This patent application directs itself to physical analog computers. By this we mean computers that carry out computations by means of analog electrical circuitry that manipulates analog electrical signals, typically for the purpose of solving differential equations. Importantly, such computers are better suited in many ways than are digital computers for solving nonlinear differential equations. There was a time before digital computers became popular that analog computers were widely used for computation. When digital computers became popular, only a much smaller fraction of computation took place by means of analog computation. But in very recent times, perceptive investigators have come to appreciate that for certain types of real-life situations, it can be very helpful to make use of analog computation, often in a computational system that includes both a digital computer and an analog computer. This has, in very recent times, prompted perceptive investigators to try to think of ways to do analog computation better or faster or more accurately or less expensively or in a smaller form factor or with greater dynamic range or with better bandwidth or with the ability to handle more complex mathematical computations.
Such hybrid computation has proven to be particular powerful for at least two categories of work: sophisticated simulation of systems, and sophisticated control and management of real-life systems.
A hasty reader might assume that what is being discussed is a digital simulation of analog circuitry, or a digital simulation of analog phenomena. Such is not the present discussion. What is being discussed is actual analog circuitry, such as integrators and amplifiers and other elements that make up analog computers, working alongside a digital computer. The challenges being described and, hopefully, solved are physical challenges of physical electrical voltages and currents, not mental steps.
One particular challenge, as just mentioned, is the “dynamic range” challenge. Real-life signals often come into existence that have any of a wide range of electrical values. In contrast, any particular analog computer will necessarily have some limit on the range of electrical signal values that can be fed into it as inputs. In an exemplary analog computer the circuitry will be designed to permit input values to range between −10 volts and +10 volts. A person who is learning for the first time to make use of an analog computer will encounter this situation and will learn to “scale” the incoming analog signal. In a simple situation the signal to be received might have a fairly predictable range of values, say −20 volts to +20 volts. In such a simple situation it is easy to think what to do, namely to use a simple voltage divider to cut the voltage in half. When the user is selecting a voltage divider for such scaling, the user will hope to avoid either of two blunders—scaling too much or scaling too little. Scale too much, and the signal of interest will be of too small an amplitude and will risk being overwhelmed by other noise sources. At the very least, any overscaling has the consequence of making the signal-to-noise ratio worse than it would otherwise have needed to be. Scale too little, and the signal of interest, even after scaling, may exceed the permitted input levels of the analog computer circuitry. This leads to distortion and inaccuracy. In extreme cases an out-of-limit input might even damage the analog computer circuitry.
As mentioned above, in a simple situation the signal to be received might have a fairly predictable range of values. Experience shows, however, that some real-life applications lead to situations where some signal of interest is not so predictable. The voltage divider that might make sense at one time, or under one external condition, might fail to make sense at some other time, or under some other external condition.
Analog computers are thus slowly coming to be used in some real-world systems to assist in solving arbitrary mathematical problems in real time, as they can sometimes lead to faster or lower-energy means to achieve a solution than digital computers used alone. However, because the real-world inputs (values) to analog computers can sometimes vary widely, if the input signals are not properly constrained to be within the design limits of a physical electronic analog computer, the ability of an analog computer to process the input signals into a meaningful output is compromised. If a signal that needs to be processed by the physical analog computer is too large, it could become distorted. Conversely, if a signal that needs to be processed by the physical analog computer is too small, it could get swamped by noise.
The situation to be addressed is that changes in the magnitude of an input signal to the analog computer might prompt changing a scaling factor from time to time. In a nondemanding classroom situation, for example, when such a magnitude change were to happen, one might simply turn off the analog computation, change the scaling factor, and then start analog computation again.
But in today's world analog computers are used in demanding real-life situations in which the analog computations need to be carried on continuously. This might be because the system needs to continuously carry out control of a physical system. Or this might be because the system is carrying out a simulation over time, in which it is desired that the computations be carried out throughout the time of the simulation. In any of these situations, there is a big problem in that a change in a scaling factor at an input is likely to give rise to very undesirable perturbations in downstream signals, for example downstream of some integrator that is itself downstream of the input that we are talking about.
What is needed is a simple yet robust means to somehow permit changes in scaling factors even in the midst of analog computation that is intended to be continuous, and somehow dealing with this perturbation problem.
