Impressions are used in the hearing aid industry to provide models of the hearing aid user's ear canal. These impressions taken of the lateral end of the ear canal may be used to create ear tips (the portion of the hearing aid that fits into the lateral end of the ear canal) which conform to the actual shape of the user's ear canal. These custom ear tips generally provide better fit and comfort than ear tips which are not custom fitted to the customer's particular ear canal shape. In contact hearing aid systems which include hearing aid components (e.g., contact hearing devices) which are positioned on and conform to the shape of the user's tympanic membrane (ear drum), impressions may be taken that extend from the lateral end of the ear canal (e.g., near the pinna) to the medial end of the canal (e.g., at or near the tympanic membrane). These full canal impressions may be used to manufacture both custom ear tips and custom contact hearing aid components, such as contact hearing devices, for the user's tympanic membrane. The methods of taking these full canal impressions, along with the characteristics of the materials used to take the impressions will have an impact on the overall fit, comfort and utility of the components manufactured using that full impression. As used herein, ear tip may refer to a conventional hearing aid ear tip (e.g., including a receiver) or to a light tip which may be a component of a contact hearing system.
The foregoing and other objects, features and advantages of embodiments of the present inventive concepts will be apparent from the more particular description of preferred embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same or like elements. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the preferred embodiments.
In one embodiment of the invention, once the impressions are made they may be shipped back to the manufacturer where they are cleaned and placed into a digital scanner. The digital scanner is used to make digital models of the impressions, which digital models may be representative of all or sections of the subject's ear canal. Where Impression 1 is an impression of the whole ear canal, down to and including the tympanic membrane, the output of the scanner for Impression 1 is a digital model of the full ear canal which includes a medial portion representative of the shape, size and surface structure of the entire ear canal, including the medial portion, tympanic membrane and sulcus region. Where Impression 1 is an impression of the medial end of the ear canal, down to and including the tympanic membrane, the output of the scanner for Impression 1 is a digital model of the medial end of the ear canal representative of the shape, size and surface structure of the tympanic membrane and sulcus region. The output of the scanner for Impression 2 is a digital model which includes a first portion representative of the shape, size and surface structure of the lateral end of the ear canal and may also include a second portion representing a medial end of Impression 2.
Once Impression 1 and Impression 2 are complete, and have been scanned using, for example, a digital scanner, digital representations of Impression 1 and Impression 2 are created. The resulting scans are combined by the technique described below to create a single digital representation of the ear canal of the subject, including digital features representative of the surface of the subject's ear canal. The resulting digital representation will represent the subject's ear canal from the concha bowl to the tympanic membrane. This single digital representation combines the representation resulting from the use of a high viscosity impression material to create a model of the lateral ear canal (higher pressure conforms to soft tissue of lateral ear canal) and the representation resulting from the use of a low viscosity impression material to create a model of the medial portion of the ear canal (lower viscosity allows it to flow evenly into the farthest reaches of the ear canal without creating bubbles or missing areas which might ruin the impression and make it difficult to create a resulting product). The low viscosity impression material further allows the impression to capture the fine detail of the tympanic membrane and sulcus region.
As illustrated in
Once the extraneous data is removed from digital model 2, the corresponding portions of the data files for models 1 and 2 may be overlaid to obtain a best fit alignment for the overall impressions. This best fit analysis may be performed either manually or electronically. In either case, the two models are overlaid and the features are used to get a best fit alignment. See, for example,
Once digital models 20 and 30 are in rough alignment, an alignment region 40 may be identified on digital model 20 as illustrated in
Once the alignment region 40 is defined in digital model 20, the alignment region 40 may be locally aligned with the bony canal region 70 of digital model 30 as illustrated in
In alternative embodiments of the invention, complete digital model 80 may be made from a hybrid impression wherein the low viscosity impression material is first poured into the subject's ear canal, followed by the high viscosity impression material to create a single impression capturing the ear canal of the subject from the tympanic membrane to the concha bowl.
In alternative embodiments of the invention, the low viscosity impression may be left to fully cure while the subject is supine before moving the subject to an upright position and adding the high viscosity impression material. In this embodiment the low viscosity impression material may be used as an oto-block that prevents the high viscosity impression material from contacting the tympanic membrane and/or the medial end of the subject's ear canal.
In embodiments of the invention, the high viscosity impression material is bonded to the low viscosity impression material prior to removing the hybrid impression from the subject's ear canal.
In embodiments of the invention, one method of taking a hybrid impression of the ear canal of a hearing aid subject involves generating an impression using two separate materials through a predetermined series of steps, including ensuring that elements of the method are performed at predetermined time intervals. In embodiments of the invention, the predetermined time intervals may be determined as a function of characteristics of the impression material being used. In embodiments of the invention, such characteristics may include, for example, the curing time of the impression material. In embodiments of the invention, such characteristics may include, for example, the viscosity of the impression material.
In embodiments of the invention, the method may include the step of raising the subject from a supine to a sitting (or standing) position at a predetermined time or after a predetermined event has occurred, for example within a predetermined interval after initially depositing impression material in the ear canal of the subject. Embodiments of the invention, which include the forgoing step, may be referred to as Seated Hybrid Impressions. In embodiments of the invention, the time interval may be calculated such that the subject is raised before the impression material used in the supine position is fully cured. In embodiments of the invention, the time interval may be calculated such that the subject is raised after the impression material used when the subject is in the supine position has cured to a point where it is sufficiently viscous that it does not flow out of the ear canal. In embodiments of the invention, the timing of raising the subject from a supine position into an upright position is dependent upon the timing of the transition of the impression material from a viscous material to a gel. In embodiments of the invention, a sol to gel transition, in which the material is transformed from what is technically a liquid (sol) into a solid (gel) is the preferred point for raising the subject from a supine to an upright position. In embodiments of the invention, it may be possible to raise the subject before the impression material transitions from a liquid to a solid. For example, the subject may be raised when the impression material's viscosity increases enough to prevent the impression material from flowing out of the ear when the subject is raised to the upright position.
In embodiments of the invention, materials which are suitable for creating impressions of the medial end of the ear canal include materials which initially have a low viscosity, such as, for example, a viscosity of less than 10 centipoise (“cPs”) and/or a viscosity of between approximately 10 cPs and 20,000 cPs. Impression materials suitable for use in low viscosity applications of the present invention may be referred to herein as Low Viscosity Impression Materials or LVIM. In embodiments of the invention, materials suitable for use as an LVIM may have a hardness of approximately 15±2 Shore A. In embodiments of the invention, materials suitable for use as an LVIM may have an Elongation at break of greater than approximately 250%. In embodiments of the invention, the viscosity values set forth above represent the viscosity of the impression material as it is initially deposited in the ear canal of the subject using, for example impression dispensing gun 110. In embodiments of the invention, wherein the impression material is a two part material which is mixed prior to injecting it into the subject's ear canal, the viscosity values set forth above represent the viscosity of the impression material immediately following the mixing of the two materials which comprise the two part impression material.
In embodiments of the invention, materials which are suitable for creating impressions of the lateral end of the ear canal include materials which have a higher viscosity than the Low Viscosity Impression Materials, such as, for example, a viscosity of more than 100 cPs and/or a viscosity of between approximately 100 and 100,000 cPs. Impression materials suitable for use in high viscosity applications of the present invention may be referred to herein as High Viscosity Impression Materials or HVIM. In embodiments of the invention, materials suitable for use as an HVIM may have a hardness of approximately 30±3 Shore A. In embodiments of the invention, materials suitable for use as a HVIM may include Otoform A softX having a hardness of approximately 25+/−2 Shore A.
In embodiments of the invention, materials suitable for creating impressions may include two-part, platinum cure silicones. Once the two components of the impression materials are mixed together, these materials increase in viscosity over time and ultimately cure into a solid material. After a period of time, the material undergoes what is known as a sol-gel transition, in which the material is transformed from a liquid state (sol) to a soft, solid state (gel). The gel may continue to cross-link (or cure) over time so that it becomes harder than the gel, and eventually is fully cured. The fully cured material will not undergo any shape change when it is released from a physical constraint, such as when it is removed from an ear canal. Instead, the fully cured material retains the geometry it had when it transitioned from a gel to a fully cured solid.
In embodiments of the invention, factors which can affect the timing of moving a subject from a supine to an upright position while making an impression of the subject's ear canal include: i) the temperature of the impression materials (higher temperatures result in faster cures); ii) the ratio of the two components comprising the impression material (1:1, 2:1, or other ratios); iii) the initial concentration of platinum catalyst; and iv) the presence of any inhibitors of the platinum catalyst (such as alcohols, amine-containing chemicals, sulfur-containing chemicals or materials, and phosphorous-containing chemicals, among others). For example, certain HVIM materials cure faster than the LVIM materials, with the former reaching a gel state in about 1 minute, while the latter reaches a gel state in about 2 minutes at normal body temperature.
In embodiments of the invention, the method may use a serial procedure to gather a full seated Hybrid Impression from one ear before moving to the second ear. Alternatively, a health care professional may inject the LVIM materials into both ear canals of the subject before moving the subject from a supine to an upright position. In an embodiment of the invention, the health care professional may alternate between the right and left ears, for example, injecting LVIM in the left ear followed by HVIM in that ear, followed by LVIM in the right ear and then HVIM in the right ear. In embodiments of the invention, the patient may move from a sitting position to a supine position after injecting the first HVIM material but before it is fully cured.
In embodiments of the invention, the following steps may be used to create a Seated Hybrid Impression. The steps include:
In embodiments of the invention, the procedure described herein may be augmented by applying a cap of HVIM material over the LVIM material prior to moving the subject into an upright position as described in Step 2 above. In embodiments of the invention, the cap of HVIM material may be less than the full HVIM impression. In embodiments of the invention, the cap of HVIM material may be small enough to leave room in the subject's ear canal for additional HVIM material once the subject has been raised to the upright position. In embodiments of the invention, the cap of HVIM material may be approximately 3 millimeters to 20 millimeters thick.
The following timeline is illustrative of the timing of various steps of the sitting hybrid impression process according to one embodiment of the present invention. Sample Impression Timeline:
In embodiments of the invention, the method may include placing the subject in a supine position and injecting LVIM into the subject's ear using enough LVIM to reach a predetermined point in the subject's ear canal. The subject would then remain in the supine position for approximately one minute and fifteen seconds before being moved to an upright position (e.g., sitting or standing). Approximately one minute and forty-five seconds later, the health care professional would inject HVIM into the subject's ear canal, using enough HVIM material to fill the ear canal to at least a point where the HVIM would be visible at the ear canal opening. In embodiments of the invention, the HVIM may be used to fill the ear canal to the Concha Cymba. In embodiments of the invention, the HVIM may be used to fill the ear canal to the concha bowl. In embodiments of the invention, the hybrid impression (including both the LVIM and HVIM) would be pulled from the subject's ear canal once the combined impression has bonded and fully cured.
In embodiments of the invention the low viscosity impression material may be a material particularly suited to making medial impressions. The LVIM may be Formasil AB (available from Dreve, Unna, Germany). The LVIM may be a low viscosity, two-part platinum cure silicone. The LVIM may have a viscosity which is sufficiently low, prior to mixing (approximately 1 to 1000 cPs), to ensure that it flows easily into the sulcus region and covers the tympanic membrane when it is injected into the ear canal of a subject. The LVIM may be selected to set up quickly. The LVIM may be selected to have a sol-gel transition time at 37° C. of approximately 1 to 3 minutes. The LVIM may be selected such that it becomes fully cured within 5 minutes of being injected into the ear canal of a subject. The LVIM may be selected to be a soft material, with a durometer of approximately 15±2 Shore A and a tensile strength of greater than approximately 1 MPa. The LVIM may be selected to have an excellent elastic recovery, such as an elastic recovery which is greater than approximately 99%.
