiments of the invention, materials suitable for use as an HVIM may have a hardness of approximately 30±3 Shore A. In embodiments of the invention, materials suitable for use as a HVIM may include Otoform A softX having a hardness of approximately 25+/−2 Shore A.


In embodiments of the invention, materials suitable for creating impressions may include two-part, platinum cure silicones. Once the two components of the impression materials are mixed together, these materials increase in viscosity over time and ultimately cure into a solid material. After a period of time, the material undergoes what is known as a sol-gel transition, in which the material is transformed from a liquid state (sol) to a soft, solid state (gel). The gel may continue to cross-link (or cure) over time so that it becomes harder than the gel, and eventually is fully cured. The fully cured material will not undergo any shape change when it is released from a physical constraint, such as when it is removed from an ear canal. Instead, the fully cured material retains the geometry it had when it transitioned from a gel to a fully cured solid.


In embodiments of the invention, factors which can affect the timing of moving a subject from a supine to an upright position while making an impression of the subject's ear canal include: i) the temperature of the impression materials (higher temperatures result in faster cures); ii) the ratio of the two components comprising the impression material (1:1, 2:1, or other ratios); iii) the initial concentration of platinum catalyst; and iv) the presence of any inhibitors of the platinum catalyst (such as alcohols, amine-containing chemicals, sulfur-containing chemicals or materials, and phosphorous-containing chemicals, among others). For example, certain HVIM materials cure faster than the LVIM materials, with the former reaching a gel state in about 1 minute, while the latter reaches a gel state in about 2 minutes at normal body temperature.


In embodiments of the invention, the method may use a serial procedure to gather a full seated Hybrid Impression from one ear before moving to the second ear. Alternatively, a health care professional may inject the LVIM materials into both ear canals of the subject before moving the subject from a supine to an upright position. In an embodiment of the invention, the health care professional may alternate between the right and left ears, for example, injecting LVIM in the left ear followed by HVIM in that ear, followed by LVIM in the right ear and then HVIM in the right ear. In embodiments of the invention, the patient may move from a sitting position to a supine position after injecting the first HVIM material but before it is fully cured.


In embodiments of the invention, the following steps may be used to create a Seated Hybrid Impression. The steps include:

    • 1. The step of reclining the subject into a supine position, putting Low Viscosity Impression Materials into the subject's ear such that the LVIM extends into the medial end of the subject's ear canal. In embodiments of the invention, the physician will continue to put LVIM into the ear canal of the supine subject until the LVIM reaches a predetermined region of the subject's ear canal. In embodiments of the invention, the predetermined region may be the subject's Cartilaginous Boney Junction (“CBJ”). In embodiments of the invention, the predetermined region may be a point just beyond the subject's CBJ. In embodiments of the invention, the predetermined region may be the region designated as the lateral smooth glandular tissue area. In embodiments of the invention, the predetermined region may be the medial end of the second bend in the subject's ear canal. In embodiments of the invention, the physician may continue to put LVIM into the subject's ear canal until the LVIM material is far enough lateral to allow the injection tool for the HVIM to reach the lateral end of the LVIM material. In embodiments of the invention, the injection of LVIM must be completed within a first predetermined period of time. In embodiments of the invention, the first predetermined period of time may be the time required for the LVIM to increase in viscosity such that it will no longer flow out of the subject's ear canal. In embodiments of the invention, the first predetermined period of time may be less than the time required for the LVIM to fully harden or cure. In embodiments of the invention, the first predetermined period of time may be approximately one minute and 15 seconds following the initial mixing of LVIM material for deposition in the subject's ear canal. In embodiments of the invention, the LVIM material is a 2 part material which only begins to cure after the two parts are mixed together. In embodiments of the invention where the deposition of LVIM takes less than the first predetermined period of time, the subject may be maintained in the supine position until the end of the first predetermined period of time. In embodiments of the invention, the subject may be raised to an upright position just after the LVIM transitions from a viscous liquid to a gel but before it fully cures. In embodiments of the invention, the subject may be raised into an upright position before the LVIM gel fully cures.
    • 2. The step of moving the subject into an upright (e.g., sitting or standing) position and allowing the LVIM material to fully harden or cure. In embodiments of the invention, the subject may be moved into an upright position after the end of the first predetermined period of time. In embodiments of the invention, the subject must be fully upright by the end of a second predetermined period of time where in the second predetermined period of time may be measured from the initial mixing of the LVIM prior to dispensing in the subject's ear canal. In embodiments of the invention, the second predetermined period of time, as measured from the initial dispensing of the LVIM in the subject's ear may be from approximately one minute and thirty seconds to two minutes and thirty seconds.
    • 3. The step of injecting HVIM into the subject's ear canal. In embodiments of the invention, once the subject is in an upright position, HVIM material may be injected into the ear canal, starting at the lateral end of the LVIM impression material and working out to the end of the ear canal. In the embodiments of the invention, HVIM material may extend into the concha bowl of the subject. In embodiments of the invention, the HVIM material may extend to the level of the subject's scapha. In embodiments of the invention, the HVIM material may extend far enough to cover the subject's tragus.
    • 4. The step of curing the HVIM material. In embodiments of the invention, the HVIM material may then be allowed to cure.
      • a. Once the LVIM material is fully cured, the next step of the method may be to leave the first impression in the subject's ear, and take an impression of the subject's other ear using the steps set forth above.
    • 5. The step of removing the hybrid impression from the subject's ear. In embodiments of the invention, both the LVIM and HVIM material may then be allowed to cure before removing the fully cured hybrid impression from the subject's ear. In embodiments of the invention, the process of fully curing the LVIM and HVIM material may take approximately eight minutes from the time the initial LVIM material was injected into the subject's ear canal. In embodiments of the invention, the physician may wait for a period of more than approximately eight minutes from the initial injection of the LVIM material to remove the hybrid impression from the subject's ear.
      • a. If they have not already done so, once the hybrid impression has been removed from the subject's first ear, the physician may use the steps outlined above to take an impression of the subject's second ear.


In embodiments of the invention, the procedure described herein may be augmented by applying a cap of HVIM material over the LVIM material prior to moving the subject into an upright position as described in Step 2 above. In embodiments of the invention, the cap of HVIM material may be less than the full HVIM impression. In embodiments of the invention, the cap of HVIM material may be small enough to leave room in the subject's ear canal for additional HVIM material once the subject has been raised to the upright position. In embodiments of the invention, the cap of HVIM material may be approximately 3 millimeters to 20 millimeters thick.


The following timeline is illustrative of the timing of various steps of the sitting hybrid impression process according to one embodiment of the present invention. Sample Impression Timeline:












Impression Method Hybrid


Total Time (min:sec) 13:15























0:15
0:30
0:45
1:00
1:15
1:30
1:45
2:00
2:15












Capture LVIM, Ear 1
Sit
Capture HVIM,


(75 Sec)
(15 Sec)
Ear 1 (30 Sec)


















2:30
2:45
3:00
3:15
3:30
3:45
4:00
4:15
4:30










HVIM Cure, Ear 1


(150 Sec)


















4:45
5:00
5:15
5:30
5:45
6:00
6:15
6:30
6:45













Recline
Capture LVIM, Ear 2
Sit
Capture HVIM,


(15 Sec)
(75 Sec)
(15 Sec)
Ear 2 (30 Sec)


















7:00
7:15
7:30
7:45
8:00
8:15
8:30
8:45
9:00










HVIM + LVIM Cure


(6 min, 30 Sec)


















9:15
9:30
9:45
10:00
10:15
10:30
10:45
11:00
11:15










HVIM + LVIM Cure


(6 min, 30 Sec)

















11:30
11:45
12:00
12:15
12:30
12:45
13:00
13:15










HVIM + LVIM Cure


(6 min, 30 Sec)









In embodiments of the invention, the method may include placing the subject in a supine position and injecting LVIM into the subject's ear using enough LVIM to reach a predetermined point in the subject's ear canal. The subject would then remain in the supine position for approximately one minute and fifteen seconds before being moved to an upright position (e.g., sitting or standing). Approximately one minute and forty-five seconds later, the health care professional would inject HVIM into the subject's ear canal, using enough HVIM material to fill the ear canal to at least a point where the HVIM would be visible at the ear canal opening. In embodiments of the invention, the HVIM may be used to fill the ear canal to the Concha Cymba. In embodiments of the invention, the HVIM may be used to fill the ear canal to the concha bowl. In embodiments of the invention, the hybrid impression (including both the LVIM and HVIM) would be pulled from the subject's ear canal once the combined impression has bonded and fully cured.


In embodiments of the invention the low viscosity impression material may be a material particularly suited to making medial impressions. The LVIM may be Formasil AB (available from Dreve, Unna, Germany). The LVIM may be a low viscosity, two-part platinum cure silicone. The LVIM may have a viscosity which is sufficiently low, prior to mixing (approximately 1 to 1000 cPs), to ensure that it flows easily into the sulcus region and covers the tympanic membrane when it is injected into the ear canal of a subject. The LVIM may be selected to set up quickly. The LVIM may be selected to have a sol-gel transition time at 37° C. of approximately 1 to 3 minutes. The LVIM may be selected such that it becomes fully cured within 5 minutes of being injected into the ear canal of a subject. The LVIM may be selected to be a soft material, with a durometer of approximately 15±2 Shore A and a tensile strength of greater than approximately 1 MPa. The LVIM may be selected to have an excellent elastic recovery, such as an elastic recovery which is greater than approximately 99%.


In embodiments of the invention, the high viscosity impression material may be particularly suited to making lateral impressions. The HVIM may be Otoform A softX (available from Dreve, Unna, Germany). The HVIM may have a relatively high viscosity. The HVIM may be a two-part platinum cure silicone. The HVIM may have a viscosity prior to mixing of approximately 1,000 to approximately 100,000 cPs. The HVIM may be selected to have a viscosity which limits its ability to flow all the way down to the sulcus region, making it suitable for use in the outer, more lateral, portion of the subject's ear canal. The HVIM may be selected to set up faster than the LVIM. The HVIM may have a sol-gel transition time at 37° C. of approximately 30 seconds to approximately 1 minute. The HVIM may be selected to fully cure within approximately 4 minutes. The HVIM may be selected to be less soft than the LVIM. The HVIM may be selected to have a durometer of approximately 25±2 Shore A after complete curing. The HVIM may be selected to have an elastic recovery of greater than approximately 99%.


In one embodiment, the present invention is directed to a method of creating a hearing system for a subject, the method including the steps of: taking a first impression of a first portion of an ear canal using an impression material having a first viscosity; taking a second impression of a second portion of the ear canal using an impression material having a second viscosity; digitally scanning the first impression to create a first digital model; digitally scanning the second impression to create a second digital model; merging the first digital model with the second digital model to create a merged model where the lateral portion of the merged model is comprised of at least a portion of the first digital model and the medial portion of the merged model is comprised of at least a portion of the second model; and, using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the method may include the step of raising the subject from a supine position to an upright position prior to the step of taking a second impression. In further embodiments of the invention, the second impression may be taken after the first impression is removed from the subject's ear canal. In further embodiments of the invention, the first impression may be taken after the second impression is removed from the subject's ear canal. In further embodiments of the invention, the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal. In further embodiments of the invention, the first and second portions of the ear canal overlap. In further embodiments of the invention, the first viscosity is lower than the second viscosity.


