IMPROVED CELL-PERMEABLE (ICP) PARKIN RECOMBINANT PROTEIN AND USE THEREOF

Information

  • Patent Application
  • 20180171322
  • Publication Number
    20180171322
  • Date Filed
    January 25, 2018
    6 years ago
  • Date Published
    June 21, 2018
    6 years ago
Abstract
Disclosed are improved cell-permeable Parkin recombinant proteins (iCP-Parkin) which have been developed as a protein-based anti-neurodegenerative agent for efficient BBB-penetration to effectively deliver the recombinant protein into the brain. A Parkin protein, a dopaminergic neuronal cell death inhibitor, has been fused with a newly developed advanced macromolecule transduction domain (aMTD) and preferably with a solubilization domain (SD) to increase the solubility/yield and cell-/tissue-permeability of the recombinant protein. In addition, the aMTD/SD-fused recombinant iCP-Parkin protein has shown BBB-permeability. Both in vitro and in vivo, the iCP-Parkin recombinant protein improved motor skills, a typical phenotype of Parkinson's disease, by increasing dopamine level in the brain by suppressing apoptosis of dopaminergic neuron cells. It also can be applicable as a protein-based anti-neurodegenerative agent to treat Parkinson's disease by protecting dopaminergic neuron cells and regulating the secretion of dopamine.
Description
TECHNICAL FIELD

The present invention relates to new protein-based therapeutic agents specially targeted for neurodegenerative disorder based on macromolecule intracellular transduction technology (MITT) enabled with newly advanced hydrophobic CPPs (cell-penetrating peptides)—advanced macromolecule transduction domains (aMTDs) providing cell-permeability of macromolecules in vitro and in vivo. The recombinant protein of this invention has new technical advantages as an intracellular protein therapy for the treatment of Parkinson's disease in that it could resolve blood-brain barrier (BBB) permeability, tissue-permeability, and bio-transfer function.


BACKGROUND ART

Parkinson's disease is one of leading neurodegenerative disease that occurs by instable generation and secretion of dopamine (16). In patients with Parkinson's disease, there have been damages in dopaminergic neuron in the midbrain; pathological features, such as formation of Lewy bodies; mobility defects, such as bradykinesia, rest tremor, and rigidity; and non-motor symptoms, such as depression, dementia, and insomnia (17-19).


Parkinson's disease is a neurodegenerative disease found mostly in older generations. Statistically, Approximately 1% of people aged more than 55 and 3% in people aged more than 75 have been diagnosed with the disease (20). As the population of aged people increases, patients diagnosed with Parkinson's disease are ever growing in number. Globally, the population of patients with this disease has been projected to increase from 4.1 million in 2005 to 8.7 million by 2030 (21, 22).


The cause of Parkinson's disease has been unclear; however, previous studies reported that it's caused by both genetic and environmental factors in combination; especially, mutation of parkin gene has the highest prevalence among the various genetic factors that cause Parkinson's disease. Parkin gene has been first discovered in Japanese stock that has autosomal recessive juvenile Parkinsonism (ARJP) (23). Parkin gene mutation could be discovered from approximately 50% in early-onset hereditary Parkinson's disease and 18% in sporadic patients below the age of 50 (24).


Parkin is comprised of 465 amino acid sequences that have functions as E3-ligase in ubiquitin-proteasome system. Parkin protein functions to reduce the oxidative stress in the cell by removing damaged, oxidized, and/or irregularly structured protein inside the cell.


When Parkin mutation occurs, it loses its property as an E3-ligase; inclusion body and/or irregular proteins are accumulated inside the cell that lead to reduced secretion of dopamine and apoptosis of dopaminergic neuron (25). There has been a recent study pertaining to Parkinson's disease using the fruit flies that have shown decrease in motor function by the decrease in dopamine secretion. Dopamine secretion has decreased due to an inactivation of dopaminergic neuron in which the function of Parkin and PINK1 (PTEN-induced putative kinase 1) was revealed (26). Moreover, when Parkin was overexpressed in the fruit fly that did not express PINK1, Parkinson's disease-related symptoms caused by PINK1, such as mitochondrial dysfunction and degradation of dopaminergic neuron, were confirmed to be recovered (26-28). Based on these factors, Parkin protein may successfully act as a target protein-based agent to treat Parkinson's related diseases. It functions as a main enzyme in the ubiquitin-proteasome system to destroy inclusion body and suppress apoptosis of dopaminergic neuron by maintaining the function of mitochondria from oxidative stress.


REFERENCES 1. Fischer P M., Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: progress 2001-2006, Med Res Rev. 2007; 27:755-95.

2. Heitz F, Morris M C, Divita G., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics, Br J Pharmacol. 2009; 157:195-206.


3. Lapenna S, Giordano A., Cell cycle kinases as therapeutic targets for cancer, Nat Rev Drug Discov. 2009; 8:547-66.


4. Lim J, Kim J, Duong T, Lee G, Kim J, Yoon J. et al., Antitumor activity of cell-permeable p18(INK4c) with enhanced membrane and tissue penetration, Mol Ther. 2012; 20:1540-9.


5. Jo D, Liu D, Yao S, Collins R D, Hawiger J., Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis, Nat Med. 2005; 11:892-8.


6. Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J. et al., Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase, Nat Biotechnol. 2001; 19:929-33.


7. Liu D, Li C, Chen Y, Burnett C, Liu X Y, Downs S. et al., Nuclear import of proinflammatory transcription factors is required for massive liver apoptosis induced by bacterial lipopolysaccharide, J Biol Chem. 2004; 279:48434-42.


8. Liu D, Liu X Y, Robinson D, Burnett C, Jackson C, Seele L. et al., Suppression of Staphylococcal Enterotoxin B-induced Toxicity by a Nuclear Import Inhibitor, J Biol Chem. 2004; 279:19239-46.


9. Liu D, Zienkiewicz J, DiGiandomenico A, Hawiger J., Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor, Mol Ther. 2009; 17:796-802.


10. Moore D J, Zienkiewicz J, Kendall P L, Liu D, Liu X, Veach R A. et al., In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes, PLoS One. 2010; 5:e13235.


11. Lim J, Jang G, Kang S, Lee G, Nga do T T, Phuong do T L. et al., Cell-.permeable NM23 blocks the maintenance and progression of established pulmonary metastasis, Cancer Res. 2011; 71:7216-25.


12. Duong T, Kim J, Ruley H E, Jo D., Cell-permeable parkin proteins suppress Parkinson disease-associated phenotypes in cultured cells and animals, PLoS One. 2014; 9:e102517.


13. Lim J, Duong T, Do N, Do P, Kim J, Kim H. et al., Antitumor activity of cell-permeable RUNX3 protein in gastric cancer cells. Clin Cancer Res. 2013; 19:680-90.


14. Lim J, Duong T, Lee G, Seong B L, El-Rifai W, Ruley H E et al. The effect of intracellular protein delivery on the anti-tumor activity of recombinant human endostatin, Biomaterials. 2013; 34:6261-71.


15. Lim J, Kim J, Kang J, Jo D., Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors, Scientific Reports. 2014; 4:4361.


16. Braak H, Del Tredici K, Rub U, de Vos R A, Jansen Steur E N, Braak E., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiology of aging 2003; 24(2):197-211.


17. Wakabayashi K, Tanji K, Mori F, Takahashi H., The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates, Neuropathology: Official Journal of the Japanese Society of Neuropathology 2007; 27(5):494-506.


18. Rampello L, Chiechio S, Raffaele R, Vecchio I, Nicoletti F., The SSRI, citalopram, improves bradykinesia in patients with Parkinson's disease treated with L-dopa., Clinical neuropharmacology 2002; 25(1):21-4.


19. Rana A Q, Ahmed U S, Chaudry Z M, Vasan S., Parkinson's disease: a review of non-motor symptoms, Expert Review of Neurotherapeutics 2015; 15(5):549-62.


20. de Rijk M C, Tzourio C, Breteler M M, Dartigues J F, Amaducci L, Lopez-Pousa S, et al., Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease, J Neurology, Neurosurgery, and Psychiatry 1997; 62(1):10-5.


21. Dorsey E R, Constantinescu R, Thompson J P, Biglan K M, Holloway R G, Kieburtz K, et al., Projected number of people with Parkinson disease in the most populous nations 2005 through 2030., Neurology 2007; 68(5):384-6.


22. Koziorowski D, Hoffman-Zacharska D, Slawek J, Szirkowiec W, Janik P, Bal J, et al., Low frequency of the PARK2 gene mutations in Polish patients with the early-onset form of Parkinson disease, Parkinsonism & related disorders 2010; 16(2):136-8.


23. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature 1998; 392(6676):605-8.


24. Lucking C B, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. The New England journal of medicine 2000; 342(21):1560-7.


25. Lam Y A, Pickart C M, Alban A, Landon M, Jamieson C, Ramage R, et al., Inhibition of the ubiquitin-proteasome system in Alzheimer's disease, PNAS 2000; 97(18):9902-6.


26. Park J, Lee S B, Lee S, Kim Y, Song S, Kim S, et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature 2006; 441(7097):1157-61.


27. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang J W, et al., Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin, PNAS 2006; 103(28):10793-8. 28. Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature 2006; 441(7097):1162-6.


DISCLOSURE
Technical Problem

Macromolecule, such as Parkin protein, cannot be translocated across the cell membrane; furthermore, it cannot be transported through the blood-brain-barrier into the brain. Therefore, there was a need to develop macromolecule intracellular transduction technology (MITT), which enables the translocation of macromolecules into the cell/tissues.


In the previous studies, MITT-based hydrophobic CPPs named membrane translocating sequence (MTS) and membrane translocating motif (MTM), derived from the hydrophobic signal peptide of fibroblast growth factor 4 (FGF4) have been reported and used to deliver biologically active peptides and proteins, such as Parkin protein, systemically in animals.


However, they could not effectively deliver Parkin protein in vivo, and their delivery efficiency in vitro were not also sufficient due to protein aggregation, low solubility/yield and poor cell/tissue-permeability.


Technical Solution

To overcome the limitations and improve CPPs that provide cell-permeability of macromolecules in vitro and in vivo, theoretical critical factors (CFs) to improve the intracellular delivery potential of the CPPs are identified and verified in this invention. Based on the CFs determined, novel hydrophobic CPP sequences are newly created, quantitatively evaluated for cell-permeability and mutually compared to reference CPP sequences in their intracellular delivery potential in live cells. In this invention, newly developed hydrophobic CPPs are presented. The novel peptide sequences termed ‘advanced macromolecule transduction domains’ (aMTDs) could be fused to various different therapeutic proteins and systematically deliver the aMTD-fused recombinant proteins to live cells and animal tissues. These proteins will have a great impact in the clinical development and application of protein-based biotherapeutics to treat various human diseases in regards to protein therapy.


The present invention relates to baseline platform that could be applied to unlimited number of designs, having cell-permeability applicable for biomedical sciences, preclinical and clinical studies that facilitate the traverse of biologically active macromolecules, including proteins, peptides, nucleic acids, chemicals and so on, across the plasma membrane in cells.


The present invention analyzes, identifies, and determines these critical factors that facilitate the cell permeable ability of aMTD sequences. These aMTD sequences are artificially assembled based on the critical factors (CFs) determined from in-depth analysis of previously published hydrophobic CPPs.


One aspect of the present invention relates to novel advanced macromolecule transduction domain (aMTD) sequences.


The aMTD sequences of the present invention are the first artificially developed cell permeable polypeptides capable of mediating the transduction of biologically active macromolecules—including peptides, polypeptides, protein domains, or full-length proteins —through the plasma membrane of cells.


Another aspect of the present invention relates to the method of genetically engineering a biologically active molecules having cell-permeability by fusing the aMTD sequences to the biologically active cargo molecules.


The present invention also relates to its therapeutic application for the delivery of biologically active molecules to cells, involving cell-permeable recombinant proteins, where aMTDs are attached to the biologically active cargo molecules.


Another aspect of the present invention pertains to a method in which biologically active macromolecules are able to enter into live cells, as constructs of cell-permeable recombinant proteins comprised of aMTD sequences fused to biologically active macromolecules.


Other aspects of the present invention relate to an efficient use of aMTD sequences for molecule delivery, drug delivery, protein therapy, intracellular protein therapy, protein replacement therapy, peptide therapy, gene delivery and so on.


Another aspect of the present invention relates to 240 new hydrophobic CPP sequences—aMTDs, determination of the aMTD-mediated intracellular delivery activity of the recombinant proteins, and comparison of the enhanced protein uptake by live cells at levels greater than or equal to the FGF4-derived MTS/MTM and HRSS-derived MTD sequences. These strengths of newly invented aMTDs could address the setbacks on reference hydrophobic CPPs for clinical development and application.


The present invention pertains to advanced macromolecule transduction domain (aMTD) sequences that transduce biologically active macromolecules into the plasma membrane.


Another aspect of the present invention directs to aMTD consisting of amino acid sequences having the following characteristics:


a.Amino acid length: 9-13


b.Bending potential: Proline (P) positioned in the middle (5′, 6′, 7′ or 8′) and at the end (12′) of the sequence.


c.Rigidity/Flexibility: Instability Index (II): 40-60


d.Structural Feature: Aliphatic Index (Al): 180-220


e.Hydropathy: GRAVY: 2.1-2.6


f.Amino acid composition: All of composed amino acids are hydrophobic and aliphatic amino acids (A, V, L, I and P)


According to one embodiment, the amino acid sequences have the general formula composed of 12 amino acid sequences as described below.




embedded image


Here, X(s) refer to either Alanine (A), Valine (V), Leucine (L) or Isoleucine (I); and Proline (P) can be positioned in one of U(s) (either 5′, 6′, 7′ or 8′). The remaining U(s) are composed of either A, V, L or I, P at the 12′ is Proline.


According to one embodiment, the amino acid sequences having the general formula are selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 240.


According to one embodiment, the secondary structure of the aMTD is α-Helix.


The present invention further provides isolated polynucleotides that encode aMTD sequences described above.


According to one embodiment, the isolated polynucleotide are selected from the group consisting of SEQ ID NO: 241 to SEQ ID NO: 480.


The present invention further provides a method of identifying critical factors of aMTDs. The 6 methods comprises selecting superior hydrophobic CPPs from previously published reference hydrophobic CPPs; analyzing physiological and chemical characteristics of the selected hydrophobic CPPs; identifying features that are in association with cell-permeability out of these physiological and chemical characteristics; categorizing previously published reference hydrophobic CPPs into at least 2 groups and determining unique features by in-depth analysis of each groups of CPPs according to their cell-permeability and relative characteristics; configuring critical factors identified through analyzing the determined unique features; confirming the critical factors is valid through experimental studies; and determining critical factors that are based on the confirmed experimental studies.


According to one embodiment, the identified unique features are amino acid length, molecular weight, pI value, bending potential, rigidity, flexibility, structural feature, hydropathy, residue structure, amino acid composition and secondary structure.


According to one embodiment, the determined six critical factors consist of the following characteristics:


a.Amino Acid Length: 9-13


b.Bending Potential: Proline (P) positioned in the middle (5′, 6′, 7′ or 8′) and at the end of the sequence.


c.Rigidity/Flexibility: Instability Index (II): 40-60


d.Structural Feature: Aliphatic Index (Al): 180-220


e.Hydropathy: GRAVY: 2.1-2.6.


f.Amino Acid Composition: All of composed amino acids are hydrophobic and aliphatic amino acids (A, V, L, I and P)


G. Secondary structure: α-Helix


The present invention further provides a method of developing the aMTD sequences. The method comprises designing a platform of aMTDs having the below general formula described below;




embedded image


wherein (P) at the end of sequence (12′) is proline, one of U sites is proline, X(s) and U(s) which is not proline are A, V, L and/or I; and confirming whether a designed amino acid sequence satisfy six critical factors as follows:


a.Amino Acid Length: 9-13


b.Bending Potential: Proline (P) positioned in the middle (5′, 6′, 7′ or 8′) and at the end of the sequence.


c.Rigidity/Flexibility: Instability Index (II): 40-60


d.Structural Feature: Aliphatic Index (AI): 180-220


e.Hydropathy: GRAVY: 2.1-2.6.


f.Amino Acid Composition: All of composed amino acids are hydrophobic and aliphatic amino acids (A, V, L, I and P)


According to one embodiment, the six critical factors obtained the method of identifying unique features of aMTDs consist of the following factors:


a.Amino Acid Sequence: 12


b.Bending Potential: Proline (P) is positioned in the middle (5′, 6′, 7′ or 8′) and at the end (12′) of the sequence.


c.Rigidity/Flexibility: Instability Index (II): 41.3-57.3


d.Structural Feature: Aliphatic Index (AI): 187.5-220


e.Hydropathy: GRAVY: 2.2-2.6.


f.Amino Acid Composition: All of composed amino acids are hydrophobic and aliphatic amino acids (A, V, L, I and P)


According to one embodiment, the secondary structure of the aMTD is α-Helix.


According to one embodiment, the method further comprises developing the expression vectors of aMTD sequences fused to cargo proteins; selecting proper bacteria strain for inducible expression; purifying and preparing of aMTD-fused to cargo proteins in soluble form; and confirming their cell-permeability.


The present invention further provides isolated recombinant proteins with a cell-permeability. The isolated recombinant protein comprises an advanced macromolecule transduction domain (aMTD) sequences having amino acid sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 240; and a biologically active molecule.


According to one embodiment, the biologically active molecules are any one selected from the group consisting of growth factors, enzymes, transcription factors, toxins, antigenic peptides, antibodies and antibody fragments.


According to one embodiment, the biologically active molecules are any one selected from the group consisting of enzymes, hormones, carriers, immunoglobulins, antibodies, structural proteins, motor functioning peptides, receptors, signaling peptides, storing peptides, membrane peptides, transmembrane peptides, internal peptides, external peptides, secreting peptides, virus peptides, native peptides, glycated proteins, fragmented proteins, disulfide bonded proteins, recombinant proteins, chemically modified proteins and prions.


According to one embodiment, the biologically active molecules are any one selected from the group consisting of nucleic acids, coding nucleic acid sequences, mRNAs, antisense RNA molecules, carbohydrates, lipids and glycolipids.


According to one embodiment, the biologically active molecules are at least one selected from the group consisting of biotherapeutic chemicals and toxic chemicals.


The present invention further provides a method of genetically or epigenetically engineering and/or modifying biologically active molecules to have a cell-permeability. The method comprises fusing aMTDs to biologically active molecules under the optimized and effective conditions to generate biologically active molecules that can be cell-permeable, wherein the aMTD consists of any one of amino acid sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 240.


The present invention also pertains to cell-permeable recombinant protein for the treatment of Parkinson's disease based on advanced macromolecule transduction domain (aMTD) sequences capable of mediating the transduction of biologically active macromolecules into live cells.


Other aspect of the present invention relates to cell-/tissue-/BBB-permeable protein-based therapeutics for Parkinson's disease based on an efficient use of aMTD sequences for drug delivery, protein therapy, intracellular protein therapy, protein replacement therapy and peptide therapy.


One aspect of the present invention provides an iCP (improved Cell-Permeable) Parkin recombinant protein, which comprises a Parkin protein and an advanced macromolecule transduction domain (aMTD) being composed of 9˜13 amino acid sequences and having improved cell or tissue permeability, wherein the aMTD is fused to one end or both ends of the Parkin protein and has the following features of:


(a) being composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence; and (c) having an instability index of 40-60; an aliphatic index of 180-220; and a grand average of hydropathy (GRAVY) of 2.1-2.6, as measured by Protparam.


According to one embodiment, one or more solubilization domain (SD)(s) are further fused to the end(s) of one or more of the Parkin protein and the aMTD.


According to another embodiment, the aMTD may have α-Helix structure. According to still another embodiment, the aMTD may be composed of 12 amino acid sequences and represented by the following general formula:




embedded image


wherein X(s) independently refer to Alanine (A), Valine (V), Leucine (L) or Isoleucine (I); and Proline (P) can be positioned in one of U(s) (either 5′, 6′, 7′ or 8′). The remaining U(s) are independently composed of A, V, L or I, P at the 12′ is Proline.


Another aspect of the present invention provides an iCP Parkin recombinant protein which is represented by any one of the following structural formulae:





A-B-C and A-C-B-C


wherein A is an advanced macromolecule transduction domain (aMTD) having improved cell or tissue permeability, B is Parkin protein, and C is a solubilization domain (SD); and


the aMTD is composed of 9-13 amino acid sequences and has the following features of:


(a) being composed of 3 or more amino acids selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence;


(c) having an instability index of 40-60; an aliphatic index of 180-220; and a grand average of hydropathy (GRAVY) of 2.1-2.6, as measured by Protparam; and


(d) having α-Helix structure.


According to one embodiment of the present invention, the Parkin protein may have an amino acid sequence of SEQ ID NO: 814.


According to another embodiment of the present invention, the Parkin protein may be encoded by a polynucleotide sequence of SEQ ID NO: 815.


According to still another embodiment of the present invention, the Parkin protein may further include a ligand selectively binding to a receptor of a cell, a tissue, or an organ.


According to still another embodiment of the present invention, the aMTD may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 1˜240.


According to still another embodiment of the present invention, the aMTD may be encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241˜480.


According to still another embodiment of the present invention, the SD(s) may have an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804.


According to still another embodiment of the present invention, the SD(s) may be encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811.


According to still another embodiment of the present invention, the iCP Parkin recombinant protein may have a histidine-tag affinity domain additionally fused to one end thereof.


According to still another embodiment of the present invention, the histidine-tag affinity domain may have an amino acid sequence of SEQ ID NO: 812.


According to still another embodiment of the present invention, the histidine-tag affinity domain may be encoded by a polynucleotide sequence of SEQ ID NO: 813.


According to still another embodiment of the present invention, the fusion may be formed via a peptide bond or a chemical bond.


According to still another embodiment of the present invention, the iCP Parkin recombinant protein may be used for the treatment or prevention of Parkinson's related diseases.


Still another aspect of the present invention provides a polynucleotide sequence encoding the iCP Parkin recombinant protein.


According to one embodiment of the present invention, the polynucleotide sequence may be a polynucleotide sequence represented by SEQ ID NO: 816 or SEQ ID NO: 822.


According to another embodiment of the present invention, the polynucleotide sequence may be selected from the group consisting of SEQ ID NOs: 818, 824, 828, 830 and 832.


Still another aspect of the present invention provides a recombinant expression vector including the polynucleotide sequence.


Still another aspect of the present invention provides a transformant transformed with the recombinant expression vector.


Still another aspect of the present invention provides a preparing method of the iCP Parkin recombinant protein including preparing the recombinant expression vector; preparing the transformant using the recombinant expression vector; culturing the transformant; and recovering the recombinant protein expressed by the culturing.


Still another aspect of the present invention provides a composition including the iCP Parkin recombinant protein as an active ingredient.


Still another aspect of the present invention provides a pharmaceutical composition for treating or preventing Parkinson's disease including the iCP Parkin recombinant protein as an active ingredient; and a pharmaceutically acceptable carrier.


Still another aspect of the present invention provides use of the iCP Parkin recombinant protein as a medicament for treating or preventing Parkinson's related diseases.


Still another aspect of the present invention provides a medicament including the iCP Parkin recombinant protein.


Still another aspect of the present invention provides use of the iCP Parkin recombinant protein in the preparation of a medicament for treating or preventing Parkinson's related diseases.


Still another aspect of the present invention provides a method of treating or preventing Parkinson's related diseases in a subject, the method including identifying a subject in need of treatment or prevention of Parkinson's related diseases; and administering to the subject a therapeutically effective amount of the iCP Parkin recombinant protein.


According to one embodiment of the present invention, the subject may be a mammal.


Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although a certain method and a material is described herein, it should not be construed as being limited thereto, any similar or equivalent method and material to those may also be used in the practice or testing of the present invention. All publications mentioned herein are incorporated herein by reference in their entirety to disclose and describe the methods and/or materials in connection with which the publications are cited. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


A “peptide” of the present invention refers to a chain-type polymer formed by amino acid residues which are linked to each other via peptide bonds, and used interchangeably with “polypeptide.” Further, a “polypeptide” includes a peptide and a protein.


Further, the term “peptide” includes amino acid sequences that are conservative variations of those peptides specifically exemplified herein. The term “conservative variation,” as used herein, denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include substitution of one hydrophobic residue, such as isoleucine, valine, leucine, alanine, cysteine, glycine, phenylalanine, proline, tryptophan, tyrosine, norleucine, or methionine for another, or substitution of one polar residue for another, for example, substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like. Neutral hydrophilic amino acids which may be substituted for one another include asparagine, glutamine, serine, and threonine.


The term “conservative variation” also includes use of a substituted amino acid in place of an unsubstituted parent amino acid, provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide. Such conservative substitutions are within the definition of the classes of the peptides of the present invention.


A person having ordinary skill in the art may make similar substitutions to obtain peptides having higher cell permeability and a broader host range. For example, the present invention provides peptides corresponding to amino acid sequences (e.g. SEQ ID NOs: 1 to 240) provided herein, as well as analogues, homologs, isomers, derivatives, amidated variations, and conservative variations thereof, as long as the cell permeability of the peptide remains.


Minor modifications to primary amino acid sequence of the peptides of the present invention may result in peptides which have substantially equivalent or enhanced cell permeability, as compared to the specific peptides described herein. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous.


All peptides may be synthesized using L-amino acids, but D forms of all of the peptides may be synthetically produced. In addition, C-terminal derivatives, such as C-terminal methyl esters and C-terminal amidates, may be produced in order to increase the cell permeability of the peptide of the present invention.


All of the peptides produced by these modifications are included herein, as long as in the case of amidated versions of the peptide, the cell permeability of the original peptide is altered or enhanced such that the amidated peptide is therapeutically useful. It is envisioned that such modifications are useful for altering or enhancing cell permeability of a particular peptide.


Furthermore, deletion of one or more amino acids may also result in a modification to the structure of the resultant molecule without any significant change in its cell permeability. This may lead to the development of a smaller active molecule which may also have utility. For example, amino- or carboxyl-terminal amino acids which may not be required for the cell permeability of a particular peptide may be removed.


The term “gene” refers to an arbitrary nucleic acid sequence or a part thereof having a functional role in protein coding or transcription, or regulation of other gene expression. The gene may be composed of all nucleic acids encoding a functional protein or a part of the nucleic acid encoding or expressing the protein. The nucleic acid sequence may include a gene mutation in exon, intron, initiation or termination region, promoter sequence, other regulatory sequence, or a unique sequence adjacent to the gene.


The term “primer” refers to an oligonucleotide sequence that hybridizes to a complementary RNA or DNA target polynucleotide and serves as the starting points for the stepwise synthesis of a polynucleotide from mononucleotides by the action of a nucleotidyltransferase as occurs, for example, in a polymerase chain reaction.


The term “coding region” or “coding sequence” refers to a nucleic acid sequence, a complement thereof, or a part thereof which encodes a particular gene product or a fragment thereof for which expression is desired, according to the normal base pairing and codon usage relationships. Coding sequences include exons in genomic DNA or immature primary RNA transcripts, which are joined together by the cellular biochemical machinery to provide a mature mRNA. The anti-sense strand is the complement of the nucleic acid, and the coding sequence may be deduced therefrom.


The present invention provides an iCP Parkin recombinant protein, which comprises a Parkin protein and an advanced macromolecule transduction domain (aMTD) being composed of 9˜13 amino acid sequences, preferably 10˜12 amino acid sequences, and having improved cell or tissue permeability, wherein the aMTD is fused to one end or both ends of the Parkin protein and has the following features of:


(a) being preferably composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence, and preferably one or more of positions 5 to 8 and position 12 of its amino acid sequence; and


(c) having an instability index of preferably 40-60 and more preferably 41-58; an aliphatic index of preferably 180-220 and more preferably 185-225; and a grand average of hydropathy (GRAVY) of preferably 2.1-2.6 and more preferably 2.2-2.6 as measured by Protparam (see http://web.expasy.org/protparam/).


According to one embodiment, one or more solubilization domain (SD)(s) are further fused to one or more of the Parkin protein and the aMTD, preferably one end or both ends of the Parkin protein, and more preferably the C-terminus of the Parkin protein.


According to another embodiment, the aMTD may have α-Helix structure.


According to still another embodiment, the aMTD may be preferably composed of 12 amino acid sequences and represented by the following general formula:




embedded image


Here, X(s) independently refer to Alanine (A), Valine (V), Leucine (L) or Isoleucine (I); and Proline (P) can be positioned in one of U(s) (either 5′, 6′, 7′ or 8′). The remaining U(s) are independently composed of A, V, L or I, P at the 12′ is Proline.


