The invention relates generally to air conditioning and refrigeration systems and, more particularly, to an air conditioning and refrigeration system that enables the use of immiscible oil.
In a vapor compression system, refrigerant vapor from an evaporator is drawn in by a compressor, which then delivers the compressed refrigerant to a condenser (or a gas cooler for transcritical applications). In the condenser, heat is exchanged between a secondary fluid, such as air or water, and the refrigerant. From the condenser, the refrigerant, typically in a liquid state passes to an expansion device, where the refrigerant is expanded to a lower pressure and temperature before being provided to the evaporator. In air conditioning applications, heat is exchanged within the evaporator between the refrigerant and air or another secondary fluid, such as water, glycol, or brine for example, to condition the indoor air of a space.
Since the refrigerant compressor necessarily involves moving parts, it is typically required to provide lubrication to these parts by means of lubricating oil that is mixed with or entrained in the refrigerant passing through the compressor. Although the lubricant is normally not useful within the system other than in the compressor, its presence in low concentrations in the system does not generally detract from the flow, heat transfer, and properties of the refrigerant as it passes through the system in a conventional vapor compression cycle.
Various types of heat exchangers, such as direct expansion and flooded heat exchangers for example, may be used as evaporators in HVAC systems. In a flooded heat exchanger, the refrigerant typically surrounds the exterior of the tubes positioned within a shell and the secondary fluid to be cooled, such as water for example, flows through the tubes. By immersing the tubes of a flooded heat exchanger within the “boiling” liquid refrigerant, only a very small approach temperature (0.5° K 1.5° K) between the refrigerant and the chilled secondary fluid is required, thereby improving heat transfer efficiency. In a direct expansion heat exchanger, the refrigerant is expanded within the tubes while the chilled second fluid is circulated through the shell. The typical approach temperature in a direct expansion heat exchanger is between 4° K and 6° K to ensure vapor phase at compressor suction.
Due to environmental global warming potential concerns, new types of refrigerants are being considered for use in air conditioning applications. These new refrigerants include refrigerants that result in the coexistence of vapor and liquid phases through the compression process or refrigerants that have lower discharge gas temperatures and higher miscibility with lubricants compared to conventional refrigerants. Examples of these new refrigerants include, but are not limited to Hydrofluoroolefins (HFOs), and blends of HFOs and Hydrofluorocarbons (HFCs), or other refrigerants and/or refrigerant blends commonly referred to as “wet refrigerants” that have similar properties.
Due to their higher miscibility, these new “wet refrigerants” tend to absorb significant amounts of oil making the viscosity requirements of the oil-refrigerant mixture difficult to achieve. Use of immiscible oil, which does not mix with these refrigerants will improve the viscosity of the oil; however, at the same time use of immiscible oil significantly and permanently reduces the performance of air conditioning and refrigeration systems that employ modern flooded type evaporators. Use of direct exchange evaporators instead of flooded evaporators may allow the use of immiscible oils in a refrigeration system. In such instances, the oil return is driven by the velocity of refrigerant through the heat exchanger tubes.
According to an aspect of the invention, a chiller system is provided including a vapor compression circuit consisting of a fluidly coupled compressor, condenser, expansion valve, and evaporator. A refrigerant circulates through the vapor compression circuit. The evaporator is a direct exchange heat exchanger. Refrigerant provided at an outlet of the evaporator is a two-phase mixture including liquid refrigerant and vapor refrigerant. The vapor refrigerant comprises less than or equal to 85% of the two-phase mixture. A refrigerant to refrigerant heat exchanger is fluidly coupled to the circuit. The refrigerant to refrigerant heat exchanger is configured to convert the refrigerant provided at the outlet of the evaporator into a superheated vapor.
In addition to one or more of the features described above, or as an alternative, in further embodiments the refrigerant has a low global warming potential.
In addition to one or more of the features described above, or as an alternative, in further embodiments, the refrigerant includes at least one of a Hydrofluoroolefin (HFO) and an HFO blend.
