The present invention generally relates to locking apparatus and more particularly to a key and lock actuated thereby, including means for adding height to the surface of the key shaft and other means for improving their security.
A great variety of keys and associated locks are known. A lock generally comprises a rotor embedded in a stator and operated by a key. The rotor is prevented from rotating by one or more pins located inside the stator and intruding into the rotor. When the key is inserted in the keyway, its unique predetermined topography moves the pins in order to facilitate the rotation of the rotor. Only a matching key can operate the lock, as other keys with different topography cannot properly align the pins and therefore cannot facilitate operation of the lock.
For many years the topography of keys was limited by the maximal height of the key blank. Practically the key combinations comprised dents (depressions) in the key blank.
However, keys with elevating elements were introduced too, to facilitate key combinations which also include elevated surfaces above the height of the key blank. See, for example, FR 2,161,204 (Vachette), WO0022263 (Donatini), WO 00/57006 (Weinberger), GB 2,161,204 (Valdajos), U.S. Pat. No. 5,839,308 (Eizen). These examples of prior art illustrate technology that involves introducing key surface elevations beyond the general key blank surface, so that it becomes possible to employ pin assemblies that are shorter that the length between the key blank maximal height and the perimeter of the rotor.
The ways in which additional elevation to the key blank surface at predetermined points was achieved included: providing a floating element in the key blank that is pushed out by a spring-activated pusher pin planted in the lock's rotor (U.S. Pat. No. 5,839,308), or by providing a spring-activated movable pin implanted in the key blank (for example FR 2,161,204), or by providing a resilient element made from elastic materials, that is placed inside a bore in the key blank and protrudes outside the key blank (WO 00/57006). Other methods of providing additional heights are known.
All above-mentioned examples of keys and associated locks use the protruded elevation of the key to operate lock control mechanisms. Yet they utilize only the protruding side of the moveable elements in the key for actuation of the control system of the rotation of the rotor.
The operating principle employed in the above-mentioned examples has a major vulnerability in that the disclosed locks can be opened by other keys having means for adjusting the height of the surface of the key shaft. In other words any key that provides the required added height at the required point on the surface of the key shaft can successfully operate the associated pins of these locks.
Increasingly keys are being invented to add height at predetermined points on a key shaft and consequently more and more such keys are available for opening locks built according to the principles of the above mentioned locks. The result is a loss of control over copying of keys built according to these principles bringing about a serious breach of security in the corresponding locks. Control over copying of keys is greatly enhanced when the keys are protected by a patent or other intellectual property laws that prevent unauthorized manufacture of substitute keys. From the moment that it is possible to manufacture keys with added height at predetermined points on the key shaft using methods not covered by a patent, the locks are dealt a fatal loss of security.
Therefore it is a main object of the current invention to provide an improved locking apparatus that facilitates the rotation of a lock's rotor by using not only the protruding section of a protruding element from the key blank, but also employing the opposite withdrawing side of the element or utilizing the void created under the protruding element when it protrudes outside the key, for operating additional control elements within the rotor.
U.S. Pat. No. 5,839,308, “LOCKING APPARATUS”, by Eizen et al. is based on the principle of adding height at one or more predetermined points on the surface of a key shaft by means of a movable pin element retained within the key shaft, the movable pin element being displaceable perpendicularly relative to the key shaft surface. When the key is located in its proper location in a cylinder comprising a plug in a housing, the movable pin element is displaced above the surface of the key shaft by spring-actuated movement of a pusher pin assembly located in the plug. The displaced pin element pushes on a first pin assembly located in the plug. The first pin assembly in turn pushes on a coaxially aligned second pin assembly located in the lock cylinder housing. The first and second pin assemblies are arranged such that the result of their movement is that a shear line between the plug and housing is thus defined by facing surfaces of the respective first and second pin assemblies, thereby permitting rotation of the plug in the housing.
The present invention suggests, inter alia improvements to Eizen's locking apparatus.
Another object of the present invention is the provision of such locking apparatus that makes it harder to use substitute keys to open locks built according to the principles of the current invention.
It is another main object of the current invention to provide such an improved locking apparatus with enhanced security features.
It is another main object of the current invention to provide such an improved locking apparatus with more possible key combinations.
It is another main object of the current invention to provide such an improved locking apparatus where the key and lock can be manufactured without requiring expensive or significant adaptation of existing manufacturing equipment and processes for similar existing such locking apparatuses.