Still another aspect of the present invention provides an iCP Parkin recombinant protein which is represented by any one of structural formulae A-B-C and A-C-B-C, and preferably by A-B-C:


wherein A is an advanced macromolecule transduction domain (aMTD) having improved cell or tissue permeability, B is a Parkin protein, and C is a solubilization domain (SD); and


the aMTD is composed of 9˜13, preferably 10˜12 amino acid sequences and has the following features of:


(a) being composed of 3 or more amino acid sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;


(b) having proline as amino acid sequences corresponding to any one or more of positions 5 to 8, and 12 of its amino acid sequence, and preferably, one or more of positions 5 to 8 and position 12 of its amino acid sequence;


(c) having an instability index of preferably 40-60 and more preferably 41-58; an aliphatic index of preferably 180-220 and more preferably 185-225; and a grand average of hydropathy (GRAVY) of preferably 2.1-2.6 and more preferably 2.2-2.6, as measured by Protparam (see http://web.expasy.org/protparam/); and


(d) preferably having α-Helix structure.


In one embodiment of the present invention, the Parkin protein may have an amino acid sequence of SEQ ID NO: 814.


In another embodiment of the present invention, the Parkin protein may be encoded by a polynucleotide sequence of SEQ ID NO: 815.


When the iCP Parkin recombinant protein is intended to be delivered to a particular cell, tissue, or organ, the Parkin protein may form a fusion product, together with an extracellular domain of a ligand capable of selectively binding to a receptor which is specifically expressed on the particular cell, tissue, or organ, or monoclonal antibody (mAb) capable of specifically binding to the receptor or the ligand and a modified form thereof.


The binding of the peptide and a biologically active substance may be formed either by indirect linkage by a cloning technique using an expression vector at a nucleotide level or by direct linkage via chemical or physical covalent or non-covalent bond of the peptide and the biologically active substance.


In still another embodiment of the present invention, the Parkin protein may preferably further include a ligand selectively binding to a receptor of a cell, a tissue, or an organ.


In one embodiment of the present invention, the aMTD may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 1˜240. The aMTD may be preferably aMTD321 of SEQ ID NO: 74 or aMTD524 of SEQ ID NO: 122, and more preferably aMTD524 of SEQ ID NO: 122.


In still another embodiment of the present invention, the aMTD may be encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241˜480. The aMTD may be preferably aMTD321 encoded by a polynucleotide sequence of SEQ ID NO: 314 or aMTD524 encoded by a polynucleotide sequence of SEQ ID NO: 362, and more preferably aMTD524 encoded by a polynucleotide sequence of SEQ ID NO: 362.


In still another embodiment of the present invention, the SD(s) may have an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804. The SD may be preferably SDA of SEQ ID NO: 798, SDB of SEQ ID NO: 799, or SDB′ of SEQ ID NO: 804, and more preferably, SDB of SEQ ID NO: 799 which has superior structural stability, or SDB′ of SEQ ID NO: 804 which has a modified amino acid sequence of SDB to avoid immune responses upon in vivo application. The modification of the amino acid sequence in SDB may be replacement of an amino acid residue, Valine, corresponding to position 28 of the amino acid sequence of SDB (SEQ ID NO: 799) by Leucine.


In still another embodiment of the present invention, the SDs may be encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811. The SD may be preferably SDA encoded by a polynucleotide sequence of SEQ ID NO: 805, SDB encoded by a polynucleotide sequence of SEQ ID NO: 806, or SDB′ for deimmunization encoded by a polynucleotide sequence of SEQ ID NO: 811, and more preferably, SDB having superior structural stability, which is encoded by a polynucleotide sequence of SEQ ID NO: 806, or SDB′ having a modified polynucleotide sequence of SDB to avoid immune responses upon in vivo application, which is encoded by a polynucleotide sequence of SEQ ID NO: 811.


The Parkin protein may exhibit a physiological phenomenon-related activity or a therapeutic purpose-related activity by intracellular or in-vivo delivery. The recombinant expression vector may include a tag sequence which makes it easy to purify the recombinant protein, for example, consecutive histidine codon, maltose binding protein codon, Myc codon, etc., and further include a fusion partner to enhance solubility of the recombinant protein, etc. Further, for the overall structural and functional stability of the recombinant protein or flexibility of the proteins encoded by respective genes, the recombinant expression vector may further include one or more glycine, proline, and spacer amino acid or polynucleotide sequences including AAY amino acids. Furthermore, the recombinant expression vector may include a sequence specifically digested by an enzyme in order to remove an unnecessary region of the recombinant protein, an expression regulatory sequence, and a marker or reporter gene sequence to verify intracellular delivery, but is not limited thereto.


In still another embodiment of the present invention, the iCP Parkin recombinant protein may preferably have a histidine-tag affinity domain additionally fused to one end thereof.


In still another embodiment of the present invention, the histidine-tag affinity domain may have an amino acid sequence of SEQ ID NO: 812.


In still another embodiment of the present invention, the histidine-tag affinity domain may be encoded by a polynucleotide sequence of SEQ ID NO: 813.


In still another embodiment of the present invention, the fusion may be formed via a peptide bond or a chemical bond.


The chemical bond may be preferably selected from the group consisting of disulfide bonds, diamine bonds, sulfide-amine bonds, carboxyl-amine bonds, ester bonds, and covalent bonds.


In still another embodiment of the present invention, the iCP Parkin recombinant protein may be used for the treatment or prevention of Parkinson's related diseases.


Still another aspect of the present invention provides a polynucleotide sequence encoding the iCP Parkin.


According to one embodiment of the present invention, the polynucleotide sequence may be a polynucleotide sequence represented by SEQ ID NO: 816 or SEQ ID NO: 822.


According to another embodiment of the present invention, the polynucleotide sequence may be further fused with SD, and may be represented by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 818, 824, 828, 830 and 832.


According to still another embodiment of the present invention, the polynucleotide sequence may be fused with a histidine-tag affinity domain, and may be a polynucleotide sequence of SEQ ID NO: 820 or SEQ ID NO: 826.


Preferably, the iCP Parkin recombinant protein of the present invention may be composed of an amino acid sequence selected from the group consisting of SEQ ID NOs: 817, 819, 821, 823, 825, 827, 829 and 831.


Still another aspect of the present invention provides a recombinant expression vector including the polynucleotide sequence.


Preferably, the vector may be inserted in a host cell and recombined with the host cell genome, or refers to any nucleic acid including a nucleotide sequence competent to replicate spontaneously as an episome. Such a vector may include a linear nucleic acid, a plasmid, a phagemid, a cosmid, an RNA vector, a viral vector, etc.


Preferably, the vector may be genetically engineered to incorporate the nucleic acid sequence encoding the recombinant protein in an orientation either N-terminal and/or C-terminal to a nucleic acid sequence encoding a peptide, a polypeptide, a protein domain, or a full-length protein of interest, and in the correct reading frame so that the recombinant protein consisting of aMTD, Parkin protein, and preferably SD may be expressed. Expression vectors may be selected from those readily available for use in prokaryotic or eukaryotic expression systems.


Standard recombinant nucleic acid methods may be used to express a genetically engineered recombinant protein. The nucleic acid sequence encoding the recombinant protein of the present invention may be cloned into a nucleic acid expression vector, e.g., with appropriate signal and processing sequences and regulatory sequences for transcription and translation, and the protein may be synthesized using automated organic synthetic methods. Synthetic methods of producing proteins are described in, for example, the literature [Methods in Enzymology, Volume 289: Solid-Phase Peptide Synthesis by Gregg B. Fields (Editor), Sidney P. Colowick, Melvin I. Simon (Editor), Academic Press (1997)].


In order to obtain high level expression of a cloned gene or nucleic acid, for example, a cDNA encoding the recombinant protein of the present invention, the recombinant protein sequence may be typically subcloned into an expression vector that includes a strong promoter for directing transcription, a transcription/translation terminator, and in the case of a nucleic acid encoding a protein, a ribosome binding site for translational initiation. Suitable bacterial promoters are well known in the art and are described, e.g., in the literatures [Sambrook & Russell, Molecular Cloning: A Laboratory Manual, 3d Edition, Cold Spring Harbor Laboratory, N.Y. (2001); and Ausubel, et al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N. Y. (1989)]. Bacterial expression systems for expression of the recombinant protein of the present invention are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., Gene 22: 229-235 (1983); Mosbach et al., Nature 302: 543-545 (1983)). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available. The eukaryotic expression vector may be preferably an adenoviral vector, an adeno-associated vector, or a retroviral vector.


Generally, the expression vector for expressing the cell permeable recombinant protein of the present invention in which the cargo protein, i.e. parkin protein, is attached to the N-terminus, C-terminus, or both termini of aMTD may include regulatory sequences including, for example, a promoter, operably attached to a sequence encoding the advanced macromolecule transduction domain. Non-limiting examples of inducible promoters that may be used include steroid-hormone responsive promoters (e.g., ecdysone-responsive, estrogen-responsive, and glutacorticoid-responsive promoters), tetracycline “Tet-On” and “Tet-Off” systems, and metal-responsive promoters.


The recombinant protein may be introduced into an appropriate host cell, e.g., a bacterial cell, a yeast cell, an insect cell, or a tissue culture cell. The recombinant protein may also be introduced into embryonic stem cells in order to generate a transgenic organism. Large numbers of suitable vectors and promoters are known to those skilled in the art and are commercially available for generating the recombinant protein of the present invention.


Known methods may be used to construct vectors including the polynucleotide sequence of the present invention and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo recombination/genetic recombination. For example, these techniques are described in the literatures [Sambrook & Russell, Molecular Cloning: A Laboratory Manual, 3d Edition, Cold Spring Harbor Laboratory, N. Y. (2001); and Ausubel et al., Current Protocols in Molecular Biology Greene Publishing Associates and Wiley Interscience, N.Y. (1989)].


Still another aspect of the present invention provides a transformant transformed with the recombinant expression vector.


The transformation includes transfection, and refers to a process whereby a foreign (extracellular) DNA, with or without an accompanying material, enters into a host cell. The “transfected cell” refers to a cell into which the foreign DNA is introduced into the cell, and thus the cell harbors the foreign DNA. The DNA may be introduced into the cell so that a nucleic acid thereof may be integrated into the chromosome or replicable as an extrachromosomal element. The cell introduced with the foreign DNA, etc. is called a transformant.


As used herein, ‘introducing’ of a protein, a peptide, an organic compound into a cell may be used interchangeably with the expression of ‘carrying,’ ‘penetrating,’ ‘transporting,’ ‘delivering,’ ‘permeating’ or ‘passing.’


It is understood that the host cell refers to a eukaryotic or prokaryotic cell into which one or more DNAs or vectors are introduced, and refers not only to the particular subject cell but also to the progeny or potential progeny thereof. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


The host cells may be preferably bacterial cells, and as the bacterial cells, there are, in principle, no limitations. They may be eubacteria (gram-positive or gram-negative) or archaebacteria, as long as they allow genetic manipulation for insertion of a gene of interest, preferably for site-specific integration, and they may be cultured on a manufacturing scale. Preferably, the host cells may have the property to allow cultivation to high cell densities.


Examples of bacterial host cells that may be used in the preparation of the recombinant protein are E. coli (Lee, 1996; Hannig and Makrides, 1998), Bacillus subtilis, Pseudomonas fluorescens (Squires et al., 2004; Retallack et al., 2006) as well as various Corynebacterium (US 2006/0003404 A1) and Lactococcus lactis (Mierau et al., 2005) strains. Preferably, the host cells are Escherichia coli cells.


More preferably, the host cell may include an RNA polymerase capable of binding to a promoter regulating the gene of interest. The RNA polymerase may be endogenous or exogenous to the host cell.


Preferably, host cells with a foreign strong RNA polymerase may be used. For example, Escherichia coli strains engineered to carry a foreign RNA polymerase (e.g. like in the case of using a T7 promoter a T7-like RNA polymerase in the so-called “T7 strains”) integrated in their genome may be used. Examples of T7 strains, e.g. BL21(DE3), HMS174(DE3), and their derivatives or relatives (see Novagen, pET System manual, 11th edition), may be widely used and commercially available. Preferably, BL21-CodonPlus (DE3)-RIL or BL21-CodonPlus (DE3)-RIPL (Agilent Technologies) may be used. These strains are DE3 lysogens containing the T7 RNA polymerase gene under control of the lacUV5 promoter. Induction with IPTG allows production of T7 RNA polymerase which then directs the expression of the gene of interest under the control of the T7 promoter.


The host cell strains, E. coli BL21(DE3) or HMS174(DE3), which have received their genome-based T7 RNA polymerase via the phage DE3, are lysogenic. It is preferred that the T7 RNA polymerase contained in the host cell has been integrated by a method which avoids, or preferably excludes, the insertion of residual phage sequences in the host cell genome since lysogenic strains have the disadvantage to potentially exhibit lytic properties, leading to undesirable phage release and cell lysis.


Still another aspect of the present invention provides a preparing method of the iCP Parkin recombinant protein including preparing the recombinant expression vector; preparing the transformant using the recombinant expression vector; culturing the transformant; and recovering the recombinant protein expressed by culturing.


Culturing may be preferably in a mode that employs the addition of a feed medium, this mode being selected from the fed-batch mode, semi-continuous mode, or continuous mode, and the bacterial expression host cells may include a DNA construct, integrated in their genome, carrying the DNA sequence encoding the protein of interest under the control of a promoter that enables expression of said protein.


There are no limitations in the type of the culture medium. The culture medium may be semi-defined, i.e. containing complex media compounds (e.g. yeast extract, soy peptone, casamino acids), or it may be chemically defined, without any complex compounds. Preferably, a defined medium may be used. The defined media (also called minimal or synthetic media) are exclusively composed of chemically defined substances, i.e. carbon sources such as glucose or glycerol, salts, vitamins, and, in view of a possible strain auxotrophy, specific amino acids or other substances such as thiamine. Most preferably, glucose may be used as a carbon source. Usually, the carbon source of the feed medium serves as the growth-limiting component which controls the specific growth rate.


Host cells may be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or the use of cell lysing agents. The literature [Scopes, Protein Purification: Principles and Practice, New York: Springer-Verlag (1994)] describes a number of general methods for purifying recombinant (and non-recombinant) proteins. The methods may include, e.g., ion-exchange chromatography, size-exclusion chromatography, affinity chromatography, selective precipitation, dialysis, and hydrophobic interaction chromatography. These methods may be adapted to devise a purification strategy for the cell permeable recombinant protein. If the cell permeable recombinant protein includes a purification handle, such as an epitope tag or a metal chelating sequence, affinity chromatography may be used to easily purify the protein.


The amount of the protein produced may be evaluated by detecting the advanced macromolecule transduction domain directly (e.g., using Western analysis) or indirectly (e.g., by assaying materials derived from the cells for specific DNA binding activity, such as by electrophoretic mobility shift assay). Proteins may be detected prior to purification, during any stage of purification, or after purification. In some implementations, purification or complete purification may not be necessary.


The genetically engineered recombinant proteins prepared by the method of the present invention are cell permeable proteins, and may be used as protein-based vaccines, particularly in the case where killed or attenuated whole organism vaccines are impractical.


The cell permeable recombinant proteins prepared by the method of the present invention may be preferably used for the prevention or treatment of Parkinson's related disease. The cell permeable recombinant proteins may be delivered to the interior of the cell, eliminating the need to transfect or transform the cell with a recombinant vector. The cell permeable recombinant proteins of the present invention may be used in vitro to investigate protein function or may be used to maintain cells in a desired state.


Still another aspect of the present invention provides a composition including the iCP Parkin Recombinant Protein as an active ingredient.


Still another aspect of the present invention provides a pharmaceutical composition for treating or preventing Parkinson's disease including the iCP Parkin Recombinant Protein as an active ingredient; and a pharmaceutically acceptable carrier.


Preferably, the composition may be for injectable (e.g. intraperitoneal, intravenous, and intra-arterial, etc.) and may include the active ingredient in an amount of 0.01 mg/kg to 30 mg/kg, preferably 0.1 mg/kg to 10 mg/kg, more preferably 0.1 mg/kg to 6 mg/kg for human.


For examples, dosages per day normally fall within the range of about 0. 01 to about 30 mg/kg of body weight. In the treatment of adult humans, the range of about 0.1 to about 6 mg/kg/day, in single or divided dose, is especially preferred. However, it will be understood that the concentration of the iCP-Parkin recombinant protein actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the age, weight, and response of the individual patient, and the severity of the patient's symptoms, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way. In some instances dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several smaller doses for administration throughout the day.


Still another aspect of the present invention provides use of the improved cell-permeable (iCP) Parkin recombinant protein as a medicament for treating or preventing of Parkinson's related diseases.


Still another aspect of the present invention provides a medicament including the iCP Parkin recombinant protein.


Still another aspect of the present invention provides use of the iCP Parkin recombinant protein for the preparation of a medicament for treating or preventing Parkinson's related diseases.


Still another aspect of the present invention provides a method of treating or preventing Parkinson's related diseases in a subject including identifying a subject in need of treatment or prevention of Parkinson's related diseases; and administering to the subject a therapeutically effective amount of the iCP Parkin recombinant protein.


In one embodiment of the present invention, the subject may be preferably a mammal.


The pharmaceutical composition of the present invention may be prepared by using pharmaceutically suitable and physiologically acceptable additives, in addition to the active ingredient, and the additives may include excipients, disintegrants, sweeteners, binders, coating agents, blowing agents, lubricants, glidants, flavoring agents, etc.


For administration, the pharmaceutical composition may be preferably formulated by further including one or more pharmaceutically acceptable carriers in addition to the above-described active ingredient.


Dosage forms of the pharmaceutical composition may include granules, powders, tablets, coated tablets, capsules, suppositories, liquid formulations, syrups, juice, suspensions, emulsions, drops, injectable liquid formulations, etc. For formulation of the composition into a tablet or capsule, for example, the active ingredient may be combined with any oral, non-toxic pharmaceutically acceptable inert carrier, such as ethanol, glycerol, water, etc. If desired or necessary, suitable binders, lubricants, disintegrants, and colorants may be additionally included as a mixture.


Examples of the suitable binder may include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, etc. Examples of the disintegrant may include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, etc. For formulation of the composition into a liquid preparation, a pharmaceutically acceptable carrier which is sterile and biocompatible may be used, such as saline, sterile water, a Ringer's solution, buffered saline, an albumin infusion solution, a dextrose solution, a maltodextrin solution, glycerol, and ethanol, and these materials may be used alone or in any combination thereof. If necessary, other common additives, such as antioxidants, buffers, bacteriostatic agents, etc., may be added. Further, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare injectable formulations such as aqueous solutions, suspensions, and emulsions, or pills, capsules, granules, or tablets. Furthermore, the composition may be preferably formulated, depending upon diseases and ingredients, using any appropriate method known in the art, as disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton Pa.


Preferably, the treatment or treating mean improving or stabilizing the subject's condition or disease; or preventing or relieving the development or worsening of symptoms associated with the subject's condition or disease.


Methods of diagnosing patients as having or being at risk of having Parkinson's disease (PD) are well-known in the art. There are various symptoms and diagnostic tests used in combination to diagnose Parkinson's disease. At least two of the four main symptoms should be presented over a period of time for a neurologist to consider a PD diagnosis. Four Main Motor Symptoms of PD is: shaking or tremor; slowness of movement, called bradykinesia; stiffness or rigidity of the arms, legs or trunk; and trouble with balance and possible falls, also called postural instability. Review of the symptoms, activity, medications, concurrent medical problems, or possible toxic exposures of the subject can also be useful in diagnosing PD.


The prevention, prophylaxis and preventive treatment are used herein as synonyms. They include in particular the administration of a drug to individuals in whom at least two of the four cardinal symptoms of Parkinson's disease as described above, are not only rudimentarily but partially present, in order to prevent or delay the occurrence or significant degree of the motor symptoms of Parkinson's disease and/or further dopaminergic neuron loss, particularly in the substantia nigra.


The subject and patient are used herein interchangeably. They refer to a human or another mammal (e.g., mouse, rat, rabbit, dog, cat, cattle, swine, sheep, horse or primate) that can be afflicted with or is susceptible to a disease or disorder (e.g., PD) but may or may not have the disease or disorder. In certain embodiments, the subject is a human being.


Preferably, the amount effective or effective amount is the amount of an active ingredient or a pharmaceutical composition disclosed herein that when administered to a subject for treating a disease, is sufficient to effect such treatment of the disease. Any improvement in the patient is considered sufficient to achieve treatment. An effective amount of an active ingredient or a pharmaceutical composition disclosed herein, used for the treatment of Parkinson's disease can vary depending upon the manner of administration, the age, body weight, and general health of the patient. Ultimately, the prescribers or researchers will decide the appropriate amount and dosage regimen.


In the treatment or prevention method of the present invention, the composition including the iCP Parkin recombinant protein as an active ingredient may be administered in a common manner via oral, buccal, rectal, intravenous, intra-arterial, intraperitoneal, intramuscular, intrasternal, percutaneous, topical, intraocular or subcutaneous route, more preferably via intraperitoneal, intravenous, or intra-arterial injection route.


Advantageous Effects

The present invention provides artificially constructed aMTD sequences based on the critical factors (CFs) that overcome the limitations of prior arts (MTM/MTS/MTD), such as limited diversity and unpredictable cell-permeability. Based on the CFs that assure the cell-permeability, the aMTD displays these sequences shows up to 109.9 relative fold enhanced ability compared to prior arts thereof to deliver biologically active macromolecules into live cells. Therefore, the present invention would allow their practically effective applications in molecule delivery, drug delivery, protein therapy, intracellular protein therapy, protein replacement therapy, peptide therapy, gene delivery and so on.


With enhanced solubility and yield, aMTD/SD-fused Parkin recombinant protein could be produced in large quantities. In addition, effective BBB-permeability of the recombinant protein overcomes the limitations of previously developed anti-neurodegenerative treatments. Therefore, the present invention, recombinant iCP-Parkin protein, would allow practical applications to efficiently treat Parkinson's related diseases.


However, the effects of the present invention are not limited to the above-mentioned effects, and another effects not mentioned will be clearly understood by those skilled in the art from the following description.





DESCRIPTION OF DRAWINGS


FIG. 1 shows Structure of aMTD- or rPeptide-Fused Recombinant Proteins. A schematic diagram of the His-tagged CRA recombinant proteins is illustrated and constructed according to the present invention. The his-tag for affinity purification (white), aMTD or rPeptide (gray) and cargo A (CRA, black) are shown.



FIGS. 2a to 2c show Construction of Expression Vectors for aMTDs- or rPeptide-Fused Recombinant Proteins. These FIGS. show the agarose gel electrophoresis analysis showing plasmid DNA fragments at 645bp insert encoding aMTDs or rPeptide-fused CRA cloned into the pET28a(+) vector according to the present invention.



FIGS. 3a to 3d show Inducible Expression of aMTD- or rPeptide-Fused Recombinant Proteins. Expressed recombinant aMTD- or random peptide-fused CRA recombinant proteins were transformed in E. coli BL21 (DE3) strain. Expression of recombinant proteins in E. coli before (−) and after (+) induction with IPTG was monitored by SDS-PAGE, and stained with Coomassie blue.



FIGS. 4a and 4b show Purification of aMTD- or rPeptide-Fused Recombinant Proteins. Expressed recombinant proteins were purified by Ni2+ affinity chromatography under the natural condition. Purification of recombinant proteins displayed through SDS-PAGE analysis.



FIGS. 5a to 5u show Determination of aMTD-Mediated Cell-Permeability. Cell-permeability of a negative control (A: rP38) and reference hydrophobic CPPs (MTM12 and MTD85) are shown. The cell-permeability of each aMTD and/or rPeptide is visually compared to that of the cargo protein lacking peptide sequence (HCA). Gray shaded area represents untreated RAW 264.7 cells (vehicle); thin light gray line represents the cells treated with equal molar concentration of FITC (FITC only); dark thick line indicates the cells treated with FITC-his-tagged CRA protein (HCA); and the cells treated with the FITC-proteins (HMCA) fused to negative control (rP38), reference CPP (MTM12 or MTD85) or new hydrophobic CPP (aMTD) are shown with light thick line and indicated by arrows.



FIGS. 6a to 6c show Determination of rPeptide-Mediated Cell-Permeability. The cell-permeability of each aMTD and/or rPeptide was visually compared to that of the cargo protein lacking peptide sequence (HCA). Gray shaded area represents untreated RAW 264.7 cells (vehicle); thin light gray line represents the cells treated with equal molar concentration of FITC (FITC only); dark thick line indicates the cells treated with FITC-his-tagged CRA protein (HCA); and the cells treated with the FITC-proteins fused to rPeptides are shown with light thick line and indicated by arrows.



FIGS. 7a to 7k shows Visualized Cell-Permeability of aMTD-Fused Recombinant Proteins. NIH3T3 clls were treated with FITC-labeled protein (10 μ M) fused to aMTD for 1 hour at 37° C. Cell-permeability of the proteins was visualized by laser scanning confocal microscopy (LSM700 version).



FIG. 8 shows Visualized Cell-Permeability of rPeptide-Fused Recombinant Proteins. Cell-permeability of rPeptide-fused recombinant proteins was visualized by laser scanning confocal microscopy (LSM700 version).



FIGS. 9a to 9c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Negative Control (rP38). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a negative control (A: rP38).



FIGS. 10a to 10c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Reference CPP (MTM12). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a reference CPP (MTM12).



FIGS. 11a to 11c show Relative Cell-Permeability of aMTD-Fused Recombinant Proteins Compared to Reference CPP (MTD85). The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to aMTDs and a reference CPP (MTD85).



FIGS. 12 shows Relative Cell-Permeability of rPeptide-Mediated Recombinant Proteins Compared to Average that of aMTDs. The FIG shows graphs comparing the cell-permeability of the recombinant proteins fused to rPeptides and that (average value: aMTD AVE) of aMTDs.



FIGS. 13a to 13d show Association of Cell-Permeability with Amino Acid Composition in aMTD Sequences. These graphs display delivery potential (Geometric Mean) of aMTDs influenced with amino acid composition (A, I, V and L).



FIGS. 14a to 14d show Association of Cell-Permeability with Critical Factors in aMTDs. These graphs show the association of cell-permeability with critical factors [bending potential: proline position (PP), rigidity/flexibility: instability index (II), structural feature: aliphatic index (AI) and hydropathy: grand average of hydropathy (GRAVY)].



FIGS. 15a to 15d show Relative Relevance of aMTD-Mediated Cell-Permeability with Critical Factors. Cell-permeability of 10 high and 10 low ranked aMTDs in their delivery potential were examined for their association with the critical factors [bending potential: proline position (PP), rigidity/flexibility: instability index (II), structural feature: aliphatic index (Al) and hydropathy: grand average of hydropathy (GRAVY)].



FIG. 16 shows Relative Relevance of rPeptide-Mediated Cell-Permeability with Hydropathy Range (GRAVY). This graph and a chart illustrate relative relevance of rPeptide-mediated cell-permeability with its hydropathy range (GRAVY).



FIG. 17 shows Schematic Diagram of His-aMTD/SD-Fused Parkin Recombinant Proteins. A schematic Diagram of His-aMTD-SD-Parkin recombinant protein having cell-permeability is illustrated and constructed according to the present invention. Designs of recombinant Parkin fusion proteins contained histidine tag for affinity purification (MGSSHHHHHHSSGLVPRGS(SEQ ID NO:2), white), cargo (Parkin, Gray), aMTD (black), SDA (dot) and SDB (hatched).



FIG. 18 shows the agarose gel electrophoresis analysis showing plasmid DNA fragments insert encoding aMTD-SD-Fused Parkin cloned into the pET28a (+) vector according to example 6.



FIGS. 19 and 20 show expression, purification and the solubility/yield of iCP-Parkin recombinant Protein in E. coli according to example 7-1 and the Solubility/Yield of Parkin Recombinant Proteins according to example 7-2.



FIGS. 21a and 21b show Relative Yield of aMTD-SD-fused Parkin Recombinant Proteins (HM321PSA and HM321PSB) compared to Negative Control (HP) (FIG. 21a) and SDB-Fused Parkin Recombinant Proteins (HPSB) compared to Negative Control (HP) (FIG. 21b) according to example 7-2.



FIG. 22 shows Solubility/Yield, Permeability, and biological activity of aMTD-SD-fused Parkin Recombinant Proteins prepared by various aMTD according to example 7-2.



FIG. 23 shows aMTD321-Mediated Cell-Permeability Compared to Negative Control (rP38) and Previously Developed CPP (MTM12 and MTD85) according to example 9. Gray shaded area represents untreated RAW 264.7 cells (vehicle); each of the lines represents FITC-fused cells (FITC only); Histidine fused with SDA with FITC-labeling (HSA); and His-tagged CPP(MTM12, MTM85 and aMTD321)-recombinant proteins (HMSA) from the left.