In one embodiment, the present invention is directed to a method of creating a hearing system for a subject, the method including the steps of: creating a hybrid impression of a subject's ear canal, the method of creating a hybrid impression including the steps of: injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; and, injecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position; digitally scanning the hybrid impression to create a digital model of the subject's ear canal; and, using the digital model to manufacture at least one of ear tip and a contact hearing device. In further embodiments of the invention, the initial viscosity of the low viscosity impression material is lower than the initial viscosity of the high viscosity impression material. In further embodiments of the invention, the method further includes the step of raising the subject from a supine position to an upright position prior to injecting the high viscosity impression material. In further embodiments of the invention, the subject is raised from a supine to an upright position after the low viscosity impression material has transitioned from a liquid to a gel state. In further embodiments of the invention, the subject is raised from a supine to an upright position before the low viscosity impression material is fully cured. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs at a predetermined time after the beginning of the step of injecting a low viscosity impression material. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs before the low viscosity impression material cures into a gel state. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs after the viscosity of the low viscosity impression material has increased to a viscosity where the low viscosity impression material no longer flows when subjected to gravitational forces. In further embodiments of the invention, the first and second portions of the ear canal do not overlap. In further embodiments of the invention the low viscosity impression is bonded to the high viscosity impression.


In one embodiment, the present invention is directed to a method of creating components of a hearing system for a subject, the method including the steps of: digitally scanning a first impression to create a first digital model, wherein the first impression is an impression of a first portion of an ear canal taken using a low viscosity impression material having a first viscosity and wherein the first impression has been taken with the subject in a supine position; digitally scanning a second impression to create a second digital model, wherein the second impression is an impression of a second portion of an ear canal taken using a high viscosity impression material having a second viscosity, and wherein the second impression has been taken with the subject in an upright position; merging the first digital model with the second digital model to create a merged model where the medial portion of the merged model is comprised of the first digital model and the lateral portion of the merged model is comprised of the second model; using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the first and second portions of the ear canal overlap. In further embodiments of the invention, the first and second digital models include digital models of the overlapping portions of the ear canal. In further embodiments of the invention, the merging step includes aligning the digital models of the overlapping portions of ear canal. In further embodiments of the invention, the merging step includes aligning points within the digital models of the overlapping portions of the ear canal. In further embodiments of the invention, the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal.


In one embodiment, the present invention is directed to a method of creating components of a hearing system for a subject, the method including the steps of: digitally scanning a hybrid impression to create a digital model, wherein the hybrid impression has been created using a method including the steps of: injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; and, injecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position; using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the low viscosity impression material has an initial viscosity which is lower than the initial viscosity of the high viscosity material. In further embodiments of the invention, the low viscosity impression material is bonded to the high viscosity impression material to create the hybrid impression.


In one embodiment the present invention is directed to a kit including: a low viscosity material for use in making impressions of the medial end of a subject's ear canal; and, a high viscosity material for use in making impressions of the lateral end of a subject's ear canal, wherein the initial viscosity of the low viscosity material is lower than the initial viscosity of the high viscosity material; and, at least one dispenser adapted to dispense at least one of the low viscosity material or the high viscosity material.


In one embodiment, the present invention is directed to a kit including: at least one impression dispensing gun; at least one dispenser of low viscosity impression material; at least one low viscosity impression material dispensing tip; at least one dispenser of high viscosity impression material; and, at least one high viscosity impression material dispensing tip. In further embodiments of the invention, the kit further includes at least one dispenser of mineral oil. In further embodiments of the invention, the kit further includes at least one mineral oil basin. In further embodiments of the invention, the kit further includes at least one impression return box.


Embodiments of the invention may include a kit useful in practicing the methods of the present invention. As illustrated in FIG. 10, in one embodiment, the kit may include one or more of the following components: impression dispensing guns 110; mineral oil 120; a mineral oil basin (hex dish) 130; low viscosity impression material 140; low viscosity impression material dispensing tip 150; impression return box 160; high viscosity impression material 170; and, high viscosity impression material dispensing tip 180.


Definitions

Audio Processor (BTE)—A system for receiving and processing audio signals. In embodiments of the invention, audio processors may include one or more microphones adapted to receive audio which reaches the subject's ear. In embodiments of the invention, the audio processor may include one or more components for processing the received sound. In embodiments of the invention, the audio processor may include digital signal processing electronics and software which are adapted to process the received sound. In embodiments of the invention, processing of the received sound may include amplification of the received sound.


Contact Hearing System—A system including a contact hearing device, an ear tip, and an audio processor. In embodiments of the invention, contact hearing systems may also include an external communication device. An example of such system is an EarLens hearing-aid device that transmits audio signal by laser to tympanic membrane transducer (TMT) which is placed on an ear drum.


Contact Hearing Device (Tympanic Contact Actuator (TCA)/Tympanic Lens)—a tiny actuator connected to a customized ring-shaped support platform that floats on the ear canal around the eardrum, and resides in the ear much like a contact lens resides on the surface of the eye, where the actuator directly vibrates the eardrum which causes energy to be transmitted through the middle and inner ears to stimulate the brain and produce the perception of sound. In embodiments of the invention, the contact hearing device may include a photodetector, a microactuator connected to the photodetector, and a support structure supporting the photodetector and microactuator.


Ear Tip (Light Tip)—A structure designed to be placed into and reside in the ear canal of a hearing aid user, where the structure is adapted to receive signals intended to be transmitted to the user's tympanic membrane or to a device positioned on or near the user's tympanic membrane (such as, for example, a Contact Hearing Device). In one embodiment of the invention, the signals may be transmitted by light, using, for example, a laser positioned in the light tip. In one embodiment of the invention, the signals may be transmitted using radio frequency, using, for example, an antenna connected to the Ear Tip. In one embodiment of the invention, the signal may be transmitted using inductive coupling, using, for example, a coil connected to the Ear Tip.


Light Driven Hearing Aid System—a Contact Hearing System wherein signals are transmitted from the ear tip to the contact hearing device using light. In a light driven hearing system, light (e.g., laser light) may be used to transmit information, power, or both information and power to the contact hearing device.


Light Tip—an ear tip adapted for use in a light driven hearing aid system. In embodiments of the invention, a light tip may include a laser.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


REFERENCE NUMBERS












Number
Element
















10
Digital Model of end of Digital Model 20 (noise)


20
Digital Model of lateral end of subject's ear canal


30
Digital Model including medial end of subject's ear canal


40
Alignment Region


50
Medial End of Digital Model 2


60
Starting Point of Alignment Region 40


70
Bony Canal Region


80
Complete Digital Model


100
Gap


110
Impression Dispensing Gun


120
Mineral Oil


130
Mineral Oil Basin


140
Medial Low Viscosity Impression Material


150
Medial Low Viscosity Impression Material Dispensing Tip


160
Impression Return Box


170
Lateral High Viscosity Impression Material


180
Lateral High Viscosity Impression Material Dispensing Tip


190
Health Care Professional


200
Subject








Claims
  • 1. A method of creating a hearing system for a subject, the method comprising the steps of: taking a first impression of a first portion of an ear canal using an impression material having a first viscosity;taking a second impression of a second portion of the ear canal using an impression material having a second viscosity;raising the subject from a supine position to an upright position prior to the step of taking a second impression;digitally scanning the first impression to create a first digital model;digitally scanning the second impression to create a second digital model;merging the first digital model with the second digital model to create a merged model where the lateral portion of the merged model is comprised of at least a portion of the first digital model and the medial portion of the merged model is comprised of at least a portion of the second model; andusing the merged digital model to manufacture at least one of an ear tip and a contact hearing device.
  • 2. A method according to claim 1, wherein the second impression is taken after the first impression is removed from the subject's ear canal.
  • 3. A method according to claim 1, wherein the first impression is taken after the second impression is removed from the subject's ear canal.
  • 4. A method according to claim 1, wherein the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal.
  • 5. A method according to claim 1, wherein the first and second portions of the ear canal overlap.
  • 6. A method according to claim 1, wherein the first viscosity is lower than the second viscosity.
  • 7. A method of creating a hearing system for a subject, the method comprising the steps of: creating a hybrid impression of a subject's ear canal, the method of creating a hybrid impression comprising the steps of:injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; andinjecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position;digitally scanning the hybrid impression to create a digital model of the subject's ear canal; andusing the digital model to manufacture at least one of ear tip and a contact hearing device.
  • 8. A method according to claim 7, wherein the viscosity of the low viscosity impression material is lower than the viscosity of the high viscosity impression material.
  • 9. A method according to claim 7, further including the step of raising the subject from a supine position to an upright position prior to injecting the high viscosity impression material.
  • 10. A method according to claim 9, wherein the subject is raised from a supine to an upright position after the low viscosity impression material has transitioned from a liquid to a gel state.
  • 11. A method according to claim 10, wherein the subject is raised from a supine to an upright position before the low viscosity impression material is fully cured.
  • 12. A method according to claim 8, wherein the step of raising the subject from a supine position to an upright position occurs at a predetermined time after the beginning of the step of injecting a low viscosity impression material.
  • 13. A method according to claim 8, wherein the step of raising the subject from a supine position to an upright position occurs before the low viscosity impression material cures into a gel state.
  • 14. A method according to claim 10, wherein the step of raising the subject from a supine position to an upright position occurs after the viscosity of the low viscosity impression material has increased to a viscosity where the low viscosity impression material no longer flows when subjected to gravitational forces.
  • 15. A method according to claim 7, wherein the first and second portions of the ear canal do not overlap.
  • 16. A method according to claim 7, wherein the low viscosity impression is bonded to the high viscosity impression.
  • 17. A method of creating components of a hearing system for a subject, the method comprising the steps of: digitally scanning a first impression to create a first digital model, wherein the first impression is an impression of a first portion of an ear canal taken using a low viscosity impression material having a first viscosity and wherein the first impression has been taken with the subject in a supine position;digitally scanning a second impression to create a second digital model, wherein the second impression is an impression of a second portion of an ear canal taken using a high viscosity impression material having a second viscosity and wherein the second impression has been taken with the subject in an upright position;merging the first digital model with the second digital model to create a merged model where the medial portion of the merged model is comprised of the first digital model and the lateral portion of the merged model is comprised of the second model;using the merged digital model to manufacture at least one of an ear tip and a contact hearing device.
  • 18. A method according to claim 17, wherein the first and second portions of the ear canal overlap.
  • 19. A method according to claim 18, wherein the first and second digital models include digital models of the overlapping portions of the ear canal.
  • 20. A method according to claim 18, wherein the merging step comprises aligning the digital models of the overlapping portions of ear canal.
  • 21. A method according to claim 18, wherein the merging step comprises aligning points within the digital models of the overlapping portions of the ear canal.
  • 22. A method according to claim 17, wherein the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal.
  • 23. A method of creating components of a hearing system for a subject, the method comprising the steps of: digitally scanning a hybrid impression to create a digital model, wherein the hybrid impression has been created using a method comprising the steps of:injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; andinjecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position;using the merged digital model to manufacture at least one of an ear tip and a contact hearing device.
  • 24. A method according to claim 23, wherein the low viscosity impression material has an initial viscosity which is lower than the initial viscosity of the high viscosity material.
  • 25. A method according to claim 24, wherein the low viscosity impression material is bonded to the high viscosity impression material to create the hybrid impression.
CROSS-REFERENCE

This application is a continuation of PCT Application No. PCT/US2017/061388, filed Nov. 13, 2017, which claims the benefit of U.S. Provisional Application Nos. 62/564,574, filed Sep. 28, 2017, and 62/422,535, filed Nov. 15, 2016, which applications are incorporated herein by reference.