Other objects and advantages of the present invention will become apparent after reading the present specification and reviewing the accompanying drawings.
There is thus provided, in accordance with some preferred embodiments of the present invention, a lock and a cooperating key combination, the lock comprising a stator and a rotor with a keyway, the key comprising a penetrating portion for insertion in the keyway, the penetrating portion including at least one combination surface and at least one movable element that can be extended beyond at least one surface of the key, adding height to said at least one surface of the key and for cooperation with at least one first control element for controlling rotation of the rotor,
wherein at least one second control element for controlling the rotation of the rotor is provided in the lock opposite said at least one first control element with the keyway in between, said at least one second control element adapted to cooperate with an aperture located on the opposite surface of the key, behind the movable element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element cooperates with the movable element when the key is inserted in the keyway.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element operates the movable element when the key is inserted in the keyway.
Furthermore, in accordance with some preferred embodiments of the present invention, there is provided a lock for cooperation with a key comprising a penetrating portion for insertion in keyway of the lock, the penetrating portion including at least one combination surface and at least one movable element that can be extended beyond at least one surface of the key, adding height to the said at least one surface of the key and for cooperation with at least one first control element for controlling rotation of the rotor, the lock comprising:
a stator and a rotor with a keyway, wherein at least one second control element for controlling the rotation of the rotor is provided in the lock opposite said at least one first control element with the keyway in between, said at least one second control element adapted to cooperate with an aperture located on the opposite surface of the key, behind the movable element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element cooperates with the movable element when the key is inserted in the keyway.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element operates the movable element when the key is inserted in the keyway.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element comprises at least one control pin located inside a bore extending from the keyway through the rotor, a portion of the bore continuing into the stator, and a spring for energizing said at least one control pin.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one control pin comprises a pin and a floating element.
Furthermore, in accordance with some preferred embodiments of the present invention, the floating element comprises a ball.
Furthermore, in accordance with some preferred embodiments of the present invention, a secondary spring operated pin assembly is located in the portion of the bore in the stator for cooperation with said at least one second control element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one first control element or said at least one second control element comprises at least two telescopically engaged coaxial pins.
Furthermore, in accordance with some preferred embodiments of the present invention, an internal pin of said at least two telescopically engaged coaxial pins is provided for cooperation with a second movable element provided inside the movable element of the key.
Furthermore, in accordance with some preferred embodiments of the present invention, an internal pin of said at least two telescopically engaged coaxial pins is provided for operation of a second movable element provided inside the movable element of the key.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one first control element is energized to push the movable element when the key is inserted in the keyway towards said at least one second control element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second control element is energized to push the movable element when the key is inserted in the keyway towards said at least one first control element.
Furthermore, in accordance with some preferred embodiments of the present invention, there is provided a key for cooperation with a lock, the lock comprising a stator and a rotor with a keyway, having at least one first control element and at least one second control element for controlling rotation of the rotor, said at least one second control element provided in the lock opposite said at least one first control element with the keyway in between, the key comprising:
a penetrating portion for insertion in the keyway, the penetrating portion including at least one combination surface and at least one movable element that can be extended beyond at least one surface of the key, adding height to said at least one surface of the key and for cooperation with said at least one first control element, wherein an aperture is located on an opposite surface, behind the movable element for cooperation with said at least one second control element.
Furthermore, in accordance with some preferred embodiments of the present invention, the movable element comprises a floating element.
Furthermore, in accordance with some preferred embodiments of the present invention, an end of the floating element located in front of said at least one second control element, when the key is inserted in the keyway of the lock, has a surface with a depression.
Furthermore, in accordance with some preferred embodiments of the present invention, the movable element comprises a spring operated movable element.
Furthermore, in accordance with some preferred embodiments of the present invention, the movable element comprises an elastic element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one movable element includes at least one second movable element planted in said at least one movable element for providing additional elevation surface.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second movable element comprises a floating element.
Furthermore, in accordance with some preferred embodiments of the present invention, the second movable element comprises an elastic element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second movable element comprises at least one spring operated element.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second movable element comprises more than one spring operated elements for providing more than one elevated surface.
Furthermore, in accordance with some preferred embodiments of the present invention, said at least one second movable element comprises movable elements that are located on opposite sides of said at least one first movable element.
Furthermore, in accordance with some preferred embodiments of the present invention, the key includes at least one pair of opposite directing movable elements.