FIG. 24 shows aMTD-Mediated Intracellular Localization according to example 10.



FIG. 25 shows in vivo cellular uptake of HM321PSB in PBMC according to example 11-1 (top: 15 min after IP; bottom: 30 min after IP).



FIG. 26 shows Determination of aMTD-Mediated Cell-Permeability of Parkin Recombinant Proteins according to example 11-2.



FIG. 27 shows Tissue Distribution of Parkin Recombinant Proteins in vivo according to example 12.



FIGS. 28a to 28c and 29 show Delivery of aMTD-Mediated Parkin Recombinant Protein to the Brain Determined by Western Blot (FIG. 28a) and Immunoblot (FIG. 29) Analysis according to example 13.



FIG. 30 shows ubiquitination and auto-ubiquitination activity of aMTD-Mediated Parkin Recombinant Protein according to example 14-1.



FIGS. 31, 32(a), and 32(b) show Inhibition of Apoptosis in Dopaminergic CATH.a Cells (FIG. 31) and SH-SY5Y Cells (FIGS. 32a and 32b) according to example 14-2. The micrographs are representative of three independent experiments, plotted (bottom) as means±S.D. Experimental differences between groups were assessed by a Student' s two-paired t-test (*p, 0.05).



FIG. 33 shows degradation of α-Synuclein aggregates by Parkin Recombinant Protein according to example 14-3.



FIG. 34 shows Protocol of MPTP-Induced PD Mouse Model according to example 15.



FIG. 35 shows Dopamine of Urine in MPTP-Induced PD mice Treated with Parkin Recombinant Proteins according to example 16.



FIG. 36 shows Dopamine of Brain in MPTP-Induced PD mice Treated with Recombinant Protein according to example 17.



FIG. 37 shows Preservation of Gross Motor Function in MPTP-Lesioned Mice Treated with Parkin Recombinant Proteins according to example 18.



FIGS. 38 to 40 show Determination of Footprint Pattern (FIG. 38), Stride Length (FIG. 39) and Sway Length (FIG. 40) in Gait Test according to example 19-1.



FIG. 41 shows recovery of motor activity in MPTP-Lesioned Mice Treated with Parkin Recombinant Proteins by Rota-rod test according to example 19-2.



FIG. 42a shows Dopaminergic Neuron in Substantia Nigra and Striatum by Parkin Recombinant Protein according to example 20.



FIG. 42b shows Recovery Effect of Dopaminergic Neuron in Substantia Nigra by Parkin Recombinant Protein according to example 20.



FIG. 43 shows recovery of TH expression by iCP-Parkin recombinant protein in sub-acute MPTP-induced PD model according to example 20.





MODE FOR INVENTION



  • 1. Analysis of Reference Hydrophobic CPPs to Identify ‘Critical Factors’ for Development of Advanced MTDs



Previously reported MTDs were selected from a screen of more than 1,500 signal peptide sequences. Although the MTDs that have been developed did not have a common sequence or sequence motif, they were all derived from the hydrophobic (H) regions of signal sequences (HRSSs) that also lack common sequences or motifs except their hydrophobicity and the tendency to adopt alpha-helical conformations. The wide variation in H-region sequences may reflect prior evolution for proteins with membrane translocating activity and subsequent adaptation to the SRP/Sec61 machinery, which utilizes a methionine-rich signal peptide binding pocket in SRP to accommodate a wide-variety of signal peptide sequences.


Previously described hydrophobic CPPs (e.g. MTS/MTM and MTD) were derived from the hydrophobic regions present in the signal peptides of secreted and cell surface proteins. The prior art consists first, of ad hoc use of H-region sequences (MTS/MTM), and second, of H-region sequences (with and without modification) with highest CPP activity selected from a screen of 1,500 signal sequences (MTM). Second prior art, the modified H-region derived hydrophobic CPP sequences had advanced in diversity with multiple number of available sequences apart from MTS/MTM derived from fibroblast growth factor (FGF) 4. However, the number of MTDs that could be modified from naturally occurring secreted proteins are somewhat limited. Because there is no set of rules in determining their cell-permeability, no prediction for the cell-permeability of modified MTD sequences can be made before testing them.


The hydrophobic CPPs, like the signal peptides from which they originated, did not conform to a consensus sequence, and they had adverse effects on protein solubility when incorporated into protein cargo. We therefore set out to identify optimal sequence and structural determinants, namely critical factors (CFs), to design new hydrophobic CPPs with enhanced ability to deliver macromolecule cargoes including proteins into the cells and tissues while maintaining protein solubility. These newly developed CPPs, advanced macromolecule transduction domains (aMTDs) allowed almost infinite number of possible designs that could be designed and developed based on the critical factors. Also, their cell-permeability could be predicted by their character analysis before conducting any in vitro and/or in vivo experiments. These critical factors below have been developed by analyzing all published reference hydrophobic CPPs.


1-1. Analysis of Hydrophobic CPPs


Seventeen different hydrophobic CPPs (Table 1) published from 1995 to 2014 (Table 2) were selected. After physiological and chemical properties of selected hydrophobic CPPs were analyzed, 11 different characteristics that may be associated with cell-permeability have been chosen for further analysis. These 11 characteristics are as follows: sequence, amino acid length, molecular weight, pI value, bending potential, rigidity/flexibility, structural feature, hydropathy, residue structure, amino acid composition and secondary structure of the sequences (Table 3).


Table 1 Shows the Summary of Published Hydrophobic Cell-Penetrating Peptides which were Chosen.













TABLE 1





#
Pepides
Origin
Protein
Ref.



















1
MTM

Homo sapiens

NP_001998 Kaposi fibroblast growth factor (K-FGF)
1


2
MTS

Homo sapiens

NP_001998 Kaposi fibroblast growth factor (K-FGF)
2


3
MTD10

Streptomyces coelicolor

NP_625021 Glycosyl hydrolase
8


4
MTD13

Streptomyces coelicolor

NP_639877 Putative secreted protein
3


5
MTD47

Streptomyces coelicolor

NP_627512 Secreted protein
4


6
MTD56

Homo sapiens

P23274 Peptidyl-prolyl cis-trans isomerase B precursor
5


7
MTD73

Drosophila melanogaster

AAA17887 Spatzle (spz) protein
5


8
MTD77

Homo sapiens

NP_003231 Kaposi fibroblast growth factor (K-FGF)
6


9
MTD84

Phytophthora cactorum

AAK63068 Phytotoxic protein PcF precusor
4


10
MTD85

Streptomyces coelicolor

NP_629842 Peptide transport system peptide binding
7





protein


11
MTD86

Streptomyces coelicolor

NP_629842 Peptide transport system secreted peptide
7





binding protein


12
MTD103

Homo sapiens

TMBV19 domain Family member B
8


13
MTD132

Streptomyces coelicolor

NP_628377 P60-family secreted protein
4


14
MTD151

Streptomyces coelicolor

NP_630126 Secreted chitinase
8


15
MTD173

Streptomyces coelicolor

NP_624384 Secreted protein
4


16
MTD174

Streptomyces coelicolor

NP_733505 Large, multifunctional secreted protein
8


17
MTD181

Neisseria meningitidis Z2491

CAB84257.1 Putative secreted protein
4









Table 2 Summarizes Reference Information











TABLE 2









References













#
Title
Journal
Year
Vol
Issue
Page
















1
Inhibition of Nuclear Translocation of Transcription Factor
JOURNAL OF
1995
270
24
14255



NF-kB by a Synthetic peptide Containing a Cell Membrane-
BIOLOGICAL



permeable Motif and Nuclear Localization Sequence
CHEMISTRY


2
Epigenetic Regulation of Gene Structure and Function with
NATURE
2001
19
10
929



a Cell-Permeable Cre Recombinase
BIOTECHNOLOGY


3
Cell-Permeable NM23 Blocks the Maintenance and
CANCER
2011
71
23
7216



Progression of Established Pulmonary Metastasis
RESEARCH


4
Antitumor Activity of Cell-Permeable p18INK4c With
MOLECULAR
2012
20
8
1540



Enhanced Membrane and Tissue Penetration
THERAPY


5
Antitumor Activity of Cell-Permeable RUNX3 Protein in
CLINICAL
2012
19
3
680



Gastric Cancer Cells
CANCER




RESEARCH


6
The Effect of Intracellular Protein Delivery on the Anti-
BIOMATERIALS
2013
34
26
6261



Tumor Activity of Recombinant Human Endostatin


7
Partial Somatic to Stem Cell Transformations Induced By
SCIENTIFIC
2014
4
10
4361



Cell-Permeable Reprogramming Factors
REPORTS


8
Cell-Permeable Parkin Proteins Suppress Parkinson
PLOS ONE
2014
9
7
17



Disease-Associated Phenotypes in Cultured Cells and



Animals









Table 3 Shows Characteristics of Published Hydrophobic Cell-Penetrating Peptides (A) which were Analyzed.

















TABLE 3














Rigidity/
Structural









Flexibility
Feature






Molecular

Bending
(Instability
(Aliphatic


#
Peptides
Sequence
Length
Weight
pI
Potential
Index: II)
Index: AI)





1
MTM
AAVALLPAVLLALLAP
16
1,515.9
5.6
Bending
45.5
220.0





2
MTS
AAVLLPVLLAAP
12
1,147.4
5.6
Bending
57.3
211.7





3
MTD10
LGGAVVAAPVAAAVAP
16
1,333.5
5.5
Bending
47.9
140.6





4
MTD13
LAAAALAVLPL
11
1,022.3
5.5
Bending
26.6
213.6





5
MTD47
AAAVPVLVAA
10
881.0
5.6
Bending
47.5
176.0





6
MTD56
VLLAAALIA
9
854.1
5.5
No-
8.9
250.0








Bending





7
MTD73
PVLLLLA
7
737.9
6.0
No-
36.1
278.6








Bending





8
MTD77
AVALLILAV
9
882.1
5.6
No-
30.3
271.1








Bending





9
MTD84
AVALVAVVAVA
11
982.2
5.6
No-
9.1
212.7








Bending





10 
MTD85
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1
231.8








Bending





11 
MTD86
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1
231.8








Bending





12 
MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1





13 
MTD132
AVVVPAIVLAAP
12
1,119.4
5.6
Bending
50.3
195.0





14 
MTD151
AAAPVAAVP
9
1,031.4
5.5
Bending
73.1
120.0





15 
MTD173
AVIPILAVP
9
892.1
5.6
Bending
48.5
216.7





16 
MTD174
LILLLPAVALP
12
1,011.8
5.5
Bending
79.1
257.3





17 
MTD181
AVLLLPAAA
9
838.0
5.6
Bending
51.7
206.7







AVE
10.8 ± 2.4
1,011 ± 189.6
5.6 ± 0.1
Proline
40.1 ± 21.9
217.9 ± 43.6








Presence

















A/a




Hydropathy
Residue
Composition
Secondary






















#
Peptides
Sequence
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.







1
MTM
AAVALLPAVLLALLAP
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1







Ring







2
MTS
AAVLLPVLLAAP
2.3
Aliphatic
4
2
4
0
2
0
No-Helix
CRE
2







Ring







3
MTD10
LGGAVVAAPVAAAVAP
1.8
Aliphatic
7
4
1
0
2
2
Helix
Parkin
8







Ring







4
MTD13
LAAAALAVLPL
2.4
Aliphatic
5
1
4
0
1
0
No-Helix
RUNX3
3







Ring







5
MTD47
AAAVPVLVAA
2.4
Aliphatic
5
3
1
0
1
0
No-Helix
CMYC
4







Ring







6
MTD56
VLLAAALIA
3.0
Aliphatic
4
1
3
1
0
0
Helix
ES
5







Ring







7
MTD73
PVLLLLA
2.8
Aliphatic
1
1
4
0
1
0
Helix
ES
5







Ring







8
MTD77
AVALLILAV
3.3
Aliphatic
3
2
3
1
0
0
Helix
NM23
6







Ring







9
MTD84
AVALVAVVAVA
3.1
Aliphatic
5
5
1
0
0
0
Helix
OCT4
4







Ring







10 
MTD85
LLAAAAALLLA
2.7
Aliphatic
6
0
5
0
0
0
No-Helix
RUNX3
7







Ring







11 
MTD86
LLAAAAALLLA
2.7
Aliphatic
6
0
5
0
0
0
No-Helix
SOX2
7







Ring







12 
MTD103
LALPVLLLA
2.8
Aliphatic
2
1
5
0
1
0
Helix
p18
8







Ring







13 
MTD132
AVVVPAIVLAAP
2.4
Aliphatic
4
4
1
1
2
0
No-Helix
LIN28
4







Ring







14 
MTD151
AAAPVAAVP
1.6
Aliphatic






No-Helix
Parkin
8







Ring







15 
MTD173
AVIPILAVP
2.4
Aliphatic
2
2
1
2
2
0
Helix
KLF4
4







Ring







16 
MTD174
LILLLPAVALP
2.6
Aliphatic






Helix
Parkin
8







Ring







17 
MTD181
AVLLLPAAA
2.4
Aliphatic
4
1
3
0
1
0
No-Helix
SOX2
4







Ring









AVE
2.5 ± 0.4










Two peptide/protein analysis programs were used (ExPasy: SoSui: http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html) to determine various indexes and structural features of the peptide sequences and to design new sequence. Followings are important factors analyzed.


1-2. Characteristics of Analyzed Peptides: Length, Molecular Weight and pI Value


Average length, molecular weight and pI value of the peptides analyzed were 10.8±2.4, 1,011±189.6 and 5.6±0.1, respectively (Table 4)


Table 4 summarizes Critical Factors (CFs) of Published Hydrophobic Cell-Penetrating Peptides (A) which were Analyzed.











TABLE 4









Length: 10.8 ± 2.4



Molecular Weight: 1,011 ± 189.6



pI: 5.6 ± 0.1



Bending Potential (BP): Proline presences in the middle and/or



the end of peptides, or No Proline.



Instability Index (II): 40.1 ± 21.9



Residue Structure & Aliphatic Index (AI): 217.9 ± 43.6



Hydropathy (GRAVY): 2.5 ± 0.4



Aliphatic Ring: Non-polar hydrophobic & aliphatic amino acid



(A, V, L, I).



Secondary Structure: α-Helix is favored but not required.










1-3. Characteristics of Analyzed Peptides: Bending Potential—Proline Position (PP)


Bending potential (bending or no-bending) was determined based on the fact whether proline (P) exists and/or where the amino acid(s) providing bending potential to the peptide in recombinant protein is/are located. Proline differs from the other common amino acids in that its side chain is bonded to the backbone nitrogen atom as well as the alpha-carbon atom. The resulting cyclic structure markedly influences protein architecture which is often found in the bends of folded peptide/protein chain.


Eleven out of 17 were determined as ‘Bending’ peptide which means that proline is present in the middle of sequence for peptide bending and/or located at the end of the peptide for protein bending. As indicated above, peptide sequences could penetrate the plasma membrane in a “bent” configuration. Therefore, bending or no-bending potential is considered as one of the critical factors for the improvement of current hydrophobic CPPs.


1-4. Characteristics of Analyzed Peptides: Rigidity/Flexibility—Instability Index (II)


Since one of the crucial structural features of any peptide is based on the fact whether the motif is rigid or flexible, which is an intact physicochemical characteristic of the peptide sequence, instability index (II) of the sequence was determined. The index value representing rigidity/flexibility of the peptide was extremely varied (8.9-79.1), but average value was 40.1±21.9 which suggested that the peptide should be somehow flexible, but not too much rigid or flexible (Table 3).


1-5. Characteristics of Analyzed Peptides: Structural Features—Structural Feature (Aliphatic Index: AI) and Hydropathy (Grand Average of Hydropathy: GRAVY)


Alanine (V), valine (V), leucine (L) and isoleucine (I) contain aliphatic side chain and are hydrophobic—that is, they have an aversion to water and like to cluster. These amino acids having hydrophobicity and aliphatic residue enable them to pack together to form compact structure with few holes. Analyzed peptide sequence showed that all composing amino acids were hydrophobic (A, V, L and I) except glycine (G) in only one out of 17 (MTD10 - Table 3) and aliphatic (A, V, L, I, and P). Their hydropathic index (Grand Average of Hydropathy: GRAVY) and aliphatic index (AI) were 2.5±0.4 and 217.9±43.6, respectively. Their amino acid composition is also indicated in the Table 3.


1-6. Characteristics of Analyzed Peptides: Secondary Structure (Helicity)


As explained above, the CPP sequences may be supposed to penetrate the plasma membrane directly after inserting into the membranes in a “bent” configuration with hydrophobic sequences having α-helical conformation. In addition, our analysis strongly indicated that bending potential was crucial for membrane penetration. Therefore, structural analysis of the peptides was conducted to determine whether the sequences were to form helix or not. Nine peptides were helix and eight were not (Table 3). It seems to suggest that helix structure may not be required.


1-7. Determination of Critical Factors (CFs)


In the 11 characteristics analyzed, the following 6 are selected namely “Critical Factors” for the development of new hydrophobic CPPs—advanced MTDs: amino acid length, bending potential (proline presence and location), rigidity/flexibility (instability index: II), structural feature (aliphatic index: AI), hydropathy (GRAVY) and amino acid composition/residue structure (hydrophobic and aliphatic A/a) (Table 3 and Table 4).

  • 2. Analysis of Selected Hydrophobic CPPs to Optimize ‘Critical Factors’


Since the analyzed data of the 17 different hydrophobic CPPs (analysis A, Table 3 and 4) previously developed during the past 2 decades showed high variation and were hard to make common- or consensus- features, analysis B (Table 5 and 6) and C (Table 7 and 8) were also conducted to optimize the critical factors for better design of improved CPPs—aMTDs. Therefore, 17 hydrophobic CPPs have been grouped into two groups and analyzed the groups for their characteristics in relation to the cell permeable property. The critical factors have been optimized by comparing and contrasting the analytical data of the groups and determining the common homologous features that may be critical for the cell permeable property.


2-1. Selective Analysis (B) of Peptides Used to Biologically Active Cargo Protein for In Vivo


In analysis B, eight CPPs were used with each biologically active cargo in vivo. Length was 11±3.2, but 3 out of 8 CPPs possessed little bending potential. Rigidity/Flexibility (instability index: II) was 41±15, but removing one [MTD85: rigid, with minimal II (9.1)] of the peptides increased the overall instability index to 45.6±9.3. This suggested that higher flexibility (40 or higher II) is potentially be better. All other characteristics of the 8 CPPs were similar to the analysis A, including structural feature and hydropathy (Table 5 and 6).


Table 5 Shows Characteristics of Published Hydrophobic Cell-Penetrating Peptides (B): Selected CPPs That were Used to Each Cargo In Vivo.

















TABLE 5














Rigidity/
Structural









Flexibility
Feature






Molecular

Bending
(Instability
(Aliphatic


#
Peptides
Sequence
Length
Weight
pI
Potential
Index: II)
Index: AI)





1
MTM
AAVALLPAVLLALLAP
16
1,515.9
5.6
Bending
45.5
220.0





2
MTS
AAVLLPVLLAAP
12
1,147.4
5.6
Bending
57.3
211.7





3
MTD10
LGGAVVAAPVAAAVAP
16
1,333.5
5.5
Bending
47.9
140.6





4
MTD73
PVLLLLA
7
737.9
6.0
No-
36.1
278.6








Bending





5
MTD77
AVALLILAV
9
882.1
5.6
No-
30.3
271.1








Bending





6
MTD85
LLAAAAALLLA
11
1,010.2
5.5
No-
9.1*
231.8








Bending





7
MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1





8
MTD132
AVVVPAIVLAAP
12
1,119.4
5.6
Bending
50.3
195.0







AVE
11 ± 3.2
1,083 ± 252
5.6 ± 0.1
Proline
41 ± 15
227 ± 47








Presence

















A/a




Hydropathy
Residue
Composition
Secondary






















#
Peptides
Sequence
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.







1
MTM
AAVALLPAVLLALLAP
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1







Ring







2
MTS
AAVLLPVLLAAP
2.3
Aliphatic
4
2
4
0
2
0
No-Helix
CRE
2







Ring







3
MTD10
LGGAVVAAPVAAAVAP
1.8
Aliphatic
7
4
1
0
2
2
Helix
Parkin
8







Ring







4
MTD73
PVLLLLA
2.8
Aliphatic
1
1
4
0
1
0
Helix
ES
6







Ring







5
MTD77
AVALLILAV
3.3
Aliphatic
3
2
3
1
0
0
Helix
NM23
3







Ring







6
MTD85
LLAAAAALLLA
2.7
Aliphatic
6
0
5
0
0
0
No-Helix
RUNX3
5







Ring







7
MTD103
LALPVLLLA
2.8
Aliphatic
2
1
5
0
1
0
Helix
p18
4







Ring







8
MTD132
AVVVPAIVLAAP
2.4
Aliphatic
4
4
1
1
2
0
No-Helix
LIN28
7







Ring









AVE
2.5 ± 0.4







*Removing the MTD85 increases II to 45.6 ± 9.3.






Table 6 Shows Summarized Critical Factors of Published Hydrophobic Cell-Penetrating Peptides (B).











TABLE 6









Length: 11 ± 3.2



Molecular Weight: 1,083 ± 252



pI: 5.6 ± 0.1



Bending Potential (BP): Proline presences in the middle and/or



the end of peptides, or No Proline.



Instability Index (II): 41.0 ± 15 ( Removing the MTD85 increases



II to 45.6 ± 9.3)



Residue Structure & Aliphatic Index (AI): 227 ± 47



Hydropathy (GRAVY): 2.5 ± 0.4



Aliphatic Ring: Non-polar hydrophobic & aliphatic amino acid



(A, V, L, I).



Secondary Structure: α-Helix is favored but not required.










2-2. Selective Analysis (C) of Peptides That Provided Bending Potential and Higher Flexibility


To optimize the ‘Common Range and/or Consensus Feature of Critical Factor’ for the practical design of aMTDs and the random peptides (rPs or rPeptides), which were to prove that the ‘Critical Factors’ determined in the analysis A, B and C were correct to improve the current problems of hydrophobic CPPs—protein aggregation, low solubility/yield, and poor cell-/tissue-permeability of the recombinant proteins fused to the MTS/MTM or MTD, and non-common sequence and non-homologous structure of the peptides, empirically selected peptides were analyzed for their structural features and physicochemical factor indexes.


Hydrophobic CPPs which did not have a bending potential, rigid or too much flexible sequences (too much low or too much high Instability Index), or too low or too high hydrophobic CPPs were unselected, but secondary structure was not considered because helix structure of sequence was not required.


In analysis C, eight selected CPP sequences that could provide a bending potential and higher flexibility were finally analyzed (Table 7 and 8). Common amino acid length is 12 (11.6±3.0). Proline is presence in the middle of and/or the end of sequence. Rigidity/Flexibility (II) is 45.5-57.3 (Avg: 50.1±3.6). Al and GRAVY representing structural feature and hydrophobicity of the peptide are 204.7±37.5 and 2.4±0.3, respectively. All peptides are consisted with hydrophobic and aliphatic amino acids (A, V, L, I, and P). Therefore, analysis C was chosen as a standard for the new design of new hydrophobic CPPs—aMTDs.


Table 7 Shows Characteristics of Published Hydrophobic Cell-Penetrating Peptides (C): Selected CPPs that Provided Bending Potential and Higher Flexibility.

















TABLE 7














Rigidity/
Structural









Flexibility
Feature






Molecular

Bending
(Instability
(Aliphatic


#
Peptides
Sequence
Length
Weight
pI
Potential
Index: II)
Index: AI)





1
MTM
AAVALLPAVLLALLAP
16
1515.9
5.6
Bending
45.5
220.0





2
MTS
AAVLLPVLLAAP
12
1147.4
5.6
Bending
57.3
211.7





3
MTD10
LGGAVVAAPVAAAVAP
16
1333.5
5.5
Bending
47.9
140.6





4
MTD47
AAAVPVLVAA
10
881.0
5.6
Bending
47.5
176.0





5
MTD103
LALPVLLLA
9
922.2
5.5
Bending
51.7
271.1





6
MTD132
AVVVPAIVLAAP
12
1119.4
5.6
Bending
50.3
195.0





7
MTD173
AVIPILAVP
9
892.1
5.6
Bending
48.5
216.7





8
MTD181
AVLLLPAAA
9
838.0
5.6
Bending
51.7
206.7







AVE
11.6 ± 3.0
1081.2 ± 244.6
5.6 ± 0.1
Proline
50.1 ± 3.6
204.7 ± 37.5








Presence

















A/a




Hydropathy
Residue
Composition
Secondary






















#
Peptides
Sequence
(GRAVY)
Structure
A
V
L
I
P
G
Structure
Cargo
Ref.







1
MTM
AAVALLPAVLLALLAP
2.4
Aliphatic
6
2
6
0
2
0
Helix
p50
1







Ring







2
MTS
AAVLLPVLLAAP
2.3
Aliphatic
4
2
4
0
2
0
No-Helix
CRE
2







Ring







3
MTD10
LGGAVVAAPVAAAVAP
1.8
Aliphatic
7
4
1
0
2
2
Helix
Parkin
8







Ring







4
MTD47
AAAVPVLVAA
2.4
Aliphatic
5
3
1
0
1
0
No-Helix
CMYC
4







Ring







5
MTD103
LALPVLLLA
2.8
Aliphatic
2
1
5
0
1
0
Helix
p18
8







Ring







6
MTD132
AVVVPAIVLAAP
2.4
Aliphatic
4
4
1
1
2
0
No-Helix
LIN28
4







Ring







7
MTD173
AVIPILAVP
2.4
Aliphatic
2
2
1
2
2
0
Helix
KLF4
4







Ring







8
MTD181
AVLLLPAAA
2.4
Aliphatic
4
1
3
0
1
0
No-Helix
SOX2
4







Ring









AVE
2.4 ± 0.3










Table 8 Shows Summarized Critical Factors of Published Hydrophobic Cell-Penetrating Peptides (C).











TABLE 8









Length: 11.6 ± 3.0



Molecular Weight: 1,081.2 ± 224.6



pI: 5.6 ± 0.1



Bending Potential (BP): Proline presences in the middle and/or



the end of peptides.



Instability Index (II): 50.1 ± 3.6



Residue Structure & Aliphatic Index (AI): 204.7 ± 37.5



Hydropathy (GRAVY): 2.4 ± 0.3



Aliphatic Ring: Non-polar hydrophobic & aliphatic amino acid



(A, V, L, I),



Secondary Structure: α-Helix is favored but not required.










  • 3. New Design of Improved Hydrophobic CPPs—aMTDs Based on the Optimized Critical Factors



3-1. Determination of Common Sequence and/or Common Homologous Structure


As mentioned above, H-regions of signal sequence (HRSS)-derived CPPs (MTS/MTM and MTD) do not have a common sequence, sequence motif, and/or common-structural homologous feature. In this invention, the aim is to develop improved hydrophobic CPPs formatted in the common sequence- and structural-motif which satisfy newly determined ‘Critical Factors’ to have ‘Common Function,’ namely, to facilitate protein translocation across the membrane with similar mechanism to the analyzed reference CPPs. Based on the analysis A, B and C, the common homologous features have been analyzed to determine the critical factors that influence the cell-permeability. The range value of each critical factor has been determined to include the analyzed index of each critical factor from analysis A, B and C to design novel aMTDs (Table 9). These features have been confirmed experimentally with newly designed aMTDs in their cell-permeability.


Table 9 Shows Comparison The Range/Feature of Each Critical Factor Between The Value of Analyzed CPPs and The Value Determined for New Design of Novel aMTDs Sequences.









TABLE 9







Summarized Critical Factors of aMTD










Selected CPPs
Newly Designed CPPs


Critical Factor
Range
Range





Bending Potential
Proline presences
Proline presences


(Proline Position: PP)
in the middle
in the middle



and/or at the
(5′, 6′, 7′



end of peptides
or 8′) and at the




end of peptides


Rigidity/Flexibility
45.5-57.3
40-60


(Instability Index: II)
(50.1 ± 3.6)


Structural Feature
140.6-220.0
180-220


(Aliphatic Index: AI)
(204.7 ± 37.5)


Hydropathy
1.8-2.8
2.1-2.6


(Grand Average of
 (2.4 ± 0.3)


Hydropathy GRAVY)


Length
11.6 ± 3.0
 9-13


(Number of Amino Acid)


Amino acid Composition
A, V, I, L, P
A, V, I, L, P









In Table 9, universal common features and sequence/structural motif are provided. Length is 9-13 amino acids, and bending potential is provided with the presence of proline in the middle of sequence (at 5′, 6′, 7′ or 8′ amino acid) for peptide bending and at the end of peptide for recombinant protein bending and Rigidity/Flexibility of aMTDs is II>40 are described in Table 9.


