The present invention relates to high speed serial communications/data transfers between integrated circuits or systems and more particularly to improvements to data recovery circuits based on an oversampling technique for intersymbol interference (ISI) compensation.
In the field of high speed serial communications/data transfers between integrated circuits or systems, data recovery circuits are extensively used in transceivers. The performance of a data recovery circuit is intimately tied to its capacity to correctly recover the transmitted data when the clock period varies with time. It must also be able to deal with another type of problem introduced by transmission channel artifacts as well as by modulation and pulse shaping components in the transmission paths. Therefore, to sustain high data rate, the data recovery circuit must be able to deal with these data perturbations usually referred to respectively as the jitter and intersymbol interference (ISI).
Let us thus consider a conventional data recovery circuit. Schematically, it first includes an oversampling circuit that generates a plurality of data samples during each data period. It further includes a decision circuit that is able to determine which one of the data samples is the best to keep. The effect of the jitter is to decrease the width of the time interval in which the data signal can be reliably sampled. The effect of the ISI is to add a delay on the data stream depending on the past values of the data.
For high speed data transfers, this ISI can substantially decrease the capacity of the data recovery circuit to tolerate the random data jitter.
b is an example of the same eye diagram when an ISI perturbation is added. As apparent in
U.S. Pat. No. 6,249,544 assigned to Broadcom Corp. describes a system and a method for providing ISI compensation to an input signal in a multipair transceiver system. Standard transceivers employed to date make an extensive use of data recovery circuits organized around an oversampling circuit that are very sensitive to ISI. In this reference, ISI compensation is performed in two stages wherein the first stage mainly consists of a pulse shaping filter. Such an analog filter is a relatively complex and expensive piece of hardware. In addition, this solution is not adequate for digital circuit integration.
It is therefore a primary object of the present invention to provide improvements to data recovery circuits using oversampling for ISI compensation.
It is another object of the present invention to provide improvements to data recovery circuits using oversampling for an efficient ISI compensation at very low cost.
It is another object of the present invention to provide improvements to data recovery circuits using oversampling that allow full digital circuit integration.
According to the present invention there is described an improved data recovery circuit based on an oversampling technique wherein ISI is compensated. The improvement mainly consists of connecting a detection circuit at the output of a conventional recovery circuit comprised of an oversampling circuit, a decision circuit and a data sample selection circuit as standard. The recovered data is thus applied to the detection circuit which includes flip-flops to memorize the previous state of the recovered data when no data transition is detected within a predefined number of data periods.
The role of the detection circuit is to detect a predetermined number n of identical bits. It generates a feedback signal which is applied to the decision circuit indicating that such a sequence of n identical bits (wherein parameter n is equal to 2 or 3) has been identified. This signal is also applied to the data sample selection circuit to allow adjustment of the data sample selection by one or more data samples. As a result, the past values of the recovered data are memorized, so that it is possible to shift the position of the best data sample to be kept (as representative of the ideal recovered data) in order to take into account an extra delay in the next data transition to come for ISI compensation.
The novel features believed to be characteristic of this invention are set forth in the appended claims. The invention itself, however, as well as other objects and advantages thereof, may be best understood by reference to the following detailed description of an illustrated preferred embodiment to be read in conjunction with the accompanying drawings.
a shows a typical eye diagram for a high speed serial data link wherein some jitter can be noticed.
b shows the eye diagram of
The present invention relates to an improved data recovery circuit based on an oversampling technique for ISI compensation. The disclosed circuit operates independently of the number of data links so that the data recovery mechanism of the present invention will be only described hereinbelow for one data link.
Referring to
It further includes an edge detection circuit 13, a data edge memory 14, a selection determination circuit 15, a selection validation circuit 16, and a selection memory 17 that are connected in series. Control logic circuit 18 plays the role of a state machine vis a vis some blocks. Logic circuits and memories 13 to 18 form the so-called decision circuit referenced 20. Finally, the data samples D1 to D16 and the signals MVS1 to MVS16 output by the selection memory 17 are applied to data selection circuit 19.