US Referenced Citations (709)
Number Name Date Kind
2763334 Starkey Sep 1956 A
3209082 McCarrell et al. Sep 1965 A
3229049 Goldberg Jan 1966 A
3440314 Frisch Apr 1969 A
3449768 Doyle Jun 1969 A
3526949 Genovese Sep 1970 A
3549818 Turner Dec 1970 A
3585416 Mellen Jun 1971 A
3594514 Wingrove Jul 1971 A
3710399 Hurst Jan 1973 A
3712962 Epley Jan 1973 A
3764748 Branch et al. Oct 1973 A
3808179 Gaylord Apr 1974 A
3870832 Fredrickson Mar 1975 A
3882285 Nunley et al. May 1975 A
3965430 Brandt Jun 1976 A
3985977 Beaty et al. Oct 1976 A
4002897 Kleinman et al. Jan 1977 A
4031318 Pitre Jun 1977 A
4061972 Burgess Dec 1977 A
4075042 Das Feb 1978 A
4098277 Mendell Jul 1978 A
4109116 Victoreen Aug 1978 A
4120570 Gaylord Oct 1978 A
4207441 Chouard et al. Jun 1980 A
4248899 Lyon et al. Feb 1981 A
4252440 Frosch et al. Feb 1981 A
4281419 Treace Aug 1981 A
4303772 Novicky Dec 1981 A
4319359 Wolf Mar 1982 A
4334315 Ono et al. Jun 1982 A
4334321 Edelman Jun 1982 A
4338929 Lundin et al. Jul 1982 A
4339954 Anson et al. Jul 1982 A
4357497 Hochmair et al. Nov 1982 A
4375016 Harada Feb 1983 A
4380689 Giannetti Apr 1983 A
4428377 Zollner et al. Jan 1984 A
4524294 Brody Jun 1985 A
4540761 Kawamura et al. Sep 1985 A
4556122 Goode Dec 1985 A
4592087 Killion May 1986 A
4606329 Hough Aug 1986 A
4611598 Hortmann et al. Sep 1986 A
4628907 Epley Dec 1986 A
4641377 Rush et al. Feb 1987 A
4652414 Schlaegel Mar 1987 A
4654554 Kishi Mar 1987 A
4689819 Killion Aug 1987 A
4696287 Hortmann et al. Sep 1987 A
4729366 Schaefer Mar 1988 A
4741339 Harrison et al. May 1988 A
4742499 Butler May 1988 A
4756312 Epley Jul 1988 A
4759070 Voroba et al. Jul 1988 A
4766607 Feldman Aug 1988 A
4774933 Hough et al. Oct 1988 A
4776322 Hough et al. Oct 1988 A
4782818 Mori Nov 1988 A
4800884 Heide et al. Jan 1989 A
4800982 Carlson Jan 1989 A
4817607 Tatge Apr 1989 A
4840178 Heide et al. Jun 1989 A
4845755 Busch et al. Jul 1989 A
4865035 Mori Sep 1989 A
4870688 Voroba et al. Sep 1989 A
4918745 Hutchison Apr 1990 A
4932405 Peeters et al. Jun 1990 A
4936305 Ashtiani et al. Jun 1990 A
4944301 Widin et al. Jul 1990 A
4948855 Novicky Aug 1990 A
4957478 Maniglia et al. Sep 1990 A
4963963 Dorman Oct 1990 A
4982434 Lenhardt et al. Jan 1991 A
4999819 Newnham et al. Mar 1991 A
5003608 Carlson Mar 1991 A
5012520 Steeger Apr 1991 A
5015224 Maniglia May 1991 A
5015225 Hough et al. May 1991 A
5031219 Ward et al. Jul 1991 A
5061282 Jacobs Oct 1991 A
5066091 Stoy et al. Nov 1991 A
5068902 Ward Nov 1991 A
5094108 Kim et al. Mar 1992 A
5117461 Moseley May 1992 A
5142186 Cross et al. Aug 1992 A
5163957 Sade et al. Nov 1992 A
5167235 Seacord et al. Dec 1992 A
5201007 Ward et al. Apr 1993 A
5220612 Tibbetts et al. Jun 1993 A
5259032 Perkins et al. Nov 1993 A
5272757 Scofield et al. Dec 1993 A
5276910 Buchele Jan 1994 A
5277694 Leysieffer et al. Jan 1994 A
5282858 Bisch et al. Feb 1994 A
5296797 Bartlett Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5338287 Miller et al. Aug 1994 A
5360388 Spindel et al. Nov 1994 A
5378933 Pfannenmueller et al. Jan 1995 A
5402496 Soli et al. Mar 1995 A
5411467 Hortmann et al. May 1995 A
5424698 Dydyk et al. Jun 1995 A
5425104 Shennib et al. Jun 1995 A
5440082 Claes Aug 1995 A
5440237 Brown et al. Aug 1995 A
5455994 Termeer et al. Oct 1995 A
5456654 Ball Oct 1995 A
5531787 Lesinski et al. Jul 1996 A
5531954 Heide et al. Jul 1996 A
5535282 Luca Jul 1996 A
5554096 Ball Sep 1996 A
5558618 Maniglia Sep 1996 A
5571148 Loeb et al. Nov 1996 A
5572594 Devoe et al. Nov 1996 A
5606621 Reiter et al. Feb 1997 A
5624376 Ball et al. Apr 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5699809 Combs et al. Dec 1997 A
5701348 Shennib et al. Dec 1997 A
5707338 Adams et al. Jan 1998 A
5715321 Andrea et al. Feb 1998 A
5721783 Anderson Feb 1998 A
5722411 Suzuki et al. Mar 1998 A
5729077 Newnham et al. Mar 1998 A
5740258 Goodwin-Johansson Apr 1998 A
5742692 Garcia et al. Apr 1998 A
5749912 Zhang et al. May 1998 A
5762583 Adams et al. Jun 1998 A
5772575 Lesinski et al. Jun 1998 A
5774259 Saitoh et al. Jun 1998 A
5782744 Money Jul 1998 A
5788711 Lehner et al. Aug 1998 A
5795287 Ball et al. Aug 1998 A
5797834 Goode Aug 1998 A
5800336 Ball et al. Sep 1998 A
5804109 Perkins Sep 1998 A
5804907 Park et al. Sep 1998 A
5814095 Mueller et al. Sep 1998 A
5824022 Zilberman et al. Oct 1998 A
5825122 Givargizov et al. Oct 1998 A
5836863 Bushek et al. Nov 1998 A
5842967 Kroll Dec 1998 A
5851199 Peerless et al. Dec 1998 A
5857958 Ball et al. Jan 1999 A
5859916 Ball et al. Jan 1999 A
5868682 Combs et al. Feb 1999 A
5879283 Adams et al. Mar 1999 A
5888187 Jaeger et al. Mar 1999 A
5897486 Ball et al. Apr 1999 A
5899847 Adams et al. May 1999 A
5900274 Chatterjee et al. May 1999 A
5906635 Maniglia May 1999 A
5913815 Ball et al. Jun 1999 A
5922017 Bredberg et al. Jul 1999 A
5922077 Espy et al. Jul 1999 A
5935170 Haakansson et al. Aug 1999 A
5940519 Kuo Aug 1999 A
5949895 Ball et al. Sep 1999 A
5951601 Lesinski et al. Sep 1999 A
5984859 Lesinski Nov 1999 A
5987146 Pluvinage et al. Nov 1999 A
6001129 Bushek et al. Dec 1999 A
6005955 Kroll et al. Dec 1999 A
6011984 Van Antwerp et al. Jan 2000 A
6024717 Ball et al. Feb 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6045528 Arenberg et al. Apr 2000 A
6050933 Bushek et al. Apr 2000 A
6067474 Schulman et al. May 2000 A
6068589 Neukermans May 2000 A
6068590 Brisken May 2000 A
6072884 Kates Jun 2000 A
6084975 Perkins Jul 2000 A
6093144 Jaeger et al. Jul 2000 A
6135612 Clore Oct 2000 A
6137889 Shennib et al. Oct 2000 A
6139488 Ball Oct 2000 A
6153966 Neukermans Nov 2000 A
6168948 Anderson et al. Jan 2001 B1
6174278 Jaeger et al. Jan 2001 B1
6175637 Fujihira et al. Jan 2001 B1
6181801 Puthuff et al. Jan 2001 B1
6190305 Ball et al. Feb 2001 B1
6190306 Kennedy Feb 2001 B1
6208445 Reime Mar 2001 B1
6216040 Harrison Apr 2001 B1
6217508 Ball et al. Apr 2001 B1
6219427 Kates et al. Apr 2001 B1
6222302 Imada et al. Apr 2001 B1
6222927 Feng et al. Apr 2001 B1
6240192 Brennan et al. May 2001 B1
6241767 Stennert et al. Jun 2001 B1
6259951 Kuzma et al. Jul 2001 B1
6261224 Adams et al. Jul 2001 B1
6264603 Kennedy Jul 2001 B1
6277148 Dormer Aug 2001 B1
6312959 Datskos Nov 2001 B1
6339648 McIntosh et al. Jan 2002 B1
6342035 Kroll et al. Jan 2002 B1
6354990 Juneau et al. Mar 2002 B1
6359993 Brimhall Mar 2002 B2
6366863 Bye et al. Apr 2002 B1
6374143 Berrang et al. Apr 2002 B1
6385363 Rajic et al. May 2002 B1
6387039 Moses May 2002 B1
6390971 Adams et al. May 2002 B1
6393130 Stonikas et al. May 2002 B1
6422991 Jaeger Jul 2002 B1
6432248 Popp et al. Aug 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6436028 Dormer Aug 2002 B1
6438244 Juneau et al. Aug 2002 B1
6445799 Taenzer et al. Sep 2002 B1
6473512 Juneau et al. Oct 2002 B1
6475134 Ball et al. Nov 2002 B1
6491622 Kasic, II et al. Dec 2002 B1
6491644 Vujanic et al. Dec 2002 B1
6491722 Kroll et al. Dec 2002 B1
6493453 Glendon Dec 2002 B1
6493454 Loi et al. Dec 2002 B1
6498858 Kates Dec 2002 B2
6507758 Greenberg et al. Jan 2003 B1
6519376 Biagi et al. Feb 2003 B2
6523985 Hamanaka et al. Feb 2003 B2
6536530 Schultz et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6547715 Mueller et al. Apr 2003 B1
6549633 Westermann Apr 2003 B1
6549635 Gebert Apr 2003 B1
6554761 Puria et al. Apr 2003 B1
6575894 Leysieffer et al. Jun 2003 B2
6592513 Kroll et al. Jul 2003 B1
6603860 Taenzer et al. Aug 2003 B1
6620110 Schmid Sep 2003 B2
6626822 Jaeger et al. Sep 2003 B1
6629922 Puria et al. Oct 2003 B1
6631196 Taenzer et al. Oct 2003 B1
6643378 Schumaier Nov 2003 B2
6663575 Leysieffer Dec 2003 B2
6668062 Luo et al. Dec 2003 B1
6676592 Ball et al. Jan 2004 B2
6681022 Puthuff et al. Jan 2004 B1
6695943 Juneau et al. Feb 2004 B2
6697674 Leysieffer Feb 2004 B2
6724902 Shennib et al. Apr 2004 B1
6726618 Miller Apr 2004 B2
6726718 Carlyle et al. Apr 2004 B1
6727789 Tibbetts et al. Apr 2004 B2
6728024 Ribak Apr 2004 B2
6735318 Cho May 2004 B2
6754358 Boesen et al. Jun 2004 B1
6754359 Svean et al. Jun 2004 B1
6754537 Harrison et al. Jun 2004 B1
6785394 Olsen et al. Aug 2004 B1
6792114 Kates et al. Sep 2004 B1
6801629 Brimhall et al. Oct 2004 B2
6829363 Sacha Dec 2004 B2