3-2. Critical Factors for Development of Advanced MTDs


Recombinant cell-permeable proteins fused to the hydrophobic CPPs to deliver therapeutically active cargo molecules including proteins into live cells had previously been reported, but the fusion proteins expressed in bacteria system were hard to be purified as a soluble form due to their low solubility and yield. To address the crucial weakness for further clinical development of the cell-permeable proteins as protein-based biotherapeutics, greatly improved form of the hydrophobic CPP, named as advanced MTD (aMTD) has newly been developed through critical factors-based peptide analysis. The critical factors used for the current invention of the aMTDs are herein (Table 9).


1. Amino Acid Length: 9-13


2. Bending Potential (Proline Position: PP)


: Proline presences in the middle (from 5′ to 8′ amino acid) and at the end of sequence


3. Rigidity/Flexibility (Instability Index: II): 40-60


4. Structural Feature (Aliphatic Index: Al): 180-220


5. Hydropathy (GRAVY): 2.1-2.6


6. Amino Acid Composition: Hydrophobic and Aliphatic amino acids—A, V, L, I and P


3-3. Design of Potentially Best aMTDs That All Critical Factors Are Considered and Satisfied


After careful consideration of six critical factors derived from analysis of unique features of hydrophobic CPPs, advanced macromolecule transduction domains (aMTDs) have been designed and developed based on the common 12 amino acid platform which satisfies the critical factors including amino acid length (9-13) determined from the analysis.




embedded image


Unlike previously published hydrophobic CPPs that require numerous experiments to determine their cell-permeability, newly developed aMTD sequences could be designed by performing just few steps as follows using above mentioned platform to follow the determined range value/feature of each critical factor.


First, prepare the 12 amino acid sequence platform for aMTD. Second, place proline (P) in the end (12′) of sequence and determine where to place proline in one of four U(s) in 5′, 6′, 7′, and 8. Third, alanine (A), valine (V), leucine (L) or isoleucine (I) is placed in either X(s) and/or U(s), where proline is not placed. Lastly, determine whether the amino acid sequences designed based on the platform, satisfy the value or feature of six critical factors to assure the cell permeable property of aMTD sequences. Through these processes, numerous novel aMTD sequences have been constructed. The expression vectors for preparing non-functional cargo recombinant proteins fused to each aMTD, expression vectors have been constructed and forcedly expressed in bacterial cells. These aMTD-fused recombinant proteins have been purified in soluble form and determined their cell-permeability quantitatively. aMTD sequences have been newly designed, numbered from 1 to 240, as shown in Table 10-15. In Table 10-15, sequence ID Number is a sequence listings for reference, and aMTD numbers refer to amino acid listing numbers that actually have been used at the experiments. For further experiments, aMTD numbers have been used. In addition, polynucleotide sequences shown in the sequence lists have been numbered from SEQ ID NO: 241 to SEQ ID NO: 480.


Tables 10 to 15 show 240 new hydrophobic aMTD sequences that were developed to satisfy all critical factors.
















TABLE 10









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















1
1
AAALAPVVLALP
12
57.3
187.5
2.1
Aliphatic





2
2
AAAVPLLAVVVP
12
41.3
195.0
2.4
Aliphatic





3
3
AALLVPAAVLAP
12
57.3
187.5
2.1
Aliphatic





4
4
ALALLPVAALAP
12
57.3
195.8
2.1
Aliphatic





5
5
AAALLPVALVAP
12
57.3
187.5
2.1
Aliphatic





6
11
VVALAPALAALP
12
57.3
187.5
2.1
Aliphatic





7
12
LLAAVPAVLLAP
12
57.3
211.7
2.3
Aliphatic





8
13
AAALVPVVALLP
12
57.3
203.3
2.3
Aliphatic





9
21
AVALLPALLAVP
12
57.3
211.7
2.3
Aliphatic





10
22
AVVLVPVLAAAP
12
57.3
195.0
2.4
Aliphatic





11
23
VVLVLPAAAAVP
12
57.3
195.0
2.4
Aliphatic





12
24
IALAAPALIVAP
12
50.2
195.8
2.2
Aliphatic





13
25
IVAVAPALVALP
12
50.2
203.3
2.4
Aliphatic





14
42
VAALPVVAVVAP
12
57.3
186.7
2.4
Aliphatic





15
43
LLAAPLVVAAVP
12
41.3
187.5
2.1
Aliphatic





16
44
ALAVPVALLVAP
12
57.3
203.3
2.3
Aliphatic





17
61
VAALPVLLAALP
12
57.3
211.7
2.3
Aliphatic





18
62
VALLAPVALAVP
12
57.3
203.3
2.3
Aliphatic





19
63
AALLVPALVAVP
12
57.3
203.3
2.3
Aliphatic























TABLE 11









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















20
64
AIVALPVAVLAP
12
50.2
203.3
2.4
Aliphatic





21
65
IAIVAPVVALAP
12
50.2
203.3
2.4
Aliphatic





22
81
AALLPALAALLP
12
57.3
204.2
2.1
Aliphatic





23
82
AVVLAPVAAVLP
12
57.3
195.0
2.4
Aliphatic





24
83
LAVAAPLALALP
12
41.3
195.8
2.1
Aliphatic





25
84
AAVAAPLLLALP
12
41.3
195.8
2.1
Aliphatic





26
85
LLVLPAAALAAP
12
57.3
195.8
2.1
Aliphatic





27
101
LVALAPVAAVLP
12
57.3
203.3
2.3
Aliphatic





28
102
LALAPAALALLP
12
57.3
204.2
2.1
Aliphatic





29
103
ALIAAPILALAP
12
57.3
204.2
2.2
Aliphatic





30
104
AVVAAPLVLALP
12
41.3
203.3
2.3
Aliphatic





31
105
LLALAPAALLAP
12
57.3
204.1
2.1
Aliphatic





32
121
AIVALPALALAP
12
50.2
195.8
2.2
Aliphatic





33
123
AAIIVPAALLAP
12
50.2
195.8
2.2
Aliphatic





34
124
IAVALPALIAAP
12
50.3
195.8
2.2
Aliphatic





35
141
AVIVLPALAVAP
12
50.2
203.3
2.4
Aliphatic





36
143
AVLAVPAVLVAP
12
57.3
195.0
2.4
Aliphatic





37
144
VLAIVPAVALAP
12
50.2
203.3
2.4
Aliphatic





38
145
LLAVVPAVALAP
12
57.3
203.3
2.3
Aliphatic





39
161
AVIALPALIAAP
12
57.3
195.8
2.2
Aliphatic





40
162
AVVALPAALIVP
12
50.2
203.3
2.4
Aliphatic





41
163
LALVLPAALAAP
12
57.3
195.8
2.1
Aliphatic





42
164
LAAVLPALLAAP
12
57.3
195.8
2.1
Aliphatic





43
165
ALAVPVALAIVP
12
50.2
203.3
2.4
Aliphatic





44
182
ALIAPVVALVAP
12
57.3
203.3
2.4
Aliphatic





45
183
LLAAPVVIALAP
12
57.3
211.6
2.4
Aliphatic





46
184
LAAIVPAIIAVP
12
50.2
211.6
2.4
Aliphatic





47
185
AALVLPLIIAAP
12
41.3
220.0
2.4
Aliphatic





48
201
LALAVPALAALP
12
57.3
195.8
2.1
Aliphatic





49
204
LIAALPAVAALP
12
57.3
195.8
2.2
Aliphatic





50
205
ALALVPAIAALP
12
57.3
195.8
2.2
Aliphatic





51
221
AAILAPIVALAP
12
50.2
195.8
2.2
Aliphatic





52
222
ALLIAPAAVIAP
12
57.3
195.8
2.2
Aliphatic





53
223
AILAVPIAVVAP
12
57.3
203.3
2.4
Aliphatic





54
224
ILAAVPIALAAP
12
57.3
195.8
2.2
Aliphatic





55
225
VAALLPAAAVLP
12
57.3
187.5
2.1
Aliphatic





56
241
AAAVVPVLLVAP
12
57.3
195.0
2.4
Aliphatic





57
242
AALLVPALVAAP
12
57.3
187.5
2.1
Aliphatic





58
243
AAVLLPVALAAP
12
57.3
187.5
2.1
Aliphatic





59
245
AAALAPVLALVP
12
57.3
187.5
2.1
Aliphatic





60
261
LVLVPLLAAAAP
12
41.3
211.6
2.3
Aliphatic





61
262
ALIAVPAIIVAP
12
50.2
211.6
2.4
Aliphatic





62
263
ALAVIPAAAILP
12
54.9
195.8
2.2
Aliphatic





63
264
LAAAPVVIVIAP
12
50.2
203.3
2.4
Aliphatic





64
265
VLAIAPLLAAVP
12
41.3
211.6
2.3
Aliphatic





65
281
ALIVLPAAVAVP
12
50.2
203.3
2.4
Aliphatic





66
282
VLAVAPALIVAP
12
50.2
203.3
2.4
Aliphatic





67
283
AALLAPALIVAP
12
50.2
195.8
2.2
Aliphatic





68
284
ALIAPAVALIVP
12
50.2
211.7
2.4
Aliphatic





69
285
AIVLLPAAVVAP
12
50.2
203.3
2.4
Aliphatic























TABLE 12









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















70
301
VIAAPVLAVLAP
12
57.3
203.3
2.4
Aliphatic





71
302
LALAPALALLAP
12
57.3
204.2
2.1
Aliphatic





72
304
AIILAPIAAIAP
12
57.3
204.2
2.3
Aliphatic





73
305
IALAAPILLAAP
12
57.3
204.2
2.2
Aliphatic





74
321
IVAVALPALAVP
12
50.2
203.3
2.3
Aliphatic





75
322
VVAIVLPALAAP
12
50.2
203.3
2.3
Aliphatic





76
323
IVAVALPVALAP
12
50.2
203.3
2.3
Aliphatic





77
324
IVAVALPAALVP
12
50.2
203.3
2.3
Aliphatic





78
325
IVAVALPAVALP
12
50.2
203.3
2.3
Aliphatic





79
341
IVAVALPAVLAP
12
50.2
203.3
2.3
Aliphatic





80
342
VIVALAPAVLAP
12
50.2
203.3
2.3
Aliphatic





81
343
IVAVALPALVAP
12
50.2
203.3
2.3
Aliphatic





82
345
ALLIVAPVAVAP
12
50.2
203.3
2.3
Aliphatic





83
361
AVVIVAPAVIAP
12
50.2
195.0
2.4
Aliphatic





84
363
AVLAVAPALIVP
12
50.2
203.3
2.3
Aliphatic





85
364
LVAAVAPALIVP
12
50.2
203.3
2.3
Aliphatic





86
365
AVIVVAPALLAP
12
50.2
203.3
2.3
Aliphatic





87
381
VVAIVLPAVAAP
12
50.2
195.0
2.4
Aliphatic





88
382
AAALVIPAILAP
12
54.9
195.8
2.2
Aliphatic





89
383
VIVALAPALLAP
12
50.2
211.6
2.3
Aliphatic





90
384
VIVAIAPALLAP
12
50.2
211.6
2.4
Aliphatic





91
385
IVAIAVPALVAP
12
50.2
203.3
2.4
Aliphatic





92
401
AALAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





93
402
ALAAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





94
403
AAALVIPAAILP
12
54.9
195.8
2.2
Aliphatic





95
404
LAAAVIPAAILP
12
54.9
195.8
2.2
Aliphatic





96
405
LAAAVIPVAILP
12
54.9
211.7
2.4
Aliphatic





97
421
AAILAAPLIAVP
12
57.3
195.8
2.2
Aliphatic





98
422
VVAILAPLLAAP
12
57.3
211.7
2.4
Aliphatic





99
424
AVVVAAPVLALP
12
57.3
195.0
2.4
Aliphatic





100
425
AVVAIAPVLALP
12
57.3
203.3
2.4
Aliphatic





101
442
ALAALVPAVLVP
12
57.3
203.3
2.3
Aliphatic





102
443
ALAALVPVALVP
12
57.3
203.3
2.3
Aliphatic





103
444
LAAALVPVALVP
12
57.3
203.3
2.3
Aliphatic





104
445
ALAALVPALVVP
12
57.3
203.3
2.3
Aliphatic





105
461
IAAVIVPAVALP
12
50.2
203.3
2.4
Aliphatic





106
462
IAAVLVPAVALP
12
57.3
203.3
2.4
Aliphatic





107
463
AVAILVPLLAAP
12
57.3
211.7
2.4
Aliphatic





108
464
AVVILVPLAAAP
12
57.3
203.3
2.4
Aliphatic





109
465
IAAVIVPVAALP
12
50.2
203.3
2.4
Aliphatic





110
481
AIAIAIVPVALP
12
50.2
211.6
2.4
Aliphatic





111
482
ILAVAAIPVAVP
12
54.9
203.3
2.4
Aliphatic





112
483
ILAAAIIPAALP
12
54.9
204.1
2.2
Aliphatic





113
484
LAVVLAAPAIVP
12
50.2
203.3
2.4
Aliphatic





114
485
AILAAIVPLAVP
12
50.2
211.6
2.4
Aliphatic





115
501
VIVALAVPALAP
12
50.2
203.3
2.4
Aliphatic





116
502
AIVALAVPVLAP
12
50.2
203.3
2.4
Aliphatic





117
503
AAIIIVLPAALP
12
50.2
220.0
2.4
Aliphatic





118
504
LIVALAVPALAP
12
50.2
211.7
2.4
Aliphatic





119
505
AIIIVIAPAAAP
12
50.2
195.8
2.3
Aliphatic























TABLE 13









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















120
521
LAALIVVPAVAP
12
50.2
203.3
2.4
Aliphatic





121
522
ALLVIAVPAVAP
12
57.3
203.3
2.4
Aliphatic





122
524
AVALIVVPALAP
12
50.2
203.3
2.4
Aliphatic





123
525
ALAIVVAPVAVP
12
50.2
195.0
2.4
Aliphatic





124
541
LLALIIAPAAAP
12
57.3
204.1
2.1
Aliphatic





125
542
ALALIIVPAVAP
12
50.2
211.6
2.4
Aliphatic





126
543
LLAALIAPAALP
12
57.3
204.1
2.1
Aliphatic





127
544
IVALIVAPAAVP
12
43.1
203.3
2.4
Aliphatic





128
545
VVLVLAAPAAVP
12
57.3
195.0
2.3
Aliphatic





129
561
AAVAIVLPAVVP
12
50.2
195.0
2.4
Aliphatic





130
562
ALIAAIVPALVP
12
50.2
211.7
2.4
Aliphatic





131
563
ALAVIVVPALAP
12
50.2
203.3
2.4
Aliphatic





132
564
VAIALIVPALAP
12
50.2
211.7
2.4
Aliphatic





133
565
VAIVLVAPAVAP
12
50.2
195.0
2.4
Aliphatic





134
582
VAVALIVPALAP
12
50.2
203.3
2.4
Aliphatic





135
583
AVILALAPIVAP
12
50.2
211.6
2.4
Aliphatic





136
585
ALIVAIAPALVP
12
50.2
211.6
2.4
Aliphatic





137
601
AAILIAVPIAAP
12
57.3
195.8
2.3
Aliphatic





138
602
VIVALAAPVLAP
12
50.2
203.3
2.4
Aliphatic





139
603
VLVALAAPVIAP
12
57.3
203.3
2.4
Aliphatic





140
604
VALIAVAPAVVP
12
57.3
195.0
2.4
Aliphatic





141
605
VIAAVLAPVAVP
12
57.3
195.0
2.4
Aliphatic





142
622
ALIVLAAPVAVP
12
50.2
203.3
2.4
Aliphatic





143
623
VAAAIALPAIVP
12
50.2
187.5
2.3
Aliphatic





144
625
ILAAAAAPLIVP
12
50.2
195.8
2.2
Aliphatic





145
643
LALVLAAPAIVP
12
50.2
211.6
2.4
Aliphatic





146
645
ALAVVALPAIVP
12
50.2
203.3
2.4
Aliphatic





147
661
AAILAPIVAALP
12
50.2
195.8
2.2
Aliphatic





148
664
ILIAIAIPAAAP
12
54.9
204.1
2.3
Aliphatic





149
665
LAIVLAAPVAVP
12
50.2
203.3
2.3
Aliphatic





150
666
AAIAIIAPAIVP
12
50.2
195.8
2.3
Aliphatic





151
667
LAVAIVAPALVP
12
50.2
203.3
2.3
Aliphatic





152
683
LAIVLAAPAVLP
12
50.2
211.7
2.4
Aliphatic





153
684
AAIVLALPAVLP
12
50.2
211.7
2.4
Aliphatic





154
685
ALLVAVLPAALP
12
57.3
211.7
2.3
Aliphatic





155
686
AALVAVLPVALP
12
57.3
203.3
2.3
Aliphatic





156
687
AILAVALPLLAP
12
57.3
220.0
2.3
Aliphatic





157
703
IVAVALVPALAP
12
50.2
203.3
2.4
Aliphatic





158
705
IVAVALLPALAP
12
50.2
211.7
2.4
Aliphatic





159
706
IVAVALLPAVAP
12
50.2
203.3
2.4
Aliphatic





160
707
IVALAVLPAVAP
12
50.2
203.3
2.4
Aliphatic





161
724
VAVLAVLPALAP
12
57.3
203.3
2.3
Aliphatic





162
725
IAVLAVAPAVLP
12
57.3
203.3
2.3
Aliphatic





163
726
LAVAIIAPAVAP
12
57.3
187.5
2.2
Aliphatic





164
727
VALAIALPAVLP
12
57.3
211.6
2.3
Aliphatic





165
743
AIAIALVPVALP
12
57.3
211.6
2.4
Aliphatic





166
744
AAVVIVAPVALP
12
50.2
195.0
2.4
Aliphatic





167
746
VAIIVVAPALAP
12
50.2
203.3
2.4
Aliphatic





168
747
VALLAIAPALAP
12
57.3
195.8
2.2
Aliphatic





169
763
VAVLIAVPALAP
12
57.3
203.3
2.3
Aliphatic























TABLE 14









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















170
764
AVALAVLPAVVP
12
57.3
195.0
2.3
Aliphatic





171
765
AVALAVVPAVLP
12
57.3
195.0
2.3
Aliphatic





172
766
IVVIAVAPAVAP
12
50.2
195.0
2.4
Aliphatic





173
767
IVVAAVVPALAP
12
50.2
195.0
2.4
Aliphatic





174
783
IVALVPAVAIAP
12
50.2
203.3
2.5
Aliphatic





175
784
VAALPAVALVVP
12
57.3
195.0
2.4
Aliphatic





176
786
LVAIAPLAVLAP
12
41.3
211.7
2.4
Aliphatic





177
787
AVALVPVIVAAP
12
50.2
195.0
2.4
Aliphatic





178
788
AIAVAIAPVALP
12
57.3
187.5
2.3
Aliphatic





179
803
AIALAVPVLALP
12
57.3
211.7
2.4
Aliphatic





180
805
LVLIAAAPIALP
12
41.3
220.0
2.4
Aliphatic





181
806
LVALAVPAAVLP
12
57.3
203.3
2.3
Aliphatic





182
807
AVALAVPALVLP
12
57.3
203.3
2.3
Aliphatic





183
808
LVVLAAAPLAVP
12
41.3
203.3
2.3
Aliphatic





184
809
LIVLAAPALAAP
12
50.2
195.8
2.2
Aliphatic





185
810
VIVLAAPALAAP
12
50.2
187.5
2.2
Aliphatic





186
811
AVVLAVPALAVP
12
57.3
195.0
2.3
Aliphatic





187
824
LIIVAAAPAVAP
12
50.2
187.5
2.3
Aliphatic





188
825
IVAVIVAPAVAP
12
43.2
195.0
2.5
Aliphatic





189
826
LVALAAPIIAVP
12
41.3
211.7
2.4
Aliphatic





190
827
IAAVLAAPALVP
12
57.3
187.5
2.2
Aliphatic





191
828
IALLAAPIIAVP
12
41.3
220.0
2.4
Aliphatic





192
829
AALALVAPVIVP
12
50.2
203.3
2.4
Aliphatic





193
830
IALVAAPVALVP
12
57.3
203.3
2.4
Aliphatic





194
831
IIVAVAPAAIVP
12
43.2
203.3
2.5
Aliphatic





195
832
AVAAIVPVIVAP
12
43.2
195.0
2.5
Aliphatic





196
843
AVLVLVAPAAAP
12
41.3
219.2
2.5
Aliphatic





197
844
VVALLAPLIAAP
12
41.3
211.8
2.4
Aliphatic





198
845
AAVVIAPLLAVP
12
41.3
203.3
2.4
Aliphatic





199
846
IAVAVAAPLLVP
12
41.3
203.3
2.4
Aliphatic





200
847
LVAIVVLPAVAP
12
50.2
219.2
2.6
Aliphatic





201
848
AVAIVVLPAVAP
12
50.2
195.0
2.4
Aliphatic





202
849
AVILLAPLIAAP
12
57.3
220.0
2.4
Aliphatic





203
850
LVIALAAPVALP
12
57.3
211.7
2.4
Aliphatic





204
851
VLAVVLPAVALP
12
57.3
219.2
2.5
Aliphatic





205
852
VLAVAAPAVLLP
12
57.3
203.3
2.3
Aliphatic





206
863
AAVVLLPIIAAP
12
41.3
211.7
2.4
Aliphatic





207
864
ALLVIAPAIAVP
12
57.3
211.7
2.4
Aliphatic





208
865
AVLVIAVPAIAP
12
57.3
203.3
2.5
Aliphatic





209
867
ALLVVIAPLAAP
12
41.3
211.7
2.4
Aliphatic





210
868
VLVAAILPAAIP
12
54.9
211.7
2.4
Aliphatic





211
870
VLVAAVLPIAAP
12
41.3
203.3
2.4
Aliphatic





212
872
VLAAAVLPLVVP
12
41.3
219.2
2.5
Aliphatic





213
875
AIAIVVPAVAVP
12
50.2
195.0
2.4
Aliphatic





214
877
VAIIAVPAVVAP
12
57.3
195.0
2.4
Aliphatic





215
878
IVALVAPAAVVP
12
50.2
195.0
2.4
Aliphatic





216
879
AAIVLLPAVVVP
12
50.2
219.1
2.5
Aliphatic





217
881
AALIVVPAVAVP
12
50.2
195.0
2.4
Aliphatic





218
882
AIALVVPAVAVP
12
57.3
195.0
2.4
Aliphatic





219
883
LAIVPAAIAALP
12
50.2
195.8
2.2
Aliphatic























TABLE 15









Rigidity/
Sturctural




Sequence



Flexibility
Feature
Hydropathy
Residue


ID Number
aMTD
Sequences
Length
(II)
(AI)
(GRAVY)
Structure






















220
885
LVAIAPAVAVLP
12
57.3
203.3
2.4
Aliphatic





221
887
VLAVAPAVAVLP
12
57.3
195.0
2.4
Aliphatic





222
888
ILAVVAIPAAAP
12
54.9
187.5
2.3
Aliphatic





223
889
ILVAAAPIAALP
12
57.3
195.8
2.2
Aliphatic





224
891
ILAVAAIPAALP
12
54.9
195.8
2.2
Aliphatic





225
893
VIAIPAILAAAP
12
54.9
195.8
2.3
Aliphatic





226
895
AIIIVVPAIAAP
12
50.2
211.7
2.5
Aliphatic





227
896
AILIVVAPIAAP
12
50.2
211.7
2.5
Aliphatic





228
897
AVIVPVAIIAAP
12
50.2
203.3
2.5
Aliphatic





229
899
AVVIALPAVVAP
12
57.3
195.0
2.4
Aliphatic





230
900
ALVAVIAPVVAP
12
57.3
195.0
2.4
Aliphatic





231
901
ALVAVLPAVAVP
12
57.3
195.0
2.4
Aliphatic





232
902
ALVAPLLAVAVP
12
41.3
203.3
2.3
Aliphatic





233
904
AVLAVVAPVVAP
12
57.3
186.7
2.4
Aliphatic





234
905
AVIAVAPLVVAP
12
41.3
195.0
2.4
Aliphatic





235
906
AVIALAPVVVAP
12
57.3
195.0
2.4
Aliphatic





236
907
VAIALAPVVVAP
12
57.3
195.0
2.4
Aliphatic





237
908
VALALAPVVVAP
12
57.3
195.0
2.3
Aliphatic





238
910
VAALLPAVVVAP
12
57.3
195.0
2.3
Aliphatic





239
911
VALALPAVVVAP
12
57.3
195.0
2.3
Aliphatic





240
912
VALLAPAVVVAP
12
57.3
195.0
2.3
Aliphatic






52.6 ± 5.1
201.7 ± 7.8
2.3 ± 0.1









3-4. Design of the Peptides Which Did Not Satisfy at Least One Critical Factor


To demonstrate that this invention of new hydrophobic CPPs—aMTDs, which satisfy all critical factors described above, are correct and rationally designed, the peptides which do not satisfy at least one critical factor have also been designed. Total of 31 rPeptides (rPs) are designed, developed and categorized as follows: no bending peptides, either no proline in the middle as well at the end and/or no central proline; rigid peptides (II<40); too much flexible peptides; aromatic peptides (aromatic ring presences); hydrophobic, with non-aromatic peptides but have amino acids other than A, V, L, I, P or additional proline residues; hydrophilic, but non-aliphatic peptides.


3-4-1. Peptides That Do Not Satisfy the Bending Potential


Table 16 shows the peptides that do not have any proline in the middle (at 5′, 6′, 7′ or 8′) and at the end of the sequences. In addition, Table 16 describes the peptides that do not have proline in the middle of the sequences. All these peptides are supposed to have no-bending potential.
















TABLE 16









Proline
Rigidity/
Sturctural







Position
Flexibility
Feature
Hydropathy


Group
rPeptide ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















No-Bending Peptides
931
AVLIAPAILAAA
12
6
57.3
204.2
2.5


(No Proline at 5,
936
ALLILAAAVAAP
12
12 
41.3
204.2
2.4


6, 7 or 8
152
LAAAVAAVAALL
12
None
9.2
204.2
2.7


and/or 12)
27
LAIVAAAAALVA
12
None
2.1
204.2
2.8



935
ALLILPAAAVAA
12
6
57.3
204.2
2.4



670
ALLILAAAVAAL
12
None
25.2
236.6
2.8



934
LILAPAAVVAAA
12
5
57.3
195.8
2.5



37
TTCSQQQYCTNG
12
None
53.1
0.0
−1.1



16
NNSCTTYTNGSQ
12
None
47.4
0.0
−1.4



113
PVAVALLIAVPP
12
1, 11, 12
57.3
195.0
2.1









3-4-2. Peptides That Do Not Satisfy the Rigidity/Flexibility


To prove that rigidity/flexibility of the sequence is a crucial critical factor, rigid (Avg. II: 21.8±6.6) and too high flexible sequences (Avg. II: 82.3±21.0) were also designed. Rigid peptides that instability index is much lower than that of new aMTDs (II: 41.3-57.3, Avg. II: 53.3±5.7) are shown in Table 17. Bending, but too high flexible peptides that II is much higher than that of new aMTDs are also provided in Table 18.
