The invention is described herein, by way of example only, with reference to the accompanying Figures, in which like components are designated by like reference numerals.
The present invention discloses improvements in locks and keys. It introduces improvements in the lock, which are aimed at providing additional rotor control mechanisms that cooperate with both sides of movable elements in the key simultaneously.
The present invention facilitates the rotation of a lock rotor by using not only the protruding section of a protruding element from the key blank, but also employing the opposite withdrawing side of the element or utilizing the void created under the protruding element when it protrudes outside the key, for operating additional control elements within the rotor. A main aspect of the present invention is the addition of at least one active pin operated behind the movable element of the key, in addition to the regular active pins.
The present invention provides an improved locking apparatus comprising a key with means for adjusting the height of the surface of the key shaft at one or more points, and a related lock, which is provided with additional enhanced rotor control means.
Additionally, the present invention introduces improvements to a locking apparatus mechanism disclosed in prior art U.S. Pat. No. 5,839,308 (
Springs 30 and 31 pushes the pin assemblies away from the aligned position when there is no key inside the plug, or when a key with the wrong key combination is inserted. When the right key with the correct key combination is inserted in the plug the pin assemblies are align to the aligned position. The key 32 is provided with a movable pin element 34 that is displaced above the surface of the key shaft by spring-actuated pusher pin 36, which is retained in a bore 38 of plug 22. Pusher pin assembly 36 is actuated by spring 40, which is located at the end of pusher pin 38 that is distal to movable pin element 34 and exerts constant force on pusher pin assembly 38 in the direction of movable pin element 34.
When a proper key is inserted into the keyway in plug 22, such that movable pin element 34 is located in front of pusher pin 38, then spring 40 actuates pusher pin 38, which pushes pin element 34, causing pin element 34 to extend outwardly beyond the opposite combination surface of the key shaft into operative engagement with pin assemblies 27 and 29 such that the shear line defined between the first pin assemblies 27 and 29 and second pin assemblies 24 and 25 is positioned in the shear line defined between the rotor 22 and the stator 26 inside bore 28 then it is possible to rotate the plug of the lock by the key.
Insertion of a key without the moveable element 36 that adds height to the surface of the key will not allow the rotation of the lock because the shear line defined between the first pin assemblies 27 and 29 and second pin assemblies 24 and 25 will be positioned inside the rotor bore 28 instead of the proper position of the shear line that must be positioned between the rotor 22 and the stator 26 inside bore 28.
Spring 42 is located at the end of active pusher pin 44 that is distal to movable pin element 34 and exerts constant force on pusher pin 44 in the direction of movable pin element 34. Active pusher pin 44 is disposed in a pass-through bore 46, which is cut into plug 22 coaxially to, and on the opposite side of keyway 48 and of pin assemblies 24,25,27,29. Pass-through bore 46 extends through plug 22, from keyway 48 all the way to the external perimeter surface of plug 22. Active pusher pin 44 is longer than pass-through bore 46 such that when distal end 50 of pusher pin 44 is aligned with the external perimeter surface of plug 22 proximal end 52 of pusher pin 44 extends beyond the proximal end of pass-through bore 46 to push against the distal end of movable pin element 34 of the key. Proximal end 52 of pusher pin 44 primarily protrudes into the keyway, and when the key is inserted into the keyway it pushes it against spring 42 back into its bore. In order to make sure that the proximal end 52 of pin 44 slides conveniently over the penetrating key it is recommended to provide it with an inclination (for example, slanted or convex/concave).
In summary, spring 42 pushes against pusher pin 44, causing proximal end 52 of pusher pin 44 to push against distal end of movable pin element 34, causing proximal end 54 of movable pin element 34 to extend beyond key combination surface 56 to push out pin assemblies 24,25,27,29 into bore 28 against springs 30 and 31 allowing plug 22 be turned.
Housing bore 58 is provided in housing 26 coaxially opposite distal end 50 of pusher pin 44. Optional retaining ring 60 plugs pass-through bore 46, thereby retaining pusher pin 44 and spring 42 while allowing pass-through movement of distal end 50 of pusher pin 44 into housing bore 58.
Optional shoulder 62 is located distal to proximal end 52 of pusher pin 44 and retains pusher pin 44 within pass-through bore 46 while allowing pass-through movement of proximal end 52 of pusher pin 44 into keyway 48 up to a predetermined stopping point that does not extend beyond the opposite side of the keyway.