The inventive disclosures described herein pertain to improved physical analog computers and integrators that employ dynamic amplitude scaling in order to reduce or eliminate analog-computer output distortions and input-signal-to-noise ratios in real-world applications. The basic schemas provide for detecting when an input signal range is not optimum for the analog-computing environment, then strategically introducing an input dynamic-amplitude-scaling compensation factor in response to an input-signal while the physical analog computer is in service in order to ensure that said input signal's range is constrained to be within the design limits of said physical analog computer, whereby the introduction of said dynamic-amplitude-scaling compensation factor reduces system-output distortion and improves the signal-to-noise ratio. The schema also provides for introducing an output dynamic-amplitude-descaling compensation factor at the output of said physical analog computer in order to prepare the analog computer output for presentation to a system user. In variations, the schema incorporates an improved integrator that is adapted to receive a one-time correction factor in input amplitude responsive to an imminent change in the input dynamic-amplitude-scaling compensation factor, which is designed to counteract any transient output perturbations due to the introduction of a dynamic-amplitude-scaling compensation factor and to ensure that the output of the improved physical analog computer is better than without said one-time correction factor.
The foregoing Brief Summary is intended to merely provide a short, general overview of the inventive disclosure described throughout this patent application, and therefore, is not intended to limit the scope of the inventive disclosure contained throughout the balance of this patent application, including any appended claims and drawings.
Amplitude scaling can help internal signals avoid exceeding their allowable range and being buried in noise. In a sense, amplitude scaling optimizes the “dynamic range” of an analog computer. The idea is to maximize the signal-to-noise ratio for the analog paths.
The inventive disclosures described herein pertain to improved physical analog computers and integrators that employ dynamic amplitude scaling in order to reduce or eliminate analog-computer output distortions and input-signal-to-noise ratios in real-world applications. The basic schemas provide for detecting when an input signal range is not optimum for the analog-computing environment, then strategically introducing an input dynamic-amplitude-scaling compensation factor in response to an input-signal while the physical analog computer is in service in order to ensure that said input signal's range is constrained to be within the design limits of said physical analog computer, whereby the introduction of said dynamic-amplitude-scaling compensation factor reduces system-output distortion and the signal-to-noise ratio. The schema also provides for introducing an output dynamic-amplitude-descaling compensation factor at the output of said physical analog computer in order to prepare the analog computer output for presentation to a system user. In variations, the schema incorporates an improved integrator that is adapted to receive a one-time correction factor in input amplitude responsive to an imminent change in the input dynamic-amplitude-scaling compensation factor, which is designed to counteract any transient output perturbations due to the introduction of a dynamic-amplitude-scaling compensation factor and to ensure that the output of the improved physical analog computer is better than without said one-time correction factor.
It may be helpful to clarify what “one-time” means in this context. The insertion of a one-time correction factor at an integrator, to correct for a contemporaneous change in a scaling factor at an input, is a correction factor that is inserted one time in response to the scaling factor change. It does not mean that such insertion of a correction factor happens only one time during a period of time during which analog computation is taking place. Indeed the teachings of the invention contemplate that during a time when analog computation is taking place, for a particular input to the analog computer a scaling factor change might happen at one time and another scaling factor change might happen at another time. The teachings of the invention also contemplate that during a time when analog computation is taking place, for a first input to the analog computer a scaling factor change might happen at one time and for a second input to the analog computer another scaling factor change might happen, at the same time or at a different time.
This Section II generally describes the principles underlying the use of dynamic amplitude scaling in an improved physical analog computer. Refer to
Amplitude scaling can help internal signals avoid exceeding their allowable range and being buried in noise. In a sense, amplitude scaling optimizes the “dynamic range” of an analog computer.
|x|max=100A
|ÿ|max=55.7A
|{dot over (y)}|max=14.8A
|y|max=5.8A
The above information, using the techniques described herein, results in the amplitude-scaled system shown in
Following computation, the amplitude-scaled variables should be de-scaled before presentation to the system user. For example, the amplitude-scaled solution for variable y depicted in
The alert reader will appreciate that different types of input signals (e.g., different amplitudes or frequency content) may ideally require different scaling. If the types of input signals are known ahead of time, then the amplitude scaling can be adjusted beforehand.