TABLE 17









Proline
Rigidity/
Sturctural







Position
Flexibility
Feature
Hydropathy


Group
rPeptide ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















Rigid Peptides
226
ALVAAIPALAIP
12
6
20.4
195.8
2.2


(II < 50)
6
VIAMIPAAFWVA
12
6
15.7
146.7
2.2



750
LAIAAIAPLAIP
12
8, 12
22.8
204.2
2.2



26
AAIALAAPLAIV
12
8
18.1
204.2
2.5



527
LVLAAVAPIAIP
12
8, 12
22.8
211.7
2.4



466
IIAAAAPLAIIP
12
7, 12
22.8
204.2
2.3



167
VAIAIPAALAIP
12
6, 12
20.4
195.8
2.3



246
VVAVPLLVAFAA
12
5
25.2
195.0
2.7



426
AAALAIPLAIIP
12
7, 12
4.37
204.2
2.2



606
AAAIAAIPIIIP
12
8, 12
4.4
204.2
2.4



66
AGVLGGPIMGVP
12
7, 12
35.5
121.7
1.3



248
VAAIVPIAALVP
12
6, 12
34.2
203.3
2.5



227
LAAIVPIAAAVP
12
6, 12
34.2
187.5
2.2



17
GGCSAPQTTCSN
12
6
51.6
8.3
−0.5



67
LDAEVPLADDVP
12
6, 12
34.2
130.0
0.3























TABLE 18









Proline
Rigidity/
Sturctural




rPeptide


Position
Flexibility
Feature
Hydropathy


Group
ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















Bending Peptides
692
PAPLPPVVILAV
12
1, 3, 5, 6
105.5
186.7
1.8


but Too High
69
PVAVLPPAALVP
12
1, 6, 7, 12
89.4
162.5
1.6


Flexibility
390
VPLLVPVVPVVP
12
2, 6, 9, 12
105.4
210.0
2.2



350
VPILVPVVPVVP
12
2, 6, 9, 12
121.5
210.0
2.2



331
VPVLVPLVPVVP
12
2, 6, 9, 12
105.4
210.0
2.2



9
VALVPAALILPP
12
5, 11, 12
89.4
203.3
2.1



68
VAPVLPAAPLVP
12
3, 6, 9, 12
105.5
162.5
1.6



349
VPVLVPVVPVVP
12
2, 6, 9, 12
121.5
201.6
2.2



937
VPVLVPLPVPVV
12
2, 6, 8, 10
121.5
210.0
2.2



938
VPVLLPVVVPVP
12
2, 6, 10, 12
121.5
210.0
2.2



329
LPVLVPVVPVVP
12
2, 6, 9, 12
121.5
210.0
2.2



49
VVPAAPAVPVVP
12
3, 6, 9, 12
121.5
145.8
1.7



772
LPVAPVIPIIVP
12
2, 5, 8, 12
79.9
210.8
2.1



210
ALIALPALPALP
12
6, 9, 12
89.4
195.8
1.8



28
AVPLLPLVPAVP
12
3, 6, 9, 12
89.4
186.8
1.8



693
AAPVLPVAVPIV
12
3, 6, 10
82.3
186.7
2.1



169
VALVAPALILAP
12
6, 12
73.4
211.7
2.4



29
VLPPLPVLPVLP
12
3, 4, 6, 9, 12
121.5
202.5
1.7



190
AAILAPAVIAPP
12
6, 11, 12
89.4
163.3
1.8









3-4-3. Peptides That Do Not Satisfy the Structural Features


New hydrophobic CPPs—aMTDs are consisted with only hydrophobic and aliphatic amino acids (A, V, L, I and P) with average ranges of the indexes—AI: 180-220 and GRAVY: 2.1-2.6 (Table 9). Based on the structural indexes, the peptides which contain an aromatic residue (W, F or Y) are shown in Table 19 and the peptides which are hydrophobic with non-aromatic sequences but have amino acids residue other than A, V, L, I, P or additional proline residues are designed (Table 20). Finally, hydrophilic and/or bending peptides which are consisted with non-aliphatic amino acids are shown in Table 21.
















TABLE 19









Proline
Rigidity/
Sturctural







Position
Flexibility
Feature
Hydropathy


Group
rPeptide ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















Aromatic Peptides
30
WFFAGPIMLIWP
12
6, 12
9.2
105.8
1.4


(Aromatic Ring
33
AAAILAPAFLAV
12
7
57.3
171.7
2.4


Presences)
131
WIIAPVWLAWIA
12
5
51.6
179.2
1.9



922
WYVIFVLPLVVP
12
8, 12
41.3
194.2
2.2



71
FMWMWFPFMWYP
12
7, 12
71.3
0.0
0.6



921
IWWFVVLPLVVP
12
8, 12
41.3
194.2
2.2























TABLE 20









Proline
Rigidity/
Sturctural




rPeptide


Position
Flexibility
Feature
Hydropathy


Group
ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















Hydrophobic
436
VVMLVVPAVMLP
12
7, 12
57.3
194.2
2.6


but Non Aromatic
138
PPAALLAILAVA
12
1, 2
57.3
195.8
2.2


Peptides
77
PVALVLVALVAP
12
1, 12
41.3
219.2
2.5



577
MLMIALVPMIAV
12
8
18.9
195.0
2.7



97
ALLAAPPALLAL
12
6, 7
57.3
204.2
2.1



214
ALIVAPALMALP
12
6, 12
60.5
187.5
2.2



59
AVLAAPVVAALA
12
6
41.3
187.5
2.5



54
LAVAAPPVVALL
12
6, 7
57.3
203.3
2.3























TABLE 21









Proline
Rigidity/
Sturctural







Position
Flexibility
Feature
Hydropathy


Group
rPeptide ID
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)






















Hydrophilic Peptides
949
SGNSCQQCGNSS
12
None
41.7
0.0
−1.1


but Non Aliphatic
39
CYNTSPCTGCCY
12
6
52.5
0.0
0.0



19
YVSCCTYTNGSQ
12
None
47.7
0.0
−1.0



947
CYYNQQSNNNNQ
12
None
59.6
0.0
−2.4



139
TGSTNSPTCTST
12
7
53.4
0.0
−0.7



18
NYCCTPTTNGQS
12
6
47.9
0.0
−0.9



20
NYCNTCPTYGQS
12
7
47.4
0.0
−0.9



635
GSTGGSQQNNQY
12
None
31.9
0.0
−1.9



40
TYNTSCTPGTCY
12
8
49.4
0.0
−0.6



57
QNNCNTSSQGGG
12
None
52.4
0.0
−1.6



159
CYSGSTSQNQPP
12
11, 12
51.0
0.0
−1.3



700
GTSNTCQSNQNS
12
None
19.1
0.0
−1.6



38
YYNQSTCGGQCY
12
None
53.8
0.0
−1.0









3-5. Summary of Newly Designed Peptides


Total of 457 sequences have been designed based on the critical factors. Designed potentially best aMTDs (hydrophobic, flexible, bending, aliphatic and 12-A/a length peptides) that do satisfy all range/feature of critical factors are 316. Designed rPeptides that do not satisfy at least one of the critical factors are 141 that no bending peptide sequences are 26; rigid peptide (I l<40) sequences are 23; too much flexible peptides are 24; aromatic peptides (aromatic ring presences) are 27; hydrophobic, but non-aromatic peptides are 23; and hydrophilic, but non-aliphatic peptides are 18.

  • 4. Preparation of Recombinant Report Proteins Fused to aMTDs and rPeptides


Recombinant proteins fused to aMTDs and others [rPeptides, reference hydrophobic CPP sequences (MTM and MTD)] were expressed in a bacterial system, purified with single-step affinity chromatography and prepared as soluble proteins in physiological condition. These recombinant proteins have been tested for the ability of their cell-permeability by utilizing flow cytometry and laser scanning confocal microscopy.


4-1. Selection of Cargo Protein for Recombinant Proteins Fused to Peptide Sequences


For clinical/non-clinical application, aMTD-fused cargo materials would be biologically active molecules that could be one of the following: enzymes, transcription factors, toxic, antigenic peptides, antibodies and antibody fragments. Furthermore, biologically active molecules could be one of these following macromolecules: enzymes, hormones, carriers, immunoglobulin, membrane-bound proteins, transmembrane proteins, internal proteins, external proteins, secreted proteins, virus proteins, native proteins, glycoproteins, fragmented proteins, disulfide bonded proteins, recombinant proteins, chemically modified proteins and prions. In addition, these biologically active molecules could be one of the following: nucleic acid, coding nucleic acid sequence, mRNAs, antisense RNA molecule, carbohydrate, lipid and glycolipid.


According to these pre-required conditions, a non-functional cargo to evaluate aMTD-mediated protein uptake has been selected and called as Cargo A (CRA) that should be soluble and non-functional. The domain (A/a 289-840; 184 A/a length) is derived from protein S (Genbank ID: CP000113.1).


4-2. Construction of Expression Vector and Preparation of Recombinant Proteins


Coding sequences for recombinant proteins fused to each aMTD are cloned Ndel (5′) and Sall (3′) in pET-28a(+) (Novagen, Darmstadt, Germany) from PCR-amplified DNA segments. PCR primers for the recombinant proteins fused to aMTD and rPeptides are represented by SEQ ID NOs: 481-797. Structure of the recombinant proteins is displayed in FIG. 1.


The recombinant proteins were forcedly expressed in E. coli BL21 (DE3) cells grown to an OD600 of 0.6 and induced for 2 hours with 0.7 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The proteins were purified by Ni2+ affinity chromatography as directed by the supplier (Qiagen, Hilden, Germany) in natural condition. After the purification, purified proteins were dissolved in a physiological buffer such as DMEM medium.












TABLE 22










custom-character  Potentially Best aMTDs (Hydrophobic, Flexible,

240



Bending, Aliphatic & Helical)




custom-character  Random Peptides

31



No Bending Peptides (No Proline at 5 or 6 and/or 12)
02



No Bending Peptides (No Central Proline)
01



Rigid Peptides (II < 50)
09



Too Much Flexible Peptides
09



Aromatic Peptides (Aromatic Ring Presences)
01



Hydrophobic, But Non-Aromatic Peptides
02



Hydrophilic, But Non-Aliphatic Peptides
07










4-3. Expression of aMTD- or Random Peptide (rP)-Fused Recombinant Proteins


The present invention also relates to the development method of aMTD sequences having cell-permeability. Using the standardized six critical factors, 316 aMTD sequences have been designed. In addition, 141 rPeptides are also developed that lack one of these critical factors: no bending peptides: i) absence of proline both in the middle and at the end of sequence or ii) absence of proline either in the middle or at the end of sequence, rigid peptides, too much flexible peptides, aromatic peptides (aromatic ring presence), hydrophobic but non-aromatic peptides, and hydrophilic but non-aliphatic peptides (Table 22).


These rPeptides are devised to be compared and contrasted with aMTDs in order to analyze structure/sequence activity relationship (SAR) of each critical factor with regard to the peptides' intracellular delivery potential. All peptide (aMTD or rPeptide)-containing recombinant proteins have been fused to the CRA to enhance the solubility of the recombinant proteins to be expressed, purified, prepared and analyzed.


These designed 316 aMTDs and 141 rPeptides fused to CRA were all cloned (FIG. 2) and tested for inducible expression in E. coli (FIG. 3). Out of these peptides, 240 aMTDs were inducibly expressed, purified and prepared in soluble form (FIG. 4). In addition, 31 rPeptides were also prepared as soluble form (FIG. 4).


To prepare the proteins fused to rPeptides, 60 proteins were expressed that were 10 out of 26 rPeptides in the category of no bending peptides (Table 16); 15 out of 23 in the category of rigid peptides [instability index (II)<40 ] (Table 17); 19 out of 24 in the category of too much flexible peptides (Table 18); 6 out of 27 in the category of aromatic peptides (Table 19); 8 out of 23 in the category of hydrophobic but non-aromatic peptides (Table 20); and 12 out of 18 in the category of hydrophilic but non-aliphatic peptides (Table 21).


4-4. Quantitative Cell-Permeability of aMTD-Fused Recombinant Proteins


The aMTDs and rPeptides were fluorescently labeled and compared based on the critical factors for cell-permeability by using flow cytometry and confocal laser scanning microscopy (FIGS. 5 to 8). The cellular uptake of the peptide-fused non-functional cargo recombinant proteins could quantitatively be evaluated in flow cytometry, while confocal laser scanning microscopy allows intracellular uptake to be assessed visually. The analysis included recombinant proteins fused to a negative control [rP38] that has opposite characteristics (hydrophilic and aromatic sequence: YYNQSTCGGQCY) to the aMTDs (hydrophobic and aliphatic sequences). Relative cell-permeability (relative fold) of aMTDs to the negative control was also analyzed (Table 23 and FIG. 9).


Table 23 shows Comparison Analysis of Cell-Permeability of aMTDs with a


Negative Control (A: rP38).











TABLE 23







Negative Control



rP38



















aMTD
19.6 ± 1.6*



The Average of 240 aMTDs
(Best: 164.2)







*Relative Fold (aMTD in Geo Mean in its comparison to rP38)






Relative cell-permeability (relative fold) of aMTDs to the reference CPPs [B: MTM12 (AAVLLPVLLAAP), C: MTD85 (AVALLILAV)] was also analyzed (Tables 40 and 41)


Table 24 shows Comparison Analysis of Cell-Permeability of aMTDs with a Reference CPP (B: MTM12).











TABLE 24







MTM12



















aMTD
13.1 ± 1.1*



The Average of 240 aMTDs
(Best: 109.9)







*Relative Fold (aMTD in Geo Mean in its comparison to MTM12)






Table 25 shows Comparison Analysis of Cell-Permeability of aMTDs with a


Reference CPP (C: MTD85).











TABLE 25







MTD85



















aMTD
6.6 ± 0.5*



The Average of 240 aMTDs
(Best: 55.5)







*Relative Fold (aMTD in Geo Mean in its comparison to MTD85)






Geometric means of negative control (histidine-tagged rP38-fused CRA recombinant protein) subtracted by that of naked protein (histidine-tagged CRA protein) lacking any peptide (rP38 or aMTD) was standardized as relative fold of 1. Relative cell-permeability of 240 aMTDs to the negative control (A type) was significantly increased by up to 164 fold, with average increase of 19.6±1.6 (Table 26-31).















TABLE 26









Proline
Rigidity/
Sturctural

Relative


Sequence

Position
Flexibility
Feature
Hydropathy
Ratio (Fold)

















ID Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C




















1
899
AVVIALPAVVAP
12
7
57.3
195.0
2.4
164.2
109.9
55.5





2
908
VALALAPVVVAP
12
7
57.3
195.0
2.3
150.6
100.8
50.9





3
910
VAALLPAVVVAP
12
6
57.3
195.0
2.3
148.5
99.4
50.2





4
810
VIVLAAPALAAP
12
7
50.2
187.5
2.2
120.0
80.3
40.6





5
904
AVLAVVAPVVAP
12
8
57.3
186.7
2.4
105.7
70.8
35.8





6
321
IVAVALPALAVP
12
7
50.2
203.3
2.3
97.8
65.2
32.9





7
851
VLAVVLPAVALP
12
7
57.3
219.2
2.5
96.6
64.7
32.7





8
911
VALALPAVVVAP
12
6
57.3
195.0
2.3
84.8
56.8
28.7





9
852
VLAVAAPAVLLP
12
7
57.3
203.3
2.3
84.6
56.6
28.6





10
803
AIALAVPVLALP
12
7
57.3
211.7
2.4
74.7
50.0
25.3





11
888
ILAVVAIPAAAP
12
8
54.9
187.5
2.3
71.0
47.5
24.0





12
825
IVAVIVAPAVAP
12
8
43.2
195.0
2.5
69.7
46.6
23.6





13
895
AIIIVVPAIAAP
12
7
50.2
211.7
2.5
60.8
40.7
20.6





14
896
AILIVVAPIAAP
12
8
50.2
211.7
2.5
57.5
38.5
19.4





15
727
VALAIALPAVLP
12
8
57.3
211.6
2.3
54.7
36.7
18.5





16
603
VLVALAAPVIAP
12
8
57.3
203.3
2.4
54.1
36.1
18.2





17
847
LVAIVVLPAVAP
12
8
50.2
219.2
2.6
50.2
33.4
16.9





18
826
LVALAAPIIAVP
12
7
41.3
211.7
2.4
49.2
32.9
16.6





19
724
VAVLAVLPALAP
12
8
57.3
203.3
2.3
47.5
31.8
16.1





20
563
ALAVIVVPALAP
12
8
50.2
203.3
2.4
47.1
31.4
15.9





21
811
AVVLAVPALAVP
12
7
57.3
195.0
2.3
46.5
31.1
15.7





22
831
IIVAVAPAAIVP
12
7
43.2
203.3
2.5
46.3
31.0
15.7





23
829
AALALVAPVIVP
12
8
50.2
203.3
2.4
44.8
30.0
15.2





24
891
ILAVAAIPAALP
12
8
54.9
195.8
2.2
44.7
29.9
15.1





25
905
AVIAVAPLVVAP
12
7
41.3
195.0
2.4
44.0
29.5
14.9





26
564
VAIALIVPALAP
12
8
50.2
211.7
2.4
43.6
29.1
14.7





27
124
IAVALPALIAAP
12
6
50.3
195.8
2.2
43.6
29.0
14.7





28
827
IAAVLAAPALVP
12
8
57.3
187.5
2.2
43.0
28.8
14.6





29
2
AAAVPLLAVVVP
12
5
41.3
195.0
2.4
40.9
27.2
13.8





30
385
IVAIAVPALVAP
12
7
50.2
203.3
2.4
38.8
25.9
13.1





31
828
IALLAAPIIAVP
12
7
41.3
220.0
2.4
36.8
24.6
12.4





32
806
LVALAVPAAVLP
12
7
57.3
203.3
2.3
36.7
24.6
12.4





33
845
AAVVIAPLLAVP
12
7
41.3
203.3
2.4
35.8
24.0
12.1





34
882
AIALVVPAVAVP
12
7
57.3
195.0
2.4
35.0
23.4
11.8





35
545
VVLVLAAPAAVP
12
8
57.3
195.0
2.3
34.6
23.1
11.7





36
161
AVIALPALIAAP
12
6
57.3
195.8
2.2
34.5
23.0
11.6





37
481
AIAIAIVPVALP
12
8
50.2
211.6
2.4
34.3
23.0
11.6





38
900
ALVAVIAPVVAP
12
8
57.3
195.0
2.4
34.3
22.9
11.6





39
223
AILAVPIAVVAP
12
6
57.3
203.3
2.4
33.0
22.1
11.2





40
824
LIIVAAAPAVAP
12
8
50.2
187.5
2.3
32.8
21.9
11.1





41
562
ALIAAIVPALVP
12
8
50.2
211.7
2.4
32.7
21.8
11.0





42
222
ALLIAPAAVIAP
12
6
57.3
195.8
2.2
32.6
21.7
11.0





43
61
VAALPVLLAALP
12
5
57.3
211.7
2.3
31.2
20.8
10.5





44
582
VAVALIVPALAP
12
8
50.2
203.3
2.4
30.6
20.4
10.3





45
889
ILVAAAPIAALP
12
7
57.3
195.8
2.2
30.3
20.3
10.3





46
787
AVALVPVIVAAP
12
6
50.2
195.0
2.4
29.3
19.6
9.9





47
703
IVAVALVPALAP
12
8
50.2
203.3
2.4
29.2
19.5
9.9





48
705
IVAVALLPALAP
12
8
50.2
211.7
2.4
28.6
19.1
9.7





49
885
LVAIAPAVAVLP
12
6
57.3
203.3
2.4
28.3
19.0
9.6





50
3
AALLVPAAVLAP
12
6
57.3
187.5
2.1
27.0
18.0
9.1





51
601
AAILIAVPIAAP
12
8
57.3
195.8
2.3
26.8
17.9
9.0





52
843
AVLVLVAPAAAP
12
8
41.3
219.2
2.5
26.4
17.7
8.9





53
403
AAALVIPAAILP
12
7
54.9
195.8
2.2
25.2
16.8
8.5





54
544
IVALIVAPAAVP
12
8
43.1
203.3
2.4
23.4
15.6
7.9





55
522
ALLVIAVPAVAP
12
8
57.3
203.3
2.4
22.7
15.2
7.7






















TABLE 27









Proline
Rigidity/
Sturctural

Relative


Sequence

Position
Flexibility
Feature
Hydropathy
Ratio (Fold)

















ID Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C




















56
805
LVLIAAAPIALP
12
8
41.3
220.0
2.4
22.3
14.9
7.6





57
464
AVVILVPLAAAP
12
7
57.3
203.3
2.4
22.3
14.9
7.5





58
405
LAAAVIPVAILP
12
7
54.9
211.7
2.4
22.2
14.8
7.5





59
747
VALLAIAPALAP
12
8
57.3
195.8
2.2
22.0
14.8
7.5





60
501
VIVALAVPALAP
12
8
50.2
203.3
2.4
21.5
14.4
7.3





61
661
AAILAPIVAALP
12
6
50.2
195.8
2.2
21.4
14.3
7.2





62
786
LVAIAPLAVLAP
12
6
41.3
211.7
2.4
21.2
14.2
7.2





63
625
ILAAAAAPLIVP
12
8
50.2
195.8
2.2
20.9
13.9
7.0





64
442
ALAALVPAVLVP
12
7
57.3
203.3
2.3
20.4
13.6
6.9





65
912
VALLAPAVVVAP
12
6
57.3
195.0
2.3
19.9
13.3
6.7





66
165
ALAVPVALAIVP
12
5
50.2
203.3
2.4
19.8
13.2
6.7





67
422
VVAILAPLLAAP
12
7
57.3
211.7
2.4
19.6
13.1
6.6





68
686
AALVAVLPVALP
12
8
57.3
203.3
2.3
19.5
13.1
6.6





69
343
IVAVALPALVAP
12
7
50.2
203.3
2.3
19.4
12.9
6.5





70
323
IVAVALPVALAP
12
7
50.2
203.3
2.3
19.1
12.8
6.4





71
461
IAAVIVPAVALP
12
7
50.2
203.3
2.4
19.0
12.7
6.4





72
21
AVALLPALLAVP
12
6
57.3
211.7
2.3
18.9
12.6
6.4





73
404
LAAAVIPAAILP
12
7
54.9
195.8
2.2
18.9
12.6
6.4





74
261
LVLVPLLAAAAP
12
5
41.3
211.6
2.3
18.5
12.3
6.2





75
524
AVALIVVPALAP
12
8
50.2
203.3
2.4
18.3
12.2
6.2





76
225
VAALLPAAAVLP
12
6
57.3
187.5
2.1
18.3
12.2
6.2





77
264
LAAAPVVIVIAP
12
5
50.2
203.3
2.4
18.2
12.1
6.1





78
1
AAALAPVVLALP
12
6
57.3
187.5
2.1
17.7
11.8
6.0





79
382
AAALVIPAILAP
12
7
54.3
195.8
2.2
17.7
11.8
6.0





80
463
AVAILVPLLAAP
12
7
57.3
211.7
2.4
17.6
11.7
5.9





81
322
VVAIVLPALAAP
12
7
50.2
203.3
2.3
17.6
11.7
5.9





82
503
AAIIIVLPAALP
12
8
50.2
220.0
2.4
17.6
11.8
5.9





83
870
VLVAAVLPIAAP
12
8
41.3
203.3
2.4
16.6
11.1
5.6





84
241
AAAVVPVLLVAP
12
6
57.3
195.0
2.4
16.6
11.0
5.6





85
726
LAVAIIAPAVAP
12
8
57.3
187.5
2.2
16.5
11.0
5.6





86
341
IVAVALPAVLAP
12
7
50.2
203.3
2.3
16.4
10.9
5.5





87
542
ALALIVPAVAP
12
8
50.2
211.6
2.4
16.2
10.8
5.5





88
361
AVVIVAPAVIAP
12
7
50.2
195.0
2.4
16.0
10.7
5.4





89
224
ILAAVPIALAAP
12
6
57.3
195.8
2.2
15.8
10.6
5.3





90
482
ILAVAAIPVAVP
12
8
54.9
203.3
2.4
15.8
10.6
5.3





91
64
AIVALPVAVLAP
12
6
50.2
203.3
2.4
15.8
10.6
5.3





92
484
LAVVLAAPAIVP
12
8
50.2
203.3
2.4
15.6
10.4
5.3





93
868
VLVAAILPAAIP
12
8
54.9
211.7
2.4
14.9
10.0
5.0





94
541
LLALIIAPAAAP
12
8
57.3
204.1
2.1
14.8
9.9
5.0





95
666
AAIAIIAPAIVP
12
8
50.2
195.8
2.3
14.7
9.9
5.0





96
665
LAIVLAAPVAVP
12
8
50.2
203.3
2.3
14.7
9.9
5.0





97
363
AVLAVAPALIVP
12
7
50.2
203.3
2.3
14.7
9.8
4.9





98
242
AALLVPALVAAP
12
6
57.3
187.5
2.1
14.6
9.7
4.9





99
384
VIVAIAPALLAP
12
7
50.2
211.6
2.4
14.0
9.4
4.7





100
877
VAIIAVPAVVAP
12
7
57.3
195.0
2.4
14.0
9.4
4.7





101
863
AAVVLLPIIAAP
12
7
41.3
211.7
2.4
13.8
9.3
4.7





102
525
ALAIVVAPVAVP
12
8
50.2
195.0
2.4
13.8
9.2
4.7





103
875
AIAIVVPAVAVP
12
7
50.2
195.0
2.4
13.8
9.2
4.7





104
285
AIVLLPAAVVAP
12
6
50.2
203.3
2.4
13.3
8.9
4.5





105
281
ALIVLPAAVAVP
12
6
50.2
203.3
2.4
13.3
8.9
4.5





106
867
ALLVVIAPLAAP
12
8
41.3
211.7
2.4
13.2
8.8
4.4





107
766
IVVIAVAPAVAP
12
8
50.2
195.0
2.4
12.9
8.6
4.4





108
342
VIVALAPAVLAP
12
7
50.2
203.3
2.3
12.7
8.5
4.3





109
881
AALIVVPAVAVP
12
7
50.2
195.0
2.4
12.7
8.5
4.3





110
505
AIIIVIAPAAAP
12
8
50.2
195.8
2.3
12.4
8.3
4.2






















TABLE 28









Proline
Rigidity/
Sturctural

Relative


Sequence

Position
Flexibility
Feature
Hydropathy
Ratio (Fold)

















ID Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C




















111
763
VAVLIAVPALAP
12
8
57.3
203.3
2.3
12.3
7.2
4.2





112
706
IVAVALLPAVAP
12
8
50.2
203.3
2.4
12.0
7.0
4.1





113
687
AILAVALPLLAP
12
8
57.3
220.0
2.3
12.0
7.0
4.1





114
643
LALVLAAPAIVP
12
8
50.2
211.6
2.4
11.8
7.9
4.0





115
282
VLAVAPALIVAP
12
6
50.2
203.3
2.4
11.8
7.9
4.0





116
543
LLAALIAPAALP
12
8
57.3
204.1
2.1
11.7
7.8
4.0





117
325
IVAVALPAVALP
12
7
50.2
203.3
2.3
11.7
7.8
4.0





118
846
IAVAVAAPLLVP
12
8
41.3
203.3
2.4
11.7
6.8
4.0





119
383
VIVALAPALLAP
12
7
50.2
211.6
2.3
11.6
7.7
3.9





120
381
VVAIVLPAVAAP
12
7
50.2
195.0
2.4
11.5
7.7
3.9





121
808
LVVLAAAPLAVP
12
8
41.3
203.3
2.3
11.5
7.6
3.9





122
865
AVLVIAVPAIAP
12
8
57.3
203.3
2.5
11.3
7.5
3.8





123
725
IAVLAVAPAVLP
12
8
57.3
203.3
2.3
11.2
7.5
3.8





124
844
VVALLAPLIAAP
12
7
41.3
211.8
2.4
11.2
7.5
3.8





125
897
AVIVPVAIIAAP
12
5
50.2
203.3
2.5
11.2
7.5
3.8





126
605
VIAAVLAPVAVP
12
8
57.3
195.0
2.4
11.0
7.4
3.7





127
744
AAVVIVAPVALP
12
8
50.2
195.0
2.4
11.0
7.3
3.7





128
221
AAILAPIVALAP
12
6
50.2
195.8
2.2
10.9
7.3
3.7





129
622
ALIVLAAPVAVP
12
8
50.2
203.3
2.4
10.6
7.1
3.6





130
401
AALAVIPAAILP
12
7
54.9
195.8
2.2
10.6
7.1
3.6





131
324
IVAVALPAALVP
12
7
50.2
203.3
2.3
10.3
6.9
3.5





132
878
IVALVAPAAVVP
12
7
50.2
195.0
2.4
10.3
6.9
3.5





133
302
LALAPALALLAP
12
5
57.3
204.2
2.1
10.2
6.8
3.4





134
685
ALLVAVLPAALP
12
8
57.3
211.7
2.3
10.2
5.9
3.4





135
848
AVAIVVLPAVAP
12
8
50.2
195.0
2.4
10.0
6.7
3.4





136
602
VIVALAAPVLAP
12
8
50.2
203.3
2.4
9.9
5.8
3.4





137
788
AIAVAIAPVALP
12
8
57.3
187.5
2.3
9.8
6.6
3.3





138
145
LLAVVPAVALAP
12
6
57.3
203.3
2.3
9.5
6.3
3.2





139
11
VVALAPALAALP
12
6
57.3
187.5
2.1
9.5
6.3
3.2





140
141
AVIVLPALAVAP
12
6
50.2
203.3
2.4
9.4
6.3
3.2





141
521
LAALIVVPAVAP
12
8
50.2
203.3
2.4
9.4
6.3
3.2





142
425
AVVAIAPVLALP
12
7
57.3
203.3
2.4
9.4
6.3
3.2





143
365
AVIVVAPALLAP
12
7
50.2
203.3
2.3
9.3
6.2
3.1





144
263
ALAVIPAAAILP
12
6
54.9
195.8
2.2
9.0
6.0
3.0





145
345
ALLIVAPVAVAP
12
7
50.2
203.3
2.3
8.9
5.9
3.0





146
850
LVIALAAPVALP
12
8
57.3
211.7
2.4
8.8
5.9
3.0





147
144
VLAIVPAVALAP
12
6
50.2
203.3
2.4
8.8
5.9
3.0





148
767
IVVAAVVPALAP
12
8
50.2
195.0
2.4
8.5
5.0
2.9





149
185
AALVLPLIIAAP
12
6
41.3
220.0
2.4
8.5
5.7
2.9





150
849
AVILLAPLIAAP
12
7
57.3
220.0
2.4
8.3
4.8
2.8





151
864
ALLVIAPAIAVP
12
7
57.3
211.7
2.4
8.2
4.8
2.8





152
162
AVVALPAALIVP
12
6
50.2
203.3
2.4
8.2
5.5
2.8





153
164
LAAVLPALLAAP
12
6
57.3
195.8
2.1
8.2
5.5
2.8





154
907
VAIALAPVVVAP
12
7
57.3
195.0
2.4
8.1
5.4
2.8





155
444
LAAALVPVALVP
12
7
57.3
203.3
2.3
8.1
5.4
2.7





156
443
ALAALVPVALVP
12
7
57.3
203.3
2.3
8.0
5.3
2.7





157
901
ALVAVLPAVAVP
12
7
57.3
195.0
2.4
7.7
5.1
2.6





158
887
VLAVAPAVAVLP
12
6
57.3
195.0
2.4
7.7
5.1
2.6





159
746
VAIIVVAPALAP
12
8
50.2
203.3
2.4
7.6
4.4
2.6





160
902
ALVAPLLAVAVP
12
5
41.3
203.3
2.3
7.6
5.1
2.6





161
565
VAIVLVAPAVAP
12
8
50.2
195.0
2.4
7.5
5.0
2.5





162
245
AAALAPVLALVP
12
6
57.3
187.5
2.1
7.5
5.0
2.5





163
743
AIAIALVPVALP
12
8
57.3
211.6
2.4
7.4
4.9
2.5





164
465
AVVILVPLAAAP
12
7
57.3
203.3
2.4
7.4
4.9
2.5





165
104
AVVAAPLVLALP
12
6
41.3
203.3
2.3
7.3
4.9
2.5






















TABLE 29









Proline
Rigidity/
Sturctural

Relative


Sequence

Position
Flexibility
Feature
Hydropathy
Ratio (Fold)

