In embodiments of the invention, the high viscosity impression material may be particularly suited to making lateral impressions. The HVIM may be Otoform A softX (available from Dreve, Unna, Germany). The HVIM may have a relatively high viscosity. The HVIM may be a two-part platinum cure silicone. The HVIM may have a viscosity prior to mixing of approximately 1,000 to approximately 100,000 cPs. The HVIM may be selected to have a viscosity which limits its ability to flow all the way down to the sulcus region, making it suitable for use in the outer, more lateral, portion of the subject's ear canal. The HVIM may be selected to set up faster than the LVIM. The HVIM may have a sol-gel transition time at 37° C. of approximately 30 seconds to approximately 1 minute. The HVIM may be selected to fully cure within approximately 4 minutes. The HVIM may be selected to be less soft than the LVIM. The HVIM may be selected to have a durometer of approximately 25±2 Shore A after complete curing. The HVIM may be selected to have an elastic recovery of greater than approximately 99%.
In one embodiment, the present invention is directed to a method of creating a hearing system for a subject, the method including the steps of: taking a first impression of a first portion of an ear canal using an impression material having a first viscosity; taking a second impression of a second portion of the ear canal using an impression material having a second viscosity; digitally scanning the first impression to create a first digital model; digitally scanning the second impression to create a second digital model; merging the first digital model with the second digital model to create a merged model where the lateral portion of the merged model is comprised of at least a portion of the first digital model and the medial portion of the merged model is comprised of at least a portion of the second model; and, using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the method may include the step of raising the subject from a supine position to an upright position prior to the step of taking a second impression. In further embodiments of the invention, the second impression may be taken after the first impression is removed from the subject's ear canal. In further embodiments of the invention, the first impression may be taken after the second impression is removed from the subject's ear canal. In further embodiments of the invention, the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal. In further embodiments of the invention, the first and second portions of the ear canal overlap. In further embodiments of the invention, the first viscosity is lower than the second viscosity.
In one embodiment, the present invention is directed to a method of creating a hearing system for a subject, the method including the steps of: creating a hybrid impression of a subject's ear canal, the method of creating a hybrid impression including the steps of: injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; and, injecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position; digitally scanning the hybrid impression to create a digital model of the subject's ear canal; and, using the digital model to manufacture at least one of ear tip and a contact hearing device. In further embodiments of the invention, the initial viscosity of the low viscosity impression material is lower than the initial viscosity of the high viscosity impression material. In further embodiments of the invention, the method further includes the step of raising the subject from a supine position to an upright position prior to injecting the high viscosity impression material. In further embodiments of the invention, the subject is raised from a supine to an upright position after the low viscosity impression material has transitioned from a liquid to a gel state. In further embodiments of the invention, the subject is raised from a supine to an upright position before the low viscosity impression material is fully cured. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs at a predetermined time after the beginning of the step of injecting a low viscosity impression material. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs before the low viscosity impression material cures into a gel state. In further embodiments of the invention, the step of raising the subject from a supine position to an upright position occurs after the viscosity of the low viscosity impression material has increased to a viscosity where the low viscosity impression material no longer flows when subjected to gravitational forces. In further embodiments of the invention, the first and second portions of the ear canal do not overlap. In further embodiments of the invention the low viscosity impression is bonded to the high viscosity impression.
In one embodiment, the present invention is directed to a method of creating components of a hearing system for a subject, the method including the steps of: digitally scanning a first impression to create a first digital model, wherein the first impression is an impression of a first portion of an ear canal taken using a low viscosity impression material having a first viscosity and wherein the first impression has been taken with the subject in a supine position; digitally scanning a second impression to create a second digital model, wherein the second impression is an impression of a second portion of an ear canal taken using a high viscosity impression material having a second viscosity, and wherein the second impression has been taken with the subject in an upright position; merging the first digital model with the second digital model to create a merged model where the medial portion of the merged model is comprised of the first digital model and the lateral portion of the merged model is comprised of the second model; using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the first and second portions of the ear canal overlap. In further embodiments of the invention, the first and second digital models include digital models of the overlapping portions of the ear canal. In further embodiments of the invention, the merging step includes aligning the digital models of the overlapping portions of ear canal. In further embodiments of the invention, the merging step includes aligning points within the digital models of the overlapping portions of the ear canal. In further embodiments of the invention, the first impression is an impression of the subject's whole ear canal, including the tympanic membrane, bony canal and lateral end of the ear canal.
In one embodiment, the present invention is directed to a method of creating components of a hearing system for a subject, the method including the steps of: digitally scanning a hybrid impression to create a digital model, wherein the hybrid impression has been created using a method including the steps of: injecting a low viscosity impression material into a first portion of the ear canal, wherein the low viscosity impression material is injected with the subject in a supine position; and, injecting a high viscosity impression material into a second portion of the ear canal lateral to the first portion, wherein the high viscosity impression material is injected with the subject in an upright position; using the merged digital model to manufacture at least one of an ear tip and a contact hearing device. In further embodiments of the invention, the low viscosity impression material has an initial viscosity which is lower than the initial viscosity of the high viscosity material. In further embodiments of the invention, the low viscosity impression material is bonded to the high viscosity impression material to create the hybrid impression.
In one embodiment the present invention is directed to a kit including: a low viscosity material for use in making impressions of the medial end of a subject's ear canal; and, a high viscosity material for use in making impressions of the lateral end of a subject's ear canal, wherein the initial viscosity of the low viscosity material is lower than the initial viscosity of the high viscosity material; and, at least one dispenser adapted to dispense at least one of the low viscosity material or the high viscosity material.
In one embodiment, the present invention is directed to a kit including: at least one impression dispensing gun; at least one dispenser of low viscosity impression material; at least one low viscosity impression material dispensing tip; at least one dispenser of high viscosity impression material; and, at least one high viscosity impression material dispensing tip. In further embodiments of the invention, the kit further includes at least one dispenser of mineral oil. In further embodiments of the invention, the kit further includes at least one mineral oil basin. In further embodiments of the invention, the kit further includes at least one impression return box.
Embodiments of the invention may include a kit useful in practicing the methods of the present invention. As illustrated in
Audio Processor (BTE)—A system for receiving and processing audio signals. In embodiments of the invention, audio processors may include one or more microphones adapted to receive audio which reaches the subject's ear. In embodiments of the invention, the audio processor may include one or more components for processing the received sound. In embodiments of the invention, the audio processor may include digital signal processing electronics and software which are adapted to process the received sound. In embodiments of the invention, processing of the received sound may include amplification of the received sound.
Contact Hearing System—A system including a contact hearing device, an ear tip, and an audio processor. In embodiments of the invention, contact hearing systems may also include an external communication device. An example of such system is an EarLens hearing-aid device that transmits audio signal by laser to tympanic membrane transducer (TMT) which is placed on an ear drum.
Contact Hearing Device (Tympanic Contact Actuator (TCA)/Tympanic Lens)—a tiny actuator connected to a customized ring-shaped support platform that floats on the ear canal around the eardrum, and resides in the ear much like a contact lens resides on the surface of the eye, where the actuator directly vibrates the eardrum which causes energy to be transmitted through the middle and inner ears to stimulate the brain and produce the perception of sound. In embodiments of the invention, the contact hearing device may include a photodetector, a microactuator connected to the photodetector, and a support structure supporting the photodetector and microactuator.
Ear Tip (Light Tip)—A structure designed to be placed into and reside in the ear canal of a hearing aid user, where the structure is adapted to receive signals intended to be transmitted to the user's tympanic membrane or to a device positioned on or near the user's tympanic membrane (such as, for example, a Contact Hearing Device). In one embodiment of the invention, the signals may be transmitted by light, using, for example, a laser positioned in the light tip. In one embodiment of the invention, the signals may be transmitted using radio frequency, using, for example, an antenna connected to the Ear Tip. In one embodiment of the invention, the signal may be transmitted using inductive coupling, using, for example, a coil connected to the Ear Tip.
Light Driven Hearing Aid System—a Contact Hearing System wherein signals are transmitted from the ear tip to the contact hearing device using light. In a light driven hearing system, light (e.g., laser light) may be used to transmit information, power, or both information and power to the contact hearing device.