6831986 Kates Dec 2004 B2
6837857 Stirnemann Jan 2005 B2
6842647 Griffith et al. Jan 2005 B1
6888949 Vanden Berghe et al. May 2005 B1
6900926 Ribak May 2005 B2
6912289 Vonlanthen et al. Jun 2005 B2
6920340 Laderman Jul 2005 B2
6931231 Griffin Aug 2005 B1
6940988 Shennib et al. Sep 2005 B1
6940989 Shennib et al. Sep 2005 B1
D512979 Corcoran et al. Dec 2005 S
6975402 Bisson et al. Dec 2005 B2
6978159 Feng et al. Dec 2005 B2
7020297 Fang et al. Mar 2006 B2
7024010 Saunders et al. Apr 2006 B2
7043037 Lichtblau et al. May 2006 B2
7050675 Zhou et al. May 2006 B2
7050876 Fu et al. May 2006 B1
7057256 Mazur et al. Jun 2006 B2
7058182 Kates Jun 2006 B2
7058188 Allred Jun 2006 B1
7072475 Denap et al. Jul 2006 B1
7076076 Bauman Jul 2006 B2
7095981 Voroba et al. Aug 2006 B1
7167572 Harrison et al. Jan 2007 B1
7174026 Niederdrank et al. Feb 2007 B2
7179238 Hissong Feb 2007 B2
7181034 Armstrong Feb 2007 B2
7203331 Boesen Apr 2007 B2
7239069 Cho Jul 2007 B2
7245732 Jorgensen et al. Jul 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7266208 Charvin et al. Sep 2007 B2
7289639 Abel et al. Oct 2007 B2
7313245 Shennib Dec 2007 B1
7315211 Lee et al. Jan 2008 B1
7322930 Jaeger et al. Jan 2008 B2
7349741 Maltan et al. Mar 2008 B2
7354792 Mazur et al. Apr 2008 B2
7376563 Leysieffer et al. May 2008 B2
7390689 Mazur et al. Jun 2008 B2
7394909 Widmer et al. Jul 2008 B1
7421087 Perkins et al. Sep 2008 B2
7424122 Ryan Sep 2008 B2
7444877 Li et al. Nov 2008 B2
7547275 Cho et al. Jun 2009 B2
7630646 Anderson et al. Dec 2009 B2
7645877 Gmeiner et al. Jan 2010 B2
7668325 Puria et al. Feb 2010 B2
7747295 Choi Jun 2010 B2
7778434 Juneau et al. Aug 2010 B2
7809150 Natarajan et al. Oct 2010 B2
7822215 Carazo et al. Oct 2010 B2
7826632 Von Buol et al. Nov 2010 B2
7853033 Maltan et al. Dec 2010 B2
7867160 Pluvinage et al. Jan 2011 B2
7883535 Cantin et al. Feb 2011 B2
7885359 Meltzer Feb 2011 B2
7983435 Moses Jul 2011 B2
8090134 Takigawa et al. Jan 2012 B2
8099169 Karunasiri Jan 2012 B1
8116494 Rass Feb 2012 B2
8128551 Jolly Mar 2012 B2
8157730 Leboeuf et al. Apr 2012 B2
8197461 Arenberg et al. Jun 2012 B1
8204786 Leboeuf et al. Jun 2012 B2
8233651 Haller Jul 2012 B1
8251903 Leboeuf et al. Aug 2012 B2
8284970 Sacha Oct 2012 B2
8295505 Weinans et al. Oct 2012 B2
8295523 Fay et al. Oct 2012 B2
8320601 Takigawa et al. Nov 2012 B2
8320982 Leboeuf et al. Nov 2012 B2
8340310 Ambrose et al. Dec 2012 B2
8340335 Shennib Dec 2012 B1
8391527 Feucht et al. Mar 2013 B2
8396235 Gebhardt et al. Mar 2013 B2
8396239 Fay et al. Mar 2013 B2
8401212 Puria et al. Mar 2013 B2
8401214 Perkins et al. Mar 2013 B2
8506473 Puria Aug 2013 B2
8512242 Leboeuf et al. Aug 2013 B2
8526651 Van Hal et al. Sep 2013 B2
8526652 Ambrose et al. Sep 2013 B2
8526971 Giniger et al. Sep 2013 B2
8545383 Wenzel et al. Oct 2013 B2
8600089 Wenzel et al. Dec 2013 B2
8647270 Leboeuf et al. Feb 2014 B2
8652040 Leboeuf et al. Feb 2014 B2
8684922 Tran Apr 2014 B2
8696054 Crum Apr 2014 B2
8696541 Pluvinage et al. Apr 2014 B2
8700111 Leboeuf et al. Apr 2014 B2
8702607 Leboeuf et al. Apr 2014 B2
8715152 Puria et al. May 2014 B2
8715153 Puria et al. May 2014 B2
8715154 Perkins et al. May 2014 B2
8761423 Wagner et al. Jun 2014 B2
8787609 Perkins et al. Jul 2014 B2
8788002 Leboeuf et al. Jul 2014 B2
8817998 Inoue Aug 2014 B2
8824715 Fay et al. Sep 2014 B2
8837758 Knudsen Sep 2014 B2
8845705 Perkins et al. Sep 2014 B2
8855323 Kroman Oct 2014 B2
8858419 Puria et al. Oct 2014 B2
8885860 Djalilian et al. Nov 2014 B2
8886269 Leboeuf et al. Nov 2014 B2
8888701 Leboeuf et al. Nov 2014 B2
8923941 Leboeuf et al. Dec 2014 B2
8929965 Leboeuf et al. Jan 2015 B2
8929966 Leboeuf et al. Jan 2015 B2
8934952 Leboeuf et al. Jan 2015 B2
8942776 Leboeuf et al. Jan 2015 B2
8961415 Leboeuf et al. Feb 2015 B2
8986187 Perkins et al. Mar 2015 B2
8989830 Leboeuf et al. Mar 2015 B2
9044180 Leboeuf et al. Jun 2015 B2
9049528 Fay et al. Jun 2015 B2
9055379 Puria et al. Jun 2015 B2
9131312 Leboeuf et al. Sep 2015 B2
9154891 Puria et al. Oct 2015 B2
9211069 Larsen et al. Dec 2015 B2
9226083 Puria et al. Dec 2015 B2
9277335 Perkins et al. Mar 2016 B2
9289135 Leboeuf et al. Mar 2016 B2
9289175 Leboeuf et al. Mar 2016 B2
9301696 Leboeuf et al. Apr 2016 B2
9314167 Leboeuf et al. Apr 2016 B2
9392377 Olsen et al. Jul 2016 B2
9427191 Leboeuf et al. Aug 2016 B2
9497556 Kaltenbacher et al. Nov 2016 B2
9521962 Leboeuf Dec 2016 B2
9524092 Ren et al. Dec 2016 B2
9538921 Leboeuf et al. Jan 2017 B2
9544700 Puria et al. Jan 2017 B2
9564862 Hoyerby Feb 2017 B2
9591409 Puria et al. Mar 2017 B2
9749758 Puria et al. Aug 2017 B2
9750462 Leboeuf et al. Sep 2017 B2
9788785 Leboeuf Oct 2017 B2
9788794 Leboeuf et al. Oct 2017 B2
9794653 Aumer et al. Oct 2017 B2
9794688 You Oct 2017 B2
9801552 Romesburg et al. Oct 2017 B2
9808204 Leboeuf et al. Nov 2017 B2
9924276 Wenzel Mar 2018 B2
9930458 Freed et al. Mar 2018 B2
9949035 Rucker et al. Apr 2018 B2
9949039 Puria et al. Apr 2018 B2
9949045 Kure et al. Apr 2018 B2
9961454 Puria et al. May 2018 B2
9964672 Phair et al. May 2018 B2
10003888 Stephanou et al. Jun 2018 B2
10034103 Puria et al. Jul 2018 B2
10154352 Perkins et al. Dec 2018 B2
10178483 Teran et al. Jan 2019 B2
10206045 Kaltenbacher et al. Feb 2019 B2
10237663 Puria et al. Mar 2019 B2
10284964 Olsen et al. May 2019 B2
10286215 Perkins et al. May 2019 B2
10292601 Facteau et al. May 2019 B2
10492010 Rucker et al. Nov 2019 B2
10511913 Puria et al. Dec 2019 B2
10516946 Puria et al. Dec 2019 B2
10516949 Puria et al. Dec 2019 B2
10516950 Perkins et al. Dec 2019 B2
10516951 Wenzel Dec 2019 B2
10531206 Freed et al. Jan 2020 B2
10609492 Olsen et al. Mar 2020 B2
10743110 Puria et al. Aug 2020 B2
10779094 Rucker et al. Sep 2020 B2
10863286 Perkins et al. Dec 2020 B2
11057714 Puria et al. Jul 2021 B2
11058305 Perkins et al. Jul 2021 B2
11070927 Rucker et al. Jul 2021 B2
11102594 Shaquer et al. Aug 2021 B2
20010003788 Ball et al. Jun 2001 A1
20010007050 Adelman Jul 2001 A1
20010024507 Boesen Sep 2001 A1
20010027342 Dormer Oct 2001 A1
20010029313 Kennedy Oct 2001 A1
20010043708 Brimhall Nov 2001 A1
20010053871 Zilberman et al. Dec 2001 A1
20010055405 Cho Dec 2001 A1
20020012438 Leysieffer et al. Jan 2002 A1
20020025055 Stonikas et al. Feb 2002 A1
20020029070 Leysieffer et al. Mar 2002 A1
20020030871 Anderson et al. Mar 2002 A1
20020035309 Leysieffer Mar 2002 A1
20020048374 Soli et al. Apr 2002 A1
20020085728 Shennib et al. Jul 2002 A1
20020086715 Sahagen Jul 2002 A1
20020172350 Edwards et al. Nov 2002 A1
20020183587 Dormer Dec 2002 A1
20030021903 Shlenker et al. Jan 2003 A1
20030055311 Neukermans et al. Mar 2003 A1
20030064746 Rader et al. Apr 2003 A1
20030081803 Petilli et al. May 2003 A1
20030097178 Roberson et al. May 2003 A1
20030125602 Sokolich et al. Jul 2003 A1
20030142841 Wiegand Jul 2003 A1
20030208099 Ball Nov 2003 A1
20030208888 Fearing et al. Nov 2003 A1
20030220536 Hissong Nov 2003 A1
20040019294 Stirnemann Jan 2004 A1
20040093040 Boylston et al. May 2004 A1
20040121291 Knapp et al. Jun 2004 A1
20040158157 Jensen et al. Aug 2004 A1
20040165742 Shennib et al. Aug 2004 A1
20040166495 Greinwald et al. Aug 2004 A1
20040167377 Schafer et al. Aug 2004 A1
20040184732 Zhou et al. Sep 2004 A1
20040190734 Kates Sep 2004 A1
20040202339 O'Brien et al. Oct 2004 A1
20040202340 Armstrong et al. Oct 2004 A1
20040208333 Cheung et al. Oct 2004 A1
20040234089 Rembrand et al. Nov 2004 A1
20040234092 Wada et al. Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040240691 Grafenberg Dec 2004 A1
20050018859 Buchholz Jan 2005 A1
20050020873 Berrang et al. Jan 2005 A1
20050036639 Bachler et al. Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050088435 Geng Apr 2005 A1
20050101830 Easter et al. May 2005 A1
20050111683 Chabries et al. May 2005 A1
20050117765 Meyer et al. Jun 2005 A1
20050163333 Abel et al. Jul 2005 A1
20050190939 Fretz et al. Sep 2005 A1
20050196005 Shennib et al. Sep 2005 A1
20050222823 Brumback Oct 2005 A1
20050226446 Luo et al. Oct 2005 A1
20050267549 Della Santina et al. Dec 2005 A1
20050271870 Jackson Dec 2005 A1
20050288739 Hassler, Jr. et al. Dec 2005 A1
20060015155 Charvin et al. Jan 2006 A1