ID Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C




















166
707
IVALAVLPAVAP
12
8
50.2
203.3
2.4
7.3
4.9
2.5





167
872
VLAAAVLPLVVP
12
8
41.3
219.2
2.5
7.3
4.9
2.5





168
583
AVILALAPIVAP
12
8
50.2
211.6
2.4
7.3
4.8
2.4





169
879
AAIVLLPAVVVP
12
7
50.2
219.1
2.5
7.2
4.8
2.4





170
784
VAALPAVALVVP
12
5
57.3
195.0
2.4
7.1
4.7
2.4





171
893
VIAIPAILAAAP
12
5
54.9
195.8
2.3
7.0
4.7
2.4





172
13
AAALVPVVALLP
12
6
57.3
203.3
2.3
7.0
4.7
2.4





173
809
LIVLAAPALAAP
12
7
50.2
195.8
2.2
7.0
4.7
2.4





174
445
ALAALVPALVVP
12
7
57.3
203.3
2.3
6.9
4.6
2.3





175
81
AALLPALAALLP
12
5
57.3
204.2
2.1
6.9
4.6
2.3





176
667
LAVAIVAPALVP
12
8
50.2
203.3
2.3
6.9
4.6
2.3





177
906
AVIALAPVVVAP
12
7
57.3
195.0
2.4
6.8
4.6
2.3





178
483
ILAAAIIPAALP
12
8
54.9
204.1
2.2
6.8
4.5
2.3





179
485
AILAAIVPLAVP
12
8
50.2
211.6
2.4
6.8
4.5
2.3





180
421
AAILAAPLIAVP
12
7
57.3
195.8
2.2
6.7
4.5
2.3





181
585
ALIVAIAPALVP
12
8
50.2
211.6
2.4
6.6
4.4
2.2





182
424
AVVVAAPVLALP
12
7
57.3
195.0
2.4
6.6
4.4
2.2





183
364
LVAAVAPALIVP
12
7
50.2
203.3
2.3
6.5
4.3
2.2





184
402
ALAAVIPAAILP
12
7
54.9
195.8
2.2
6.4
4.3
2.2





185
462
IAAVLVPAVALP
12
7
57.3
203.3
2.4
6.3
4.2
2.1





186
265
VLAIAPLLAAVP
12
6
41.3
211.6
2.3
6.0
4.0
2.0





187
301
VIAAPVLAVLAP
12
6
57.3
203.3
2.4
6.0
4.0
2.0





188
183
LLAAPVVIALAP
12
6
57.3
211.6
2.4
6.0
4.0
2.0





189
243
AAVLLPVALAAP
12
6
57.3
187.5
2.1
5.9
3.9
2.0





190
664
ILIAIAIPAAAP
12
8
54.9
204.1
2.3
5.7
3.8
1.9





191
783
IVALVPAVAIAP
12
6
50.2
203.3
2.5
5.7
3.8
1.9





192
502
AIVALAVPVLAP
12
8
50.2
203.3
2.4
5.6
3.7
1.9





193
262
ALIAVPAIIVAP
12
6
50.2
211.6
2.4
5.5
3.7
1.9





194
683
LAIVLAAPAVLP
12
8
50.2
211.7
2.4
5.5
3.2
1.9





195
830
IALVAAPVALVP
12
7
57.3
203.3
2.4
5.3
3.5
1.8





196
764
AVALAVLPAVVP
12
8
57.3
195.0
2.3
5.0
3.4
1.7





197
807
AVALAVPALVLP
12
7
57.3
203.3
2.3
5.0
3.3
1.7





198
184
LAAIVPAIIAVP
12
6
50.2
211.6
2.4
4.8
3.2
1.6





199
305
IALAAPILLAAP
12
6
57.3
204.2
2.2
4.8
3.2
1.6





200
101
LVALAPVAAVLP
12
6
57.3
203.3
2.3
4.5
3.0
1.5





201
304
AIILAPIAAIAP
12
6
57.3
204.2
2.3
4.4
3.0
1.5





202
604
VALIAVAPAVVP
12
3
57.3
195.0
2.4
4.3
2.5
1.5





203
645
ALAVVALPAIVP
12
8
50.2
203.3
2.4
4.3
2.9
1.5





204
201
LALAVPALAALP
12
6
57.3
195.8
2.1
4.2
2.8
1.4





205
163
LALVLPAALAAP
12
6
57.3
195.8
2.1
4.1
2.4
1.4





206
832
AVAAIVPVIVAP
12
7
43.2
195.0
2.5
4.1
2.7
1.4





207
182
ALIAPVVALVAP
12
6
57.3
203.3
2.4
4.0
2.7
1.4





208
23
VVLVLPAAAAVP
12
6
57.3
195.0
2.4
4.0
2.6
1.3





209
105
LLALAPAALLAP
12
6
57.3
204.1
2.1
4.0
2.6
1.3





210
561
AAVAIVLPAVVP
12
8
50.2
195.0
2.4
3.9
2.6
1.3





211
765
AVALAVVPAVLP
12
8
57.3
195.0
2.3
3.8
2.2
1.3





212
684
AAIVLALPAVLP
12
8
50.2
211.7
2.4
3.5
2.1
1.2





213
143
AVLAVPAVLVAP
12
6
57.3
195.0
2.4
3.3
2.2
1.1





214
504
LIVALAVPALAP
12
8
50.2
211.7
2.4
3.3
2.2
1.1





215
22
AVVLVPVLAAAP
12
6
57.3
195.0
2.4
3.1
2.1
1.1





216
5
AAALLPVALVAP
12
6
57.3
187.5
2.1
3.1
2.1
1.0





217
283
AALLAPALIVAP
12
6
50.2
195.8
2.2
3.1
2.0
1.0





218
65
IAIVAPVVALAP
12
6
50.2
203.3
2.4
3.0
2.0
1.0





219
883
LAIVPAAIAALP
12
6
50.2
195.8
2.2
3.0
2.0
1.0





220
123
AAIIVPAALLAP
12
6
50.2
195.8
2.2
2.9
2.0
1.0






















TABLE 30











Sturc-




Sequence

Proline
Rigidity/
tural
Hydro-
Relative


ID

Position
Flexibility
Feature
pathy
Ratio (Fold)

















Number
aMTD
Sequences
Length
(PP)
(II)
(AI)
(GRAVY)
A
B
C




















221
284
ALIAPAVALIVP
12
5
50.2
211.7
2.4
2.8
1.8
0.9





222
205
ALALVPAIAALP
12
6
57.3
195.8
2.2
2.6
1.7
0.9





223
42
VAALPVVAVVAP
12
5
57.3
186.7
2.4
2.5
1.7
0.8





224
121
AIVALPALALAP
12
6
50.2
195.8
2.2
2.5
1.7
0.8





225
25
IVAVAPALVALP
12
6
50.2
203.3
2.4
2.4
1.6
0.8





226
24
IALAAPALIVAP
12
6
50.2
195.8
2.2
2.3
1.6
0.8





227
204
LIAALPAVAALP
12
6
57.3
195.8
2.2
2.2
1.5
0.8





228
12
LLAAVPAVLLAP
12
6
57.3
211.7
2.3
2.2
1.5
0.7





229
43
LLAAPLVVAAVP
12
5
41.3
187.5
2.1
2.1
1.4
0.7





230
103
ALIAAPILALAP
12
6
57.3
204.2
2.2
2.1
1.4
0.7





231
82
AVVLAPVAAVLP
12
6
57.3
195.0
2.4
2.1
1.4
0.7





232
4
ALALLPVAALAP
12
6
57.3
195.8
2.1
2.0
1.3
0.7





233
85
LLVLPAAALAAP
12
5
57.3
195.8
2.1
1.9
1.3
0.7





234
63
AALLVPALVAVP
12
6
57.3
203.3
2.3
1.9
1.3
0.7





235
44
ALAVPVALLVAP
12
5
57.3
203.3
2.3
1.6
1.1
0.5





236
84
AAVAAPLLLALP
12
6
41.3
195.8
2.1
1.5
1.0
0.5





237
62
VALLAPVALAVP
12
6
57.3
203.3
2.3
1.4
0.9
0.5





238
83
LAVAAPLALALP
12
6
41.3
195.8
2.1
1.4
0.9
0.5





239
102
LALAPAALALLP
12
5
57.3
204.2
2.1
1.4
0.9
0.5





240
623
VAAAIALPAIVP
12
8
50.2
187.5
2.3
0.8
0.6
0.3













19.6 ± 1.6
13.1 ± 1.1
6.6 ± 0.5









Moreover, compared to reference CPPs (B type: MTM12 and C type: MTD85), novel 240 aMTDs averaged of 13±1.1 (maximum 109.9) and 6.6±0.5 (maximum 55.5) fold higher cell-permeability, respectively (Tables 26-31).













TABLE 31







Negative control





rP38
MTM12
MTD85



















aMTD
19.6 ± 1.6*
13.1 ± 1.1*
6.6 ± 0.5*


The Average of
(Best: 164.2)
(Best: 109.9)
(Best: 55.5)


240 aMTDs





*Relative Fold (aMTD in Geo Mean in its comparison to rP38, MTM12 or MTD85)






In addition, cell-permeability of 31 rPeptides has been compared with that of 240 aMTDs (0.3±0.04; Tables 32 and 33).

















TABLE 32









Proline
Rigidity/
Sturctural








Position
Flexibility
Feature
Hydropathy
Relative Ratio


Number
ID
Sequence
Length
(PP)
(II)
(AI)
(GRAVY)
to aMTD AVE























1
692
PAPLPPVVILAV
12
1, 3, 5, 6
105.5
186.7
1.8
0.74





2
26
AAIALAAPLAIV
12
8
18.1
204.2
2.5
0.65





3
113
PVAVALLIAVPP
12
1, 11, 12
57.3
195.0
2.1
0.61





4
466
IIAAAAPLAIIP
12
7, 12
22.8
204.2
2.3
0.52





5
167
VAIAIPAALAIP
12
6, 12
20.4
195.8
2.3
0.50





6
97
ALLAAPPALLAL
12
6, 7
57.3
204.2
2.1
0.41





7
390
VPLLVPVVPVVP
12
2, 6, 9, 12
105.4
210.0
2.2
0.41





8
426
AAALAIPLAIIP
12
7, 12
4.37
204.2
2.2
0.40





9
214
ALIVAPALMALP
12
6, 12
60.5
187.5
2.2
0.33





10
68
VAPVLPAAPLVP
12
3, 6, 9, 12
105.5
162.5
1.6
0.32





11
39
CYNTSPCTGCCY
12
6
52.5
0.0
0.0
0.29





12
934
LILAPAAVVAAA
12
5
57.3
195.8
2.5
0.28





13
938
VPVLLPVVVPVP
12
2, 6, 10, 12
121.5
210.0
2.2
0.28





14
329
LPVLVPVVPVVP
12
2, 6, 9, 12
121.5
210.0
2.2
0.23





15
606
AAAIAAIPIIIP
12
8, 12
4.4
204.2
2.4
0.20





16
49
VVPAAPAVPVVP
12
3, 6, 9, 12
121.5
145.8
1.7
0.18





17
139
TGSTNSPTCTST
12
7
53.4
0.0
−0.7
0.17





18
772
LPVAPVIPIIVP
12
2, 5, 8, 12
79.9
210.8
2 1
0.16





19
921
IWWFVVLPLVVP
12
8, 12
41.3
194.2
2.2
0.14





20
66
AGVLGGPIMGVP
12
7, 12
35.5
121.7
1.3
0.13





21
693
AAPVLPVAVPIV
12
3, 6, 10
82.3
186.7
2.1
0.13





22
18
NYCCTPTTNGQS
12
6
47.9
0.0
−0.9
0.10





23
16
NNSCTTYTNGSQ
12
None
47.4
0.0
−1.4
0.08





24
227
LAAIVPIAAAVP
12
6, 12
34.2
187.5
2.2
0.08





25
17
GGCSAPQTTCSN
12
6
51.6
8.3
−0.5
0.08





26
67
LDAEVPLADDVP
12
6, 12
34.2
130.0
0.3
0.08





27
635
GSTGGSQQNNQY
12
None
31.9
0.0
−1.9
0.07





28
29
VLPPLPVLPVLP
12
3, 4, 6, 9, 12
121.5
202.5
1.7
0.07





29
57
QNNCNTSSQGGG
12
None
52.4
0.0
−1.6
0.06





30
700
GTSNTCQSNQNS
12
None
19.1
0.0
−1.6
0.05





31
38
YYNQSTCGGQCY
12
ND
53.8
0.0
−1.0
0.05












AVE
0.3 ± 0.04


















TABLE 33







Relative Ratio



to aMTD AVE*



















rPeptide
0.3 ± 0.04



The Average of 31 aMTDs







*Out of 240 aMTDs, average relative fold of aMTD had been 19.6 fold compared to type A (rP38).






In summary, relative cell-permeability of aMTDs has shown maximum of 164.0, 109.9 and 55.5 fold higher to rP38, MTM12 and MTD85, respectively. In average of total 240 aMTD sequences, 19.6±1.6, 13.1±1.1 and 6.6±0.5 fold higher cell-permeability are shown to the rP38, MTM12 and MTD85, respectively (Tables 26-31). Relative cell-permeability of negative control (rP38) to the 240 aMTDs is only 0.3±0.04 fold.


4-5. Intracellular Delivery and Localization of aMTD-Fused Recombinant Proteins


Recombinant proteins fused to the aMTDs were tested to determine their intracellular delivery and localization by laser scanning confocal microscopy with a negative control (rP38) and previous published CPPs (MTM12 and MTD85) as the positive control references. NIH3T3 cells were exposed to 10 μ M of FITC-labeled protein for 1 hour at 37° C., and nuclei were counterstained with DAPI. Then, cells were examined by confocal laser scanning microscopy (FIG. 7). Recombinant proteins fused to aMTDs clearly display intracellular delivery and cytoplasmic localization (FIG. 7) that are typically higher than the reference CPPs (MTM12 and MTD85). The rP38-fused recombinant protein did not show internalized fluorescence signal (FIG. 7a). In addition, as seen in FIG. 8, rPeptides (his-tagged CRA recombinant proteins fused to each rPeptide) display lower- or non-cell-permeability.


4-6. Summary of Quantitative and Visual Cell-Permeability of Newly Developed aMTDs


Histidine-tagged aMTD-fused cargo recombinant proteins have been greatly enhanced in their solubility and yield. Thus, FITC-conjugated recombinant proteins have also been tested to quantitate and visualize intracellular localization of the proteins and demonstrated higher cell-permeability compared to the reference CPPs.


In the previous studies using the hydrophobic signal-sequence-derived CPPs-MTS/MTM or MTDs, 17 published sequences have been identified and analyzed in various characteristics such as length, molecular weight, pI value, bending potential, rigidity, flexibility, structural feature, hydropathy, amino acid residue and composition, and secondary structure of the peptides. Based on these analytical data of the sequences, novel artificial and non-natural peptide sequences designated as advanced MTDs (aMTDs) have been invented and determined their functional activity in intracellular delivery potential with aMTD-fused recombinant proteins.


aMTD-fused recombinant proteins have promoted the ability of protein transduction into the cells compared to the recombinant proteins containing rPeptides and/or reference hydrophobic CPPs (MTM12 and MTD85). According to the results, it has been demonstrated that critical factors of cell-penetrating peptide sequences play a major role to determine peptide-mediated intracellular delivery by penetrating plasma membrane. In addition, cell-permeability can considerably be improved by following the rational that all satisfy the critical factors.

  • 5. Structure/Sequence Activity Relationship (SAR) of aMTDs on Delivery Potential


After determining the cell-permeability of novel aMTDs, structure/sequence activity relationship (SAR) has been analyzed for each critical factor in selected some of and all of novel aMTDs (FIGS. 13 to 16 and Table 34).














TABLE 34







Rank of
Rigidity/
Sturctural

Relative
Amino Acid


Delivery
Flexibility
Feature
Hydropathy
Ratio (Fold)
Composition

















Potential
(II)
(AI)
(GRAVY)
A
B
C
A
V
I
L




















 1~10
55.9
199.2
2.3
112.7
75.5
38.1
4.0
3.5
0.4
2.1


11~20
51.2
205.8
2.4
56.2
37.6
19.0
4.0
2.7
1.7
1.6


21~30
49.1
199.2
2.3
43.6
28.9
14.6
4.3
2.7
1.4
1.6


31~40
52.7
201.0
2.4
34.8
23.3
11.8
4.2
2.7
1.5
1.6


41~50
53.8
201.9
2.3
30.0
20.0
10.1
4.3
2.3
1.1
2.3


51~60
51.5
205.2
2.4
23.5
15.7
7.9
4.4
2.1
1.5
2.0


222~231
52.2
197.2
2.3
2.2
1.5
0.8
4.5
2.1
1.0
2.4


232~241
54.1
199.7
2.2
1.7
1.2
0.6
4.6
1.7
0.2
3.5









5-1. Proline Position: In regards to the bending potential (proline position: PP), aMTDs with its proline at 7′ or 8′ amino acid in their sequences have much higher cell-permeability compared to the sequences in which their proline position is at 5′ or 6′ (FIGS. 14a-14b and 15a-15b).


5-2. Hydropathy: In addition, when the aMTDs have GRAVY (Grand Average of Hydropathy) ranging in 2.1-2.2, these sequences display relatively lower cell-permeability, while the aMTDs with 2.3-2.6 GRAVY are shown significantly higher one (FIGS. 14c-14d and 15c-15d).


5-3. rPeptide SAR: To the SAR of aMTDs, rPeptides have shown similar SAR correlations in the cell-permeability, pertaining to their proline position (PP) and hydropathy (GRAVY). These results confirms that rPeptides with high GRAVY (2.4-2.6) have better cell-permeability (FIG. 16).


5-4. Analysis of Amino Acid Composition: In addition to proline position and hydropathy, the difference of amino acid composition is also analyzed. Since aMTDs are designed based on critical factors, each aMTD-fused recombinant protein has equally two proline sequences in the composition. Other hydrophobic and aliphatic amino acids-alanine, isoleucine, leucine and valine—are combined to form the rest of aMTD peptide sequences.


Alanine: In the composition of amino acids, the result does not show a significant difference by the number of alanine in terms of the aMTD's delivery potential because all of the aMTDs have three to five alanines. In the sequences, however, four alanine compositions show the most effective delivery potential (geometric mean) (FIGS. 13a and 13b).


Leucine and Isoleucine: Also, the compositions of isoleucine and leucine in the aMTD sequences show inverse relationship between the number of amino acid (I and L) and delivery potential of aMTDs. Lower number of isoleucine and leucine in the sequences tends to have higher delivery potential (geometric mean) (FIGS. 13a through 13d).


Valine: Conversely, the composition of valine of aMTD sequences shows positive correlation with their cell-permeability. When the number of valine in the sequence is low, the delivery potential of aMTD is also relatively low (FIGS. 13c and 13d).


Ten aMTDs having the highest cell-permeability are selected (average geometric mean: 2584±126). Their average number of valine in the sequences is 3.5; 10 aMTDs having relatively low cell-permeability (average geometric mean: 80±4) had average of 1.9 valine amino acids. The average number of valine in the sequences is lowered as their cell-permeability is also lowered as shown in FIGS. 13c and 13d. Compared to higher cell-permeable aMTDs group, lower sequences had average of 1.9 in their valine composition. Therefore, to obtain high cell-permeable sequence, an average of 2-4 valines should be composed in the sequence.


5-5. Conclusion of SAR Analysis: As seen in FIG. 15, all 240 aMTDs have been examined for these association of the cell-permeability and the critical factors: bending potential (PP), rigidity/flexibility (II), structure feature (AI), and hydropathy (GRAVY), amino acid length and composition. Through this analysis, cell-permeability of aMTDs tends to be lower when their central proline position is at 5′ or 6′ and GRAVY is 2.1 or lower (FIGS. 15a through 15d). Moreover, after investigating 10 higher and 10 lower cell-permeable aMTDs, these trends are clearly shown to confirm the association of cell-permeability with the central proline position and hydropathy.

  • 6. Experimental Confirmation of Index Range/Feature of Critical Factors


The range and feature of five out of six critical factors have been empirically and experimentally determined that are also included in the index range and feature of the critical factors initially proposed before conducting the experiments and SAR analysis. In terms of index range and feature of critical factors of newly developed 240 aMTDs, the bending potential (proline position: PP), rigidity/flexibility (Instability Index: II), structural feature (Aliphatic Index: AI), hydropathy (GRAVY), amino acid length and composition are all within the characteristics of the critical factors derived from analysis of reference hydrophobic CPPs.


Therefore, our hypothesis to design and develop new hydrophobic CPP sequences as advanced MTDs is empirically and experimentally proved and demonstrated that critical factor-based new aMTD rational design is correct.









TABLE 35







Summarized Critical Factors of aMTD











Analysis of



Newly Designed
Experimental



CPPs
Results


Critical Factor
Range
Range





Bending Potential
Proline presences
Proline presences


(Proline Position: PP)
in the middle
in the middle



(5′, 6′, 7′
(5′, 6′, 7′



or 8′) and at the
or 8′) and at the



end of peptides
end of peptides


Rigidity/Flexibility
40-60
41.3-57.3


(Instability Index: II)


Structural Feature
180-220
187.5-220.0


(Aliphatic Index: AI)


Hydropathy
2.1-2.6
2.2-2.6


(Grand Average of


Hydropathy GRAVY)


Length
 9-13
12


(Number of Amino Acid)


Amino acid Composition
A, V, I, L, P
A, V, I, L, P









  • 7. Discovery and Development of Protein-Based New Biotherapeutics with MITT Enabled by aMTDs for Protein Therapy



The aMTD sequences have been designed and developed based on the critical factors. Quantitative and visual cell-permeability of 240 aMTDs (hydrophobic, flexible, bending, aliphatic and 12 a/a-length peptides) are all practically determined.


To measure the cell-permeability of aMTDs, rPeptides have also been designed and tested. As seen in FIGS. 13a to 15d, there are vivid association of cell-permeability and the critical factors of the peptides. Out of these critical factors, we are able to configure that the most effective cell-permeable aMTDs have the amino acid length of 12; composition of A, V, L, I and P; multiple proline located at either 7′ or 8′ and at the end (12′); instability index ranged of 41.3-57.3; aliphatic index ranged of 187.5-220.0; and hydropathy (GRAVY) ranged of 2.2-2.6.


These examined critical factors are within the range that we have set for our critical factors; therefore, we are able to confirm that the aMTDs that satisfy these critical factors have relatively high cell-permeability and much higher intracellular delivery potential compared to reference hydrophobic CPPs reported during the past two decades.


It has been widely evident that many human diseases are caused by proteins with deficiency or over-expression that causes mutations such as gain-of-function or loss-of-function. If biologically active proteins could be delivered for replacing abnormal proteins within a short time frame, possibly within an hour or two, in a quantitative manner, the dosage may be regulated depending on when and how proteins may be needed. By significantly improving the solubility and yield of novel aMTD in this invention (Table 31), one could expect its practical potential as an agent to effectively deliver therapeutic macromolecules such as proteins, peptides, nucleic acids, and other chemical compounds into live cells as well as live mammals including human. Therefore, newly developed MITT utilizing the pool (240) of novel aMTDs can be used as a platform technology for discovery and development of protein-based biotherapeutics to apprehend intracellular protein therapy after determining the optimal cargo-aMTD relationship.

  • 8. Novel Hydrophobic CPPs-aMTDs for Development of iCP-Parkin


8-1. Selection of aMTD for Cell-Permeability


From 240 aMTDs, 12 aMTDs were selected and used for the construction of iCP Parkin recombinant proteins. 12 aMTDs used are shown in the following Table 36.


Various hydrophobic CPP have been used to enhance the delivery of protein cargoes to mammalian cells and tissues. Similarly, aMTD321 and aMTD524 had been discovered to enhance the uptake of a His-tagged coding sequence of solubilization domain A (SDA) in RAW264.7 cells as assessed by flow cytometry. Relative levels of protein uptake was 7 times higher than that of a reference MTM12 protein, which contained 1st generation CPP (membrane translocating motif) and was 2.9 times higher than that of a MTD85 reference protein, which contained 2nd generation CPP (macromolecule transduction domain). In addition, relative to 8.1-fold higher protein uptake was observed with a random peptide recombinant protein (rP38)-fused with SDA, a peptide sequence, which had an opposite property of that of aMTD (FIG. 23). Similar results were obtained in NIH3T3 cells using fluorescent microscopy to monitor the protein uptake. These aMTD321-mediated intracellular delivered into cells were displayed in FIG. 24 and information of aMTD321 displayed in Table 37.













TABLE 36







SEQ ID NO
aMTD ID
Amino Acid Sequences




















34
124
IAVALPALIAAP







43
165
ALAVPVALAIVP







74
321
IVAVALPALAVP







78
325
IVAVALPAVALP







80
342
VIVALAPAVLAP







83
361
AVVIVAPAVIAP







122
524
AVALIVVPALAP







143
623
VAAAIALPAIVP







152
683
LAIVLAAPAVLP







154
685
ALLVAVLPAALP







155
686
AALVAVLPVALP







156
687
AILAVALPLLAP

















TABLE 37







Characteristics of aMTD321















Rigidity/
Structural



aMTD


Flexibility
Feature
Hydropathy


ID
A/a Sequence
Length
(II)
(AI)
(GRAVY)





321
IVAVALPALAVP
12
50.2
203.3
2.4









8-2. Selection of Solubilization Domain (SD) for Structural Stability


Recombinant cargo (Parkin) proteins fused to hydrophobic CPP could be expressed in a bacterial system, purified with single-step affinity chromatography, but protein dissolved in physiological buffers (e.q. PBS, DMEM or RPMI1640 etc.) was highly insoluble and had extremely low yield as a soluble form. Therefore, an additional non-functional protein domain (solubilization domain: SD) has been applied to fuse with the recombinant protein for improving the solubility, yield and eventually cell and tissue permeability.


According to the specific aim, the selected domains are SDA˜SDF (Table 38). The aMTD/SD-fused recombinant proteins have been determined for their stability. The solubilization domains (SDs) and aMTDs have greatly influenced in increasing solubility/yield and cell-/tissue-permeability of the protein. Therefore, we have developed highly soluble and highly stable Parkin recombinant protein fused with SD (SDA and SDB) and aMTDs for the clinical application.