Light Tip—an ear tip adapted for use in a light driven hearing aid system. In embodiments of the invention, a light tip may include a laser.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a continuation of PCT Application No. PCT/US2017/061388, filed Nov. 13, 2017, which claims the benefit of U.S. Provisional Application Nos. 62/564,574, filed Sep. 28, 2017, and 62/422,535, filed Nov. 15, 2016, which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2763334 | Starkey | Sep 1956 | A |
3209082 | McCarrell et al. | Sep 1965 | A |
3229049 | Goldberg | Jan 1966 | A |
3440314 | Frisch | Apr 1969 | A |
3449768 | Doyle | Jun 1969 | A |
3526949 | Genovese | Sep 1970 | A |
3549818 | Turner | Dec 1970 | A |
3585416 | Mellen | Jun 1971 | A |
3594514 | Wingrove | Jul 1971 | A |
3710399 | Hurst | Jan 1973 | A |
3712962 | Epley | Jan 1973 | A |
3764748 | Branch et al. | Oct 1973 | A |
3808179 | Gaylord | Apr 1974 | A |
3870832 | Fredrickson | Mar 1975 | A |
3882285 | Nunley et al. | May 1975 | A |
3965430 | Brandt | Jun 1976 | A |
3985977 | Beaty et al. | Oct 1976 | A |
4002897 | Kleinman et al. | Jan 1977 | A |
4031318 | Pitre | Jun 1977 | A |
4061972 | Burgess | Dec 1977 | A |
4075042 | Das | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4109116 | Victoreen | Aug 1978 | A |
4120570 | Gaylord | Oct 1978 | A |
4207441 | Chouard et al. | Jun 1980 | A |
4248899 | Lyon et al. | Feb 1981 | A |
4252440 | Frosch et al. | Feb 1981 | A |
4281419 | Treace | Aug 1981 | A |
4303772 | Novicky | Dec 1981 | A |
4319359 | Wolf | Mar 1982 | A |
4334315 | Ono et al. | Jun 1982 | A |
4334321 | Edelman | Jun 1982 | A |
4338929 | Lundin et al. | Jul 1982 | A |
4339954 | Anson et al. | Jul 1982 | A |
4357497 | Hochmair et al. | Nov 1982 | A |
4375016 | Harada | Feb 1983 | A |
4380689 | Giannetti | Apr 1983 | A |
4428377 | Zollner et al. | Jan 1984 | A |
4524294 | Brody | Jun 1985 | A |
4540761 | Kawamura et al. | Sep 1985 | A |
4556122 | Goode | Dec 1985 | A |
4592087 | Killion | May 1986 | A |
4606329 | Hough | Aug 1986 | A |
4611598 | Hortmann et al. | Sep 1986 | A |
4628907 | Epley | Dec 1986 | A |
4641377 | Rush et al. | Feb 1987 | A |
4652414 | Schlaegel | Mar 1987 | A |
4654554 | Kishi | Mar 1987 | A |
4689819 | Killion | Aug 1987 | A |
4696287 | Hortmann et al. | Sep 1987 | A |
4729366 | Schaefer | Mar 1988 | A |
4741339 | Harrison et al. | May 1988 | A |
4742499 | Butler | May 1988 | A |
4756312 | Epley | Jul 1988 | A |
4759070 | Voroba et al. | Jul 1988 | A |
4766607 | Feldman | Aug 1988 | A |
4774933 | Hough et al. | Oct 1988 | A |
4776322 | Hough et al. | Oct 1988 | A |
4782818 | Mori | Nov 1988 | A |
4800884 | Heide et al. | Jan 1989 | A |
4800982 | Carlson | Jan 1989 | A |
4817607 | Tatge | Apr 1989 | A |
4840178 | Heide et al. | Jun 1989 | A |
4845755 | Busch et al. | Jul 1989 | A |
4865035 | Mori | Sep 1989 | A |
4870688 | Voroba et al. | Sep 1989 | A |
4918745 | Hutchison | Apr 1990 | A |
4932405 | Peeters et al. | Jun 1990 | A |
4936305 | Ashtiani et al. | Jun 1990 | A |
4944301 | Widin et al. | Jul 1990 | A |
4948855 | Novicky | Aug 1990 | A |
4957478 | Maniglia et al. | Sep 1990 | A |
4963963 | Dorman | Oct 1990 | A |
4982434 | Lenhardt et al. | Jan 1991 | A |
4999819 | Newnham et al. | Mar 1991 | A |
5003608 | Carlson | Mar 1991 | A |
5012520 | Steeger | Apr 1991 | A |
5015224 | Maniglia | May 1991 | A |
5015225 | Hough et al. | May 1991 | A |
5031219 | Ward et al. | Jul 1991 | A |
5061282 | Jacobs | Oct 1991 | A |
5066091 | Stoy et al. | Nov 1991 | A |
5068902 | Ward | Nov 1991 | A |
5094108 | Kim et al. | Mar 1992 | A |
5117461 | Moseley | May 1992 | A |
5142186 | Cross et al. | Aug 1992 | A |
5163957 | Sade et al. | Nov 1992 | A |
5167235 | Seacord et al. | Dec 1992 | A |
5201007 | Ward et al. | Apr 1993 | A |
5220612 | Tibbetts et al. | Jun 1993 | A |
5259032 | Perkins et al. | Nov 1993 | A |
5272757 | Scofield et al. | Dec 1993 | A |
5276910 | Buchele | Jan 1994 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5282858 | Bisch et al. | Feb 1994 | A |
5296797 | Bartlett | Mar 1994 | A |
5298692 | Ikeda et al. | Mar 1994 | A |
5338287 | Miller et al. | Aug 1994 | A |
5360388 | Spindel et al. | Nov 1994 | A |
5378933 | Pfannenmueller et al. | Jan 1995 | A |
5402496 | Soli et al. | Mar 1995 | A |
5411467 | Hortmann et al. | May 1995 | A |
5424698 | Dydyk et al. | Jun 1995 | A |
5425104 | Shennib et al. | Jun 1995 | A |
5440082 | Claes | Aug 1995 | A |
5440237 | Brown et al. | Aug 1995 | A |
5455994 | Termeer et al. | Oct 1995 | A |
5456654 | Ball | Oct 1995 | A |
5531787 | Lesinski et al. | Jul 1996 | A |
5531954 | Heide et al. | Jul 1996 | A |
5535282 | Luca | Jul 1996 | A |
5554096 | Ball | Sep 1996 | A |
5558618 | Maniglia | Sep 1996 | A |
5571148 | Loeb et al. | Nov 1996 | A |
5572594 | Devoe et al. | Nov 1996 | A |
5606621 | Reiter et al. | Feb 1997 | A |
5624376 | Ball et al. | Apr 1997 | A |
5654530 | Sauer et al. | Aug 1997 | A |
5692059 | Kruger | Nov 1997 | A |
5699809 | Combs et al. | Dec 1997 | A |
5701348 | Shennib et al. | Dec 1997 | A |
5707338 | Adams et al. | Jan 1998 | A |
5715321 | Andrea et al. | Feb 1998 | A |
5721783 | Anderson | Feb 1998 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5729077 | Newnham et al. | Mar 1998 | A |
5740258 | Goodwin-Johansson | Apr 1998 | A |
5742692 | Garcia et al. | Apr 1998 | A |
5749912 | Zhang et al. | May 1998 | A |
5762583 | Adams et al. | Jun 1998 | A |
5772575 | Lesinski et al. | Jun 1998 | A |
5774259 | Saitoh et al. | Jun 1998 | A |
5782744 | Money | Jul 1998 | A |
5788711 | Lehner et al. | Aug 1998 | A |
5795287 | Ball et al. | Aug 1998 | A |
5797834 | Goode | Aug 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5804109 | Perkins | Sep 1998 | A |
5804907 | Park et al. | Sep 1998 | A |
5814095 | Mueller et al. | Sep 1998 | A |
5824022 | Zilberman et al. | Oct 1998 | A |
5825122 | Givargizov et al. | Oct 1998 | A |
5836863 | Bushek et al. | Nov 1998 | A |
5842967 | Kroll | Dec 1998 | A |
5851199 | Peerless et al. | Dec 1998 | A |
5857958 | Ball et al. | Jan 1999 | A |
5859916 | Ball et al. | Jan 1999 | A |
5868682 | Combs et al. | Feb 1999 | A |
5879283 | Adams et al. | Mar 1999 | A |
5888187 | Jaeger et al. | Mar 1999 | A |
5897486 | Ball et al. | Apr 1999 | A |
5899847 | Adams et al. | May 1999 | A |
5900274 | Chatterjee et al. | May 1999 | A |
5906635 | Maniglia | May 1999 | A |
5913815 | Ball et al. | Jun 1999 | A |
5922017 | Bredberg et al. | Jul 1999 | A |
5922077 | Espy et al. | Jul 1999 | A |
5935170 | Haakansson et al. | Aug 1999 | A |
5940519 | Kuo | Aug 1999 | A |
5949895 | Ball et al. | Sep 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5984859 | Lesinski | Nov 1999 | A |
5987146 | Pluvinage et al. | Nov 1999 | A |
6001129 | Bushek et al. | Dec 1999 | A |
6005955 | Kroll et al. | Dec 1999 | A |
6011984 | Van Antwerp et al. | Jan 2000 | A |
6024717 | Ball et al. | Feb 2000 | A |
6038480 | Hrdlicka et al. | Mar 2000 | A |
6045528 | Arenberg et al. | Apr 2000 | A |
6050933 | Bushek et al. | Apr 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6068589 | Neukermans | May 2000 | A |
6068590 | Brisken | May 2000 | A |
6072884 | Kates | Jun 2000 | A |
6084975 | Perkins | Jul 2000 | A |
6093144 | Jaeger et al. | Jul 2000 | A |
6135612 | Clore | Oct 2000 | A |
6137889 | Shennib et al. | Oct 2000 | A |
6139488 | Ball | Oct 2000 | A |
6153966 | Neukermans | Nov 2000 | A |
6168948 | Anderson et al. | Jan 2001 | B1 |
6174278 | Jaeger et al. | Jan 2001 | B1 |
6175637 | Fujihira et al. | Jan 2001 | B1 |
6181801 | Puthuff et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6190306 | Kennedy | Feb 2001 | B1 |
6208445 | Reime | Mar 2001 | B1 |
6216040 | Harrison | Apr 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6219427 | Kates et al. | Apr 2001 | B1 |
6222302 | Imada et al. | Apr 2001 | B1 |
6222927 | Feng et al. | Apr 2001 | B1 |
6240192 | Brennan et al. | May 2001 | B1 |
6241767 | Stennert et al. | Jun 2001 | B1 |
6259951 | Kuzma et al. | Jul 2001 | B1 |
6261224 | Adams et al. | Jul 2001 | B1 |
6264603 | Kennedy | Jul 2001 | B1 |
6277148 | Dormer | Aug 2001 | B1 |
6312959 | Datskos | Nov 2001 | B1 |
6339648 | McIntosh et al. | Jan 2002 | B1 |
6342035 | Kroll et al. | Jan 2002 | B1 |
6354990 | Juneau et al. | Mar 2002 | B1 |
6359993 | Brimhall | Mar 2002 | B2 |
6366863 | Bye et al. | Apr 2002 | B1 |
6374143 | Berrang et al. | Apr 2002 | B1 |
6385363 | Rajic et al. | May 2002 | B1 |
6387039 | Moses | May 2002 | B1 |
6390971 | Adams et al. | May 2002 | B1 |
6393130 | Stonikas et al. | May 2002 | B1 |
6422991 | Jaeger | Jul 2002 | B1 |
6432248 | Popp et al. | Aug 2002 | B1 |
6434246 | Kates et al. | Aug 2002 | B1 |
6434247 | Kates et al. | Aug 2002 | B1 |
6436028 | Dormer | Aug 2002 | B1 |
6438244 | Juneau et al. | Aug 2002 | B1 |
6445799 | Taenzer et al. | Sep 2002 | B1 |
6473512 | Juneau et al. | Oct 2002 | B1 |
6475134 | Ball et al. | Nov 2002 | B1 |
6491622 | Kasic, II et al. | Dec 2002 | B1 |
6491644 | Vujanic et al. | Dec 2002 | B1 |
6491722 | Kroll et al. | Dec 2002 | B1 |
6493453 | Glendon | Dec 2002 | B1 |
6493454 | Loi et al. | Dec 2002 | B1 |
6498858 | Kates | Dec 2002 | B2 |
6507758 | Greenberg et al. | Jan 2003 | B1 |
6519376 | Biagi et al. | Feb 2003 | B2 |
6523985 | Hamanaka et al. | Feb 2003 | B2 |