20060023908 Perkins et al. Feb 2006 A1
20060058573 Neisz et al. Mar 2006 A1
20060062420 Araki Mar 2006 A1
20060074159 Lu et al. Apr 2006 A1
20060075175 Jensen et al. Apr 2006 A1
20060107744 Li et al. May 2006 A1
20060129210 Cantin et al. Jun 2006 A1
20060161227 Walsh, Jr. et al. Jul 2006 A1
20060161255 Zarowski et al. Jul 2006 A1
20060177079 Baekgaard Jensen et al. Aug 2006 A1
20060177082 Solomito, Jr. et al. Aug 2006 A1
20060183965 Kasic, II et al. Aug 2006 A1
20060189841 Pluvinage et al. Aug 2006 A1
20060231914 Carey, III Oct 2006 A1
20060233398 Husung Oct 2006 A1
20060237126 Guffrey et al. Oct 2006 A1
20060247735 Honert et al. Nov 2006 A1
20060251278 Puria et al. Nov 2006 A1
20060256989 Olsen et al. Nov 2006 A1
20060278245 Gan Dec 2006 A1
20070030990 Fischer Feb 2007 A1
20070036377 Stirnemann Feb 2007 A1
20070076913 Schanz Apr 2007 A1
20070083078 Easter et al. Apr 2007 A1
20070100197 Perkins et al. May 2007 A1
20070127748 Carlile et al. Jun 2007 A1
20070127752 Armstrong Jun 2007 A1
20070127766 Combest Jun 2007 A1
20070135870 Shanks et al. Jun 2007 A1
20070161848 Dalton et al. Jul 2007 A1
20070191673 Ball et al. Aug 2007 A1
20070201713 Fang et al. Aug 2007 A1
20070206825 Thomasson Sep 2007 A1
20070223755 Salvetti et al. Sep 2007 A1
20070225776 Fritsch et al. Sep 2007 A1
20070236704 Carr et al. Oct 2007 A1
20070250119 Tyler et al. Oct 2007 A1
20070251082 Milojevic et al. Nov 2007 A1
20070258507 Lee et al. Nov 2007 A1
20070286429 Grafenberg et al. Dec 2007 A1
20080021518 Hochmair et al. Jan 2008 A1
20080051623 Schneider et al. Feb 2008 A1
20080054509 Berman et al. Mar 2008 A1
20080063228 Mejia et al. Mar 2008 A1
20080063231 Juneau et al. Mar 2008 A1
20080064918 Jolly Mar 2008 A1
20080077198 Webb et al. Mar 2008 A1
20080089292 Kitazoe et al. Apr 2008 A1
20080107292 Kornagel May 2008 A1
20080123866 Rule et al. May 2008 A1
20080130927 Theverapperuma et al. Jun 2008 A1
20080188707 Bernard et al. Aug 2008 A1
20080298600 Poe et al. Dec 2008 A1
20080300703 Widmer et al. Dec 2008 A1
20090016553 Ho et al. Jan 2009 A1
20090023976 Cho et al. Jan 2009 A1
20090043149 Abel et al. Feb 2009 A1
20090076581 Gibson Mar 2009 A1
20090092271 Fay et al. Apr 2009 A1
20090097681 Puria et al. Apr 2009 A1
20090131742 Cho et al. May 2009 A1
20090141919 Spitaels et al. Jun 2009 A1
20090149697 Steinhardt et al. Jun 2009 A1
20090157143 Edler et al. Jun 2009 A1
20090175474 Salvetti et al. Jul 2009 A1
20090246627 Park Oct 2009 A1
20090253951 Ball et al. Oct 2009 A1
20090262966 Vestergaard et al. Oct 2009 A1
20090281367 Cho et al. Nov 2009 A1
20090310805 Petroff Dec 2009 A1
20090316922 Merks et al. Dec 2009 A1
20100034409 Fay et al. Feb 2010 A1
20100036488 De Juan, Jr. et al. Feb 2010 A1
20100048982 Puria et al. Feb 2010 A1
20100085176 Flick Apr 2010 A1
20100103404 Remke et al. Apr 2010 A1
20100111315 Kroman May 2010 A1
20100114190 Bendett et al. May 2010 A1
20100145135 Ball et al. Jun 2010 A1
20100152527 Puria Jun 2010 A1
20100171369 Baarman et al. Jul 2010 A1
20100172507 Merks Jul 2010 A1
20100177918 Keady et al. Jul 2010 A1
20100202645 Puria et al. Aug 2010 A1
20100222639 Purcell et al. Sep 2010 A1
20100260364 Merks Oct 2010 A1
20100272299 Van Schuylenbergh et al. Oct 2010 A1
20100290653 Wiggins et al. Nov 2010 A1
20100312040 Puria et al. Dec 2010 A1
20110062793 Azancot et al. Mar 2011 A1
20110069852 Arndt et al. Mar 2011 A1
20110077453 Pluvinage et al. Mar 2011 A1
20110084654 Julstrom et al. Apr 2011 A1
20110112462 Parker et al. May 2011 A1
20110116666 Dittberner et al. May 2011 A1
20110125222 Perkins et al. May 2011 A1
20110130622 Ilberg et al. Jun 2011 A1
20110142274 Perkins et al. Jun 2011 A1
20110144414 Spearman et al. Jun 2011 A1
20110152601 Puria et al. Jun 2011 A1
20110152602 Perkins et al. Jun 2011 A1
20110152603 Perkins et al. Jun 2011 A1
20110152976 Perkins et al. Jun 2011 A1
20110164771 Jensen et al. Jul 2011 A1
20110182453 Van Hal et al. Jul 2011 A1
20110196460 Weiss Aug 2011 A1
20110221391 Won et al. Sep 2011 A1
20110249845 Kates Oct 2011 A1
20110249847 Salvetti et al. Oct 2011 A1
20110257290 Zeller Oct 2011 A1
20110258839 Probst Oct 2011 A1
20110271965 Parkins et al. Nov 2011 A1
20120008807 Gran Jan 2012 A1
20120014546 Puria et al. Jan 2012 A1
20120038881 Amirparviz et al. Feb 2012 A1
20120039493 Rucker et al. Feb 2012 A1
20120092461 Fisker Apr 2012 A1
20120114157 Arndt et al. May 2012 A1
20120140967 Aubert et al. Jun 2012 A1
20120217087 Ambrose et al. Aug 2012 A1
20120236524 Pugh et al. Sep 2012 A1
20120263339 Funahashi Oct 2012 A1
20130004004 Zhao et al. Jan 2013 A1
20130034258 Lin Feb 2013 A1
20130083938 Bakalos et al. Apr 2013 A1
20130089227 Kates Apr 2013 A1
20130195300 Larsen et al. Aug 2013 A1
20130230204 Monahan et al. Sep 2013 A1
20130287239 Fay et al. Oct 2013 A1
20130303835 Koskowich Nov 2013 A1
20130308782 Dittberner et al. Nov 2013 A1
20130308807 Burns Nov 2013 A1
20130315428 Perkins et al. Nov 2013 A1
20130343584 Bennett et al. Dec 2013 A1
20130343585 Bennett et al. Dec 2013 A1
20130343587 Naylor et al. Dec 2013 A1
20140003640 Puria et al. Jan 2014 A1
20140056453 Olsen et al. Feb 2014 A1
20140084698 Asanuma et al. Mar 2014 A1
20140107423 Yaacobi Apr 2014 A1
20140153761 Shennib et al. Jun 2014 A1
20140169603 Sacha et al. Jun 2014 A1
20140177863 Parkins Jun 2014 A1
20140254856 Blick et al. Sep 2014 A1
20140275734 Perkins et al. Sep 2014 A1
20140286514 Pluvinage et al. Sep 2014 A1
20140288356 Van Vlem Sep 2014 A1
20140288358 Puria et al. Sep 2014 A1
20140296620 Puria et al. Oct 2014 A1
20140321657 Stirnemann Oct 2014 A1
20140379874 Starr et al. Dec 2014 A1
20150021568 Gong et al. Jan 2015 A1
20150023540 Fay et al. Jan 2015 A1
20150031941 Perkins et al. Jan 2015 A1
20150049889 Bern Feb 2015 A1
20150117689 Bergs et al. Apr 2015 A1
20150124985 Kim et al. May 2015 A1
20150201269 Dahl et al. Jul 2015 A1
20150222978 Murozaki et al. Aug 2015 A1
20150245131 Facteau et al. Aug 2015 A1
20150358743 Killion Dec 2015 A1
20160008176 Goldstein Jan 2016 A1
20160029132 Freed et al. Jan 2016 A1
20160064814 Jang et al. Mar 2016 A1
20160087687 Kesler et al. Mar 2016 A1
20160094043 Hao et al. Mar 2016 A1
20160150331 Wenzel May 2016 A1
20160277854 Puria et al. Sep 2016 A1
20160309265 Pluvinage et al. Oct 2016 A1
20160309266 Olsen et al. Oct 2016 A1
20160330555 Vonlanthen et al. Nov 2016 A1
20170040012 Goldstein Feb 2017 A1
20170095202 Facteau et al. Apr 2017 A1
20170150275 Puria et al. May 2017 A1
20170195801 Rucker et al. Jul 2017 A1
20170195804 Sandhu et al. Jul 2017 A1
20170195806 Atamaniuk et al. Jul 2017 A1
20170195809 Teran et al. Jul 2017 A1
20170257710 Parker Sep 2017 A1
20180014128 Puria et al. Jan 2018 A1
20180020291 Puria et al. Jan 2018 A1
20180020296 Wenzel Jan 2018 A1
20180077503 Shaquer et al. Mar 2018 A1
20180077504 Shaquer et al. Mar 2018 A1
20180167750 Freed et al. Jun 2018 A1
20180213331 Rucker et al. Jul 2018 A1
20180213335 Puria et al. Jul 2018 A1
20180262846 Perkins et al. Sep 2018 A1
20180317026 Puria Nov 2018 A1
20180376255 Parker Dec 2018 A1
20190069097 Perkins et al. Feb 2019 A1
20190158961 Puria et al. May 2019 A1
20190166438 Perkins et al. May 2019 A1
20190230449 Puria Jul 2019 A1
20190239005 Sandhu et al. Aug 2019 A1
20190253811 Unno et al. Aug 2019 A1
20190253815 Atamaniuk et al. Aug 2019 A1
20190269336 Perkins et al. Sep 2019 A1
20200037082 Perkins et al. Jan 2020 A1
20200084551 Puria et al. Mar 2020 A1
20200092662 Wenzel Mar 2020 A1
20200092664 Freed et al. Mar 2020 A1
20200128338 Shaquer et al. Apr 2020 A1
20200186941 Olsen et al. Jun 2020 A1
20200186942 Flaherty et al. Jun 2020 A1
20200304927 Shaquer et al. Sep 2020 A1
20200374639 Rucker et al. Nov 2020 A1
20200396551 Dy et al. Dec 2020 A1
20210029451 Fitz et al. Jan 2021 A1
20210029474 Larkin et al. Jan 2021 A1
20210186343 Perkins et al. Jun 2021 A1
Foreign Referenced Citations (121)
Number Date Country
2004301961 Feb 2005 AU
2242545 Sep 2009 CA
1176731 Mar 1998 CN
101459868 Jun 2009 CN
105491496 Apr 2016 CN
2044870 Mar 1972 DE
3243850 May 1984 DE
3508830 Sep 1986 DE
0092822 Nov 1983 EP
0242038 Oct 1987 EP
0291325 Nov 1988 EP
0296092 Dec 1988 EP
0242038 May 1989 EP