This stopping point of proximal end 52 of pusher pin 44 serves the purpose that, when the key shaft is inserted into keyway 48, the key shaft pushes against proximal end 52 of pusher pin 44, thereby pushing pusher pin 44 back up into pass-through bore 46. This means that when a key with incorrect key combination is inserted in the keyway it causes the pusher pin 44 to be inserted into bore 58 and jams the lock, preventing its operation.
It should be noted that spring 42 is preferably stronger than springs 30 and 31 of pin assemblies 24,25,27,29 so as to favor active pusher pin 44 pushing out the pin assemblies rather than the opposite.
When the key shaft is inserted into keyway 48, until movable pin element 34 aligns with active pusher pin 44, key combination surface 56 blocks active pusher pin 44 from pulling its distal end 50 down out of housing bore 58, thereby preventing rotation of plug 22. Only when movable pin element 34 has reached alignment with active pusher pin 44, can active pusher pin 44 push down on movable pin element 34, thereby pulling distal end 50 of pusher pin 44 out of housing bore 58, than enabling rotation of plug 22.
It should be clear to one skilled in the art that any key that does not include such movable pin element 34 or a void beneath the movable pin will not enable distal end 50 of pusher pin 44 to leave housing bore 58, thus such a key would not be able to operate the lock. Furthermore one skilled in the art will appreciate that this prevents use of unauthorized keys with added height at predetermined points on the key shaft to open the lock.
Effectively, the present invention makes use of both ends of the floating movable pin 34 of the key in the provision of a more secured lock mechanism that is superior to the one described by Eizen.
In order to emphasize the difference and uniqueness of the locking apparatus of the present invention, it should be noted that, while in prior art only one end of movable pin element 34 was exploited for locking and releasing plug 22, in the present invention each end of movable pin element 34 is part of a separate mechanism for locking and releasing plug 22. In other words, in the present invention, while extension of proximal end 54 of movable pin element 34 beyond key combination surface 56 is used to push out second pin assembly 24 and thereby release plug 22 from being locked, at the same time, this causes the distal end of movable pin element 34 to enter key shaft 56, thereby pulling distal end 50 of pusher pin 44 out of housing bore 58, thereby releasing plug 22 from being locked to housing 26.
The present invention is not limited only to a key with a movable pin element as described by Eizen, and other embodiments will be described herein with reference to other drawings.
Generally speaking, the present invention makes use of a key with dynamic surface topography and utilizes not only one side but both opposing sides of the dynamic surface topography points of the key and at the same time, for operating not just one mechanism of the lock, but two (or even more).
extension of auxiliary active pusher pin 82 can be to a different length than modified active pusher pin 44, according to the height of the mating distal end surface of movable pin element 34, defined by edge 33 provided over the movable pin element 34. pusher spring 78 and auxiliary pusher pin assembly 80 apply force on the perimeter of active pusher 82.
active pusher pin 82 thereby makes it possible to further vary the depth and shape of the socket 37 formed in the beneath surface of movable pin element 34 inside the proximal ends of modified pusher pin 44, which in turn increases the number of variations possible in the beneath surface of movable pin element 34. This in turn further enhances the security of the locking apparatus.
it should be noted that obviously it is possible to use active pusher pin 44 also as housing for spring operated internal active pusher pin 82 and to give up on both auxiliary pusher pin assemblies 80 and 86 and springs 78 and 84 in similar way as described in
In the movable pin element 34 on the left-hand side of the figure, in addition to the first spring-mounted ball installed in the proximal face of movable pin element 34, a second spring-mounted ball is installed in the distal face, thereby providing topographic diversity to the key.
The keys shown in
c is prior art illustrates a cross-sectional view of a key blank with two spring-operated protruding elements. Similarly to the key depicted in
Alternatively, the key blank may be provided with a dent instead of a bore, into which the control pin may be inserted. This embodiment facilitates utilizing both opposite sides of the key blank for cooperation with control mechanisms.
Alternatively, in another preferred embodiment of the present invention, the spring-operated protruding elements shown in
It should be clear that the description of the embodiments and attached Figures set forth in this specification serves only for a better understanding of the invention, without limiting its scope as covered by the following Claims.
It should also be clear that a person skilled in the art, after reading the present specification could make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the following Claims.
Number | Date | Country | Kind |
---|---|---|---|
167196 | Mar 2005 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL06/00217 | 2/21/2006 | WO | 00 | 9/16/2008 |