6536530 | Schultz et al. | Mar 2003 | B2 |
6537200 | Leysieffer et al. | Mar 2003 | B2 |
6547715 | Mueller et al. | Apr 2003 | B1 |
6549633 | Westermann | Apr 2003 | B1 |
6549635 | Gebert | Apr 2003 | B1 |
6554761 | Puria et al. | Apr 2003 | B1 |
6575894 | Leysieffer et al. | Jun 2003 | B2 |
6592513 | Kroll et al. | Jul 2003 | B1 |
6603860 | Taenzer et al. | Aug 2003 | B1 |
6620110 | Schmid | Sep 2003 | B2 |
6626822 | Jaeger et al. | Sep 2003 | B1 |
6629922 | Puria et al. | Oct 2003 | B1 |
6631196 | Taenzer et al. | Oct 2003 | B1 |
6643378 | Schumaier | Nov 2003 | B2 |
6663575 | Leysieffer | Dec 2003 | B2 |
6668062 | Luo et al. | Dec 2003 | B1 |
6676592 | Ball et al. | Jan 2004 | B2 |
6681022 | Puthuff et al. | Jan 2004 | B1 |
6695943 | Juneau et al. | Feb 2004 | B2 |
6697674 | Leysieffer | Feb 2004 | B2 |
6724902 | Shennib et al. | Apr 2004 | B1 |
6726618 | Miller | Apr 2004 | B2 |
6726718 | Carlyle et al. | Apr 2004 | B1 |
6727789 | Tibbetts et al. | Apr 2004 | B2 |
6728024 | Ribak | Apr 2004 | B2 |
6735318 | Cho | May 2004 | B2 |
6754358 | Boesen et al. | Jun 2004 | B1 |
6754359 | Svean et al. | Jun 2004 | B1 |
6754537 | Harrison et al. | Jun 2004 | B1 |
6785394 | Olsen et al. | Aug 2004 | B1 |
6792114 | Kates et al. | Sep 2004 | B1 |
6801629 | Brimhall et al. | Oct 2004 | B2 |
6829363 | Sacha | Dec 2004 | B2 |
6831986 | Kates | Dec 2004 | B2 |
6837857 | Stirnemann | Jan 2005 | B2 |
6842647 | Griffith et al. | Jan 2005 | B1 |
6888949 | Vanden Berghe et al. | May 2005 | B1 |
6900926 | Ribak | May 2005 | B2 |
6912289 | Vonlanthen et al. | Jun 2005 | B2 |
6920340 | Laderman | Jul 2005 | B2 |
6931231 | Griffin | Aug 2005 | B1 |
6940988 | Shennib et al. | Sep 2005 | B1 |
6940989 | Shennib et al. | Sep 2005 | B1 |
D512979 | Corcoran et al. | Dec 2005 | S |
6975402 | Bisson et al. | Dec 2005 | B2 |
6978159 | Feng et al. | Dec 2005 | B2 |
7020297 | Fang et al. | Mar 2006 | B2 |
7024010 | Saunders et al. | Apr 2006 | B2 |
7043037 | Lichtblau et al. | May 2006 | B2 |
7050675 | Zhou et al. | May 2006 | B2 |
7050876 | Fu et al. | May 2006 | B1 |
7057256 | Mazur et al. | Jun 2006 | B2 |
7058182 | Kates | Jun 2006 | B2 |
7058188 | Allred | Jun 2006 | B1 |
7072475 | Denap et al. | Jul 2006 | B1 |
7076076 | Bauman | Jul 2006 | B2 |
7095981 | Voroba et al. | Aug 2006 | B1 |
7167572 | Harrison et al. | Jan 2007 | B1 |
7174026 | Niederdrank et al. | Feb 2007 | B2 |
7179238 | Hissong | Feb 2007 | B2 |
7181034 | Armstrong | Feb 2007 | B2 |
7203331 | Boesen | Apr 2007 | B2 |
7239069 | Cho | Jul 2007 | B2 |
7245732 | Jorgensen et al. | Jul 2007 | B2 |
7255457 | Ducharme et al. | Aug 2007 | B2 |
7266208 | Charvin et al. | Sep 2007 | B2 |
7289639 | Abel et al. | Oct 2007 | B2 |
7313245 | Shennib | Dec 2007 | B1 |
7315211 | Lee et al. | Jan 2008 | B1 |
7322930 | Jaeger et al. | Jan 2008 | B2 |
7349741 | Maltan et al. | Mar 2008 | B2 |
7354792 | Mazur et al. | Apr 2008 | B2 |
7376563 | Leysieffer et al. | May 2008 | B2 |
7390689 | Mazur et al. | Jun 2008 | B2 |
7394909 | Widmer et al. | Jul 2008 | B1 |
7421087 | Perkins et al. | Sep 2008 | B2 |
7424122 | Ryan | Sep 2008 | B2 |
7444877 | Li et al. | Nov 2008 | B2 |
7547275 | Cho et al. | Jun 2009 | B2 |
7630646 | Anderson et al. | Dec 2009 | B2 |
7645877 | Gmeiner et al. | Jan 2010 | B2 |
7668325 | Puria et al. | Feb 2010 | B2 |
7747295 | Choi | Jun 2010 | B2 |
7778434 | Juneau et al. | Aug 2010 | B2 |
7809150 | Natarajan et al. | Oct 2010 | B2 |
7822215 | Carazo et al. | Oct 2010 | B2 |
7826632 | Von Buol et al. | Nov 2010 | B2 |
7853033 | Maltan et al. | Dec 2010 | B2 |
7867160 | Pluvinage et al. | Jan 2011 | B2 |
7883535 | Cantin et al. | Feb 2011 | B2 |
7885359 | Meltzer | Feb 2011 | B2 |
7983435 | Moses | Jul 2011 | B2 |
8090134 | Takigawa et al. | Jan 2012 | B2 |
8099169 | Karunasiri | Jan 2012 | B1 |
8116494 | Rass | Feb 2012 | B2 |
8128551 | Jolly | Mar 2012 | B2 |
8157730 | Leboeuf et al. | Apr 2012 | B2 |
8197461 | Arenberg et al. | Jun 2012 | B1 |
8204786 | Leboeuf et al. | Jun 2012 | B2 |
8233651 | Haller | Jul 2012 | B1 |
8251903 | Leboeuf et al. | Aug 2012 | B2 |
8284970 | Sacha | Oct 2012 | B2 |
8295505 | Weinans et al. | Oct 2012 | B2 |
8295523 | Fay et al. | Oct 2012 | B2 |
8320601 | Takigawa et al. | Nov 2012 | B2 |
8320982 | Leboeuf et al. | Nov 2012 | B2 |
8340310 | Ambrose et al. | Dec 2012 | B2 |
8340335 | Shennib | Dec 2012 | B1 |
8391527 | Feucht et al. | Mar 2013 | B2 |
8396235 | Gebhardt et al. | Mar 2013 | B2 |
8396239 | Fay et al. | Mar 2013 | B2 |
8401212 | Puria et al. | Mar 2013 | B2 |
8401214 | Perkins et al. | Mar 2013 | B2 |
8506473 | Puria | Aug 2013 | B2 |
8512242 | Leboeuf et al. | Aug 2013 | B2 |
8526651 | Van Hal et al. | Sep 2013 | B2 |
8526652 | Ambrose et al. | Sep 2013 | B2 |
8526971 | Giniger et al. | Sep 2013 | B2 |
8545383 | Wenzel et al. | Oct 2013 | B2 |
8600089 | Wenzel et al. | Dec 2013 | B2 |
8647270 | Leboeuf et al. | Feb 2014 | B2 |
8652040 | Leboeuf et al. | Feb 2014 | B2 |
8684922 | Tran | Apr 2014 | B2 |
8696054 | Crum | Apr 2014 | B2 |
8696541 | Pluvinage et al. | Apr 2014 | B2 |
8700111 | Leboeuf et al. | Apr 2014 | B2 |
8702607 | Leboeuf et al. | Apr 2014 | B2 |
8715152 | Puria et al. | May 2014 | B2 |
8715153 | Puria et al. | May 2014 | B2 |
8715154 | Perkins et al. | May 2014 | B2 |
8761423 | Wagner et al. | Jun 2014 | B2 |
8787609 | Perkins et al. | Jul 2014 | B2 |
8788002 | Leboeuf et al. | Jul 2014 | B2 |
8817998 | Inoue | Aug 2014 | B2 |
8824715 | Fay et al. | Sep 2014 | B2 |
8837758 | Knudsen | Sep 2014 | B2 |
8845705 | Perkins et al. | Sep 2014 | B2 |
8855323 | Kroman | Oct 2014 | B2 |
8858419 | Puria et al. | Oct 2014 | B2 |
8885860 | Djalilian et al. | Nov 2014 | B2 |
8886269 | Leboeuf et al. | Nov 2014 | B2 |
8888701 | Leboeuf et al. | Nov 2014 | B2 |
8923941 | Leboeuf et al. | Dec 2014 | B2 |
8929965 | Leboeuf et al. | Jan 2015 | B2 |
8929966 | Leboeuf et al. | Jan 2015 | B2 |
8934952 | Leboeuf et al. | Jan 2015 | B2 |
8942776 | Leboeuf et al. | Jan 2015 | B2 |
8961415 | Leboeuf et al. | Feb 2015 | B2 |
8986187 | Perkins et al. | Mar 2015 | B2 |
8989830 | Leboeuf et al. | Mar 2015 | B2 |
9044180 | Leboeuf et al. | Jun 2015 | B2 |
9049528 | Fay et al. | Jun 2015 | B2 |
9055379 | Puria et al. | Jun 2015 | B2 |
9131312 | Leboeuf et al. | Sep 2015 | B2 |
9154891 | Puria et al. | Oct 2015 | B2 |
9211069 | Larsen et al. | Dec 2015 | B2 |
9226083 | Puria et al. | Dec 2015 | B2 |
9277335 | Perkins et al. | Mar 2016 | B2 |
9289135 | Leboeuf et al. | Mar 2016 | B2 |
9289175 | Leboeuf et al. | Mar 2016 | B2 |
9301696 | Leboeuf et al. | Apr 2016 | B2 |
9314167 | Leboeuf et al. | Apr 2016 | B2 |
9392377 | Olsen et al. | Jul 2016 | B2 |
9427191 | Leboeuf et al. | Aug 2016 | B2 |
9497556 | Kaltenbacher et al. | Nov 2016 | B2 |
9521962 | Leboeuf | Dec 2016 | B2 |
9524092 | Ren et al. | Dec 2016 | B2 |
9538921 | Leboeuf et al. | Jan 2017 | B2 |
9544700 | Puria et al. | Jan 2017 | B2 |
9564862 | Hoyerby | Feb 2017 | B2 |
9591409 | Puria et al. | Mar 2017 | B2 |
9749758 | Puria et al. | Aug 2017 | B2 |
9750462 | Leboeuf et al. | Sep 2017 | B2 |
9788785 | Leboeuf | Oct 2017 | B2 |
9788794 | Leboeuf et al. | Oct 2017 | B2 |
9794653 | Aumer et al. | Oct 2017 | B2 |
9794688 | You | Oct 2017 | B2 |
9801552 | Romesburg et al. | Oct 2017 | B2 |
9808204 | Leboeuf et al. | Nov 2017 | B2 |
9924276 | Wenzel | Mar 2018 | B2 |
9930458 | Freed et al. | Mar 2018 | B2 |
9949035 | Rucker et al. | Apr 2018 | B2 |
9949039 | Puria et al. | Apr 2018 | B2 |
9949045 | Kure et al. | Apr 2018 | B2 |
9961454 | Puria et al. | May 2018 | B2 |
9964672 | Phair et al. | May 2018 | B2 |
10003888 | Stephanou et al. | Jun 2018 | B2 |
10034103 | Puria et al. | Jul 2018 | B2 |
10154352 | Perkins et al. | Dec 2018 | B2 |
10178483 | Teran et al. | Jan 2019 | B2 |
10206045 | Kaltenbacher et al. | Feb 2019 | B2 |
10237663 | Puria et al. | Mar 2019 | B2 |
10284964 | Olsen et al. | May 2019 | B2 |
10286215 | Perkins et al. | May 2019 | B2 |
10292601 | Facteau et al. | May 2019 | B2 |
10492010 | Rucker et al. | Nov 2019 | B2 |
10511913 | Puria et al. | Dec 2019 | B2 |
10516946 | Puria et al. | Dec 2019 | B2 |
10516949 | Puria et al. | Dec 2019 | B2 |
10516950 | Perkins et al. | Dec 2019 | B2 |
10516951 | Wenzel | Dec 2019 | B2 |
10531206 | Freed et al. | Jan 2020 | B2 |
10609492 | Olsen et al. | Mar 2020 | B2 |
10743110 | Puria et al. | Aug 2020 | B2 |
10779094 | Rucker et al. | Sep 2020 | B2 |
10863286 | Perkins et al. | Dec 2020 | B2 |
11057714 | Puria et al. | Jul 2021 | B2 |
11058305 | Perkins et al. | Jul 2021 | B2 |
11070927 | Rucker et al. | Jul 2021 | B2 |
11102594 | Shaquer et al. | Aug 2021 | B2 |
20010003788 | Ball et al. | Jun 2001 | A1 |
20010007050 | Adelman | Jul 2001 | A1 |
20010024507 | Boesen | Sep 2001 | A1 |
20010027342 | Dormer | Oct 2001 | A1 |
20010029313 | Kennedy | Oct 2001 | A1 |
20010043708 | Brimhall | Nov 2001 | A1 |
20010053871 | Zilberman et al. | Dec 2001 | A1 |
20010055405 | Cho | Dec 2001 | A1 |
20020012438 | Leysieffer et al. | Jan 2002 | A1 |
20020025055 | Stonikas et al. | Feb 2002 | A1 |
20020029070 | Leysieffer et al. | Mar 2002 | A1 |
20020030871 | Anderson et al. | Mar 2002 | A1 |
20020035309 | Leysieffer | Mar 2002 | A1 |
20020048374 | Soli et al. | Apr 2002 | A1 |
20020085728 | Shennib et al. | Jul 2002 | A1 |