TABLE 38







Characteristics of Solubilization Domain
















Protein

Instability



SD
Genbank ID
Origin
(kDa)
pI
Index (II)
GRAVY
















A
CP000113.1
Bacteria
23
4.6
48.1
−0.1


B
BC086945.1
Rat
11
4.9
43.2
−0.9


C
CP012127.1
Human
12
5.8
30.7
−0.1


D
CP012127.1
Bacteria
23
5.9
26.3
−0.1


E
CP011550.1
Human
11
5.3
44.4
−0.9


F
NG_034970
Human
34
7.1
56.1
−0.2









8-3. Construction of Expression Vector


We designed 5 different types of recombinant proteins with or without the aMTD and solubilization domains for Parkin protein. Protein structures were labeled as follows: (1) a cargo protein with His-tag only, (2) a cargo protein fused with His-tag and aMTD, (3) a cargo protein fused with His-tag, aMTD and solubilization domain A (SDA), (4) a cargo protein fused with His-tag, aMTD and solubilization domain B (SDB), (4C) a cargo protein fused with His-tag and solubilization domain B (SDB), (5) a cargo protein fused with aMTD and solubilization domain B (SDB), and (5C) a cargo protein fused with solubilization domain B (SDB), (FIG. 17). Among them, (4) and (5) structures were used as candidate proteins having the biological efficacy of iCP-Parkin recombinant protein, and (4C) and (5C) were used as control groups (Non-CP Parkin) with respect to (4) and (5).


8-4. Preparation of Parkin Recombinant Proteins


Each Parkin recombinant protein was successfully induced by adding IPTG and purified (FIG. 19). We observed a significant increase of solubility of Parkin fused with either SDA (HM321PSA) or SDB (HM321PSB, HM524PSB, M524PSB), which were compared to a cargo protein only (HP) or cargo protein fused with only aMTD (HM321P). The results suggested that the Parkin recombinant proteins fused with SDs displayed a significant improvement of solubility and yields (FIGS. 19 and 21a).

  • 9. Determination of Cell-, Tissue-Permeability of Each Recombinant Protein


The aMTD321/SD-fused Parkin recombinant proteins have significantly higher cell-, tissue-permeability as compared to the Parkin recombinant proteins lacking aMTD321 or aMTD524 sequence (HP, HPSB and other aMTDs). Collectively, even though these aMTD321/SD-fusion Parkin recombinant proteins (HM321PSA and HM321PSB) have similar solubility and yield, cellular and systemic delivery activity of aMTD321/SDB-fused Parkin recombinant protein was higher than Parkin recombinant protein lacking aMTD321 sequence. Therefore, aMTD321/SD-fused Parkin recombinant protein was determined as the most stable structure of the recombinant proteins.


In addition, solubility/yield, permeability, and biological activity of 10 types of aMTDs additionally selected, besides aMTD321, were measured and shown in FIG. 22.


9-1. Cell-Permeability of Parkin Recombinant Proteins


We investigated in the cell/tissue-permeability and biological activity of developed Parkin recombinant proteins. Cell permeability of Parkin recombinant proteins was evaluated in RAW 264.7 cells after 1 hour of protein treatment. FITC-labeled Parkin recombinant proteins lacking aMTD (HP and HPSB) was not detectable in RAW cells. In contrast, the aMTD-bearing Parkin recombinant proteins, HM321P, HM321PSA, HM321PSB and M524PSB showed high cell permeability (FIG. 26). Similar results were obtained in NIH3T3 cells, using fluorescence confocal laser scanning microscopy to monitor protein intracellular localization (FIG. 24). In particular, the aMTD/SD-fused Parkin recombinant proteins (HM321PSA, HM321PSB and M524PSB) showed the highest cell permeability. These results showed that the aMTD successfully abled the proteins to penetrate into the cells within short time (1 hour) and improved the solubility of proteins that positively affect cell-permeability.


9-2. Tissue-Permeability of Parkin Recombinant Proteins


Next, we determined in vivo tissue-permeability of Parkin recombinant proteins after 15 min and 30 min of intraperitoneal injection of FITC-labeled proteins (FIG. 25). The PBMC(Peripheral Blood Mononuclear Cell) analyzed by FACS(fluorescence-activated cell sorting) showed a gain in fluorescence, indicative of the presence of FITC-labeled proteins as compared with control animals that received FITC-labeled HPSB or unconjugated FITC. For FACS analysis, cells (1×104) were analyzed using the CellQues Pro cytometric analysis software (FACS Calibur, Beckton-Dickinson, San Diego Calif., USA).


One of the two Parkin recombinant proteins, HM321PSB, showed a higher intracellular signal in PBMC. The distribution of FITC-labeled proteins in different organs in cryosections analyzed by fluorescence microscopy (FIGS. 25 and 27). Similar results, the Parkin recombinant proteins lacking aMTD (HP and HPSB) showed limited tissue permeability in various organs (brain, heart, lung, liver, spleen and kidney). In contrast, aMTD321 and aMTD524 enhanced the systemic delivery of Parkin recombinant proteins in tissues (brain, heart, lung, liver, spleen and kidney).

  • 10. Immunodetection of Parkin Recombinant Proteins in Brain Tissue


To determine the blood-brain-barrier permeability by using immunohistochemical labeling (immunohistochemistry), tissues were immunohistochemically processed using anti-Parkin (1:200, Santa Cruz Biotechnology) monoclonal antibodies. Parkin positive immunoreactivity was observed in brain of the HM321PSB-treated mice, but it was not observed in brain of the HPSB-treated mice (FIG. 29). In the result of western blot, Parkin antibody-positive band was only observed in group administered HM321PSB recombinant protein (FIG. 28a). Further, as shown in FIGS. 28b and 28c, it was confirmed that a larger amount of the Parkin protein was detected in the brain of the mice treated with HM524PSB of the present invention, as compared to those treated with HPSB.


The results have demonstrated that the aMTD/SD-fused Parkin recombinant protein could be efficiently delivered to neuronal cells in the brain by penetrating the blood-brain barrier.

  • 11. Determination of the Biological Activity of iCP-Parkin Recombinant Protein


11-1. E3 ligase Activity of iCP-Parkin Recombinant Proteins


To determine the E3 ligase activity of Parkin recombinant protein, Parkin E3 ligase activity was measured by using an auto-ubiquitination assay (Boston Biochem) conducted according to the manufacturers' instructions. As shown in FIG. 30, the iCP-Parkin recombinant proteins of the present invention showed (auto-) ubiquitination activity, indicating that they have E3 ligase activity.


11-2. Anti-Apoptotic Effect of iCP-Parkin Recombinant Proteins


To determine the protective effect of Parkin recombinant protein on the neuronal death caused by the neurotoxin, CATH.a and SH-SY5Y cells were treated with 6-hydroxydopamine (6-OHDA). After treatment of 6-OHDA, these cells were treated with Parkin recombinant proteins and TUNEL assays were conducted. A large number of cell death were observed in 6-OHDA only treated group. Similarly to 6-OHDA-treated group, HP lacking aMTD has shown similar percentage of apoptotic cell death with the agonist only group. Contrastingly, aMTD321/SD-fused Parkin recombinant proteins (HM321PSA and HM321PSB) have suppressed apoptosis to 19.7 and 14.2% in CATH.a and SH-SY5Y cells, respectively (*p<0.05). Similar results have been obtained in both CATH.a cells and SH-SY5Y cells. When aMTD524 Parkin protein was treated, similar results have been obtained. These results have demonstrated that aMTD/SD-fused Parkin recombinant proteins have neuroprotective effects in cultured neuronal cells. Further, these neuronal cell death inhibitory effects were observed in a dose-dependent manner (FIGS. 31, 32a and 32b).


Further, degradation of α-Synuclein aggregates was measured by cell counting after Tryphan Blue staining. As shown in FIG. 33, it was confirmed that the iCP-Parkin recombinant proteins of the present invention showed superior neuronal cell protective effect and α-Synuclein degradation effect.

  • 12. Development of MPTP-PD Animal Models


In order to determine the effect of Parkin recombinant proteins in vivo, we developed various Parkinson's disease-(PD-) animal model that mimics physiological and mental symptoms of Parkinson' s disease by using a neural toxin. To induce Parkinson's disease-like symptoms, the neural toxin, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydrophyridine) was used. This MPTP is converted to a toxic agent MPP+ by monoamine oxidase (MAO-B) in the inner mitochondrial membrane, and this selectively targets dopaminergic neuron to induce Parkinson's disease (FIG. 34).

  • 13. Assessment of Motor Activity Influenced by Parkin Recombinant Proteins


13-1. Swimming Test


To assess the motor function recovery effect of Parkin recombinant proteins, swimming test was conducted. Swimming activity (4 legged) of each group (Diluent, MPTP only, MPTP+HPSB and MPTP+HM321PSB) was measured and expressed as a percentage of the unlesioned diluent control. MPTP only group showed significant decrease in the swimming activity as compared to the diluent group. Similarly, HPSB-treated group showed similar result of MPTP only group. Contrastingly, HM321PSB-treated group showed improved motor activity. Therefore, we have determined that aMTD321/SD-fused Parkin recombinant protein recovered motor function in acute MPTP-induced Parkinson disease mouse model (FIG. 37).


13-2. Gait Test


To assess the motor function recovery effect of Parkin recombinant proteins, gait test was performed (FIG. 38). In this experiment, the stride distance and sway distance were measured. The stride distance was significantly reduced in the MPTP only and HPSB-treated group, while the sway distance was increased as compared to the diluent group. However, the HM321PSB-treated mice showed the stride distance of similar levels as the normal group (FIG. 39) and they showed significantly reduced sway distance (FIG. 40) as compared to the MPTP only and HPSB-treated group. Therefore, we have determined that aMTD321/SD-fused Parkin recombinant protein improves gait function in acute MPTP-induced Parkinson diseased mouse model.


13-3. Sub-Chronic MPTP-PD Model


Rota-Rod test was performed in a sub-chronic MPTP model, and as a result, aMTD524/SD-fused Parkin protein treated group did walking on a Rota-rod for a long time, similar to the diluent control. That is, motor function recovery by aMTD524/SD-fused Parkin protein was verified (FIG. 41).

  • 14. Activation of Dopamine Release in MPTP-PD Mouse Model by Parkin Recombinant Proteins


14-1. Dopamine in Urine


To measure the dopamine level in urine, urine was collected from mice in all groups 10 h after the first treatment of Parkin recombinant proteins. These urine samples have been measured by ELISA. There has been statistically significant difference between MPTP only and HM321PSB-treated group in the result after 10 h. While MPTP only group has shown decreased urine level, HM321PSB-treated group have shown similar urine level as compared with the diluent group. The results have demonstrated that the aMTD321/SD-fused Parkin recombinant protein stimulates dopamine level in urine. (FIG. 35).


14-2. Dopamine in Brain


To measure the dopamine level in the brain, dopamine level of striatal regions in all groups have been measured by ELISA. Striatal dopamine level in HM321PSB-treated group was more than double compared to the MPTP only and HPSB-treated group. Therefore, we have determined that aMTD321/SD-fused Parkin recombinant protein causes an increase of striatal dopamine level, decreased by MPTP treatment (FIG. 36).

  • 15. Expression Recovery of Tyrosine Hydroxylase by Parkin Recombinant Proteins in MPTP-PD Model


15-1. Acute MPTP-PD Model


To determine the protective efficacy of dopaminergic neuron by Parkin recombinant protein, immunohistochemistry was performed using an antibody for tyrosine hydroxylase, which is a marker enzyme in dopamine neurons. The number of dopaminergic neurons in the substantia nigra and the striatum region of the mice treated with aMTD/SD-fused Parkin recombinant protein were observed and compared to the MPTP only and HPSB administrated group. Therefore, we have determined that aMTD/SD-fused Parkin recombinant protein could have a neuroprotective function. Furthermore, the neuronal cell recovery effects of aMTD/SD-fused Parkin recombinant protein were observed in a dose-dependent manner (FIGS. 42a and 42b).


15-2. Sub-Acute MPTP-PD Model


Changes of TH expression in the brain of a sub-acute MPTP model were examined by Western blotting, and as a result, recovery of TH expression by aMTD/SD-fused Parkin protein was observed. In addition, there was no change in the endogenous Parkin protein expression (FIG. 43).

  • 16. Summary of the Present Invention


For the present invention, cell-permeable Parkin recombinant proteins have been designed and developed with the aMTD. All Parkin recombinant proteins fused with aMTD and control recombinant proteins lacking aMTD have been confirmed for their quantitative, visual cell-/tissue-permeability and BBB-permeability. We were able to confirm that the cell-permeable aMTD321/SD-fused Parkin recombinant proteins and aMTD524/SD-fused Parkin recombinant proteins had relatively high cell-/tissue-permeability (FIGS. 24-27), as well as efficient in the brain tissue delivery by penetrating through BBB (FIGS. 28a to 28c and 29). To determine the biological activity of cell-permeable Parkin recombinant protein, we carried out a variety of functional tests. We confirmed that the cell-permeable Parkin recombinant protein has anti-apoptotic effect on the neuronal cell death caused by a neurotoxin (6-OHDA and MPP+) (FIGS. 31, 32a and 32b), and it has a recovery effect in the PD-mice model that displayed movement dysfunction induced by neurotoxin (MPTP) (FIGS. 35-43).


The following examples are presented to aid practitioners of the invention, to provide experimental support for the invention, and to provide model protocols. In no way are these examples to be understood to limit the invention.


EXAMPLE 1
Development of Novel Advanced Macromolecule Transduction Domain (aMTD)

H-regions of signal sequences (HRSP)-derived CPPs (MTS/MTM and MTD) do not have a common sequence, a sequence motif, and/or a common structural homologous feature. In this invention, the aim is to develop improved hydrophobic CPPs formatted in the common sequence and structural motif that satisfy newly determined ‘critical factors’ to have a ‘common function,’ to facilitate protein translocation across the plasma membrane with similar mechanism to the analyzed CPPs.


The structural motif as follows:




embedded image


In Table 9, universal common sequence/structural motif is provided as follows. The amino acid length of the peptides in this invention ranges from 9 to 13 amino acids, mostly 12 amino acids, and their bending potentials are dependent with the presence and location of proline in the middle of sequence (at 5′, 6′, 7′ or 8′ amino acid) and at the end of peptide (at 12′) for recombinant protein bending. Instability index (II) for rigidity/flexibility of aMTDs is II<40, grand average of hydropathy (GRAVY) for hydropathy is around 2.2, and aliphatic index (AI) for structural features is around 200 (Table 9). Based on these standardized critical factors, new hydrophobic peptide sequences, namely advanced macromolecule transduction domain peptides (aMTDs), in this invention have been developed and summarized in Tables 10 to 15.


EXAMPLE 2
Construction of Expression Vectors for Recombinant Proteins Fused to aMTDs

Our newly developed technology has enabled us to expand the method for making cell-permeable recombinant proteins. The expression vectors were designed for histidine-tagged CRA proteins fused with aMTDs or rPeptides. To construct expression vectors for recombinant proteins, polymerase chain reaction (PCR) had been devised to amplify each designed aMTD or rPeptide fused to CRA.


The PCR reactions (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor protein, Korea) was digested on the restriction enzyme site between Nde I (5′) and Sal I (3′) involving 35 cycles of denaturation (95° C.), annealing (62° C.), and extension (72° C.) for 30 seconds each. For the last extension cycle, the PCR reactions remained for 5 minutes at 72° C. Then, they were cloned into the site of pET-28a(+) vectors (Novagen, Madison, Wis., USA). DNA ligation was performed using T4 DNA ligase at 4° C. overnight. These plasmids were mixed with competent cells of E. coli DH5-alpha strain on the ice for 10 minutes. This mixture was placed on the ice for 2 minutes after it was heat shocked in the water bath at 42° C. for 90 seconds. Then, the mixture added with LB broth media was recovered in 37° C. shaking incubator for 1 hour. Transformant was plated on LB broth agar plate with kanamycin (50 μ g/mL) (Biopure, Johnson city, Tenn., USA) before incubating at 37° C. overnight. From a single colony, plasmid DNA was extracted, and after the digestion of Nde I and Sal I restriction enzymes, digested DNA was confirmed at 645 bp by using 1.2% agarose gels electrophoresis (FIG. 2). PCR primers for the CRA recombinant proteins fused to aMTD and random peptides (rPeptide) are summarized in Tables 23 to 30. Amino acid sequences of aMTD and rPeptide primers are shown in Tables 31 to 38.


EXAMPLE 3
Inducible Expression, Purification and Preparation of Recombinant Proteins Fused to aMTDs and rPeptides

To express recombinant proteins, pET-28a(+) vectors for the expression of CRA proteins fused to a negative control [rPeptide 38 (rP38)], reference hydrophobic CPPs (MTM12 and MTD85) and aMTDs were transformed in E. coli BL21 (DE3) strains. Cells were grown at 37° C. in LB medium containing kanamycin (50 μ g/ml) with a vigorous shaking and induced at OD600=0.6 by adding 0.7 mM IPTG (Biopure) for 2 hours at 37° C. Induced recombinant proteins were loaded on 15% SDS-PAGE gel and stained with Coomassie Brilliant Blue (InstantBlue, Expedeon, Novexin, UK) (FIG. 3).


The E. coli cultures were harvested by centrifugation at 5,000×rpm for 10 minutes, and the supernatant was discarded. The pellet was re-suspended in the lysis buffer (50 mM NaH2PO4, 10 mM Imidazol, 300 mM NaCl, pH 8.0). The cell lysates were sonicated on ice using a sonicator (Sonics and Materials, Inc., Newtowen, Conn., USA) equipped with a probe. After centrifuging the cell lysates at 5,000×rpm for 10 minutes to pellet the cellular debris, the supernatant was incubated with lysis buffer-equilibrated Ni-NTA resin (Qiagen, Hilden, Germany) gently by open-column system (Bio-rad, Hercules, Calif., USA). After washing protein-bound resin with 200 ml wash buffer (50 mM NaH2PO4, 20 mM Imidazol, 300 mM NaCl, pH 8.0), the bounded proteins were eluted with elution buffer (50 mM NaH2PO4, 250 mM Imidazol, 300 mM NaCl, pH 8.0).


Recombinant proteins purified under natural condition were analyzed on 15% SDS-PAGE gel and stained with Coomassie Brilliant Blue (FIG. 4). All of the recombinant proteins were dialyzed for 8 hours and overnight against physiological buffer, a 1:1 mixture of cell culture medium (Dulbecco's Modified Eagle's Medium: DMEM, Hyclone, Logan, Utah, USA) and Dulbecco's phosphate buffered saline (DPBS, Gibco, Grand Island, N.Y., USA). From 316 aMTDs and 141 rPeptides cloned, 240 aMTD- and 31 rPeptide-fused recombinant proteins were induced, purified, prepared and analyzed for their cell-permeability.


EXAMPLE 4
Determination of Quantitative Cell-Permeability of Recombinant Proteins

For quantitative cell-permeability, the aMTD- or rPeptide-fused recombinant proteins were conjugated to fluorescein isothiocyanate (FITC) according to the manufacturer's instructions (Sigma-Aldrich, St. Louis, Mo., USA). RAW 264.7 cells were treated with 10 μ M FITC-labeled recombinant proteins for 1 hour at 37° C., washed three times with cold PBS, treated with 0.25% tripsin/EDTA (Sigma-Aldrich, St. Louis, Mo.) for 20 minutes at 37° C. to remove cell-surface bound proteins. Cell-permeability of these recombinant proteins were analyzed by flow cytometry (Guava, Millipore, Darmstadt, Germany) using the FlowJo cytometric analysis software (FIGS. 5 to 6). The relative cell-permeability of aMTDs were measured and compared with the negative control (rP38) and reference hydrophobic CPPs (MTM12 and MTD85) (Table 31).


EXAMPLE 5
Determination of Cell-Permeability and Intracellular Localization of Recombinant Proteins

For a visual reference of cell-permeability, NIH3T3 cells were cultured for 24 hours on coverslip in 24-wells chamber slides, treated with 10 μ M FITC-conjugated recombinant proteins for 1 hour at 37° C., and washed three times with cold PBS. Treated cells were fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 10 minutes at room temperature, washed three times with PBS, and mounted with VECTASHIELD Mounting Medium (Vector laboratories, Burlingame, Calif., USA), and counter stained with DAPI (4′,6-diamidino-2-phenylindole). The intracellular localization of the fluorescent signal was determined by confocal laser scanning microscopy (LSM700, Zeiss, Germany; FIGS. 7 and 8)


EXAMPLE 6
Construction of Expression Vectors for Recombinant Proteins

Our newly developed technology, aMTD-based MITT, has enabled us to improve the method for developing cell-permeable recombinant proteins. The expression vectors were designed for Parkin proteins fused with or without aMTD and solubilization domain A (SDA) or solubilization domain B (SDB). To acquire expression vectors for recombinant proteins, polymerase chain reaction (PCR) had been devised to amplify these recombinant proteins.


The PCR (100 ng genomic DNA, 10 pmol each primer, each 0.2 mM dNTP mixture, 1× reaction buffer and 2.5 U Pfu(+) DNA polymerase (Doctor protein, Korea) was conducted and the product was digested on the restriction enzyme site between BamHI (5′) and HindIII (3′) involving 35 cycles of denaturation (95° C.) for 30 seconds, annealing (60° C.) for 30 seconds, and extension (72° C.) for 2 min each. For the last extension cycle, the PCR product remained for 5 minutes at 72° C. Then, they were cloned into the site of pET-28a (+) vectors (Novagen, Madison, Wis., USA). DNA ligation was performed using T4 DNA ligase (NEB, USA) at 4° C. overnight. These plasmids were mixed with competent cells of E. coli DH5α and E. coli (BL21(DE3) codon plus RIL) strain (ATCC, USA) on the ice for 10 minutes. This mixture was placed on the ice for 2 minutes after it was heat-shocked in the water bath at 42° C. for 90 seconds. Then, the mixture added with LB broth media (ELPIS, Korea) was recovered in 37° C. shaking incubator for 1 hour. Transformant was plated on LB broth agar plate with kanamycin (50 μ g/mL) with a vigorous shaking and induced with 0.7 mM IPTG (Biopure, Johnson city, Tenn., USA) at OD600=0.6 before incubating at 37° C. overnight. From a single colony, plasmid DNA was extracted, and after the digestion of BamHI and HindIII restriction enzymes (NEB, USA), digested DNA was confirmed by using 1.2% agarose gels electrophoresis (FIG. 18). PCR primers for the His-tagged (or not His-tagged) Parkin recombinant proteins fused to aMTD and SD are summarized in Table 39 and Table 40.


Tables 39 and 40: PCR Primers for His-tagged Parkin Proteins











TABLE 39





SEQ ID NO
Recombinant Protein
5′ Primer (5′-3′)







833

HP


ATAGGATCCATGATAGTTTTG






834

HM321P


GGGTTTGGATCCATTGTGGCGGTGGCGCTGCCGGCGCT





HM321PSA


GGCGGTGCCGATGATAGTGTTTG





HM321PSB






835

M524


GGAATTCCATATGGCGGTGGCGCTGATTGTGGTGCCGGCGCTG






GCGCCGATGATAGTGTTTGTCAGGTTCAACTCCAGCCA






836

HPSB/PSB


ATAGGATCCATGATAGTGTTTG






837
HM124PSB
GGGTTTCATATGATTGCGGTGGCGCTGCCGGCGCTGATTGCGG




CGCCGGCAAATATTACCGTTTTCTAT





838
HM165PSB
GGGTTTCATATGGCGCTGGCGGTGCCGGTGGCGCTGGCGATTG




TGCCGGCAAATATTACCGTTTTCTAT





839
HM325PSB
GGGTTTCATATGATTGTGGCGGTGGCGCTGCCGGCGGTGGCGC




TGCCGGCAAATATTACCGTTTTCTAT





840
HM342PSB
GGGTTTCATATGGTGATTGTGGCGCTGGCGCCGGCGGTGCTGG




CGCCGGCAAATATTACCGTTTTCTAT





841
HM361PSB
GGGTTTCATATGGCGGTGGTGATTGTGGCGCCGGCGGTGATTG




CGCCGGCAAATATTACCGTTTTCTAT





842
HM524PSB
GGGTTTCATATGGCGGTGGCGCTGATTGTGGTGCCGGCGCTGG




CGCCGGCAAATATTACCGTTTTCTAT





843
HM623PSB
GGGTTTCATATGGTGGCGGGGGCGATTGCGCTGCCGGCGATTG




TGCCGGCAAATATTACCGTTTTCTAT





844
HM683PSB
GGGTTTCATATGCTGGCGATTGTGCTGGCGGGGCCGGCGGTGC




TGCCGGCAAATATTACCGTTTTCTAT





845
HM685PSB
GGGTTTCATATGGCGCTGCTGGTGGCGGTGCTGCCGGCGGCGC




TGCCGGCAAATATTACCGTTTTCTAT





846
HM686PSB
GGGTTTCATATGGCGGCGCTGGTGGCGGTGCTGCCGGTGGCGC




TGCCGGCAAATATTACCGTTTTCTAT





847
HM687PSB
GGGTTTCATATGGCGATTCTGGCGGTGGCGCTGCCGCTGCTGG




CGCCGGCAAATATTACCGTTTTCTAT


















TABLE 40





SEQ ID NO
Recombinant Protein
3′ Primer (5′-3′)







848
HP, HM321P
TATAAGCTTCCTACACGTCGA





849
HM321PSA, HM321PSB,
TATAAGCTTGCACGTCGAACC



HM524PSB/M524, HPSB/PSB,



HM124PSB, HM165PSB, HM325PSB,



HM342PSB, HM361PSB, HM524PSB,



HM623PSB, HM683PSB, HM685PSB,



HM686PSB, HM687PSB









EXAMPLE 7-1
Expression and purification of Histidine-Tagged Parkin Recombinant Proteins

Denatured recombinant proteins were lysed using denature lysis buffer (8 M Urea, 10 mM Tris, 100 mM NaH2PO4) and purified by adding Ni-NTA resin. Resin bound to proteins were washed 3 times with 30 mL of denature washing buffer (8 M Urea, 10 mM Tris, 20 m imidazole, 100 mM NaH2PO4). Proteins were eluted 3 times with 30 mL of denature elution buffer (8 M Urea, 10 mM Tris, 250 mM imidazole). After purification, they were dialyzed twice against a refolding buffer (550 mM Guanidine-HCl, 440 mM L-Arginine, 50 mM Tris, 100 mM NDSB, 150 mM NaCl, 2 mM reduced glutathione and 0.2 mM oxidized glutathione). Finally, they were dialyzed against a physiological buffer such as DMEM at 4° C. until the dialysis was over 300×105 times. Concentration of purified proteins was quantified using Bradford assay according to the manufacturer' s instructions. After purification, they were dialyzed against DMEM as indicated above. Finally, SDS-PAGE analysis of cell lysates before (−) and after (+) IPTG induction; aliquots of Ni2+ affinity purified proteins (P); and molecular weight standards (M) were conducted to confirm the presence of target protein (FIGS. 19 and 20).


EXAMPLE 7-2
Determination of Solubility/Yield of Parkin Recombinant Proteins

The aMTD-fused Parkin proteins containing SDA or SDB are cloned, expressed, purified, and prepared in a soluble form under the denatural condition. Each recombinant protein fused to aMTD and/or SD was determined for their size (number of amino acids), yield (mg/L) and solubility on 10% SDS-PAGE gel and stained with Coomassie Brilliant Blue. Solubility was scored on a 5- point scale ranging from highly soluble proteins with little tendency to precipitate (+++++) to largely insoluble proteins (+) by measuring their turbidity (A450). Yield (mg/L) in physiological buffer condition of each recombinant protein was also determined. The cell-permeable Parkin recombinant proteins were observed as a single band, where the amount of the final purified protein was up to 46 mg/L in this protein purification procedure (FIGS. 19 and 20).


Further, solubility/yield, permeability, and biological activity of 10 types of aMTDs additionally selected, besides aMTD321, were measured and shown in FIG. 22. As shown in FIG. 22, it could be confirmed that the iCP Parkin recombinant protein using aMTD524 showed the most excellent biological activity.


Relative yield of aMTD-SD-fused Parkin Recombinant Proteins compared to negative control (HP) and relative yield of SDB-fused Parkin Recombinant Proteins (HPSB) compared to negative Control (HP) are shown in FIGS. 21a and 21b. The results revealed that solubilization domains (SDA and SDB) successfully improved relative yield of proteins compared to HP (FIG. 21b), and HM321PSA and HM321PSB showed 4 folds increase of solubility compared to a cargo protein only (HP) (FIG. 21a).


