Not Applicable
The present invention relates to a golf club head, particularly a putter, with improved structures supporting upper and lower portions of the head.
Traditional CAD modeling techniques used to design golf club heads, and particularly putters, lend themselves to certain, angular styles or appearances. Organic-looking, smoothly curved features are more time consuming and difficult to create than traditional, angled connectors. As a result, support structures created with traditional modeling techniques tend to have common characteristics. Specifically, as shown in
The present invention is directed to a golf club head, and particularly a putter, comprising support structures that: (1) are less susceptible to stress concentrations during the use of the structural part or component; (2) allow for improved flow and reduced porosity in investment casting operations; (3) allow for improved flow and reduced porosity in plastic injection molding, metal injection molding, and compression molding; (4) are less susceptible to local stress concentrations and cracking during sintering; and/or (5) are less susceptible to local stress concentrations and cracking during the build process for laser-based 3D printing methods, like direct metal laser melting (DMLM) or direct metal laser sintering (DMLS). The support structures of the present invention have an “organic” appearance that is not found in prior art structural golf club parts.
Another aspect of the present invention is a golf club head comprising a body comprising face, a sole portion extending from a bottom edge of the face, and a top portion extending from a top edge of the face, and at least one support member extending from at least one of the face, sole portion, and top portion, wherein the at least one support member comprises a first end, a second end, a surface, an equivalent diameter, a spline, and a cross-sectional shape, wherein the equivalent diameter DE of a cross section taken at any point along the spline is calculated using the formula DE=(4*A/pi){circumflex over ( )}(1/2), wherein A is an area of a cross-section of the support member, wherein the at least one support member has a length that is greater than DEA, wherein DEA is defined as the average equivalent diameter along the length of the entire support member, wherein a curvature of the surface continuously changes from the first end to the second end, wherein the equivalent diameter is always greater than 0.010 inch and less than 1.000 inch, and wherein the spline is curved and has a length that is at least three times the value of the average equivalent diameter DEA. In some embodiments, the golf club head may be a putter head, and the at least one support member may connect the sole portion to the top portion. In a further embodiment, the at least one support member may connect to the sole portion at a first connection region and to the top portion at a second connection region, and at least one of the first and second connection region may have a constant surface curvature.
In other embodiments, a volume occupied by the at least one support member may be no greater than 75% of a volume that would be occupied if an entire volume of the golf club head between the top portion and the sole portion were a solid. In still other embodiments, the equivalent diameter may be no less than 0.025 inch and no more than 0.500 inch at any point taken along the length of the support member. In a further embodiment, the equivalent diameter may be no less than 0.050 inch and no more than 0.250 inch at any point taken along the length of the support member. In yet another embodiment, the equivalent diameter may change continuously along the entire length of the spline. In yet another embodiment, the cross-sectional shape may change continuously along the entire length of the spline. In a further embodiment, the at least one support member may comprise first and second support members, and the first support member may be connected with the second support member. In another embodiment, the at least one support member may not comprise any sharp corners. In any of the embodiments, the at least one support member may not comprise any fillets with constant surface curvature.
Yet another aspect of the present invention is a putter head comprising a face with an upper edge, a striking surface, and a lower edge, a crown portion extending from the upper edge, a sole portion extending from the lower edge, and at least one support structure connecting the crown portion to the sole portion, wherein the at least one support structure comprises a length, a width, a first end, a second end, a surface, a variable equivalent diameter, a spline, and a variable cross-sectional shape, wherein the length is greater than the average equivalent diameter, wherein the equivalent diameter DE of a cross section taken at any point along the spline is calculated using the formula DE=(4*A/pi){circumflex over ( )}(1/2), wherein A is an area of a cross-section of the support member, wherein the curvature of all surfaces continuously changes from the first end to the second end, wherein the equivalent diameter is greater than 0.010 inch and less than 1.000 inch and changes continuously along the length of the spline, wherein the spline is curved and has a length that is at least three times the value of the equivalent diameter, and wherein the cross-sectional shape changes continuously along the length of the spline.