20020086715 | Sahagen | Jul 2002 | A1 |
20020172350 | Edwards et al. | Nov 2002 | A1 |
20020183587 | Dormer | Dec 2002 | A1 |
20030021903 | Shlenker et al. | Jan 2003 | A1 |
20030055311 | Neukermans et al. | Mar 2003 | A1 |
20030064746 | Rader et al. | Apr 2003 | A1 |
20030081803 | Petilli et al. | May 2003 | A1 |
20030097178 | Roberson et al. | May 2003 | A1 |
20030125602 | Sokolich et al. | Jul 2003 | A1 |
20030142841 | Wiegand | Jul 2003 | A1 |
20030208099 | Ball | Nov 2003 | A1 |
20030208888 | Fearing et al. | Nov 2003 | A1 |
20030220536 | Hissong | Nov 2003 | A1 |
20040019294 | Stirnemann | Jan 2004 | A1 |
20040093040 | Boylston et al. | May 2004 | A1 |
20040121291 | Knapp et al. | Jun 2004 | A1 |
20040158157 | Jensen et al. | Aug 2004 | A1 |
20040165742 | Shennib et al. | Aug 2004 | A1 |
20040166495 | Greinwald et al. | Aug 2004 | A1 |
20040167377 | Schafer et al. | Aug 2004 | A1 |
20040184732 | Zhou et al. | Sep 2004 | A1 |
20040190734 | Kates | Sep 2004 | A1 |
20040202339 | O'Brien et al. | Oct 2004 | A1 |
20040202340 | Armstrong et al. | Oct 2004 | A1 |
20040208333 | Cheung et al. | Oct 2004 | A1 |
20040234089 | Rembrand et al. | Nov 2004 | A1 |
20040234092 | Wada et al. | Nov 2004 | A1 |
20040236416 | Falotico | Nov 2004 | A1 |
20040240691 | Grafenberg | Dec 2004 | A1 |
20050018859 | Buchholz | Jan 2005 | A1 |
20050020873 | Berrang et al. | Jan 2005 | A1 |
20050036639 | Bachler et al. | Feb 2005 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050088435 | Geng | Apr 2005 | A1 |
20050101830 | Easter et al. | May 2005 | A1 |
20050111683 | Chabries et al. | May 2005 | A1 |
20050117765 | Meyer et al. | Jun 2005 | A1 |
20050163333 | Abel et al. | Jul 2005 | A1 |
20050190939 | Fretz et al. | Sep 2005 | A1 |
20050196005 | Shennib et al. | Sep 2005 | A1 |
20050222823 | Brumback | Oct 2005 | A1 |
20050226446 | Luo et al. | Oct 2005 | A1 |
20050267549 | Della Santina et al. | Dec 2005 | A1 |
20050271870 | Jackson | Dec 2005 | A1 |
20050288739 | Hassler, Jr. et al. | Dec 2005 | A1 |
20060015155 | Charvin et al. | Jan 2006 | A1 |
20060023908 | Perkins et al. | Feb 2006 | A1 |
20060058573 | Neisz et al. | Mar 2006 | A1 |
20060062420 | Araki | Mar 2006 | A1 |
20060074159 | Lu et al. | Apr 2006 | A1 |
20060075175 | Jensen et al. | Apr 2006 | A1 |
20060107744 | Li et al. | May 2006 | A1 |
20060129210 | Cantin et al. | Jun 2006 | A1 |
20060161227 | Walsh, Jr. et al. | Jul 2006 | A1 |
20060161255 | Zarowski et al. | Jul 2006 | A1 |
20060177079 | Baekgaard Jensen et al. | Aug 2006 | A1 |
20060177082 | Solomito, Jr. et al. | Aug 2006 | A1 |
20060183965 | Kasic, II et al. | Aug 2006 | A1 |
20060189841 | Pluvinage et al. | Aug 2006 | A1 |
20060231914 | Carey, III | Oct 2006 | A1 |
20060233398 | Husung | Oct 2006 | A1 |
20060237126 | Guffrey et al. | Oct 2006 | A1 |
20060247735 | Honert et al. | Nov 2006 | A1 |
20060251278 | Puria et al. | Nov 2006 | A1 |
20060256989 | Olsen et al. | Nov 2006 | A1 |
20060278245 | Gan | Dec 2006 | A1 |
20070030990 | Fischer | Feb 2007 | A1 |
20070036377 | Stirnemann | Feb 2007 | A1 |
20070076913 | Schanz | Apr 2007 | A1 |
20070083078 | Easter et al. | Apr 2007 | A1 |
20070100197 | Perkins et al. | May 2007 | A1 |
20070127748 | Carlile et al. | Jun 2007 | A1 |
20070127752 | Armstrong | Jun 2007 | A1 |
20070127766 | Combest | Jun 2007 | A1 |
20070135870 | Shanks et al. | Jun 2007 | A1 |
20070161848 | Dalton et al. | Jul 2007 | A1 |
20070191673 | Ball et al. | Aug 2007 | A1 |
20070201713 | Fang et al. | Aug 2007 | A1 |
20070206825 | Thomasson | Sep 2007 | A1 |
20070223755 | Salvetti et al. | Sep 2007 | A1 |
20070225776 | Fritsch et al. | Sep 2007 | A1 |
20070236704 | Carr et al. | Oct 2007 | A1 |
20070250119 | Tyler et al. | Oct 2007 | A1 |
20070251082 | Milojevic et al. | Nov 2007 | A1 |
20070258507 | Lee et al. | Nov 2007 | A1 |
20070286429 | Grafenberg et al. | Dec 2007 | A1 |
20080021518 | Hochmair et al. | Jan 2008 | A1 |
20080051623 | Schneider et al. | Feb 2008 | A1 |
20080054509 | Berman et al. | Mar 2008 | A1 |
20080063228 | Mejia et al. | Mar 2008 | A1 |
20080063231 | Juneau et al. | Mar 2008 | A1 |
20080064918 | Jolly | Mar 2008 | A1 |
20080077198 | Webb et al. | Mar 2008 | A1 |
20080089292 | Kitazoe et al. | Apr 2008 | A1 |
20080107292 | Kornagel | May 2008 | A1 |
20080123866 | Rule et al. | May 2008 | A1 |
20080130927 | Theverapperuma et al. | Jun 2008 | A1 |
20080188707 | Bernard et al. | Aug 2008 | A1 |
20080298600 | Poe et al. | Dec 2008 | A1 |
20080300703 | Widmer et al. | Dec 2008 | A1 |
20090016553 | Ho et al. | Jan 2009 | A1 |
20090023976 | Cho et al. | Jan 2009 | A1 |
20090043149 | Abel et al. | Feb 2009 | A1 |
20090076581 | Gibson | Mar 2009 | A1 |
20090092271 | Fay et al. | Apr 2009 | A1 |
20090097681 | Puria et al. | Apr 2009 | A1 |
20090131742 | Cho et al. | May 2009 | A1 |
20090141919 | Spitaels et al. | Jun 2009 | A1 |
20090149697 | Steinhardt et al. | Jun 2009 | A1 |
20090157143 | Edler et al. | Jun 2009 | A1 |
20090175474 | Salvetti et al. | Jul 2009 | A1 |
20090246627 | Park | Oct 2009 | A1 |
20090253951 | Ball et al. | Oct 2009 | A1 |
20090262966 | Vestergaard et al. | Oct 2009 | A1 |
20090281367 | Cho et al. | Nov 2009 | A1 |
20090310805 | Petroff | Dec 2009 | A1 |
20090316922 | Merks et al. | Dec 2009 | A1 |
20100034409 | Fay et al. | Feb 2010 | A1 |
20100036488 | De Juan, Jr. et al. | Feb 2010 | A1 |
20100048982 | Puria et al. | Feb 2010 | A1 |
20100085176 | Flick | Apr 2010 | A1 |
20100103404 | Remke et al. | Apr 2010 | A1 |
20100111315 | Kroman | May 2010 | A1 |
20100114190 | Bendett et al. | May 2010 | A1 |
20100145135 | Ball et al. | Jun 2010 | A1 |
20100152527 | Puria | Jun 2010 | A1 |
20100171369 | Baarman et al. | Jul 2010 | A1 |
20100172507 | Merks | Jul 2010 | A1 |
20100177918 | Keady et al. | Jul 2010 | A1 |
20100202645 | Puria et al. | Aug 2010 | A1 |
20100222639 | Purcell et al. | Sep 2010 | A1 |
20100260364 | Merks | Oct 2010 | A1 |
20100272299 | Van Schuylenbergh et al. | Oct 2010 | A1 |
20100290653 | Wiggins et al. | Nov 2010 | A1 |
20100312040 | Puria et al. | Dec 2010 | A1 |
20110062793 | Azancot et al. | Mar 2011 | A1 |
20110069852 | Arndt et al. | Mar 2011 | A1 |
20110077453 | Pluvinage et al. | Mar 2011 | A1 |
20110084654 | Julstrom et al. | Apr 2011 | A1 |
20110112462 | Parker et al. | May 2011 | A1 |
20110116666 | Dittberner et al. | May 2011 | A1 |
20110125222 | Perkins et al. | May 2011 | A1 |
20110130622 | Ilberg et al. | Jun 2011 | A1 |
20110142274 | Perkins et al. | Jun 2011 | A1 |
20110144414 | Spearman et al. | Jun 2011 | A1 |
20110152601 | Puria et al. | Jun 2011 | A1 |
20110152602 | Perkins et al. | Jun 2011 | A1 |
20110152603 | Perkins et al. | Jun 2011 | A1 |
20110152976 | Perkins et al. | Jun 2011 | A1 |
20110164771 | Jensen et al. | Jul 2011 | A1 |
20110182453 | Van Hal et al. | Jul 2011 | A1 |
20110196460 | Weiss | Aug 2011 | A1 |
20110221391 | Won et al. | Sep 2011 | A1 |
20110249845 | Kates | Oct 2011 | A1 |
20110249847 | Salvetti et al. | Oct 2011 | A1 |
20110257290 | Zeller | Oct 2011 | A1 |
20110258839 | Probst | Oct 2011 | A1 |
20110271965 | Parkins et al. | Nov 2011 | A1 |
20120008807 | Gran | Jan 2012 | A1 |
20120014546 | Puria et al. | Jan 2012 | A1 |
20120038881 | Amirparviz et al. | Feb 2012 | A1 |
20120039493 | Rucker et al. | Feb 2012 | A1 |
20120092461 | Fisker | Apr 2012 | A1 |
20120114157 | Arndt et al. | May 2012 | A1 |
20120140967 | Aubert et al. | Jun 2012 | A1 |
20120217087 | Ambrose et al. | Aug 2012 | A1 |
20120236524 | Pugh et al. | Sep 2012 | A1 |
20120263339 | Funahashi | Oct 2012 | A1 |
20130004004 | Zhao et al. | Jan 2013 | A1 |
20130034258 | Lin | Feb 2013 | A1 |
20130083938 | Bakalos et al. | Apr 2013 | A1 |
20130089227 | Kates | Apr 2013 | A1 |
20130195300 | Larsen et al. | Aug 2013 | A1 |
20130230204 | Monahan et al. | Sep 2013 | A1 |
20130287239 | Fay et al. | Oct 2013 | A1 |
20130303835 | Koskowich | Nov 2013 | A1 |
20130308782 | Dittberner et al. | Nov 2013 | A1 |
20130308807 | Burns | Nov 2013 | A1 |
20130315428 | Perkins et al. | Nov 2013 | A1 |
20130343584 | Bennett et al. | Dec 2013 | A1 |
20130343585 | Bennett et al. | Dec 2013 | A1 |
20130343587 | Naylor et al. | Dec 2013 | A1 |
20140003640 | Puria et al. | Jan 2014 | A1 |
20140056453 | Olsen et al. | Feb 2014 | A1 |
20140084698 | Asanuma et al. | Mar 2014 | A1 |
20140107423 | Yaacobi | Apr 2014 | A1 |
20140153761 | Shennib et al. | Jun 2014 | A1 |
20140169603 | Sacha et al. | Jun 2014 | A1 |
20140177863 | Parkins | Jun 2014 | A1 |
20140254856 | Blick et al. | Sep 2014 | A1 |
20140275734 | Perkins et al. | Sep 2014 | A1 |
20140286514 | Pluvinage et al. | Sep 2014 | A1 |
20140288356 | Van Vlem | Sep 2014 | A1 |
20140288358 | Puria et al. | Sep 2014 | A1 |
20140296620 | Puria et al. | Oct 2014 | A1 |
20140321657 | Stirnemann | Oct 2014 | A1 |
20140379874 | Starr et al. | Dec 2014 | A1 |
20150021568 | Gong et al. | Jan 2015 | A1 |
20150023540 | Fay et al. | Jan 2015 | A1 |
20150031941 | Perkins et al. | Jan 2015 | A1 |
20150049889 | Bern | Feb 2015 | A1 |
20150117689 | Bergs et al. | Apr 2015 | A1 |
20150124985 | Kim et al. | May 2015 | A1 |
20150201269 | Dahl et al. | Jul 2015 | A1 |
20150222978 | Murozaki et al. | Aug 2015 | A1 |
20150245131 | Facteau et al. | Aug 2015 | A1 |
20150358743 | Killion | Dec 2015 | A1 |
