This invention relates to stairlifts and in particular to a method of and/or means for, implementing part of a safety system for a stairlift.
A stairlift is required, by regulation, to include safety devices positioned to be contacted by obstructions on a staircase, which serve to bring the stairlift carriage to a halt in the event the carriage contacts the obstruction. It is known to provide such devices in the form of moveable pads incorporated in the stairlift carriage and, in particular but not necessarily solely, in the footrest of the stairlift chair. One or more pads (often referred to as safety edges) are typically provided, arranged to detect obstructions during both uphill and downhill travel of the carriage.
There is also a requirement to detect which pad is actuated, or the direction in which the carriage is moving when a pad is actuated, so that the carriage can be backed away from an obstruction. In other words, if the carriage engages an obstruction on the staircase whilst moving down the staircase, a subsequent call to keep the carriage moving downwards will be declined. However, if a call is made to move the carriage in the opposite direction, the call will be activated and the carriage will be allowed to move in the upward direction away from the obstruction. No further downward movement will be allowed unless and until the pad circuit, originally opened on engagement with the obstruction, is again closed. This typically means that the stairlift controller is configured to respond either to a safety pad on the uphill side of the carriage, or the safety pad on the downhill side of the carriage, depending on the direction of movement of the carriage; but not to both at the same time. This gives rise to a potential problem which cannot be addressed using the present arrangement of mechanical linkages and switches. As a stairlift carriage moves through an outside bend in a rail and swivels about a vertical axis, if the axis of rotation of the chair is within the plan footprint of the chair, a part of the trailing edge of the carriage/chair combination effectively becomes the leading edge and thus a downhill safety pad becomes an uphill safety pad for the duration of travel through the outside bend. However, since the safety pad on the trailing edge is not then responsive, if an obstruction is encountered in the course of the swivelling movement, the carriage will not be halted. As a result, harm to person or property could arise.
As stairlifts are mounted at steeper angles or, as described in our European Patent 1 720 790, the rail includes a vertical section, the possibility exists that the carriage will bear down on an obstruction in a substantially vertical direction; and that one of the directional safety pads will not be actuated. This particular problem is addressed in our British Patent No. 2 435 463 which describes a combination of mechanical linkages and switches that allow obstructions arising in a variety of directions to be detected and the carriage brought to a halt. Whilst the described arrangement has proved to be effective, it still experiences ‘dead zones’ in the detection of obstructions, is costly to implement and the multiplicity of linkages and switches give rise to potential reliability problems.
It is an object of this invention to provide a method of, and means for, which will go at lest some way in addressing the concern expressed above; or which will at least provide a novel and useful choice.
Accordingly, in one aspect, the invention provides a stairlift including a carriage; at least one safety edge mounted on said carriage but displaceable with respect to said carriage; and an electro-magnetic sensing facility configured to sense displacement of said safety edge relative to said carriage.
Preferably said at least one safety edge is incorporated in a footrest mounted on or forming part of said carriage.
Preferably a plurality of safety edges are provided and wherein a single electro-magnetic sensing facility is configured to sense displacement of each safety edge.
Preferably said plurality of safety edges are defined in or on a common member.
Preferably said electro-magnetic sensing facility is configured to determine direction of displacement of said safety edge relative to said carriage.
Preferably said electro-magnetic sensing facility includes a Hall effect sensor and a permanent magnet the construction and arrangement being such that displaceable of a safety edge relative to said foot support effects relative displacement between said Hall effect sensor and said magnet.
Preferably said stairlift further includes a drive motor and a control system, wherein said control system is configured to receive signals from said electro-magnetic sensing facility and, in response thereto, apply a control to said drive motor.
Many variations in the way the present invention can be performed will present themselves to those skilled in the art. The description which follows describes one example only of combinations of elements or components for performing the invention. Within the limits of the appended claims one, more or all of the described elements could be substituted to provide an embodiment of the invention and the invention is not to be confined to the combinations, whether in whole or in part, to those described.
One operating embodiment of the invention will now be described with reference to the accompanying drawings in which:
With reference to
In the conventional manner, the chair 8 comprises a seat base 9, a backrest 10, two armrests 11 and a footrest 12.
Included within the carriage is a drive motor 13 on the output of which is a pinion 14 engaging with a rack 15 extending along the underside of the rail 6. Control of the motor is effected by means of a hand control 16 mounted on one of the armrests 11, and an electronic control unit 17.