EXAMPLE 8
Expression and Purification of Histidine-Tag Free Parkin Fusion Proteins

Sequences of E. coli codon-optimized and histidine-tag free recombinant parkin proteins fused to aMTDs were also synthesized with specific primer (Table 39), and then finally cloned into pET 28a and pET 22b. The proteins were expressed in E. coli BL21-CodonPlus (DE3) cells grown to an A600 of 0.5-0.7 and induced for 3 hrs with 0.7 mM IPTG. Cells were harvested and disrupted by sonication (20 sec-on/40 sec-off) for 30 min in buffer A (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.1% Triton X-100). Inclusion body was isolated by centrifugation (5,000 rpm for 30 min at 4 C) and dissolved in buffer B (50 mM Tris-HCl, pH 10.0, 8 M urea) for overnight for denaturation. Denatured inclusion body was dialyzed against buffer C (30 mM sodium phosphate, pH 8.0, 0.02% Tween-20) for 48 hrs at 4° C. for refolding. Insoluble particles were removed by centrifugation (9,000 rpm for 30 min at 4 μ C). Purification was conducted by ion-exchange column chromatography with AKTA Purifier FPLC system (GE HealthCare, Pittsburgh, Pa., USA). In brief, Q-Sepharose anion column was flowed with protein solution in buffer C for protein binding and washed with buffer D (30 mM sodium phosphate, pH 8.0, 30 mM NaCl) for removing the unbound proteins. Proteins were eluted with salt gradient (30 mM to 1 M NaCl) of elution buffer E (30 mM sodium phosphate, pH 8.0). All recombinant proteins were eluted at a major single peak. After purification, proteins were dialyzed against a physiological buffer.


EXAMPLE 9
Intracellular Delivery of Parkin Recombinant Proteins

For quantitative cell-permeability, the aMTD/SD-fused Parkin recombinant proteins were conjugated to fluorescein isothiocyanate (FITC) according to the manufacturer' s instructions (Sigma-Aldrich, St. Louis, Mo., USA). RAW 264.7 cells (ATCC, USA) were treated with 10 μ M FITC-labeled recombinant proteins for 1 hour at 37° C., washed three times with cold PBS, treated with proteinase K (5 μ g/ml) for 10 min at 37° C. to remove cell-surface bound proteins. Cell-permeability of these recombinant proteins were analyzed by flow cytometry (FACS Calibur; BD, Franklin Lakes, N.J., USA) using the FlowJo analysis software (FIG. 23). In FIG. 23, cell-permeable potency of a negative control (rPeptide 38) and previously developed hydrophobic CPPs (MTM12 and MTD85) were shown as the references and the cell-permeable potency of aMTD321 was visually compared to that of a SDA only (HSA). It was confirmed that aMTD321 showed remarkably improved cell permeability, as compared to the negative control (rPeptide 38) and previously developed hydrophobic CPPs (MTM12 and MTD85).


EXAMPLE 10
Determination of Intracellular Localization of iCP-Parkin Recombinant Proteins

For a visual reference of cell-permeability, NIH3T3 cells (ATCC, USA) were cultured for 24 hours on a coverslip in 24-wells chamber slides, treated with 10 μ M of vehicle (culture medium, DMEM), FITC only, FITC-conjugated Negative Control (rP38), FITC-conjugated Previously Developed CPP (MTM12 and MTD85), FITC-conjugated recombinant proteins (FITC-HP, FITC-HPSB, FITC-HM321P, FITC-HM321PSA, FITC-HM321PSB and FITC-M524PSB) for 1 hour at 37° C., and washed three times with cold PBS. Treated cells were fixed in 4% paraformaldehyde (PFA, Junsei, Tokyo, Japan) for 10 minutes at room temperature, washed three times with PBS, and mounted with VECTASHIELD Mounting Medium (Vector laboratories, Burlingame, Calif., USA) with DAPI (4′,6-diamidino-2-phenylindole) for nuclear staining. The intracellular localization of the fluorescent signal was determined by confocal laser scanning microscopy (top) and by Nomarski interference microscope image of the same cells (LSM700, Zeiss, Germany) (bottom) (FIG. 24). As shown in FIG. 24, it was confirmed that aMTD321 and aMTD524 showed excellent cell permeability as compared to the previously developed CPPs (MTM12 and MTD85), and the permeability was further improved, when they were fused with SD.


EXAMPLE 11-1
Determination of In Vivo Delivery of Parkin Recombinant Proteins in PBMC

For determination in vivo delivery, ICR mouse (5 weeks old, female) were injected intraperitoneally (IP, 600 ug/head) with FITC only or FITC-conjugated proteins (FITC-HPSB and FITC-HM321PSB). After 15 min and 30 min, A peripheral blood mononuclear cell (PBMC) were isolated from whole blood in mice, and were analyzed by flow cytometry (BD, GUABA) (FIG. 25). As shown in FIG. 25, aMTD/SD-fused recombinant protein showed excellent cell permeability in vivo.


EXAMPLE 11-2
Determination of In Vitro Delivery of Parkin Recombinant Proteins in RAW264.7 Cells and NIH3T3 Cells

For determination in vitro delivery, RAW264.7 cells were incubated for 1 hour at 37° C. with 10 μ M FITC-conjugated Parkin recombinant proteins (FITC-HP, FITC-HM321P, FITC-HM321PSA, FITC-HM321PSB and FITC-M524PSB) (FIG. 26), and NIH3T3 cells were incubated for 1 hour at 37° C. with 10 μ M FITC-conjugated Parkin recombinant proteins with or lacking aMTD321 sequence (FITC-HPSB and FITC-HM321PSB) (FIG. 26).


An equimolar concentration of unconjugated FITC (FITC only) or vehicle (culture medium, DMEM), treated to remove cell-associated but non-internalized protein, and analyzed by flow cytometry (FIG. 26).


As shown in FIG. 26, when Parkin protein was fused with only SD, there was no great change in cell permeability. In contrast, cell permeability was found to be improved by fusion of aMTD only, irrespective of the presence or absence of SD, indicating that cell permeability improvement is provided by addition of aMTD sequences, and hydrophilic property of the recombinant proteins was maximized by addition of SD sequences, leading to remarkable improvement of cell permeability.


EXAMPLE 12
Determination of Tissue-Permeability of Parkin Recombinant Proteins in Vivo

For a visual reference of tissue-permeability, diluent, FITC only and 30 mg/kg of FITC-labeled Parkin recombinant proteins (FITC-HP, FITC-HPSB, FITC-HM321P, FITC-HM321PSA, FITC-HM321PSB, and FITC-M524PSB) was injected intraperitoneally to ICR mice (5 weeks old, female). Two hours later, the mice are sacrificed, and liver, kidney, spleen, lung, heart and brain were isolated and embedded with an OCT compound (Sakura, Alphen anden Rijn, Netherlands), frozen, and then sectioned to a thickness of 20 μm. The tissue specimens are mounted on a glass and observed by fluorescence microscopy (Nikon, Tokyo, Japan) (FIG. 27). As shown in FIG. 27, it was confirmed that aMTD/SD-fused recombinant Parkin proteins were efficiently delivered into the tissues.


EXAMPLE 13
Detection of Parkin Recombinant Proteins in Brain

For immunohistochemistry, 6-week-old ICR female mice were injected intraperitoneally with diluent (PBS) or with 600 μ g His-tagged Parkin recombinant proteins. After 2 h, mice was perfused with 0.9% NaCl and fixed with cold 4% paraformaldehyde. After the brains were removed, they were post-fixed with 4% paraformaldehyde and transferred to 30% sucrose. The brains were cut into 30 μ m coronal sections using a freezing microtome. Brain cryosections (30 μ m) are immunestained with anti-Parkin (1:100, Santa Cruz Biotechnology) monoclonal antibodies, followed by biotin-conjugated goat anti-mouse secondary antibody (Vector Laboratories), and developed with Avidin-Biotin Complex kit (Vectastain kit, Vector Laboratories). For western blot analysis, mice treated with proteins were perfused with 0.9% NaCl. Brains were isolated, and striatal region was dissected and homogenized in lysis buffer (Intron, Seongnam, Korea). Supernatant from the centrifugation (13,000 rpm for 10 min at 4° C.) is analyzed by western blot that is probed with antibodies against Parkin (1:200) and β-actin (1:2,000). The secondary antibody is goat anti-mouse IgG-HRP (all antibodies were from Santa Cruz Biotechnology) (FIG. 28a).


In detail, in order to examine how much iCP-Parkin recombinant proteins were present in the neuronal cells of brain, mice were sacrificed 10 minutes, 1, 2, 4, 8, 12, 16 and 24 hours after injection intravenously of FITC-labeled HPSB and HM524PSB. And then neuronal cells of brain were separated, fluorescence intensity thereof was measured by Flow cytometry, and shown in FIG. 28b. As shown in this figure, the highest value was measured at 2 hours after injection of the iCP-Parkin recombinant proteins, maintained until about 8 hours, decreased at 12 hours, and thereafter, maintained constant until 24 hours.


Further, the brain tissues obtained by the experiment was cryosectioned (20 μm) to obtain tissue sections, where fluorescence distribution was examined under a fluorescent microscope, and shown in FIG. 28c. As shown in this figure, FITC-labeled proteins were observed in the shape of neuronal cells only in the presence of aMTD, indicating that iCP-Parkin passed through the BBB to permeate the neuronal cells of brain.


Further, delivery of aMTD-mediated Parkin recombinant protein to the brain was examined by immunoblotting, and shown in FIG. 29. FIG. 29 shows Immunoblotting of Parkin recombinant proteins in the cerebellum. Sagittal sections through the cerebellum were immunostained with anti-Parkin antibody (1:100, Santa Cruz Biotechnology) 2 hrs after IP (Intraperitoneal) injection of 600 ug of diluent alone or His-tagged Parkin recombinant proteins without aMTD or lacking aMTD sequences.


As shown in FIGS. 28a to 28c and 29, a large amount of Parkin proteins was detected in the brains of mice injected with HM321PSB and HM524PSB of the present invention, compared to those injected with HPSB, indicating that the iCP-Parkin recombinant proteins passed through the BBB, and the recombinant proteins of the present invention showed excellent blood-brain barrier permeability in vivo.


EXAMPLE 14-1
Assessment of E3 Ligase Activity

Parkin E3 ligase activity was measured by using an auto-ubiquitination assay (Boston Biochem) conducted according to the manufacturers' instructions. Briefly, 1 μ g of purified Parkin proteins were reacted with 0.1 μ M E1, 1 μ M E2, 50 μ M Ubiquitin and 10 μ M Mg-ATP for 1 hr at 37° C., followed by western blot with anti-Ubiquitin antibody (1:1,000, Enzo Life Science). As shown in FIG. 30, the iCP-Parkin recombinant proteins of the present invention showed (auto-) ubiquitination activity, indicating that they have E3 ligase activity.


Example 14-2
Anti-Apoptotic Effect of Parkin Recombinant Proteins in Neuronal Cells

Terminal dUTP nick-end labeling (TUNEL) assays are conducted according to the manufacturers' instructions (Roche). Mouse dopaminergic neuronal (CATH.a) cells (ATCC: American Type Culture Collection) are plated (3×104/well) and CATH.a cells at 70% confluence were pre-treated with 50 μ M 6-hydroxydopamine (6-OHDA, Agonist) for 1 h at 37° C. followed by the treatment with 2.5 μ M HP, Parkin recombinant proteins (HM321P, HM321PSA or HM321PSB) for 2.5 h at 37° C., and assessed for apoptosis by TUNEL staining. Human brain tumor (SH-SY5Y) cells (Korea Cell Line Bank) are also cultured, plated (3×104/well) and SH-SY5Y cells at 70% confluence were pre-treated with 100 μ M 6-hydroxydopamine (6-OHDA, Agonist) for 6 h followed by the treatment with 2.5 μ M HP, Parkin recombinant proteins (HM321P, HM321PSA or HM321PSB) for 2.5 h at 37° C., and assessed for apoptosis by TUNEL staining. Many aMTDs were subjected to the biological activity test in the same manner, and cell death was examined by TUNEL staining and Annexin V staining.


For test dose dependency of M524PSB, SH-SY5Y cells at 70% confluence were co-treated with 1 mM MPP+(1-methyl-4-phenylpyridinium) and different concentrations of M524PSB for 24 h. and cell death was analyzed by TUNEL assay and Western blot assay with anti-Bcl2 (Santa cruz, sc-7382) and anti-Caspase3 (Cell signaling, 9665) antibodies.


As shown in FIGS. 31 and 32, it was demonstrated that the iCP-Parkin recombinant protein-treated group showed excellent anti-apoptotic effect to have a protective effect on dopaminergic neuron cells. Treatment of aMTD524/SD-fused Parkin recombinant protein showed similar results, (FIG. 32a, bottom), and in particular, as shown in FIG. 32b, when apoptosis of SH-SY5Y cells was induced by treatment of a neurotoxin MPP+ (1-methyl-4-phenylpyridinium) and then M524PSB was treated by varying its concentration, anti-apoptotic effect on the neuronal cells was observed in a dose-dependent manner. At a molecular level, it was confirmed that expression of an anti-apoptotic biomarker Bcl2 was maintained by M524PSB, whereas expression of a pro-apoptotic biomarker Caspase3 was suppressed (FIG. 32b).


EXAMPLE 14-3
Assessment of Degradation of α-Synuclein Aggregates

α-Synuclein oligomer was generated by aggregating 1 mg/m1 of α-Synuclein (ATGEN #SNA2001) in stationary incubator for 5 weeks at 37° C. Human brain tumor (SH-SY5Y) cells (Korea Cell Line Bank) were cultured, plated (3×105/well) and pre-treated with 1 μ M of the aggregated α-Synuclein oligomer for 2 h to induce apoptosis followed by the co-treatment with 10 μ M Parkin recombinant proteins for 24 h at 37° C., and analyzed the alteration by cell counting after Tryphan blue staining.


Proteins were quantified by Bradford assay, and then chemiluminescence detection (Ez-Western Lumi Femto, DOGEN #DG-WF200) on Western blot was performed using primary anti-α-synuclein antibody (1:200, Santa Cruz #sc-7011-R), secondary anti-rabbit IgG HRP-linked antibody (1:5000, Cell signaling #7074S) (FIG. 33). As shown in FIG. 33, it was confirmed that the iCP-Parkin recombinant proteins of the present invention showed superior neuronal cell protective effect and α-Synuclein degradation effect.


EXAMPLE 15
MPTP-Induced Parkinson's Disease Mouse Models and Therapeutic Protocol

8-week-old C57BL/6 male and female mice housed in plastic cages in a temperature- and humidity-controlled room with a 12-h light/12 h-dark cycle. Mice were randomly assigned to one of four experimental groups (Diluent, MPTP only, MPTP+HPSB and MPTP+HM321PSB or M524PSB). For acute MPTP-induced PD Mode, three groups of mice except for diluent were received intraperitoneal injections of MPTP (15 mg/kg×3 times/day, 2 h interval) for three consecutive days. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (Sigma-Aldrich, St. Louis, Mo.) was dissolved in 0.9% NaCl. Controls are treated with 0.9% NaCl for the same time period. After 3 days, mice in MPTP+HPSB and MPTP+HM321PSB groups were received intraperitoneal injection of HPSB, HM321PSB recombinant protein (600 μg/head, a time/day) for five consecutive days, respectively. For sub-acute MPTP-induced PD Mode, MPTP (30 mg/kg/day) was injected intraperitoneally for 5 days and Protein (HPSB, HM321PSB) injection were started at day 9 for 5 consecutive days. For sub-chronic MPTP-induced PD Mode, MPTP (20 mg/kg×4times/day, 2 h interval) was injected intraperitoneally for 1 day and Protein (HPSB, M524PSB) injection were started at day 36 for 5 consecutive days. Urine and brain dopamine levels, gross motor function and brain lesions (TH immunostaining) were analyzed on subsequent days as indicated in FIG. 34. We confirm that animal experiments are performed in accordance with the guidelines of the Institutional Animal Care and Use Committee. (FIGS. 34-42b).


EXAMPLE 16
Measurement of Dopamine in Urine of MPTP-PD Animal Models Treated with Parkin Recombinant Proteins

For measurement of dopamine synthesized in the urine, we collected the urine of mice in all groups after 10 h on the first day of treatment of Parkin recombinant protein. Dopamine synthesized in the urine is measured by using a commercial ELISA kit according to instructions provided by the manufacturer (GenWay, San Diego, Calif., USA). In brief, rabbit anti-dopamine antibody is added to urine or tissue extract, and the immune complexes are recovered in wells coated with goat anti rabbit antibody. A second enzyme conjugated anti-dopamine antibody directed against a different epitope produces the reaction products proportional to the amount of antigen as compared against a standard curve.


Urine dopamine levels in MPTP-lesioned mice were measured by ELISA 10 hrs after HPSB and HM321PSB protein treatment. Experimental differences between groups were assessed by a Student's two-paired t-test (*p<0.05) (FIG. 35).


As shown in FIG. 35, poor secretion of dopamine was caused by apoptosis of dopamine neuron, but the urine dopamine levels were increased by administration of the iCP Parkin recombinant proteins, indicating that the iCP Parkin recombinant protein of the present invention improve dopamine secretion.


EXAMPLE 17
Measurement of Dopamine in Brain of MPTP-PD Animal Models Treated with Parkin Recombinant Proteins

For measurement of dopamine synthesized in the brain, we collected the brain of mice in all groups after 10 h on the 8th day of treatment of Parkin recombinant protein.


Dopamine synthesized in the brain extracts is measured by using a commercial ELISA kit according to instructions provided by the manufacturer (GenWay, San Diego, Calif.). In brief, rabbit anti-dopamine antibody is added to urine or tissue extract, and the immune complexes are recovered in wells coated with goat anti-rabbit antibody. A second enzyme conjugated anti-dopamine antibody directed against a different epitope produces the reaction products proportional to the amount of antigen as compared against a standard curve.


Dopamine levels in striatal biopsies were determined by ELISA in lesioned mice without protein treatment or after daily treatments with HM321PSB as shown in FIG. 34. Dopamine levels in groups of 4 mice are presented as means±S.D. Experimental differences between groups were assessed by a Student's two-paired t-test (*p<0.05) (FIG. 36).


As shown in FIG. 36, the dopamine levels in the brain were increased by administration of the iCP Parkin recombinant proteins, indicating that the iCP Parkin recombinant protein of the present invention improve dopamine secretion.


EXAMPLE 18
Assessment of Motor Activity with Swim Test of MPTP-PD Animal Models Treated with Parkin Recombinant Proteins

Gross motor functions of MPTP-lesioned mice are assessed by using a swim test. 9 hrs after the last MPTP treatment mice were treated for 3 hrs with 600 ug proteins (IP, HPSB or HM321PSB), and 24 hrs after treating the proteins motor ability was assessed by placing the mice in a 37° C. water bath and video recording subsequent movements. The percentage of time of the mice in each treatment group were engaged in 4 legged motion is presented as mean±S.D. The number of mice in each group was as follows: Diluent, 12; MPTP only, 7; MPTP+HPSB, 14; MPTP+HM321PSB, 12.


Unlesioned mice have swum using all 4 legs 98% of the time. The percent of time of each group (MPTP only, MPTP+HPSB or MPTP+HM321PSB) spent swimming (4 legged) is measured and expressed as a percentage of the unlesioned diluent control. Experimental differences between groups were assessed by a Student's two-paired t-test (*p<0.05) (FIG. 37).


As shown in FIG. 37, it was confirmed that motor dysfunction caused by MPTP treatment was recovered by treatment of iCP Parkin recombinant proteins.


EXAMPLE 19
Assessment of Motor Activity with Gait Test and Rota-Rod Test of MPTP-PD Animal Models Treated with Parkin Recombinant Proteins

19-1. Gait Test


The mice were allowed to walk along a 50 cm long, 10 cm wide runway with 10 cm high walls into an enclosed box. Parameters measured in footprint analysis with dotted lines representing the direction of progression (DoP) of walking are shown. Footprints of MPTP-lesioned mice were evaluated for stride length (cm) and sway length (cm) (FIG. 38). Stride length and sway length were measured as the average distance of forward movement between each stride and sway. Histograms represent differences in: stride length and sway length in groups of 4 mice are presented as means±S.D. Experimental differences between groups were assessed by a Student's two-paired t-test (*p<0.05) (FIGS. 39 and 40).


As shown in FIGS. 38 to 40, it was confirmed that motor activity was lost by MPTP treatment, and thus even stride pattern was not observed, whereas the iCP Parkin-recombinant protein-treated groups showed 99% recovery of motor activity and maintained normal stride patterns.


19-2. Rota-Rod Test


For this experiment, a mouse was trained at a speed of 15 rpm for 10 minutes three times, prior to MPTP injection. In this experiment, after injection MPTP, the mouse was placed on a Rota-Rod for 10 minutes while the speed was accelerated to 4˜30 rpm, and the time that the mouse remained on the Rota-Rod before falling was measured. This procedure was repeated three times. All tests were recorded with a video camera.


As shown in FIG. 41, it was confirmed that motor activity fell over 80% or more by treatment of MPTP, but the motor activity was recovered nearly close to a normal level by treatment of the iCP Parkin-recombinant proteins.


EXAMPLE 20
Expression Recovery of Tyrosine Hydroxylase

MPTM-lesioned mice were treated with Parkin recombinant proteins for 5 days as shown in FIG. 34 (IP, 30 mg/kg). On the last day of treatment of Parkin recombinant protein, mice was perfused with 0.9% NaCl and fixed with cold 4% paraformaldehyde. And then, brains were removed, post-fixed with 4% paraformaldehyde, and transferred to 30% sucrose. The brains were cut into 30 μm coronal sections using a freezing microtome. The Dopaminergic neuronal cell marker in brain—tyrosine hydroxylase (TH) is immunostained with anti-TH (1:50, Thermo Scientific, Rockford, USA) monoclonal antibody, followed by biotin-conjugated goat anti-rabbit secondary antibody (1:100, Santa Cruz Biotechnology, Santa Cruz, Calif.) and developed with ABC kit (Vectastain kit, Vector Laboratories, Burlingame, Calif.) (FIG. 42a). The percentage of TH-positive cells in each treatment group was calculated. Experimental differences between groups were assessed by a Student's two-paired t-test (*p<0.05) (FIG. 42b).


TH expression was measured by western blotting in the sub-acute MPTP PD model prepared according to the procedure in FIG. 34, and as a result, it was found that the TH level was recovered by iCP-Parkin recombinant protein (FIG. 43). In detail, the brain was removed and homogenized with Pro-Prep (iNtRon, 17081), and a supernatant was obtained by centrifugation at 4° C. for 10 minutes at 13,000 rpm. Proteins in the supernatant thus obtained were quantified using Bradford assay, and SDS-PAGE was performed using 10 ug of the protein.


Parkin (1:200, Santa cruz, Cat#32282), tyrosine hydroxylase (TH, 1:2000, Millipore, cat# AB152), β-actin (1:5000, Cell signaling, cat# 4967S) were used as primary antibodies, and anti-mouse IgG-HRP-liked antibody (Cell signaling, cat# 7074s) and anti-rabbit IgG-HRP-liked antibody (Cell signaling, cat# 7076s) were used as secondary antibodies. Blocking was performed with 5% BSA at room temperature for 1 hour, and the primary antibodies were added and allowed to react at 4° C. for 16 hours or longer or at room temperature for 3 hours. After washing with TBS-T (10 mM Tris-HCl, pH 8.0, 50 mM NaCl, 0.05% tween-20), the secondary antibodies were treated at room temperature for 1 hour, followed by washing with TBS-T. Observation and analysis were conducted using ECL (Enhanced Chemiluminescence) for chemiluminescent detection. No great changes in endogenous Parkin expression were observed in all experimental groups.


As shown in FIGS. 42a and 42b, the number of activated dopamine-secreting cells in the mice treated with MPTP only was 10% of the normal control group whereas the number of activated dopamine-secreting cells in the experimental group injected with iCP-Parkin recombinant protein after MPTP treatment was 60% of the normal control group. Furthermore, the neuronal cell recovery effects of the recombinant proteins of the present invention were observed in a dose-dependent manner (FIG. 42a, bottom). Thus, it was confirmed that the iCP-Parkin recombinant proteins of the present invention effectively pass through the blood-brain barrier of the brain tissue to activate about 50% of dopamine-secreting cells, and therefore, the recombinant proteins of the present invention have superior brain cell protective effects against MPTP-induced brain cell death.


EXAMPLE 21
Statistical Analysis

All experimental data using cultured cells are expressed as mean±S.D. for at least three independent experiments. Statistical significance is evaluated using a two-tailed Student's t-test or ANOVA method. Experimental differences between groups are assessed using paired Student's t-tests. For animal experiments, ANOVA is used for comparing between and within groups to determine the significance. Differences with p<0.05 are considered to be statistically significant.


Those skilled in the art to which the present invention pertains will appreciate that the present invention may be implemented in different forms without departing from the essential characteristics thereof. Therefore, it should be understood that the disclosed embodiments are not limitative, but illustrative in all aspects. The scope of the present invention is made to the appended claims rather than to the foregoing description, and all variations which come within the range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A recombinant protein, which comprises a Parkin protein and an advanced macromolecule transduction domain (aMTD) being composed of 9˜13 amino acid sequences and having improved cell or tissue permeability, wherein the aMTD is fused to one end or both ends of the Parkin protein and has the following features of:(a) being composed of 3 or more amino acids sequences selected from the group consisting of Ala, Val, Ile, Leu, and Pro;(b) having Proline at one or more of 7′ and 8′ positions, and 12′ position of an amino acid sequence of the aMTD; and(c) having an instability index of 40-60; an aliphatic index of 180-220; and a grand average of hydropathy (GRAVY) of 2.1-2.6, as measured by Protparam.
  • 2. The recombinant protein according to claim 1, wherein one or more solubilization domain (SD)(s) are further fused to the end(s) of one or more of the Parkin protein and the aMTD.
  • 3. The recombinant protein according to claim 1, wherein the aMTD is composed of 12 amino acid sequences and represented by the following general formula:
  • 4. The recombinant protein according to claim 2, wherein the iCP Parkin recombinant protein is represented by any one of the following structural formulae: A-B-C; andA-C-B-Cwherein A is the aMTD having improved cell or tissue permeability, B is the Parkin protein, and C is the SD(s).
  • 5. The recombinant protein according to claim 1, wherein the Parkin protein has an amino acid sequence of SEQ ID NO: 814.
  • 6. The recombinant protein according to claim 5, wherein the Parkin protein is encoded by a polynucleotide sequence of SEQ ID NO: 815.
  • 7. The recombinant protein according to claim 1, wherein the aMTD has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-240.
  • 8. The recombinant protein according to claim 7, wherein the aMTD is encoded by a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 241-480.
  • 9. The recombinant protein according to claim 2, wherein the SD(s) have an amino acid sequence independently selected from the group consisting of SEQ ID NOs: 798, 799, 800, 801, 802, 803, and 804.
  • 10. The recombinant protein of claim 9, wherein the SD(s) are encoded by a polynucleotide sequence independently selected from the group consisting of SEQ ID NOs: 805, 806, 807, 808, 809, 810, and 811.
  • 11. The recombinant protein according to claim 1, wherein the fusion is formed via a peptide bond or a chemical bond.
  • 12. The recombinant protein according to claim 1, wherein the recombinant protein is used for the treatment of Parkinson's related diseases.
  • 13. A polynucleotide sequence encoding the recombinant protein of claim 1.
  • 14. The polynucleotide sequence according to claim 13, wherein the polynucleotide sequence is represented by SEQ ID NO: 816 or SEQ ID NO: 822.
  • 15. A polynucleotide sequence encoding the recombinant protein of claim 4.
  • 16. The polynucleotide sequence according to claim 15, wherein the polynucleotide sequence is selected from the group consisting of SEQ ID NOs: 818, 824, 828, 830 and 832.
  • 17. A recombinant expression vector comprising the polynucleotide sequence of claim 13.
  • 18. A transformant transformed with the recombinant expression vector of claim 17.
  • 19. A preparing method of the recombinant protein comprising: culturing the transformant of claim 18 in a culture medium to produce the recombinant protein; andrecovering the recombinant protein expressed by the culturing.
  • 20. A pharmaceutical composition comprising the recombinant protein of claim 1 as an active ingredient; and a pharmaceutically acceptable carrier.
  • 21. A method of treating Parkinson's related diseases in a subject comprising: administering to the subject a therapeutically effective amount of the recombinant protein of claim 1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of PCT International Application No. PCT/KR2016/008174 filed on Jul. 26, 2016, which claims priority under 35 U.S.C § 119(a) to U.S. patent application Ser. No. 14/809,279 filed on Jul. 27, 2015. Each of the above application(s) is hereby expressly incorporated by reference, in its entirety, into the present application.

Continuations (2)
Number Date Country
Parent PCT/KR2016/008174 Jul 2016 US
Child 15879664 US
Parent 14809279 Jul 2015 US
Child PCT/KR2016/008174 US