In addition to one or more of the features described above, or as an alternative, in further embodiments the chiller system includes a lubrication system having an oil separator arranged generally downstream from the compressor. The oil separator is configured to supply oil separated from the refrigerant to one or more moving components of the compressor.
In addition to one or more of the features described above, or as an alternative, in further embodiments the oil is an immiscible oil.
According to another embodiment of the invention, a chiller system is provided including a vapor compression circuit consisting of a fluidly coupled compressor, condenser, expansion valve, and evaporator. A refrigerant circulates through the vapor compression circuit. The evaporator is a direct exchange heat exchanger. Refrigerant provided at an outlet of the evaporator is a two-phase mixture including liquid refrigerant and vapor refrigerant. The vapor refrigerant comprises less than or equal to 85% of the two-phase mixture. An efficiency circuit includes a separator configured to separate the two-phase mixture of refrigerant into liquid refrigerant and vapor refrigerant. The efficiency circuit is operably coupled to the outlet of the evaporator and is configured to recirculate liquid refrigerant from the separator through the evaporator to improve the efficiency of the evaporator and chiller system.
In addition to one or more of the features described above, or as an alternative, in further embodiments the refrigerant has a low global warming potential.
In addition to one or more of the features described above, or as an alternative, in further embodiments, the refrigerant includes at least one of a Hydrofluoroolefin (HFO) and an HFO blend.
In addition to one or more of the features described above, or as an alternative, in further embodiments the chiller system includes a lubrication system having an oil separator arranged generally downstream from the compressor. The oil separator is configured to supply oil separated from the refrigerant to one or more moving components of the compressor.
In addition to one or more of the features described above, or as an alternative, in further embodiments the oil is an immiscible oil.
In addition to one or more of the features described above, or as an alternative, in further embodiments the separator is operably coupled to the compressor and is configured to supply a refrigerant vapor thereto.
In addition to one or more of the features described above, or as an alternative, in further embodiments the efficiency circuit further includes an ejector having a first inlet and a second inlet. The ejector is positioned generally downstream from the condenser and upstream from the separator.
In addition to one or more of the features described above, or as an alternative, in further embodiments a first outlet of the separator is operably coupled to the second inlet of the ejector and is configured to supply liquid refrigerant thereto.
In addition to one or more of the features described above, or as an alternative, in further embodiments the separator is arranged generally downstream from the evaporator and upstream from the compressor.
In addition to one or more of the features described above, or as an alternative, in further embodiments the ejector is positioned generally upstream from the expansion device.
In addition to one or more of the features described above, or as an alternative, in further embodiments the outlet of the evaporator is operably coupled to the second inlet of the ejector.
In addition to one or more of the features described above, or as an alternative, in further embodiments the separator is arranged generally downstream of the ejector and generally upstream from the expansion device.
In addition to one or more of the features described above, or as an alternative, in further embodiments the chiller system includes a refrigerant to refrigerant heat exchanger fluidly coupled to the vapor compression circuit and the efficiency circuit. The refrigerant to refrigerant heat exchanger is configured to convert the vapor refrigerant provided from an outlet of the separator into a superheated vapor.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to the FIGS., an improved chiller refrigeration system 20 configured for use with either a miscible or immiscible oil is illustrated. A refrigerant R is configured to circulate through the chiller system 20 such that the refrigerant R absorbs heat when evaporated at a low temperature and pressure and releases heat when condensed at a higher temperature and pressure. In one embodiment, the refrigerant has a low global warming potential, such as a Hydrofluoroolefin (HFO) or an HFO blend refrigerant for example. Within this chiller system 20, the refrigerant R flows in a counterclockwise direction as indicated by the arrows. The compressor 25 receives refrigerant vapor from the evaporator 40 and compresses it to a higher temperature and pressure, with the relatively hot vapor then passing to the condenser 30 where it is cooled and condensed to a liquid state by a heat exchange relationship with a cooling medium, such as air or water for example. The liquid refrigerant R then passes from the condenser 30 to an expansion valve 35, wherein the refrigerant R is expanded to a low temperature two phase liquid/vapor state as it passes to the evaporator 40. After the addition of heat in the evaporator 40, low pressure vapor then returns to the compressor 25 where the cycle is repeated. Together the compressor 25, condenser 30, expansion device 35 and evaporator 40 form a vapor compression circuit.
