The invention relates to improvements made to input peripherals for a computer or the like.
A known computer input peripheral that is commonly referred to as a“mouse” comprises a shell on which the hand of an operator bears and that is fastened on a base that is suitable for sliding on a plane surface. Such a mouse is fitted with electrical sensors suitable for generating electrical signals for the computer in response to movements of the mouse, making it possible to discriminate between movements in two distinct directions, which is sufficient for most office applications, but not sufficient to enable a virtual or real object to be manipulated in three dimensions.
Another known input peripheral, e.g. disclosed in document U.S. Pat. No. 6,333,733, is constituted by a stationary base and by a shell connected to the base via a linkage providing the shell with three degrees of freedom to move in translation and three degrees of freedom to move in rotation relative to the base. The operator moves the shell in three dimensions depending on the movements the operator seeks to impart to the object being manipulated, and the operator can make use of several degrees of freedom simultaneously. The software that makes use of the signals from sensors fitted to such an input peripheral is advantageously programmed so that the movements of the controlled object faithfully reproduce the movements of the shell.
Nevertheless, one of the degrees of freedom corresponds to the shell moving in a direction perpendicular to the bearing plane on which the base of the peripheral rests. This characteristic means that the hand cannot be rested on the shell, which imposes carpal stress (i.e. where the hand joints the wrist) and the wrist is extended, which over time can lead to a musculo-skeletal disorder known as carpal tunnel syndrome.
In addition, carpal stress limits the accuracy with which the shell can be moved.
An object of the invention is to provide an input peripheral that attenuates the above-mentioned drawback.
In order to achieve this object, there is provided an input peripheral for a computer or the like, the peripheral comprising a moving portion handled by the operator and fitted with electrical sensors suitable for generating electrical signals for the computer in response to movements imposed on the moving portion by the operator. According to the invention, said moving portion comprise a shell connected to a stationary base by means of a linkage arranged to allow any movement of the shell relative to the base with the exception of movement in a direction substantially perpendicular to a bearing plane of the base, the moving portion further comprising a hull that is entrained by the shell and that includes a side wall extending so as to prevent any intrusion under the shell regardless of its position.
The shell can then be manipulated with five degrees of freedom corresponding to two degrees of freedom to move in translation in directions that are substantially parallel to the bearing plane of the base, and three degrees of freedom to move in rotation, that can be made to correspond with the corresponding five degrees of freedom of the object being manipulated.
The missing sixth degree of freedom can be controlled by a control member fitted to the peripheral.
Thus, it is possible to control at least five degrees of freedom of the manipulated object while the hand continues to be rested, and while maintaining very instinctive correspondence between the movements of the shell and the movements of the objects being manipulated.
In addition, resting the hand on the shell serves to increase the accuracy with which it is moved.
The hull serves to ensure that the operator does not get a finger pinched by inadvertently or clumsily inserting the finger under the edge of the shell. In addition, the hull protects the internal mechanism of the peripheral from dust and other pollution.
The invention can be better understood in the light of the following description given with reference to the figures of the accompanying drawings, in which:
With reference to
The input peripheral 1 comprises a shell 6 of ergonomic domed shape suitable for being held easily in the hand.
The shell 6 is connected to the base 2 by means of a linkage made up as follows:
These dispositions make the following movements possible:
The tilting and the turning give the shell 6 three degrees of freedom in rotation, whereas the movement in translation gives the shell 6 two degrees of freedom in translation.
It should be observed that a force exerted by the hand of the operator on the shell 6 in a transverse direction perpendicular to the plane surface 9 is transmitted directly to the base 2 via the connection elements 7 and 11, and gives rise to no movement of the shell 6. The operator can thus rest the hand on the shell 6, thereby relieving the arm and avoiding any carpal stress.
The five degrees of freedom of the shell 6 made possible by the linkage between the shell 6 and the base 2 are advantageously used to represent the five corresponding degrees of freedom of a virtual or real object being manipulated with the help of the input peripheral of the invention.
The sixth degree of freedom, i.e. the degree that corresponds to moving in translation in the transverse direction that is prevented by the linkage, is controlled in this example by means of a scroll wheel 100 carried by the shell 6.
As can be seen in
The second slider 30 is mounted in the first slider 20 to slide in a direction 31 that extends in the above-mentioned equatorial plane, perpendicularly to the direction 21. For this purpose, the second slider has tenons 32 that are received in grooves 22 in the first slider 20.
It should be observed that the first slider 20 and the second slider 30 are never subjected directly to the force delivered by the hand of the operator. In particular, they are never subjected to any transverse force transmitted directly from the shell 6 to the base 2 via the connection elements 7 and 11. The sliders 20 and 30 are subjected solely to driving forces in a plane that is parallel to the plane surface 9. They are therefore subjected to very little stress.