20160008176 | Goldstein | Jan 2016 | A1 |
20160029132 | Freed et al. | Jan 2016 | A1 |
20160064814 | Jang et al. | Mar 2016 | A1 |
20160087687 | Kesler et al. | Mar 2016 | A1 |
20160094043 | Hao et al. | Mar 2016 | A1 |
20160150331 | Wenzel | May 2016 | A1 |
20160277854 | Puria et al. | Sep 2016 | A1 |
20160309265 | Pluvinage et al. | Oct 2016 | A1 |
20160309266 | Olsen et al. | Oct 2016 | A1 |
20160330555 | Vonlanthen et al. | Nov 2016 | A1 |
20170040012 | Goldstein | Feb 2017 | A1 |
20170095202 | Facteau et al. | Apr 2017 | A1 |
20170150275 | Puria et al. | May 2017 | A1 |
20170195801 | Rucker et al. | Jul 2017 | A1 |
20170195804 | Sandhu et al. | Jul 2017 | A1 |
20170195806 | Atamaniuk et al. | Jul 2017 | A1 |
20170195809 | Teran et al. | Jul 2017 | A1 |
20170257710 | Parker | Sep 2017 | A1 |
20180014128 | Puria et al. | Jan 2018 | A1 |
20180020291 | Puria et al. | Jan 2018 | A1 |
20180020296 | Wenzel | Jan 2018 | A1 |
20180077503 | Shaquer et al. | Mar 2018 | A1 |
20180077504 | Shaquer et al. | Mar 2018 | A1 |
20180167750 | Freed et al. | Jun 2018 | A1 |
20180213331 | Rucker et al. | Jul 2018 | A1 |
20180213335 | Puria et al. | Jul 2018 | A1 |
20180262846 | Perkins et al. | Sep 2018 | A1 |
20180317026 | Puria | Nov 2018 | A1 |
20180376255 | Parker | Dec 2018 | A1 |
20190069097 | Perkins et al. | Feb 2019 | A1 |
20190158961 | Puria et al. | May 2019 | A1 |
20190166438 | Perkins et al. | May 2019 | A1 |
20190230449 | Puria | Jul 2019 | A1 |
20190239005 | Sandhu et al. | Aug 2019 | A1 |
20190253811 | Unno et al. | Aug 2019 | A1 |
20190253815 | Atamaniuk et al. | Aug 2019 | A1 |
20190269336 | Perkins et al. | Sep 2019 | A1 |
20200037082 | Perkins et al. | Jan 2020 | A1 |
20200084551 | Puria et al. | Mar 2020 | A1 |
20200092662 | Wenzel | Mar 2020 | A1 |
20200092664 | Freed et al. | Mar 2020 | A1 |
20200128338 | Shaquer et al. | Apr 2020 | A1 |
20200186941 | Olsen et al. | Jun 2020 | A1 |
20200186942 | Flaherty et al. | Jun 2020 | A1 |
20200304927 | Shaquer et al. | Sep 2020 | A1 |
20200374639 | Rucker et al. | Nov 2020 | A1 |
20200396551 | Dy et al. | Dec 2020 | A1 |
20210029451 | Fitz et al. | Jan 2021 | A1 |
20210029474 | Larkin et al. | Jan 2021 | A1 |
20210186343 | Perkins et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2004301961 | Feb 2005 | AU |
2242545 | Sep 2009 | CA |
1176731 | Mar 1998 | CN |
101459868 | Jun 2009 | CN |
105491496 | Apr 2016 | CN |
2044870 | Mar 1972 | DE |
3243850 | May 1984 | DE |
3508830 | Sep 1986 | DE |
0092822 | Nov 1983 | EP |
0242038 | Oct 1987 | EP |
0291325 | Nov 1988 | EP |
0296092 | Dec 1988 | EP |
0242038 | May 1989 | EP |
0296092 | Aug 1989 | EP |
0352954 | Jan 1990 | EP |
0291325 | Jun 1990 | EP |
0352954 | Aug 1991 | EP |
1035753 | Sep 2000 | EP |
1435757 | Jul 2004 | EP |
1845919 | Oct 2007 | EP |
1955407 | Aug 2008 | EP |
1845919 | Sep 2010 | EP |
2272520 | Jan 2011 | EP |
2301262 | Mar 2011 | EP |
2752030 | Jul 2014 | EP |
3101519 | Dec 2016 | EP |
2425502 | Jan 2017 | EP |
2907294 | May 2017 | EP |
3183814 | Jun 2017 | EP |
3094067 | Oct 2017 | EP |
3006079 | Mar 2019 | EP |
2455820 | Nov 1980 | FR |
2085694 | Apr 1982 | GB |
S60154800 | Aug 1985 | JP |
S621726 | Jan 1987 | JP |
S63252174 | Oct 1988 | JP |
S6443252 | Feb 1989 | JP |
H09327098 | Dec 1997 | JP |
2000504913 | Apr 2000 | JP |
2004187953 | Jul 2004 | JP |
2004193908 | Jul 2004 | JP |
2005516505 | Jun 2005 | JP |
2006060833 | Mar 2006 | JP |
100624445 | Sep 2006 | KR |
WO-9209181 | May 1992 | WO |
WO-9501678 | Jan 1995 | WO |
WO-9621334 | Jul 1996 | WO |
WO-9736457 | Oct 1997 | WO |
WO-9745074 | Dec 1997 | WO |
WO-9806236 | Feb 1998 | WO |
WO-9903146 | Jan 1999 | WO |
WO-9915111 | Apr 1999 | WO |
WO-0022875 | Apr 2000 | WO |
WO-0022875 | Jul 2000 | WO |
WO-0150815 | Jul 2001 | WO |
WO-0158206 | Aug 2001 | WO |
WO-0176059 | Oct 2001 | WO |
WO-0158206 | Feb 2002 | WO |
WO-0239874 | May 2002 | WO |
WO-0239874 | Feb 2003 | WO |
WO-03030772 | Apr 2003 | WO |
WO-03063542 | Jul 2003 | WO |
WO-03063542 | Jan 2004 | WO |
WO-2004010733 | Jan 2004 | WO |
WO-2005015952 | Feb 2005 | WO |
WO-2005107320 | Nov 2005 | WO |
WO-2006014915 | Feb 2006 | WO |
WO-2006037156 | Apr 2006 | WO |
WO-2006039146 | Apr 2006 | WO |
WO-2006042298 | Apr 2006 | WO |
WO-2006071210 | Jul 2006 | WO |
WO-2006075169 | Jul 2006 | WO |
WO-2006075175 | Jul 2006 | WO |
WO-2006118819 | Nov 2006 | WO |
WO-2006042298 | Dec 2006 | WO |
WO-2007023164 | Mar 2007 | WO |
WO-2009046329 | Apr 2009 | WO |
WO-2009047370 | Apr 2009 | WO |
WO-2009049320 | Apr 2009 | WO |
WO-2009056167 | May 2009 | WO |
WO-2009062142 | May 2009 | WO |
WO-2009047370 | Jul 2009 | WO |
WO-2009125903 | Oct 2009 | WO |
WO-2009145842 | Dec 2009 | WO |
WO-2009146151 | Dec 2009 | WO |
WO-2009155358 | Dec 2009 | WO |
WO-2009155361 | Dec 2009 | WO |
WO-2009155385 | Dec 2009 | WO |
WO-2010033932 | Mar 2010 | WO |
WO-2010033933 | Mar 2010 | WO |
WO-2010077781 | Jul 2010 | WO |
WO-2010147935 | Dec 2010 | WO |
WO-2010148345 | Dec 2010 | WO |
WO-2011005500 | Jan 2011 | WO |
WO-2012088187 | Jun 2012 | WO |
WO-2012149970 | Nov 2012 | WO |
WO-2013016336 | Jan 2013 | WO |
WO-2016011044 | Jan 2016 | WO |
WO-2016045709 | Mar 2016 | WO |
WO-2016146487 | Sep 2016 | WO |
WO-2017045700 | Mar 2017 | WO |
WO-2017059218 | Apr 2017 | WO |
WO-2017059240 | Apr 2017 | WO |
WO-2017116791 | Jul 2017 | WO |
WO-2017116865 | Jul 2017 | WO |
WO-2018048794 | Mar 2018 | WO |
WO-2018081121 | May 2018 | WO |
WO-2018093733 | May 2018 | WO |
WO-2019055308 | Mar 2019 | WO |
WO-2019173470 | Sep 2019 | WO |
WO-2019199680 | Oct 2019 | WO |
WO-2019199683 | Oct 2019 | WO |
WO-2020028082 | Feb 2020 | WO |
WO-2020028083 | Feb 2020 | WO |
WO-2020028084 | Feb 2020 | WO |
WO-2020028085 | Feb 2020 | WO |
WO-2020028086 | Feb 2020 | WO |
WO-2020028087 | Feb 2020 | WO |
WO-2020028088 | Feb 2020 | WO |
WO-2020176086 | Sep 2020 | WO |
WO-2021003087 | Jan 2021 | WO |
Entry |
---|
Asbeck, et al. Scaling Hard Vertical Surfaces with Compliant Microspine Arrays, The International Journal of Robotics Research 2006; 25; 1165-79. |
Atasoy [Paper] Opto-acoustic Imaging. For BYM504E Biomedical Imaging Systems class at ITU, downloaded from the Internet www2.itu.edu.td-cilesiz/courses/BYM504- 2005-OA504041413.pdf, 14 pages. |
Athanassiou, et al. Laser controlled photomechanical actuation of photochromic polymers Microsystems. Rev. Adv. Mater. Sci. 2003; 5:245-251. |
Autumn, et al. Dynamics of geckos running vertically, The Journal of Experimental Biology 209, 260-272, (2006). |
Autumn, et al., Evidence for van der Waals adhesion in gecko setae, www.pnas.orgycgiydoiy10.1073ypnas.192252799 (2002). |
Ayatollahi, et al. Design and Modeling of Micromachined Condenser MEMS Loudspeaker using Permanent Magnet Neodymium-Iron-Boron (Nd—Fe—B). IEEE International Conference on Semiconductor Electronics, 2006. ICSE '06, Oct. 29 2006-Dec. 1 2006; 160-166. |
Baer, et al. Effects of Low Pass Filtering on the Intelligibility of Speech in Noise for People With and Without Dead Regions at High Frequencies. J. Acost. Soc. Am 112 (3), pt. 1, (Sep. 2002), pp. 1133-1144. |
Best, et al. The influence of high frequencies on speech localization. Abstract 981 (Feb. 24, 2003) from www.aro.org/abstracts/abstracts.html. |
Birch, et al. Microengineered systems for the hearing impaired. IEE Colloquium on Medical Applications of Microengineering, Jan. 31, 1996; pp. 2/1-2/5. |
Boedts. Tympanic epithelial migration, Clinical Otolaryngology 1978, 3, 249-253. |
Burkhard, et al. Anthropometric Manikin for Acoustic Research. J. Acoust. Soc. Am., vol. 58, No. 1, (Jul. 1975), pp. 214-222. |
Camacho-Lopez, et al. Fast Liquid Crystal Elastomer Swims Into the Dark, Electronic Liquid Crystal Communications. Nov. 26, 2003; 9 pages total. |
Carlile, et al. Frequency bandwidth and multi-talker environments. Audio Engineering Society Convention 120. Audio Engineering Society, May 20-23, 2006. Paris, France. 118:8 pages. |
Carlile, et al. Spatialisation of talkers and the segregation of concurrent speech. Abstract 1264 (Feb. 24, 2004) from www.aro.org/abstracts/abstracts.html. |
Cheng, et al. A Silicon Microspeaker for Hearing Instruments. Journal of Micromechanics and Microengineering 2004; 14(7):859-866. |
Dictionary.com's (via American Heritage Medical Dictionary) online dictionary definition of ‘percutaneous’. Accessed on Jun. 3, 2013. 2 pages. |
Merriam-Webster's online dictionary definition of ‘percutaneous’. Accessed on Jun. 3, 2013. 3 pages. |
Datskos, et al. Photoinduced and thermal stress in silicon microcantilevers. Applied Physics Letters. Oct. 19, 1998; 73(16):2319-2321. |
Decraemer, et al. A method for determining three-dimensional vibration in the ear. Hearing Res., 77:19-37 (1994). |
Dundas et al. The Earlens Light-Driven Hearing Aid: Top 10 questions and answers. Hearing Review. 2018;25(2):36-39. |
Ear. Downloaded from the Internet. Accessed Jun. 17, 2008. 4 pages. URL:<http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/Se/ear.html>. |
Edinger, J.R. High-Quality Audio Amplifier With Automatic Bias Control. Audio Engineering; Jun. 1947; pp. 7-9. |
Fay. Cat eardrum mechanics. Ph.D. thesis. Disseration submitted to Department of Aeronautics and Astronautics. Standford University. May 2001; 210 pages total. |