The incoming stream of serial data is continuously oversampled in oversampling circuit 12 by means of the multiple phases of the reference clock. Each data sample is compared in edge detector circuit 13 to the data sample collected with the next adjacent clock phase to determine the presence of a data edge or transition and the edge information i.e., the edge positions, is collected in data edge memory 14 for a duration that can be tuned. This data edge memory 14 can be cleared at regular time intervals. Tuning and clearing are performed by control logic circuit 18.
The selection determination circuit 15 uses the memorized edge information to indicate which data sample is the farthest from the data edges. Selection validation circuit 16 has the key role of validating the selection to avoid false determination due to jitter and skew. The validated values of the selection signals are memorized in selection memory 17, so that these values can be used while new data edges are processed and new selection signals are updated. Finally, the memorized validated selection signals MVS1 to MVS16 and the data samples D1 to D16 are exploited in data selection circuit 19 to recover the data.
As illustrated in
According to the present invention, the recovered data RD is exploited in an innovative detection/configuration circuit 21 which basically has the key role of detecting a set of consecutive identical data bits. When a sequence of n consecutive identical data bits is identified, it delivers a signal, labeled Shift used as a feedback signal that is first applied to the data edge memory 14, so that the decision circuit 20 does not take into account the positions of data transitions immediately following such a sequence of identical data bits. It is not necessary to exactly count the number of consecutive identical data bits as the ISI is generally not sensitive to a sequence of more than 3 consecutive identical bits, so that in practice, n is a configurable parameter equal to 2 or 3 that is configured by the user.
It has been discovered that this sequence is the major cause of ISI and will therefore delay the position of the data transition. Ignoring the late transitions due to ISI has the immediate effect of significantly opening the eye diagram. Once the decision circuit 20 is directed to ignore the late transition, it is then necessary to temporarily shift the data sample selection indicated by the decision circuit when a sequence of identical data bits is identified. For any data bit following a sequence of n identical data bits, two cases are to be considered, whether the new bit is again identical or not.
If identical, a shift by one or more data sample position does not make any difference. Alternatively, if the new bit has the opposite value with respect to the identified sequence, in this case, the ISI effect will delay the arrival of the new value. To that end, the Shift signal is applied to the data sample selection circuit 19 to shift the data selection by one data sample until the next data edge or transition.
The preferred implementation uses a phase locked loop oscillator (PLL) to generate n=16 multiple phases of a reference clock. The clock frequency can be the same as the data frequency, i.e., one data bit per clock period or half of the data frequency, i.e., two data bits per clock period, also referred to as single data rate (SDR) or double data rate (DDR) respectively. The reference clock may be synchronously transmitted by the distant apparatus or may be recovered from the data stream using standard clock recovery circuits. A conventional PLL based multiphase clock generator is shown in
Referring now to
The oversampling circuit 12 collects either one bit (SDR) or two consecutive bits (DDR) in sixteen samples. The sampling is done on each phase C1 to C16. An example of a simple implementation of oversampling circuit 12 is shown in
The edge detection circuit 13 is directly connected at the oversampling circuit 12 output and is responsible to detect a value change between two consecutive data samples. Referring to
There are as many edge detection elements as there are data samples. When a data transition is detected between two consecutive data samples, the edge detection element output switches to the ‘1’ level during a single clock period. As it will be better understood later on, to allow data selection circuit 19 to select the best data sample to recover, the edge information is collected during an extended period of time so that the data jitter with regards to oversampling clock phases is taken into account.