0296092 Aug 1989 EP
0352954 Jan 1990 EP
0291325 Jun 1990 EP
0352954 Aug 1991 EP
1035753 Sep 2000 EP
1435757 Jul 2004 EP
1845919 Oct 2007 EP
1955407 Aug 2008 EP
1845919 Sep 2010 EP
2272520 Jan 2011 EP
2301262 Mar 2011 EP
2752030 Jul 2014 EP
3101519 Dec 2016 EP
2425502 Jan 2017 EP
2907294 May 2017 EP
3183814 Jun 2017 EP
3094067 Oct 2017 EP
3006079 Mar 2019 EP
2455820 Nov 1980 FR
2085694 Apr 1982 GB
S60154800 Aug 1985 JP
S621726 Jan 1987 JP
S63252174 Oct 1988 JP
S6443252 Feb 1989 JP
H09327098 Dec 1997 JP
2000504913 Apr 2000 JP
2004187953 Jul 2004 JP
2004193908 Jul 2004 JP
2005516505 Jun 2005 JP
2006060833 Mar 2006 JP
100624445 Sep 2006 KR
WO-9209181 May 1992 WO
WO-9501678 Jan 1995 WO
WO-9621334 Jul 1996 WO
WO-9736457 Oct 1997 WO
WO-9745074 Dec 1997 WO
WO-9806236 Feb 1998 WO
WO-9903146 Jan 1999 WO
WO-9915111 Apr 1999 WO
WO-0022875 Apr 2000 WO
WO-0022875 Jul 2000 WO
WO-0150815 Jul 2001 WO
WO-0158206 Aug 2001 WO
WO-0176059 Oct 2001 WO
WO-0158206 Feb 2002 WO
WO-0239874 May 2002 WO
WO-0239874 Feb 2003 WO
WO-03030772 Apr 2003 WO
WO-03063542 Jul 2003 WO
WO-03063542 Jan 2004 WO
WO-2004010733 Jan 2004 WO
WO-2005015952 Feb 2005 WO
WO-2005107320 Nov 2005 WO
WO-2006014915 Feb 2006 WO
WO-2006037156 Apr 2006 WO
WO-2006039146 Apr 2006 WO
WO-2006042298 Apr 2006 WO
WO-2006071210 Jul 2006 WO
WO-2006075169 Jul 2006 WO
WO-2006075175 Jul 2006 WO
WO-2006118819 Nov 2006 WO
WO-2006042298 Dec 2006 WO
WO-2007023164 Mar 2007 WO
WO-2009046329 Apr 2009 WO
WO-2009047370 Apr 2009 WO
WO-2009049320 Apr 2009 WO
WO-2009056167 May 2009 WO
WO-2009062142 May 2009 WO
WO-2009047370 Jul 2009 WO
WO-2009125903 Oct 2009 WO
WO-2009145842 Dec 2009 WO
WO-2009146151 Dec 2009 WO
WO-2009155358 Dec 2009 WO
WO-2009155361 Dec 2009 WO
WO-2009155385 Dec 2009 WO
WO-2010033932 Mar 2010 WO
WO-2010033933 Mar 2010 WO
WO-2010077781 Jul 2010 WO
WO-2010147935 Dec 2010 WO
WO-2010148345 Dec 2010 WO
WO-2011005500 Jan 2011 WO
WO-2012088187 Jun 2012 WO
WO-2012149970 Nov 2012 WO
WO-2013016336 Jan 2013 WO
WO-2016011044 Jan 2016 WO
WO-2016045709 Mar 2016 WO
WO-2016146487 Sep 2016 WO
WO-2017045700 Mar 2017 WO
WO-2017059218 Apr 2017 WO
WO-2017059240 Apr 2017 WO
WO-2017116791 Jul 2017 WO
WO-2017116865 Jul 2017 WO
WO-2018048794 Mar 2018 WO
WO-2018081121 May 2018 WO
WO-2018093733 May 2018 WO
WO-2019055308 Mar 2019 WO
WO-2019173470 Sep 2019 WO
WO-2019199680 Oct 2019 WO
WO-2019199683 Oct 2019 WO
WO-2020028082 Feb 2020 WO
WO-2020028083 Feb 2020 WO
WO-2020028084 Feb 2020 WO
WO-2020028085 Feb 2020 WO
WO-2020028086 Feb 2020 WO
WO-2020028087 Feb 2020 WO
WO-2020028088 Feb 2020 WO
WO-2020176086 Sep 2020 WO
WO-2021003087 Jan 2021 WO
Non-Patent Literature Citations (143)
Entry
Asbeck, et al. Scaling Hard Vertical Surfaces with Compliant Microspine Arrays, The International Journal of Robotics Research 2006; 25; 1165-79.
Atasoy [Paper] Opto-acoustic Imaging. For BYM504E Biomedical Imaging Systems class at ITU, downloaded from the Internet www2.itu.edu.td-cilesiz/courses/BYM504- 2005-OA504041413.pdf, 14 pages.
Athanassiou, et al. Laser controlled photomechanical actuation of photochromic polymers Microsystems. Rev. Adv. Mater. Sci. 2003; 5:245-251.
Autumn, et al. Dynamics of geckos running vertically, The Journal of Experimental Biology 209, 260-272, (2006).
Autumn, et al., Evidence for van der Waals adhesion in gecko setae, www.pnas.orgycgiydoiy10.1073ypnas.192252799 (2002).
Ayatollahi, et al. Design and Modeling of Micromachined Condenser MEMS Loudspeaker using Permanent Magnet Neodymium-Iron-Boron (Nd—Fe—B). IEEE International Conference on Semiconductor Electronics, 2006. ICSE '06, Oct. 29 2006-Dec. 1 2006; 160-166.
Baer, et al. Effects of Low Pass Filtering on the Intelligibility of Speech in Noise for People With and Without Dead Regions at High Frequencies. J. Acost. Soc. Am 112 (3), pt. 1, (Sep. 2002), pp. 1133-1144.
Best, et al. The influence of high frequencies on speech localization. Abstract 981 (Feb. 24, 2003) from www.aro.org/abstracts/abstracts.html.
Birch, et al. Microengineered systems for the hearing impaired. IEE Colloquium on Medical Applications of Microengineering, Jan. 31, 1996; pp. 2/1-2/5.
Boedts. Tympanic epithelial migration, Clinical Otolaryngology 1978, 3, 249-253.
Burkhard, et al. Anthropometric Manikin for Acoustic Research. J. Acoust. Soc. Am., vol. 58, No. 1, (Jul. 1975), pp. 214-222.
Camacho-Lopez, et al. Fast Liquid Crystal Elastomer Swims Into the Dark, Electronic Liquid Crystal Communications. Nov. 26, 2003; 9 pages total.
Carlile, et al. Frequency bandwidth and multi-talker environments. Audio Engineering Society Convention 120. Audio Engineering Society, May 20-23, 2006. Paris, France. 118:8 pages.
Carlile, et al. Spatialisation of talkers and the segregation of concurrent speech. Abstract 1264 (Feb. 24, 2004) from www.aro.org/abstracts/abstracts.html.
Cheng, et al. A Silicon Microspeaker for Hearing Instruments. Journal of Micromechanics and Microengineering 2004; 14(7):859-866.
Dictionary.com's (via American Heritage Medical Dictionary) online dictionary definition of ‘percutaneous’. Accessed on Jun. 3, 2013. 2 pages.
Merriam-Webster's online dictionary definition of ‘percutaneous’. Accessed on Jun. 3, 2013. 3 pages.
Datskos, et al. Photoinduced and thermal stress in silicon microcantilevers. Applied Physics Letters. Oct. 19, 1998; 73(16):2319-2321.
Decraemer, et al. A method for determining three-dimensional vibration in the ear. Hearing Res., 77:19-37 (1994).
Dundas et al. The Earlens Light-Driven Hearing Aid: Top 10 questions and answers. Hearing Review. 2018;25(2):36-39.
Ear. Downloaded from the Internet. Accessed Jun. 17, 2008. 4 pages. URL:<http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/Se/ear.html>.
Edinger, J.R. High-Quality Audio Amplifier With Automatic Bias Control. Audio Engineering; Jun. 1947; pp. 7-9.
Fay. Cat eardrum mechanics. Ph.D. thesis. Disseration submitted to Department of Aeronautics and Astronautics. Standford University. May 2001; 210 pages total.
Fay, et al. Cat eardrum response mechanics. Mechanics and Computation Division. Department of Mechanical Engineering. Standford University. 2002; 10 pages total.
Fay, et al. Preliminary evaluation of a light-based contact hearing device for the hearing impaired. Otol Neurotol. Jul. 2013;34(5):912-21. doi: 10.1097/MAO.0b013e31827de4b1.
Fay, et al. The discordant eardrum, PNAS, Dec. 26, 2006, vol. 103, No. 52, p. 19743-19748.
Fletcher. Effects of Distortion on the Individual Speech Sounds. Chapter 18, ASA Edition of Speech and Hearing in Communication, Acoust Soc.of Am. (republished in 1995) pp. 415-423.
Freyman, et al. Spatial Release from Informational Masking in Speech Recognition. J. Acost. Soc. Am., vol. 109, No. 5, pt. 1, (May 2001); 2112-2122.
Freyman, et al. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am., vol. 106, No. 6, (Dec. 1999); 3578-3588.
Fritsch, et al. EarLens transducer behavior in high-field strength MRI scanners. Otolaryngol Head Neck Surg. Mar. 2009;140(3):426-8. doi: 10.1016/j.otohns.2008.10.016.
Galbraith et al. A wide-band efficient inductive transdermal power and data link with coupling insensitive gain IEEE Trans Biomed Eng. Apr. 1987;34(4):265-75.
Gantz, et al. Broad Spectrum Amplification with a Light Driven Hearing System. Combined Otolaryngology Spring Meetings, 2016 (Chicago).
Gantz, et al. Light Driven Hearing Aid: A Multi-Center Clinical Study. Association for Research in Otolaryngology Annual Meeting, 2016 (San Diego).
Gantz, et al. Light-Driven Contact Hearing Aid for Broad Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology Journal, 2016 (in review).
Gantz, et al. Light-Driven Contact Hearing Aid for Broad-Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology. Copyright 2016. 7 pages.
GE, et al., Carbon nanotube-based synthetic gecko tapes, p. 10792-10795, PNAS, Jun. 26, 2007, vol. 104, No. 26.
Gennum, GA3280 Preliminary Data Sheet: Voyageur TD Open Platform DSP System for Ultra Low Audio Processing, downloaded from the Internet:<<http://www.sounddesigntechnologies.com/products/pdf/37601DOC.pdf>>, Oct. 2006; 17 pages.
Gobin, et al. Comments on the physical basis of the active materials concept. Proc. SPIE 2003; 4512:84-92.