Fay, et al. Cat eardrum response mechanics. Mechanics and Computation Division. Department of Mechanical Engineering. Standford University. 2002; 10 pages total. |
Fay, et al. Preliminary evaluation of a light-based contact hearing device for the hearing impaired. Otol Neurotol. Jul. 2013;34(5):912-21. doi: 10.1097/MAO.0b013e31827de4b1. |
Fay, et al. The discordant eardrum, PNAS, Dec. 26, 2006, vol. 103, No. 52, p. 19743-19748. |
Fletcher. Effects of Distortion on the Individual Speech Sounds. Chapter 18, ASA Edition of Speech and Hearing in Communication, Acoust Soc.of Am. (republished in 1995) pp. 415-423. |
Freyman, et al. Spatial Release from Informational Masking in Speech Recognition. J. Acost. Soc. Am., vol. 109, No. 5, pt. 1, (May 2001); 2112-2122. |
Freyman, et al. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am., vol. 106, No. 6, (Dec. 1999); 3578-3588. |
Fritsch, et al. EarLens transducer behavior in high-field strength MRI scanners. Otolaryngol Head Neck Surg. Mar. 2009;140(3):426-8. doi: 10.1016/j.otohns.2008.10.016. |
Galbraith et al. A wide-band efficient inductive transdermal power and data link with coupling insensitive gain IEEE Trans Biomed Eng. Apr. 1987;34(4):265-75. |
Gantz, et al. Broad Spectrum Amplification with a Light Driven Hearing System. Combined Otolaryngology Spring Meetings, 2016 (Chicago). |
Gantz, et al. Light Driven Hearing Aid: A Multi-Center Clinical Study. Association for Research in Otolaryngology Annual Meeting, 2016 (San Diego). |
Gantz, et al. Light-Driven Contact Hearing Aid for Broad Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology Journal, 2016 (in review). |
Gantz, et al. Light-Driven Contact Hearing Aid for Broad-Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology. Copyright 2016. 7 pages. |
GE, et al., Carbon nanotube-based synthetic gecko tapes, p. 10792-10795, PNAS, Jun. 26, 2007, vol. 104, No. 26. |
Gennum, GA3280 Preliminary Data Sheet: Voyageur TD Open Platform DSP System for Ultra Low Audio Processing, downloaded from the Internet:<<http://www.sounddesigntechnologies.com/products/pdf/37601DOC.pdf>>, Oct. 2006; 17 pages. |
Gobin, et al. Comments on the physical basis of the active materials concept. Proc. SPIE 2003; 4512:84-92. |
Gorb, et al. Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects, Integr. Comp_ Biol., 42:1127-1139 (2002). |
Hakansson, et al. Percutaneous vs. transcutaneous transducers for hearing by direct bone conduction (Abstract). Otolaryngol Head Neck Surg. Apr. 1990;102(4):339-44. |
Hato, et al. Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neurootol., 8:140-152 (Jan. 30, 2003). |
Headphones. Wikipedia Entry. Downloaded from the Internet. Accessed Oct. 27, 2008. 7 pages. URL: http://en.wikipedia.org/wiki/Headphones>. |
Hofman, et al. Relearning Sound Localization With New Ears. Nature Neuroscience, vol. 1, No. 5, (Sep. 1998); 417-421. |
International Search Report and Written Opinion dated Jan. 19, 2018 for International PCT Patent Application No. PCT/US2017/061388. |
Izzo, et al. Laser Stimulation of Auditory Neurons: Effect of Shorter Pulse Duration and Penetration Depth. Biophys J. Apr. 15, 2008;94(8):3159-3166. |
Izzo, et al. Laser Stimulation of the Auditory Nerve. Lasers Surg Med. Sep. 2006;38(8):745-753. |
Izzo, et al. Selectivity of Neural Stimulation in the Auditory System: A Comparison of Optic and Electric Stimuli. J Biomed Opt. Mar.-Apr. 2007;12(2):021008. |
Jian, et al. A 0.6 V, 1.66 mW energy harvester and audio driver for tympanic membrane transducer with wirelessly optical signal and power transfer. InCircuits and Systems (ISCAS), 2014 IEEE International Symposium on Jun. 1, 2014. 874-7. IEEE. |
Jin, et al. Speech Localization. J. Audio Eng. Soc. convention paper, presented at the AES 112th Convention, Munich, Germany, May 10-13, 2002, 13 pages total. |
Khaleghi, et al. Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am. Mar. 2017;141(3):1683. |
Khaleghi et al. Attenuating the feedback pressure of a light-activated hearing device to allows microphone placement at the ear canal entrance. IHCON 2016, International Hearing Aid Research Conference, Tahoe City, CA, Aug. 2016. |
Khaleghi, et al. Characterization of Ear-Canal Feedback Pressure due to Umbo-Drive Forces: Finite-Element vs. Circuit Models. ARO Midwinter Meeting 2016, (San Diego). |
Khaleghi et al. Mechano-Electro-Magnetic Finite Element Model of a Balanced Armature Transducer for a Contact Hearing Aid. Proc. MoH 2017, Mechanics of Hearing workshop, Brock University, Jun. 2017. |
Khaleghi et al. Multiphysics Finite Element Model of a Balanced Armature Transducer used in a Contact Hearing Device. ARO 2017, 40th ARO MidWinter Meeting, Baltimore, MD, Feb. 2017. |
Kiessling, et al. Occlusion Effect of Earmolds with Different Venting Systems. J Am Acad Audiol. Apr. 2005;16(4):237-49. |
Killion, et al. The case of the missing dots: AI and SNR loss. The Hearing Journal, 1998. 51(5), 32-47. |
Killion. Myths About Hearing Noise and Directional Microphones. The Hearing Review. Feb. 2004; 11(2):14, 16, 18, 19, 72 & 73. |
Killion. SNR loss: I can hear what people say but I can't understand them. The Hearing Review, 1997; 4(12):8-14. |
Lee, et al. A Novel Opto-Electromagnetic Actuator Coupled to the tympanic Membrane. J Biomech. Dec. 5, 2008;41(16):3515-8. Epub Nov. 7, 2008. |
Lee, et al. The optimal magnetic force for a novel actuator coupled to the tympanic membrane: a finite element analysis. Biomedical engineering: applications, basis and communications. 2007; 19(3):171-177. |
Levy, et al. Characterization of the available feedback gain margin at two device microphone locations, in the fossa triangularis and Behind the Ear, for the light-based contact hearing device. Acoustical Society of America (ASA) meeting, 2013 (San Francisco). |
Levy, et al. Extended High-Frequency Bandwidth Improves Speech Reception in the Presence of Spatially Separated Masking Speech. Ear Hear. Sep.-Oct. 2015;36(5):e214-24. doi: 10.1097/Aud.0000000000000161. |
Levy et al. Light-driven contact hearing aid: a removable direct-drive hearing device option for mild to severe sensorineural hearing impairment. Conference on Implantable Auditory Prostheses, Tahoe City, CA, Jul. 2017. 4 pages. |
Lezal. Chalcogenide glasses—survey and progress. Journal of Optoelectronics and Advanced Materials. Mar. 2003; 5(1):23-34. |
Mah. Fundamentals of photovoltaic materials. National Solar Power Research Institute. Dec. 21, 1998, 3-9. |
Makino, et al. Epithelial migration in the healing process of tympanic membrane perforations. Eur Arch Otorhinolaryngol. 1990; 247: 352-355. |
Makino, et al., Epithelial migration on the tympanic membrane and external canal, Arch Otorhinolaryngol (1986) 243:39-42. |
Markoff. Intuition + Money: An Aha Moment. New York Times Oct. 11, 2008, p. BU4, 3 pages total. |
Martin, et al. Utility of Monaural Spectral Cues is Enhanced in the Presence of Cues to Sound-Source Lateral Angle. JARO. 2004; 5:80-89. |
McElveen et al. Overcoming High-Frequency Limitations of Air Conduction Hearing Devices Using a Light-Driven Contact Hearing Aid. Poster presentation at The Triological Society, 120th Annual Meeting at COSM, Apr. 28, 2017; San Diego, CA. |
Michaels, et al., Auditory Epithelial Migration on the Human Tympanic Membrane: II. The Existence of Two Discrete Migratory Pathways and Their Embryologic Correlates, The American Journal of Anatomy 189:189-200 (1990). |
Moore, et al. Perceived naturalness of spectrally distorted speech and music. J Acoust Soc Am. Jul. 2003;114(1):408-19. |
Moore, et al. Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss. Ear Hear. Dec. 2008;29(6):907-22. doi: 10.1097/AUD.0b013e31818246f6. |
Moore. Loudness perception and intensity resolution. Cochlear Hearing Loss, Chapter 4, pp. 90-115, Whurr Publishers Ltd., London (1998). |
Murphy M, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhesion Sci Technol, vol. 21, No. 12-13, p. 1281-1296, 2007. |
Murugasu, et al. Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: temporal bone pressure gain measurements and clinical audiological data. Otol Neurotol. Jul. 2005; 2694):572-582. |
Musicant, et al. Direction-Dependent Spectral Properties of Cat External Ear: New Data and Cross-Species Comparisons. J. Acostic. Soc. Am, May 10-13, 2002, vol. 87, No. 2, (Feb. 1990), pp. 757-781. |
National Semiconductor, LM4673 Boomer: Filterless, 2.65W, Mono, Class D Audio Power Amplifier, [Data Sheet] downloaded from the Internet:<<http://www.national.com/ds/LM/LM4673.pdf>>; Nov. 1, 2007; 24 pages. |
Nishihara, et al. Effect of changes in mass on middle ear function. Otolaryngol Head Neck Surg. Nov. 1993;109(5):889-910. |
O'Connor, et al. Middle ear Cavity and Ear Canal Pressure-Driven Stapes Velocity Responses in Human Cadaveric Temporal Bones. J Acoust Soc Am. Sep. 2006;120(3):1517-28. |
Park, et al. Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. J. Micromech. Microeng. vol. 12 (2002), pp. 505-511. |
Perkins, et al. Light-based Contact Hearing Device: Characterization of available Feedback Gain Margin at two device microphone locations. Presented at AAO-HNSF Annual Meeting, 2013 (Vancouver). |
Perkins, et al. The EarLens Photonic Transducer: Extended bandwidth. Presented at AAO-HNSF Annual Meeting, 2011 (San Francisco). |