The data edge memory block 14 is directly connected at the edge detection circuit 13 output. Referring to
Let us consider data edge memory element DEMi, it mainly consists of an asynchronous reset flip-flop (or a similar register element) 31-i which has its data input permanently set to ‘1’ and its clock input connected to a reset signal RC. The RC clock signal is a pulse used to reset periodically every data edge memory elements at the ‘1’ value. In the preferred implementation, the RC signal period or data edge sampling period, is tuned in a configuration register (not shown). The edge information signal Ei is applied to the asynchronous input of flip-flop 31-i via a logic circuitry comprised of two consecutive latches 32-i and 33-i, a two-way AND gate 34-i that are serially connected to inverter 35-i.
Signal Ei is first applied on the data input of latch 32-i, the output of which is connected to the data input of latch 33-i. Both latches receive the phase Ci on their clock input, wherein Ci=C1 for i=1 to 8 and Ci=C9 for i=9 to 16. The signal that is output by flip-flop 33-i is applied on a first input of AND gate 34-i which receives the feedback signal Shift on its other input. The role of these two batteries of latches is to ensure a latency equal to the latency of the data sample selection circuit 19. Feedback signal Shift allows suppression of edge detection in the data edge memory 14 that would result from ISI perturbations. This suppression is performed thanks to the battery of AND gates 34-1 to 34-16.
In this preferred implementation, any edge information signal Ei at the ‘1’ level, i.e., indicating the presence of a data edge, sets a ‘0’ level in the corresponding flip-flop 31-i. The signal latched in flip-flop 31-i, labeled E′i, at this ‘0’ level, is kept for an extended length of time such as several tenths or hundreds of clock periods. One advantage of using an asynchronous reset flip-flop is that it allows collection of data edge events during such an extended period of time very simply, however, other implementations could be envisioned as well.
Another advantage is that it collects the edge information independently of their related oversampling clock phase. As a significant result, all signals derived therefrom could be exploited with a determined oversampling clock phase, e.g., C1. In this preferred implementation, sixteen phases of a reference clock are thus used to collect sixteen data samples during each clock period. The following examples illustrate the values of the E′1 to E′16 signals for different cases.
Example 1 represents E′ values for single data rate (SDR) data without jitter. The position of the single ‘0’ corresponds to the sample position where a data transition was detected.
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
Example 2 represents E′ values for single data rate (SDR) data with jitter. The transition position varies in time due to the presence of jitter, so that more than one data transitions are detected.
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
The zone filled with ‘0’s corresponds to the grayed zone in the eye diagram of
Example 3 represents E′ values for double data rate (DDR) data without jitter. As there are now two bits of data per clock period, two data transition positions were detected.
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
Example 4 represents E′ values for DDR data with jitter. The presence of jitter on the incoming data stream has the effect of moving the detected data edge randomly around a central position. The effect on the E′ values is to increase the width of the zones with adjacent ‘0’s.
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
1
Therefore, the edge information is presented under the form of a bit map. A bit set to ‘0’ indicates that a data edge has been detected at this corresponding sample position during the duration of a previous edge search and a bit set to ‘1’ indicates a sample position where no data edge was seen during the same duration. Assuming a reasonable level of jitter and further assuming the edge information is collected for a long duration compared to the data bit period, then the bit map appears as one zone (SDR) or two zones (DDR) filled with adjacent ‘0’s (corresponding to the zone where data edges were detected) surrounded by adjacent ‘1’s. The last bit map position is considered as adjacent to the first bit map position and conversely. Therefore, in the case of DDR data, the bit map contains two zones filled with ‘0’s separated by zones filled with ‘1’s and in the case of SDR data, the bit map contains one zone filled with ‘0’s surrounded by a zone filled with ‘1’s.
The selection determination circuit 15 is directly connected at the data edge memory block 14 output and has the essential role of determining which data sample(s) is (are) to be kept. In essence, it uses the memorized edge information to indicate which sample is the farthest from the data edges. At the input of this circuit, the edge information is thus presented under the form of a bit map with as many bits as there are samples.