In some embodiments, the at least one support member may extend at an angle of less than 75° from the sole portion. In other embodiments, the at least one support member does not comprise any sharp corners or simple fillets with constant surface structure. In still other embodiments, the at least one support member may comprise at least six support members, and each of the support members may extend at an angle with respect to the crown portion and the sole portion. In another embodiment, the at least one support member may connect with the sole portion at a first connection region, the at least one support member may connect with the crown portion at a second connection region, and at least one of the first and second connection regions may have a constant surface curvature. In any of the embodiments, the equivalent diameter may be no less than 0.025 inch and no more than 0.500 inch at any point taken along the length of the support member. In a further embodiment, the equivalent diameter may be no less than 0.050 inch and no more than 0.250 inch at any point taken along the length of the support member.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
The present invention is directed to a golf club head, and particularly a putter head 10, with improved structural support members 20. The putter head 10 comprises a face 16, a sole portion 12 extending from a lower edge 18 of the face 16, and a top or crown portion 14 extending from an upper edge 17 of the face 16. Though the embodiments herein are directed to a putter head, the novel features disclosed herein may be used in connection with other types of golf club heads, such as drivers, fairway woods, irons, and wedges.
In order to attain an optimized design for the support members 20, the relationship between curvature, rate of change of curvature, spline length, cross-sectional area, and cross-sectional shape of each structure must be examined. By controlling each of these geometric features, support members 20 can be created that are much improved over existing prior art support structures within golf club heads.
The support members 20 of the present invention include networks of slender connected elements, and may also be referred to as rods, beams, or ligaments. Each support member 20 is either connected to another support member 20 or to the surface of another type of structure, such as a sole portion 12 or top or crown portion 14 of the putter head 10. In the preferred embodiment shown in
At the connection to another support member 20, the surfaces 22 of the support member 20 have a curvature that changes smoothly and continuously. There are no sharp corners and there are no simple fillets with constant surface curvature.
As shown in
The cross section 44 is taken in the plane 46 normal to the spline 40 running through the center of the support member 20 along its length. The support member 20 cross section 44 has an area A, and the equivalent diameter DE is defined as DE=(4*A/pi){circumflex over ( )}(1/2).
The length of the spline 40 is no less than three times the equivalent diameter DE. The equivalent diameter DE and the cross sectional shape 44 change continuously along the length of each spline 40, but the equivalent diameter DE is always greater than 0.010″ and always less than 1.000″, more preferably 0.050″-0.500,″ and most preferably 0.050″-0.250″.
As shown in
The support members 20 disclosed herein are preferably manufactured via 3D printing. In alternative embodiments, the support members 20 may be manufactured via other methods known to a person skilled in the art, such as investment casting, plastic injection molding, compression molding, forging, forming, and metal injection molding.
When compared with prior art structural members, the support members 20 disclosed herein (1) are less susceptible to stress concentrations during the use of the structural part or component, (2) allow for improved flow and reduced porosity in investment casting operations, (3) allow for improved flow and reduced porosity in plastic injection molding, metal injection molding, compression molding, (4) are less susceptible to local stress concentrations and cracking during sintering of metal injection molding or 3D printed parts, and (5) are less susceptible to local stress concentrations and cracking during the build process for laser-based 3D printing methods, like direct metal laser melting (DMLM) or direct metal laser sintering (DMLS). The support members 20 of the present invention also have a unique “organic” appearance that is not found in prior art structural golf club parts.
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The present application is a continuation of U.S. patent application Ser. No. 16/836,682, filed on Mar. 31, 2020, and issued on Nov. 17, 2020, as U.S. Pat. No. 10,835,789, which claims priority to U.S. Provisional Patent Application Number 62/892,924, filed on Aug. 28, 2019, and is a continuation-in-part of U.S. Design Patent Application Number 29/673,358, filed on Dec. 13, 2018, and issued on Apr. 7, 2020, as U.S. Design Patent Number D880,631, and is a continuation-in-part of U.S. Design Patent Application Number 29/703,641, filed on Aug. 28, 2019, the disclosure of each of which is hereby incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62892924 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16836682 | Mar 2020 | US |
Child | 17092630 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29673358 | Dec 2018 | US |
Child | 16836682 | US | |
Parent | 29703641 | Aug 2019 | US |
Child | 29673358 | US |