Perkins, et al. The EarLens System: New sound transduction methods. Hear Res. Feb. 2, 2010; 10 pages total. |
Perkins, R. Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg. Jun. 1996;114(6):720-8. |
Poosanaas, et al. Influence of sample thickness on the performance of photostrictive ceramics, J. App. Phys. Aug. 1, 1998; 84(3):1508-1512. |
Puria et al. A gear in the middle ear. ARO Denver CO, 2007b. |
Puria, et al. Cues above 4 kilohertz can improve spatially separated speech recognition. The Journal of the Acoustical Society of America, 2011, 129, 2384. |
Puria, et al. Extending bandwidth above 4 kHz improves speech understanding in the presence of masking speech. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego). |
Puria, et al. Extending bandwidth provides the brain what it needs to improve hearing in noise. First international conference on cognitive hearing science for communication, 2011 (Linkoping, Sweden). |
Puria, et al. Hearing Restoration: Improved Multi-talker Speech Understanding. 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO), Jun. 2009 (Stanford University). |
Puria, et al. Imaging, Physiology and Biomechanics of the middle ear: Towards understating the functional consequences of anatomy. Stanford Mechanics and Computation Symposium, 2005, ed Fong J. |
Puria, et al. Malleus-to-footplate ossicular reconstruction prosthesis positioning: cochleovestibular pressure optimization. Otol Nerotol. May 2005; 2693):368-379. |
Puria, et al. Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay. J. Acoust. Soc. Am., 104(6):3463-3481 (Dec. 1998). |
Puria, et al., Mechano-Acoustical Transformations in A. Basbaum et al., eds., The Senses: A Comprehensive Reference, v3, p. 165-202, Academic Press (2008). |
Puria, et al. Middle Ear Morphometry From Cadaveric Temporal Bone MicroCT Imaging. Proceedings of the 4th International Symposium, Zurich, Switzerland, Jul. 27-30, 2006, Middle Ear Mechanics in Research and Otology, pp. 259-268. |
Puria, et al. Sound-Pressure Measurements in the Cochlear Vestibule of Human-Cadaver Ears. Journal of the Acoustical Society of America. 1997; 101 (5-1): 2754-2770. |
Puria, et al. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light-Driven Hearing System That Mechanically Stimulates the Umbo. Otol Neurotol. Feb. 2016;37(2):160-6. doi: 10.1097/MAO.0000000000000941. |
Puria, et al. The EarLens Photonic Hearing Aid. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego). |
Puria, et al. The Effects of bandwidth and microphone location on understanding of masked speech by normal-hearing and hearing-impaired listeners. International Conference for Hearing Aid Research (IHCON) meeting, 2012 (Tahoe City). |
Puria, et al. Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hear Res. May 2010;263(1-2):183-90. doi: 10.1016/j.heares.2009.10.013. Epub Oct. 28, 2009. |
Puria. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am. May 2003;113(5):2773-89. |
Puria, S. Middle Ear Hearing Devices. Chapter 10. Part of the series Springer Handbook of Auditory Research pp. 273-308. Date: Feb. 9, 2013. |
Qu, et al. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Oct. 10, 2008 vol. 322 Science. 238-242. |
Robles, et al. Mechanics of the mammalian cochlea. Physiol Rev. Jul. 2001;81(3):1305-52. |
Roush. SiOnyx Brings “Black Silicon” into the Light; Material Could Upend Solar, Imaging Industries. Xconomy, Oct. 12, 2008, retrieved from the Internet: www.xconomy.com/boston/2008/10/12/sionyx-brings-black-silicon-into-the-light¬material-could-upend-solar-imaging-industries> 4 pages total. |
R.P. Jackson, C. Chlebicki, T.B. Krasieva, R. Zalpuri, W.J. Triffo, S. Puria, “Multiphoton and Transmission Electron Microscopy of Collagen in Ex Vivo Tympanic Membranes,” Biomedcal Computation at STandford, Oct. 2008. |
Rubinstein. How Cochlear Implants Encode Speech, Curr Opin Otolaryngol Head Neck Surg. Oct. 2004;12(5):444-8; retrieved from the Internet: www.ohsu.edu/nod/documents/week3/Rubenstein.pdf. |
School of Physics Sydney, Australia. Acoustic Compliance, Inertance and Impedance. 1-6. (2018). http://www.animations.physics.unsw.edu.au/w/compliance-inertance-impedance.htm. |
Sekaric, et al. Nanomechanical resonant structures as tunable passive modulators. App. Phys. Lett. Nov. 2003; 80(19):3617-3619. |
Shaw. Transformation of Sound Pressure Level From the Free Field to the Eardrum in the Horizontal Plane. J. Acoust. Soc. Am., vol. 56, No. 6, (Dec. 1974), 1848-1861. |
Shih. Shape and displacement control of beams with various boundary conditions via photostrictive optical actuators. Proc. IMECE. Nov. 2003; 1-10. |
Song, et al. The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Applied Acoustics. Dec. 31, 2013;74(12):1511-8. |
Sound Design Technologies,—Voyager TDTM Open Platform DSP System for Ultra Low Power Audio Processing—GA3280 Data Sheet. Oct. 2007; retrieved from the Internet:<<http://www.sounddes.com/pdf/37601DOC.pdf>>, 15 page total. |
Wikipedia. Inductive Coupling. 1-2 (Jan. 11, 2018). https://en.wikipedia.org/wiki/Inductive_coupling. |
Wikipedia. Pulse-density Coupling. 1-4 (Apr. 6, 2017). https://en.wikipedia.org/wiki/Pulse-density_modulation. |
Spolenak, et al. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A. 2005; 461:305-319. |
Stenfelt, et al. Bone-Conducted Sound: Physiological and Clinical Aspects. Otology & Neurotology, Nov. 2005; 26 (6):1245-1261. |
Struck, et al. Comparison of Real-world Bandwidth in Hearing Aids vs Earlens Light-driven Hearing Aid System. The Hearing Review. TechTopic: EarLens. Hearingreview.com. Mar. 14, 2017. pp. 24-28. |
Stuchlik, et al. Micro-Nano Actuators Driven by Polarized Light. IEEE Proc. Sci. Meas. Techn. Mar. 2004; 151(2):131-136. |
Suski, et al. Optically activated ZnO/Si02/Si cantilever beams. Sensors and Actuators A (Physical), 0 (nr: 24). 2003; 221-225. |
Takagi, et al. Mechanochemical Synthesis of Piezoelectric PLZT Powder. KONA. 2003; 51(21):234-241. |
Thakoor, et al. Optical microactuation in piezoceramics. Proc. SPIE. Jul. 1998; 3328:376-391. |
The Scientist and Engineers Guide to Digital Signal Processing, copyright 01997-1998 by Steven W. Smith, available online at www.DSPguide.com. |
Thompson. Tutorial on microphone technologies for directional hearing aids. Hearing Journal. Nov. 2003; 56(11):14-16, 18, 20-21. |
Tzou, et al. Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems. Mechanics of Advanced Materials and Structures. 2004; 11:367-393. |
Uchino, et al. Photostricitve actuators. Ferroelectrics. 2001; 258:147-158. |
Vickers, et al. Effects of Low-Pass Filtering on the Intelligibility of Speech in Quiet for People With and Without Dead Regions at High Frequencies. J. Acoust. Soc. Am. Aug. 2001; 110(2):1164-1175. |
Vinge. Wireless Energy Transfer by Resonant Inductive Coupling. Master of Science Thesis. Chalmers University of Technology. 1-83 (2015). |
Vinikman-Pinhasi, et al. Piezoelectric and Piezooptic Effects in Porous Silicon. Applied Physics Letters, Mar. 2006; 88(11): 11905-111906. |
Wang, et al. Preliminary Assessment of Remote Photoelectric Excitation of an Actuator for a Hearing Implant. Proceeding of the 2005 IEEE, Engineering in Medicine and Biology 27th nnual Conference, Shanghai, China. Sep. 1-4, 2005; 6233-6234. |
Web Books Publishing, “The Ear,” accessed online Jan. 22, 2013, available online Nov. 2, 2007 at http://www.web-books.com/eLibrary/Medicine/Physiology/Ear/Ear.htm. |
Wiener, et al. On the Sound Pressure Transformation by the Head and Auditory Meatus of the Cat. Acta Otolaryngol. Mar. 1966; 61(3):255-269. |
Wightman, et al. Monaural Sound Localization Revisited. J Acoust Soc Am. Feb. 1997;101(2):1050-1063. |
Wiki. Sliding Bias Variant 1, Dynamic Hearing (2015). |
Wikipedia. Resonant Inductive Coupling. 1-11 (Jan. 12, 2018). https://en.wikipedia.org/wiki/Resonant_inductive_coupling#cite_note-13. |
Yao, et al. Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations, J. R. Soc. Interface (2008) 5, 723-733 doi:10.1098/rsif.2007.1225 Published online Oct. 30, 2007. |
Yao, et al. Maximum strength for intermolecular adhesion of nanospheres at an optimal size. J. R. Soc. Interface doi:10.10981rsif.2008.0066 Published online 2008. |
Yi, et al. Piezoelectric Microspeaker with Compressive Nitride Diaphragm. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002; 260-263. |
Yu, et al. Photomechanics: Directed bending of a polymer film by light. Nature. Sep. 2003; 425:145. |
Folkeard, et al. Detection, Speech Recognition, Loudness, and Preference Outcomes With a Direct Drive Hearing Aid: Effects of Bandwidth. Trends Hear. Jan.-Dec. 2021; 25: 1-17. doi: 10.1177/2331216521999139. |
Knight, D. Diode detectors for RF measurement. Paper. Jan. 1, 2016. [Retrieved from 1-16 online] (retrieved Feb. 11, 2020) abstract, p. 1; section 1, p. 6; section 1.3, p. 9; section 3 voltage-double rectifier, p. 21; section 5, p. 27. URL: g3ynh.info/circuits/Diode_det.pdf. |
Co-pending U.S. Appl. No. 17/356,217, inventors Imatani; Kyle et al., filed Jun. 23, 2021. |
Number | Date | Country | |
---|---|---|---|
20200068323 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62564574 | Sep 2017 | US | |
62422535 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2017/061388 | Nov 2017 | US |
Child | 16405716 | US |