Gorb, et al. Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects, Integr. Comp_ Biol., 42:1127-1139 (2002).
Hakansson, et al. Percutaneous vs. transcutaneous transducers for hearing by direct bone conduction (Abstract). Otolaryngol Head Neck Surg. Apr. 1990;102(4):339-44.
Hato, et al. Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neurootol., 8:140-152 (Jan. 30, 2003).
Headphones. Wikipedia Entry. Downloaded from the Internet. Accessed Oct. 27, 2008. 7 pages. URL: http://en.wikipedia.org/wiki/Headphones>.
Hofman, et al. Relearning Sound Localization With New Ears. Nature Neuroscience, vol. 1, No. 5, (Sep. 1998); 417-421.
International Search Report and Written Opinion dated Jan. 19, 2018 for International PCT Patent Application No. PCT/US2017/061388.
Izzo, et al. Laser Stimulation of Auditory Neurons: Effect of Shorter Pulse Duration and Penetration Depth. Biophys J. Apr. 15, 2008;94(8):3159-3166.
Izzo, et al. Laser Stimulation of the Auditory Nerve. Lasers Surg Med. Sep. 2006;38(8):745-753.
Izzo, et al. Selectivity of Neural Stimulation in the Auditory System: A Comparison of Optic and Electric Stimuli. J Biomed Opt. Mar.-Apr. 2007;12(2):021008.
Jian, et al. A 0.6 V, 1.66 mW energy harvester and audio driver for tympanic membrane transducer with wirelessly optical signal and power transfer. InCircuits and Systems (ISCAS), 2014 IEEE International Symposium on Jun. 1, 2014. 874-7. IEEE.
Jin, et al. Speech Localization. J. Audio Eng. Soc. convention paper, presented at the AES 112th Convention, Munich, Germany, May 10-13, 2002, 13 pages total.
Khaleghi, et al. Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am. Mar. 2017;141(3):1683.
Khaleghi et al. Attenuating the feedback pressure of a light-activated hearing device to allows microphone placement at the ear canal entrance. IHCON 2016, International Hearing Aid Research Conference, Tahoe City, CA, Aug. 2016.
Khaleghi, et al. Characterization of Ear-Canal Feedback Pressure due to Umbo-Drive Forces: Finite-Element vs. Circuit Models. ARO Midwinter Meeting 2016, (San Diego).
Khaleghi et al. Mechano-Electro-Magnetic Finite Element Model of a Balanced Armature Transducer for a Contact Hearing Aid. Proc. MoH 2017, Mechanics of Hearing workshop, Brock University, Jun. 2017.
Khaleghi et al. Multiphysics Finite Element Model of a Balanced Armature Transducer used in a Contact Hearing Device. ARO 2017, 40th ARO MidWinter Meeting, Baltimore, MD, Feb. 2017.
Kiessling, et al. Occlusion Effect of Earmolds with Different Venting Systems. J Am Acad Audiol. Apr. 2005;16(4):237-49.
Killion, et al. The case of the missing dots: AI and SNR loss. The Hearing Journal, 1998. 51(5), 32-47.
Killion. Myths About Hearing Noise and Directional Microphones. The Hearing Review. Feb. 2004; 11(2):14, 16, 18, 19, 72 & 73.
Killion. SNR loss: I can hear what people say but I can't understand them. The Hearing Review, 1997; 4(12):8-14.
Lee, et al. A Novel Opto-Electromagnetic Actuator Coupled to the tympanic Membrane. J Biomech. Dec. 5, 2008;41(16):3515-8. Epub Nov. 7, 2008.
Lee, et al. The optimal magnetic force for a novel actuator coupled to the tympanic membrane: a finite element analysis. Biomedical engineering: applications, basis and communications. 2007; 19(3):171-177.
Levy, et al. Characterization of the available feedback gain margin at two device microphone locations, in the fossa triangularis and Behind the Ear, for the light-based contact hearing device. Acoustical Society of America (ASA) meeting, 2013 (San Francisco).
Levy, et al. Extended High-Frequency Bandwidth Improves Speech Reception in the Presence of Spatially Separated Masking Speech. Ear Hear. Sep.-Oct. 2015;36(5):e214-24. doi: 10.1097/Aud.0000000000000161.
Levy et al. Light-driven contact hearing aid: a removable direct-drive hearing device option for mild to severe sensorineural hearing impairment. Conference on Implantable Auditory Prostheses, Tahoe City, CA, Jul. 2017. 4 pages.
Lezal. Chalcogenide glasses—survey and progress. Journal of Optoelectronics and Advanced Materials. Mar. 2003; 5(1):23-34.
Mah. Fundamentals of photovoltaic materials. National Solar Power Research Institute. Dec. 21, 1998, 3-9.
Makino, et al. Epithelial migration in the healing process of tympanic membrane perforations. Eur Arch Otorhinolaryngol. 1990; 247: 352-355.
Makino, et al., Epithelial migration on the tympanic membrane and external canal, Arch Otorhinolaryngol (1986) 243:39-42.
Markoff. Intuition + Money: An Aha Moment. New York Times Oct. 11, 2008, p. BU4, 3 pages total.
Martin, et al. Utility of Monaural Spectral Cues is Enhanced in the Presence of Cues to Sound-Source Lateral Angle. JARO. 2004; 5:80-89.
McElveen et al. Overcoming High-Frequency Limitations of Air Conduction Hearing Devices Using a Light-Driven Contact Hearing Aid. Poster presentation at The Triological Society, 120th Annual Meeting at COSM, Apr. 28, 2017; San Diego, CA.
Michaels, et al., Auditory Epithelial Migration on the Human Tympanic Membrane: II. The Existence of Two Discrete Migratory Pathways and Their Embryologic Correlates, The American Journal of Anatomy 189:189-200 (1990).
Moore, et al. Perceived naturalness of spectrally distorted speech and music. J Acoust Soc Am. Jul. 2003;114(1):408-19.
Moore, et al. Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss. Ear Hear. Dec. 2008;29(6):907-22. doi: 10.1097/AUD.0b013e31818246f6.
Moore. Loudness perception and intensity resolution. Cochlear Hearing Loss, Chapter 4, pp. 90-115, Whurr Publishers Ltd., London (1998).
Murphy M, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhesion Sci Technol, vol. 21, No. 12-13, p. 1281-1296, 2007.
Murugasu, et al. Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: temporal bone pressure gain measurements and clinical audiological data. Otol Neurotol. Jul. 2005; 2694):572-582.
Musicant, et al. Direction-Dependent Spectral Properties of Cat External Ear: New Data and Cross-Species Comparisons. J. Acostic. Soc. Am, May 10-13, 2002, vol. 87, No. 2, (Feb. 1990), pp. 757-781.
National Semiconductor, LM4673 Boomer: Filterless, 2.65W, Mono, Class D Audio Power Amplifier, [Data Sheet] downloaded from the Internet:<<http://www.national.com/ds/LM/LM4673.pdf>>; Nov. 1, 2007; 24 pages.
Nishihara, et al. Effect of changes in mass on middle ear function. Otolaryngol Head Neck Surg. Nov. 1993;109(5):889-910.
O'Connor, et al. Middle ear Cavity and Ear Canal Pressure-Driven Stapes Velocity Responses in Human Cadaveric Temporal Bones. J Acoust Soc Am. Sep. 2006;120(3):1517-28.
Park, et al. Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. J. Micromech. Microeng. vol. 12 (2002), pp. 505-511.
Perkins, et al. Light-based Contact Hearing Device: Characterization of available Feedback Gain Margin at two device microphone locations. Presented at AAO-HNSF Annual Meeting, 2013 (Vancouver).
Perkins, et al. The EarLens Photonic Transducer: Extended bandwidth. Presented at AAO-HNSF Annual Meeting, 2011 (San Francisco).
Perkins, et al. The EarLens System: New sound transduction methods. Hear Res. Feb. 2, 2010; 10 pages total.
Perkins, R. Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg. Jun. 1996;114(6):720-8.
Poosanaas, et al. Influence of sample thickness on the performance of photostrictive ceramics, J. App. Phys. Aug. 1, 1998; 84(3):1508-1512.
Puria et al. A gear in the middle ear. ARO Denver CO, 2007b.
Puria, et al. Cues above 4 kilohertz can improve spatially separated speech recognition. The Journal of the Acoustical Society of America, 2011, 129, 2384.
Puria, et al. Extending bandwidth above 4 kHz improves speech understanding in the presence of masking speech. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego).
Puria, et al. Extending bandwidth provides the brain what it needs to improve hearing in noise. First international conference on cognitive hearing science for communication, 2011 (Linkoping, Sweden).
Puria, et al. Hearing Restoration: Improved Multi-talker Speech Understanding. 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO), Jun. 2009 (Stanford University).