However, if a change in amplitude scaling is needed while a computer is in service, then, while the “before” and “after” scaling may be correct, the transition from the old to the new amplitude-scaling factors (gains) can cause disturbances at the output, thus disrupting system operation. For example,
y(t)=g−1∫01gx(τ)δτ=∫01x(τ)dτ
The output of the integrator is represented in
Thus, the output jumps by:
Such system disruptions (i.e., output jumps) has been observed in filters. In the prior-art literature, it has been addressed by updating the values of capacitor voltages (for example, see U.S. Pat. No. 5,541,600 to Blumenkrantz.). However, a better and more feasable solution is as follows.
Refer to
The above requires sampling the output around the time it jumps. To avoid possible complications, the output of the integrator, w, is sampled instead:
Since:
w(tk−)=g1y(tk−)
Then the following compensation for the disruption can be used to add to the output:
Referring to
A “jump” correction E may be added, as depicted in
The above-discussed principles can be generalized to linear analog computers with:
Such implementations can be accomplished by applying to the analog computer earlier results as discussed in the following prior-art references, which were created by the same Inventor as for the present patent application, and which are hereby incorporated by reference:
Refer to
{dot over (x)}
1
=−a
1
x
1
−a
2
x
2
+u
{dot over (x)}
2
=x
1
y=c
1
x
1
+c
2
x
2
+d
1
u
This can also be expressed in matrix form:
These are of the form:
{dot over (x)}=Ax+Bu
y=Cx+Du
As was developed in the two references cited earlier, in general, any linear implementation on the analog computer can be described by state equations:
{dot over (x)}(t)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)
These state equations can be applied to dynamic amplitude scaling, and can also be written for nonlinear systems. In
This is accomplished by starting with a linear-time-invariant (LTI) prototype:
{dot over (x)}(t)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)
Consider a linear-time-varying (LTV) system:
{dot over (w)}(t)=Â(t)w(t)+{circumflex over (B)}(t)u(t)
ŷ(t)=Ĉ(t)w(t)+{circumflex over (D)}(t)u(t)
The actual physical analog-computing system is required to have, for the same input, the same output as the prototype:
ŷ(t)=y(t), all t
Whereas, its state variables are “scaled” according to a gain matrix G(t):
w(t)=G(t)x(t)
Direct substitution shows that for the above equations to be satisfied the following is required:
Â(t)=Ġ(t)G−1(t)+G(t)AG−1(t)
{circumflex over (B)}(t)=G(t)B
Ĉ(t)=CG−1(t)
{circumflex over (D)}(t)=D
These are linear transformations that convert the original, time-invariant analog computer to a time-varying one. This allows the internal waveforms to be amplitude-scaled, without any transients at the output. However, unfortunately, practical implementation is difficult. This technique is valid for linear equations only. Scaling for nonlinear cases is tricky and case-dependent.
Gain adjustments are important for optimizing the input-output performance of analog-computer circuits that have, by themselves, severe linearity and noise limitations. When it is attempted to vary gains while the analog computer is in service, output disturbances occur. Such disturbances can be large, and are likely to interfere with proper operation in the case of real-time control. A simple technique for eliminating such disturbances in the case of an integrator has been presented in the above discussion. In addition, related results have been adapted from linear systems theory and have been reviewed. Gain adjustment has the potential of drastic power reduction for a given signal-to-noise ration (SNR), if implemented successfully.
The various embodiments and variations thereof described herein, including the descriptions in any appended Claims and/or illustrated in the accompanying Figures, are merely exemplary and are not meant to limit the scope of the inventive disclosure. It should be appreciated that numerous variations of the invention have been contemplated as would be obvious to one of ordinary skill in the art with the benefit of this disclosure.
Hence, the alert reader will have no difficulty devising myriad obvious variations and improvements to the invention, all of which are intended to be encompassed within the scope of the Description, Figures, and Claims herein.
This patent application claims the priority benefit of U.S. patent application Ser. No. 62/704,020, filed on Sep. 20, 2019 for “Dynamic Amplitude Scaling in the Analog Computer.” Further, this patent application hereby incorporates by reference U.S. Patent Application No. 62/704,020 for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/057888 | 9/19/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62704020 | Sep 2018 | US |