The present invention is related to heat sinks and heat dissipation structures.
Excess heat is a problem in may items such as motors, batteries, electronics, tools, computers, chargers, etc. Many different designs and strategies exist to actively and passively dissipate unwanted heat. While some of these methods rely upon various heat sinks, and even heat sinks with air being blown directly thereupon by a fan, such a fan requires additional energy to operate d thus may cause other issues.
Certain passive heat dissipation structures are known and may use ambient air to draw away heat. However, such passive structures are less efficient than active structures.
Accordingly, the inventors believe that a more effective strategy is needed to improve heat dissipation. Thus, there remains a need for improved heat sinks and heat dissipation structures.
An embodiment of the present invention relates to a printed circuit board assembly (PCBA) having a heat source, a heat sink, and an exit vent. The heat source generates heat, typically excessive heat and the heat sink conducts heat from the heat source and heats up the surrounding air to form heated air. The heated air then passes through the exit vent which is positioned adjacent to the heat sink.
Without intending to be limited by theory, it is believed that such a passive venting system is extremely efficient and permits the flow of the heated air itself to create a low pressure zone above the heat sink which then draws surrounding air to the heat sink. This in turn further cools the heat sink. Furthermore, such an embodiment may be virtually silent, as no moving mechanical parts are needed.
An embodiment of the present invention also relates to a heat dissipation structure containing a fan to move air, a heat source distal from the fan, an exit vent proximal to the fan, and an airflow path running from the heat source to the fan to the exit vent. The heat source heats the air to form heated air. When the fan is activated, the fan draws air through the airflow path from the heat source and out of the exit vent.
Without intending to be limited by theory, it is believed that such a heat dissipation structure may he extremely efficient while also requiring little energy for such a fan, Thus, it is believed that the embodiment is actually more efficient than a fan which blows air directly upon a heat source, as it may draw comparatively more air past the heat source.
The figures herein are for illustrative purposes only and are not necessarily drawn to scale.
Unless otherwise specifically provided, all tests herein are conducted at standard conditions which include a room and testing temperature of 25° C., and all measurements are made in metric units. Furthermore, all percentages, ratios, etc. herein are by weight, unless specifically indicated otherwise.
An embodiment of the present invention relates to a printed circuit board assembly (PCBA) having a heat source, a heat sink, and an exit vent. The heat source generates heat, typically excessive heat which could be detrimental to the long-term stability of the PCBA, or whatever the PCBA is installed within, and/or the excessive heat could cause other problems. The heat source is connected to the heat sink, and typically the heat source is physically connected to; or touching the heat sink. The heat sink conducts heat from the heat source and heats up the surrounding air to form heated air. The heated air then passes through the exit vent which is adjacent to, and typically directly above, the heat sink. Without intending to be limited by theory, it is believed that such a passive venting system is extremely efficient and permits the flow of the heated air itself to create a low pressure zone above the heat sink which then draws surrounding air to the heat sink. This in turn further cools the heat sink. Furthermore, such an embodiment may be virtually silent, as no moving mechanical parts are needed.
Turning to
The heat source, 20, in
In
In the embodiment of
The heat sink may be formed of any suitable thermally-conductive material, such as a metal, a plastic, and a combination thereof; or a metal. In addition, the material for the heat sink should also be relatively sturdy and preferably cheap. The metal may be, for example, copper, iron, aluminium, tin, brass, and a combination thereof; or copper aluminium, brass and a combination thereof; or copper.
The heat sink holder is typically formed of a material which is less thermally-conductive than the heat sink, is relatively resistant to heat (i.e., will not melt or burn at the relevant temperatures), is easy to form into the desired shape and is relatively cheap to produce. Accordingly, in an embodiment herein, the heat sink holder is formed of a plastic; or a high-impact plastic; or a thermally-resistant plastic.
In
The heat sink, 26, conducts heat away from the heat source, 20, and heats up the air surrounding the heat sink to form heated air. The heated air then rises and flows out of the exit vent, 32. Without intending to be limited by theory, it is believed that this rising heated air creates a low pressure zone above the heat sink, 26, which then draws additional air past the heat sink, 26, and out of the vent, 32, as shown by arrow A. Such a design therefore increases the efficiency and cooling of the heat sink by drawing not only air directly touching the heat sink but additional air via the Bernoulli principle.
In
In
Another embodiment of the present invention relates to a heat dissipation structure having a fan, a heat source distal to the fan, an exit vent proximal to the fan, and an airflow path. The airflow path runs from the heat source to the fan to the exit vent. The heat source heats the air to form heated air. When the fan is activated, the fan draws air through the airflow path from the heat source and out of the exit vent.
The power tool useful herein may be any battery-operated tool such as, but not limited to a drill, a vacuum, a blower, a lawn mower, a hedge trimmer, a saw, a hammer-drill, an edge trimmer, a line trimmer, a sander, a nail gun, a staple gun, a router, an etcher, and a combination thereof; or a drill, a sander, a vacuum, a blower, a lawn mower, an edge trimmer, a line trimmer, and a combination thereof.
The housing, 30, contains an exit vent, 32; or a plurality of exit vents, formed by slits, 34, in the housing. The housing, 30, also contains one or more entrance vents, 44, that is also formed by slits, 34, in the housing. The housing is for a power tool and is well-known in the art.
Such a housing is typically formed of a plastic, a resin, rubber, and a combination thereof. The entrance vent, 44, is at the upstream end of the airflow path formed by arrows B, C, D, and E, whereas the exit vent, 32, is at the downstream end of the airflow path formed by arrows B, C, D, and E. Thus, in an embodiment herein, the fan is downstream of the heat source and the fan therefore does not blow air directly onto the heat source. It is noted that the term “slits” as used herein may indicate any shape which allows air to pass through, and is not intended to be limited to a long, rectangular hole. Thus, the slits may be circular, rectangular, square, etc. as desired.
A fan, 46, is connected to a motor, 48. The fan, 46, moves air towards the exit vent, 32, and creates a low pressure zone which draws air along the airflow path. This in turn transfers heat form the heat source, 20, to the air outside of the power tool, 42. The fan useful herein may be a separate part which is then purposely built into or on to the motor, or may be integral to the motor. When this type of motor turns the spindle, it concurrently generates an air current which can be directed towards the exit vent. In an embodiment herein, when the motor is activated, the fan is activated. Without intending to be limited by theory, it is believed that such an arrangement is especially advantageous, as it generates airflow when the heat source is likely to generate heat—i.e., when the power tool motor is being used to work on something. In addition, it is believed that since the fan is integral with the motor, then little, or no incremental electricity is needed to produce the airflow.
In
In an embodiment herein, the power tool contains a handle, 50, which is typically formed from the housing, 30. The handle has a hollow handle interior, 52, which at least partly contains the airflow path. In
As noted, the airflow path is shown by arrows B, C, D, and E. Air enters the housing, 30, via the entrance vent's, 44, slits, 34, as shown by arrow B. The battery pack, 38, further contains slits, 34′, that allow air to flow through the battery pack, 38, as shown by arrow C.
In an embodiment herein, the power tool contains the PCBA described herein. In an embodiment herein, a battery and/or a battery pack contains the PCBA described herein.
It should be understood that the above only illustrates and describes examples whereby the present invention may be carried out, and that modifications and/or alterations may be made thereto without departing from the spirit of the invention.
It should also be understood that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided for separately or in any suitable subcombination.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/099638 | 9/21/2016 | WO | 00 |