In the illustrated embodiments of the chiller system 20, the evaporator 40 is a direct expansion heat exchanger. As illustrated in
The refrigerant of the chiller system 20 is configured to pass from an inlet header 110, through the one or more plurality of tubes 105b, 105a, and out an outlet header 115. Similarly, a heating medium, such as water for example, is pumped into the interior 120 of the shell 100 via an inlet 125, through the one or more shells 100a, 100b, and out an outlet 130. In the illustrated, non-limiting embodiment, the heating medium is configured to flow from the second shell 100b to the first shell 100a, and the refrigerant is configured to flow from the first plurality of tubes 105a to the second plurality of tubes 105b. The illustrated and described evaporator 40 has a counter flow configuration to maximize the heat transfer between the heating medium and the refrigerant. The refrigerant provided at the outlet header 115 of the evaporator 40 may be a two-phase mixture including both liquid and vapor refrigerant. In one embodiment, 85 percent or less of the two-phase mixture is vaporized refrigerant.
Referring again to
A lubrication system, illustrated schematically at 50, may be integrated into the chiller system 20. Because lubricant may become entrained in the refrigerant as it passes through the compressor 25, an oil separator 55 is positioned directly downstream from the compressor 20. In one embodiment, the oil separator 55 is integrally formed with an outlet of the compressor 25. The refrigerant separated by the oil separator 55 is provided to the condenser 30, and the lubricant isolated by the oil separator 55 is recirculated to the moving portions (not shown) of the compressor 25, such as to the rotating bearings for example, where the lubricant becomes entrained in the refrigerant R and the lubricant cycle is repeated.
In another embodiment, illustrated in
Referring now to
After the refrigerant passes through the evaporator 40, the refrigerant passes to the flash gas separator 60 for separation into a liquid refrigerant and a vapor refrigerant. A first outlet 66 of the separator 60 is fluidly connected to a second inlet 74 of the ejector 70. The high velocity and pressure reduction of the refrigerant flow through the first inlet 72 of the ejector 70 draws the liquid refrigerant from the separator 60 into the ejector 70 through the second inlet 74. Therefore any liquid refrigerant provided at the outlet 115 of the evaporator 40 will repeatedly cycle through the circuit 58 and the evaporator 40 until being vaporized. A second outlet 68 of the separator 60 is configured to supply the vaporized refrigerant within the separator 60 to the compressor 25. In embodiments where the chiller system 20 includes a refrigerant to refrigerant heat exchanger 45, the liquid refrigerant from the condenser 30 may pass through the heat exchanger 45 as the first flow of refrigerant before being supplied to the ejector 70 and the vaporized refrigerant provided at the second outlet 68 of the separator 60 may pass through the heat exchanger 45 as the second flow of refrigerant before being supplied to the compressor 25.
In another embodiment, illustrated in
A second outlet 68 of the separator 60 is configured to supply the vaporized refrigerant to the compressor 25. In such instances, the vaporized refrigerant bypasses the expansion device 35 and the evaporator 40. In embodiments where the chiller system 20 includes a refrigerant to refrigerant heat exchanger 45, the liquid refrigerant from the condenser 30 may pass through the heat exchanger 45 as the first flow of refrigerant before being supplied to the ejector 70 and the vaporized refrigerant provided at the second outlet 68 of the separator 60 may pass through the heat exchanger 45 as the second flow of refrigerant before being supplied to the compressor 25.
The various embodiments of a chiller system 20 described herein have an efficiency or performance level at least equal to conventional systems that include a flooded evaporator. In addition, the chiller system 20 is compatible with immiscible oil, which reduces the amount of oil needed by the system and therefore the cost. As a result, the design of the lubrication system 50 may be simplified.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/001842 | 8/21/2014 | WO | 00 |