Puria, et al. Imaging, Physiology and Biomechanics of the middle ear: Towards understating the functional consequences of anatomy. Stanford Mechanics and Computation Symposium, 2005, ed Fong J.
Puria, et al. Malleus-to-footplate ossicular reconstruction prosthesis positioning: cochleovestibular pressure optimization. Otol Nerotol. May 2005; 2693):368-379.
Puria, et al. Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay. J. Acoust. Soc. Am., 104(6):3463-3481 (Dec. 1998).
Puria, et al., Mechano-Acoustical Transformations in A. Basbaum et al., eds., The Senses: A Comprehensive Reference, v3, p. 165-202, Academic Press (2008).
Puria, et al. Middle Ear Morphometry From Cadaveric Temporal Bone MicroCT Imaging. Proceedings of the 4th International Symposium, Zurich, Switzerland, Jul. 27-30, 2006, Middle Ear Mechanics in Research and Otology, pp. 259-268.
Puria, et al. Sound-Pressure Measurements in the Cochlear Vestibule of Human-Cadaver Ears. Journal of the Acoustical Society of America. 1997; 101 (5-1): 2754-2770.
Puria, et al. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light-Driven Hearing System That Mechanically Stimulates the Umbo. Otol Neurotol. Feb. 2016;37(2):160-6. doi: 10.1097/MAO.0000000000000941.
Puria, et al. The EarLens Photonic Hearing Aid. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego).
Puria, et al. The Effects of bandwidth and microphone location on understanding of masked speech by normal-hearing and hearing-impaired listeners. International Conference for Hearing Aid Research (IHCON) meeting, 2012 (Tahoe City).
Puria, et al. Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hear Res. May 2010;263(1-2):183-90. doi: 10.1016/j.heares.2009.10.013. Epub Oct. 28, 2009.
Puria. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am. May 2003;113(5):2773-89.
Puria, S. Middle Ear Hearing Devices. Chapter 10. Part of the series Springer Handbook of Auditory Research pp. 273-308. Date: Feb. 9, 2013.
Qu, et al. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Oct. 10, 2008 vol. 322 Science. 238-242.
Robles, et al. Mechanics of the mammalian cochlea. Physiol Rev. Jul. 2001;81(3):1305-52.
Roush. SiOnyx Brings “Black Silicon” into the Light; Material Could Upend Solar, Imaging Industries. Xconomy, Oct. 12, 2008, retrieved from the Internet: www.xconomy.com/boston/2008/10/12/sionyx-brings-black-silicon-into-the-light¬material-could-upend-solar-imaging-industries> 4 pages total.
R.P. Jackson, C. Chlebicki, T.B. Krasieva, R. Zalpuri, W.J. Triffo, S. Puria, “Multiphoton and Transmission Electron Microscopy of Collagen in Ex Vivo Tympanic Membranes,” Biomedcal Computation at STandford, Oct. 2008.
Rubinstein. How Cochlear Implants Encode Speech, Curr Opin Otolaryngol Head Neck Surg. Oct. 2004;12(5):444-8; retrieved from the Internet: www.ohsu.edu/nod/documents/week3/Rubenstein.pdf.
School of Physics Sydney, Australia. Acoustic Compliance, Inertance and Impedance. 1-6. (2018). http://www.animations.physics.unsw.edu.au/w/compliance-inertance-impedance.htm.
Sekaric, et al. Nanomechanical resonant structures as tunable passive modulators. App. Phys. Lett. Nov. 2003; 80(19):3617-3619.
Shaw. Transformation of Sound Pressure Level From the Free Field to the Eardrum in the Horizontal Plane. J. Acoust. Soc. Am., vol. 56, No. 6, (Dec. 1974), 1848-1861.
Shih. Shape and displacement control of beams with various boundary conditions via photostrictive optical actuators. Proc. IMECE. Nov. 2003; 1-10.
Song, et al. The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Applied Acoustics. Dec. 31, 2013;74(12):1511-8.
Sound Design Technologies,—Voyager TDTM Open Platform DSP System for Ultra Low Power Audio Processing—GA3280 Data Sheet. Oct. 2007; retrieved from the Internet:<<http://www.sounddes.com/pdf/37601DOC.pdf>>, 15 page total.
Wikipedia. Inductive Coupling. 1-2 (Jan. 11, 2018). https://en.wikipedia.org/wiki/Inductive_coupling.
Wikipedia. Pulse-density Coupling. 1-4 (Apr. 6, 2017). https://en.wikipedia.org/wiki/Pulse-density_modulation.
Spolenak, et al. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A. 2005; 461:305-319.
Stenfelt, et al. Bone-Conducted Sound: Physiological and Clinical Aspects. Otology & Neurotology, Nov. 2005; 26 (6):1245-1261.
Struck, et al. Comparison of Real-world Bandwidth in Hearing Aids vs Earlens Light-driven Hearing Aid System. The Hearing Review. TechTopic: EarLens. Hearingreview.com. Mar. 14, 2017. pp. 24-28.
Stuchlik, et al. Micro-Nano Actuators Driven by Polarized Light. IEEE Proc. Sci. Meas. Techn. Mar. 2004; 151(2):131-136.
Suski, et al. Optically activated ZnO/Si02/Si cantilever beams. Sensors and Actuators A (Physical), 0 (nr: 24). 2003; 221-225.
Takagi, et al. Mechanochemical Synthesis of Piezoelectric PLZT Powder. KONA. 2003; 51(21):234-241.
Thakoor, et al. Optical microactuation in piezoceramics. Proc. SPIE. Jul. 1998; 3328:376-391.
The Scientist and Engineers Guide to Digital Signal Processing, copyright 01997-1998 by Steven W. Smith, available online at www.DSPguide.com.
Thompson. Tutorial on microphone technologies for directional hearing aids. Hearing Journal. Nov. 2003; 56(11):14-16, 18, 20-21.
Tzou, et al. Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems. Mechanics of Advanced Materials and Structures. 2004; 11:367-393.
Uchino, et al. Photostricitve actuators. Ferroelectrics. 2001; 258:147-158.
Vickers, et al. Effects of Low-Pass Filtering on the Intelligibility of Speech in Quiet for People With and Without Dead Regions at High Frequencies. J. Acoust. Soc. Am. Aug. 2001; 110(2):1164-1175.
Vinge. Wireless Energy Transfer by Resonant Inductive Coupling. Master of Science Thesis. Chalmers University of Technology. 1-83 (2015).
Vinikman-Pinhasi, et al. Piezoelectric and Piezooptic Effects in Porous Silicon. Applied Physics Letters, Mar. 2006; 88(11): 11905-111906.
Wang, et al. Preliminary Assessment of Remote Photoelectric Excitation of an Actuator for a Hearing Implant. Proceeding of the 2005 IEEE, Engineering in Medicine and Biology 27th nnual Conference, Shanghai, China. Sep. 1-4, 2005; 6233-6234.
Web Books Publishing, “The Ear,” accessed online Jan. 22, 2013, available online Nov. 2, 2007 at http://www.web-books.com/eLibrary/Medicine/Physiology/Ear/Ear.htm.
Wiener, et al. On the Sound Pressure Transformation by the Head and Auditory Meatus of the Cat. Acta Otolaryngol. Mar. 1966; 61(3):255-269.
Wightman, et al. Monaural Sound Localization Revisited. J Acoust Soc Am. Feb. 1997;101(2):1050-1063.
Wiki. Sliding Bias Variant 1, Dynamic Hearing (2015).
Wikipedia. Resonant Inductive Coupling. 1-11 (Jan. 12, 2018). https://en.wikipedia.org/wiki/Resonant_inductive_coupling#cite_note-13.
Yao, et al. Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations, J. R. Soc. Interface (2008) 5, 723-733 doi:10.1098/rsif.2007.1225 Published online Oct. 30, 2007.
Yao, et al. Maximum strength for intermolecular adhesion of nanospheres at an optimal size. J. R. Soc. Interface doi:10.10981rsif.2008.0066 Published online 2008.
Yi, et al. Piezoelectric Microspeaker with Compressive Nitride Diaphragm. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002; 260-263.
Yu, et al. Photomechanics: Directed bending of a polymer film by light. Nature. Sep. 2003; 425:145.
Folkeard, et al. Detection, Speech Recognition, Loudness, and Preference Outcomes With a Direct Drive Hearing Aid: Effects of Bandwidth. Trends Hear. Jan.-Dec. 2021; 25: 1-17. doi: 10.1177/2331216521999139.
Knight, D. Diode detectors for RF measurement. Paper. Jan. 1, 2016. [Retrieved from 1-16 online] (retrieved Feb. 11, 2020) abstract, p. 1; section 1, p. 6; section 1.3, p. 9; section 3 voltage-double rectifier, p. 21; section 5, p. 27. URL: g3ynh.info/circuits/Diode_det.pdf.
Co-pending U.S. Appl. No. 17/356,217, inventors Imatani; Kyle et al., filed Jun. 23, 2021.
Related Publications (1)
Number Date Country
20200068323 A1 Feb 2020 US
Provisional Applications (2)
Number Date Country
62564574 Sep 2017 US
62422535 Nov 2016 US
Continuations (1)
Number Date Country
Parent PCT/US2017/061388 Nov 2017 US
Child 16405716 US