The selection determination circuit locates the edges of the zone(s) filled with ‘1’s and progressively reduces the width of the zone until it only contains only one ‘1’s. As this width reduction is performed alternatively on each side, then the remaining ‘0’ points to the center of the zone where none data edge was located, i.e., it points to the data sample which is the farthest from the data edge position.
To recover the data when the incoming data stream is jittered, it is important to select the sample (in case of SDR data) or the samples (for DDR data) located the farthest from any possible position of a data edge. Looking now at the E′ values shown in the above examples, selecting the best sample corresponds to localizing the middle of the zone filled with ‘1’s. This is done with the repetition of the two-step algorithm described below.
In a first step, the particular pattern 110 is searched in the suite of the E′ values to locate the right side of a zone filled with ‘1’s. In the search for this right pattern (RP), the right most value of the suite of the E′ values (E′16 in this preferred implementation) is considered to be adjacent with the leftmost value of the suite of E′ value (i.e. E′1). Each time the 110 RP pattern is found, it is replaced by the 100 value, so that it effectively decreases the width of the zone filled with ‘1’s by one unit and by the right side of the zone.
The second step of the algorithm searches for the 011 pattern which is characteristic of the left side of a zone filled with ‘1’s in the suite of E′ values. Similarly, in the search for this left pattern (LP), the leftmost value of the suite of the E′ values (E′1 in the preferred implementation) is considered to be adjacent with the rightmost value of the suite of E′ values (i.e. E′16). Each time the 011 LP pattern is found, it is replaced by the 001 value so that it effectively decreases the width of the zone filled with ‘1’s by one unit and by the left side of the zone. This algorithm is repeated by successive iterations until the width of the zone filled with ‘1’s is reduced to a single position, in other words it just remains one ‘1’ (approximately, the central one in the zone).
When recovering SDR data, only one ‘1’ value is found and this single value correspond to the position of the best sample to be kept as the recovered data. When recovering DDR data, two different ‘1’s are kept corresponding to the positions of the best samples to be kept as the data to recover in the incoming data stream.
Let us consider Example 2 for the sake of simplicity, applying the above two-step algorithm to process the initial bit map, will result in the following bit sequences:
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1;
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1 (1st step RP, 1st iteration);
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1 (2sd step LP, 1st iteration);
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1 (1st step RP, 2sd iteration);
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1 (2sd step LP, 2sd iteration) and so on, until the following sequence is obtained:
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0 (2sd step LP, 6th iteration) indicating thereby that the fourteenth data sample is the best one.
Still referring to
In turn, the signal Gi that is output from AND gate 38-i is applied to a first input of two-way AND gate 40-i, the other input of which receives the result of ANDing signals Gbi−1 (NOT Gi−1) and Gi+1 through two-way NAND gate 41-i to generate signal Hi. AND gates 40-i and 41-i thus implement the second step of the above described two-step algorithm. Finally, signal Hi is applied to the data input of flip-flop 42-i to latch selection signal Si. The clock input of flip-flop 42-i receives clock phase C1. As apparent in
As mentioned above, flip-flop 31-i (see
The F signal of the previous SD element (SDi−1), i.e., Fi−1, is combined in a NAND gate with the inverted F value of the next SD element (SDi+1), i.e. Fbi+1. The resulting signal is then ANDed with the Fi signal to form the Gi signal, thus effectively detecting the occurrence of the 110 pattern and forcing the middle ‘1’ to a ‘0’ when the pattern is found. Similarly, the Gi signal is combined with the G signal from adjacent SD element to detect the 011 pattern and replace the middle value thereof by a ‘0’ when this pattern is found.
The Hi signal is captured in flip-flop 42-i at each clock phase C1 rising edge to generate selection signal Si. By allowing the Hi signal to re-circulate through the selector 36-i via loop 37-i, one can see that the width of the zone initially filled with ‘1’s at the flip-flop 42-i output of SDi element, will decrease until there is only one ‘1’. Extra iterations will be without any effect.