It is to be emphasised that the arrangement described above is by way of example and other configurations and other drive arrangements may be provided without departing from the scope of the invention.
Conventionally, as part of a system provided to ensure passenger safety, safety pads or edges are provided on the carriage, and in particular the footrest 12 so that, in the event the stairlift encounters an obstruction during travel, a safety edge will be displaced, activate a switch connected to the control unit 17, and cause the carriage to come to a halt. An example of safety edges included in a footrest is described in UK Patent No. GB 2 435 463. In this patent the safety edges are included in a single tray-like member fixed to the underside of the foot support part of the footrest but in a manner that allows the tray-like member to be displaced both laterally and vertically with respect to the footrest, and in directions which are combinations of lateral and vertical movement. While in the embodiment of the present invention described herein, an arrangement of foot support 18 and under-tray 19 is proposed, those skilled in the art will appreciate that the principles of the invention may equally be applied to arrangements in which individual safety edges, both on the footrest and elsewhere, are provided to address obstructions encountered in different directions.
The under-tray 19 may be mounted to the foot support 18 in any manner that allows the under-tray to move laterally with respect to the foot support i.e. along the x axis in
In the illustrated example, these ranges of movement are accommodated by configuring both the support 18 and the tray 19 with similar shapes when viewed in plan, in this case as rectangular members, and further configuring the tray so that the outer periphery 20 extends up to overlie the edges of the foot support 18 as can be seen most clearly in
Each of the springs 21 should be under a similar degree of compression so that the tray is retained in a neutral position as shown in
The heart of the present invention lies in the use of an electromagnetic sensing facility to sense movements of the tray 19 relative to the foot support 18 and to relay signals representative of those movements to the control unit 17. As will be described in greater detail below, the control unit 17 is programmed to interpret the signals and apply the appropriate control over the drive motor 13 in light of the particular signal. In this way the complex linkages and switches of prior art footrest assemblies can be eliminated.
While the benefits of the invention could be achieved by a plurality of electromagnetic sensors, the combination of foot support 18 and tray 19 as described above lends itself to the use of a single electromagnetic sensing facility. This facility preferably comprises a Hall-effect sensor on one of the components 18 or 19, and a permanent magnet on the other. In the embodiment depicted, Hall-effect sensor 23 is shown mounted substantially centrally on the underside of foot support 18 while the magnet 24 is shown mounted on the inner surface of tray 19. The Hall-effect sensor may, by way of example only, be a 3D Hall-effect sensor such as a Melexis MLX90393 TRIAXIS® magnetic field sensor manufactured by Melexis NV, Ypres, Belgium. This sensor may be used in combination with a single magnetic disc, for example a 6 mm×3 mm Neodymium magnetic disc.
The system needs to be calibrated for a specific gap between the sensor 23 and the magnet 24 but the actual gap dimension is essentially arbitrary, a limitation being that the sensor needs to be able to measure a non-zero magnetic field intensity at any point. Thus, the gap could be increased if the sensitivity of the sensor were to increase or if the strength of the magnet were to increase.
Referring now to
In
In the case of all scenarios illustrated in
Those skilled in the art will appreciate that the any number of combinations of sensor and magnet could be used to detect safety pad movement, the invention not being confined to the detection of movement of a safety pad mounted on a footrest.
Turning now to
As the carriage begins moving through the bend 30 it is swivelled in the direction indicated by arrow 33 in
The above aspect of the invention requires a knowledge of the stairlift control system knowing when the carriage is entering an outside bend. This could be achieved using suitable switching devices mounted on the rail but could also be achieved by ‘mapping’ the rail substantially as described in our European Patent 0 738 232. Thus, when the control system determines that the carriage is entering an outside bend, the control system activates the trailing safety edge.
It will thus be appreciated that the invention, at least in the case of the working embodiment herein described, provides a novel and effective means of maintaining stairlift safety in case of all types of obstruction which could be encountered as a stairlift carriage moves up and down a stairlift rail.
Number | Date | Country | Kind |
---|---|---|---|
1909847.4 | Jul 2019 | GB | national |
This application is the U.S. National Stage of PCT/GB2020/051626 filed Jul. 7, 2020, which claims priority to United Kingdom Patent Application No. 1909847.4 filed Jul. 9, 2019, the content of both of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2020/051626 | 7/7/2020 | WO |