The maximum number of iterations to be performed is equal to the fourth of the number of data samples in the case of DDR data (i.e. four iterations in the preferred implementation using sixteen samples per clock period) or one half of the number of data samples in the case of SDR data (i.e. eight iterations in the case of the preferred implementation). There is no penalty in having the data selection having to loop four or eight clock cycles as it is expected that the collection of data edges will last more time to ensure the data selection circuit 19 will take into account the data jitter.
If for some reasons, there is no data edge during the period between two RC (reset clock) signals, the selection determination circuit 15 will incorrectly indicate that each data sample is to be recovered by setting each selection signal S(1:16) to the ‘1’ level. To avoid data recovery errors, the selection validation circuit 16 disable all selection signals when they all are at the ‘1’ level.
As shown in
At this point, it is important to memorize the validated values of the selection signals, i.e., VS1 to VS16, so that these values can be used while new data edges are processed and new selection signals are updated. Selection memory block 17 can have a similar construction to the data edge memory block 14. Referring to
The data sample selection circuit 19 is depicted in
Data samples D1 to D4 are applied to the other input of the AND gates 50-1 to 50-4 in the first group and so on till data samples D13 to D16 that are applied to the other input of AND gates 50-13 to 50-16 in the last group. In the first group, the output of AND gates 50-1 to 50-4 is connected to one input of a four-way OR gate referenced 51-1. The same construction applies to the other groups, so that there are four four-way OR gates referenced 51-1 to 51-4. The outputs of OR gates 51-1 and 51-2 are connected to the inputs of two-way OR gate 52-1.
Likewise, the outputs of AND gates 51-3 and 51-4 are connected to the inputs of two-way OR gate 52-2. In turn, the output of OR gate 52-1 is connected to the data input of flip-flop 53-1 whose clock input receives clock phase C1. Similarly, the output of OR gate 52-2 is connected to the data input of flip-flop 53-2 whose clock input receives clock phase C9 (in phase opposition with clock phase C1). Signals latched in flip-flops 53-1 and 53-2 are applied to two-way OR gate 54, the output of which is connected to the data input of flip-flop 55, its clock input being driven by clock phase C1. The signal latched in flip-flop 55 is the recovered data RD.
The data sample selection circuit 19 shown in
The role of the Shift signal is to shift the selection of a data sample of one position to compensate ISI. For instance, let us assume that memorized validated selection signals MVS2 has been selected, if there is no ISI this signal will be sent to circuit 19, on the contrary, if there is ISI, signal MVS1 will be sent instead (to compensate the right shift effect of ISI mentioned above). In the case of DDR data, two circuits 19′/19″ identical to the data sample selection circuit 19 of
Alternatively, another Shift signal can be implemented to indicate a sequence of three or more consecutive identical data bits, i.e., N=3. To that end, the flip-flop 56 output also drives the data input of flip-flop 58 and one input of 2-way XOR gate 59 which receives the flip-flop 58 output on its other input. The signal generated by the flip-flop 58 represents the recovered data with a two clock period delay. The signals output by XOR gates 57 and 59 are applied to OR gate 60. The signal that is output therefrom is therefore representative of a sequence of three or more identical data bits when it is equal to ‘0’. The user may choose to apply either Shift signal, i.e. corresponding to either N=2 or N=3, via two-way multiplexer 61.
The performance of the improved data recovery circuit 10 is limited by the resolution of the oversampling circuit 12. However, it is not an added penalty, because the resolution of the data recovery circuit 10 using an oversampling technique is already limited by the delay between adjacent clock phases. Improved data recovery circuit 10 provides a simple way to compensate ISI perturbations with the addition of very few circuit elements and at a very low cost as a whole.
While the invention has been particularly described with respect to a preferred embodiment thereof it should be understood by one skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
03368123.0 | Dec 2003 | EP | regional |