The sliders 20 and 30 do not contribute to defining the linkage between the shell 6 and the base 2 except insofar as they prevent the second connection element 11 from turning about the pivot axis Z.
For this purpose, the first connection element 7 and the second slider 30 are connected together by studs 33 that extend in radial directions contained in the above-mentioned equatorial plane. In practice, the first connection element 7 and the second slider 30 are molded as a single piece. As a result, the second slider 30 is permanently centered on the spherical end 10 of the first connection element 7 and tracks the movements thereof.
To enable the shell 6 to tilt angularly in spite of the presence of the studs 33, the spherical cavity 12 in the second connection element 11 includes grooves 15 (one of which is visible in
Thus, during a movement of the shell 6, the second slider 30 moves by an amount equal to the component of the movement of the shell 6 in said direction 31, and it entrains the first slider 20, causing it to move by an amount equal to the component of the movement of the shell 6 in the direction 21.
During turning of the shell 6, the shell 6 turns relative to the second connection element 11 by an amount that is equal to the component of the turning about the pivot axis Z of the shell 6 relative to the second connection element 11.
These arrangements make it easy to put sensors into place for sensing the various movements of the shell 6.
In this respect, and as can be seen in
In addition, the input peripheral of the invention includes a potentiometer 41 disposed between the second connection element 11 and the shell 6 to measure turning about the pivot axis Z. The potentiometer 41 comprises an inner portion and an outer portion that are free to turn relative to each other about the pivot axis Z. The inner portion is engaged on a peg 42 of the second connection element 11 that presents a flat (visible in
These two sensors serve to measure all movements in rotation of the shell about the center of the spherical end 10 of the first connection element 7.
Furthermore, and as can be seen in
Finally, for the sixth degree of freedom controlled by the scroll wheel 100, a rotation sensor 101 (represented by dashed lines since it is hidden by the wheel 100) is placed on the axis of the wheel 100 to measure movement in rotation thereof.
According to a particular aspects of the invention, the input peripheral includes means for reinitializing the sensors, which means are visible in
The reinitialization means comprise firstly a first ball 50 placed in a housing hollowed out in the first connection element 7 and opening out to the plane bottom end 8 thereof, the ball being urged against the plane surface 9 of the base 2 by a spring 51. In the position shown in
The reinitialization means also comprise a second ball 52 received in a housing hollowed out in the first connection element 7 so as to open out into the top of the top spherical end 10 thereof, and urged against the spherical cavity 12 of the second connection element 11 by a spring 53. In the position shown in
In the invention, the input peripheral also includes a hull 60 that can be seen more particularly in
As can be seen in
The orifice 62 allows the leg 3 of the base 2 to pass through the bottom 61. The orifice is large enough to enable the shell 6 to move, while being small enough to ensure that the bottom 61 always remains captive in the space 67 that extends between the soleplate 4 and the base 2. The hull 60 is thus constrained to move parallel to the soleplate 4, and thus to the bearing plane P.
The co-operation between the side walls of the hull 60 and the shell 6 constrains the hull 60 to follow the linear movements of the shell 6 and to follow its movements in rotation about an axis parallel to the transverse direction, with the shape of the walls 63 and 64 nevertheless allowing the shell 6 to tilt angularly relative to the hull 60.
The hull 60 prevents any objects or pollution from penetrating under the shell 6. Furthermore, it prevents a clumsy operator getting fingers pinched between the shell 6 and the soleplate 4.
In practice, the side walls of the hull 60 and of the shell 6 face each other with a small amount of clearance. Skids 65 integrally molded on the inside face of the side wall 64 of the shell 6 provide contact over a small area with the side wall 63 of the hull 60 so as to reduce friction between these two elements.
The input peripheral of the invention is particularly suitable for being used together with computer-assisted design (CAD) software, or with software for viewing virtual objects.
As can be seen in
The input peripheral can be used in several ways. Firstly, each position of the shell 6 and of the scroll wheel 100 as measured by the sensors can be associated with a position in the virtual space in which the virtual object being manipulated is to be found. It is also possible to associate each position of the shell 6 and of the scroll wheel 100 with a travel speed in the virtual space in which the virtual object being manipulated is to be found.
In a particular aspect, both types of association can be combined, using the following method.
In
The rectangle 80 defines the set of positions that can be occupied in the above-mentioned equatorial plane by the center of the spherical end 10 of the first connection element 7. An inner rectangle 81 within the rectangle 80 defines a central zone 82 and a peripheral zone 83.
The following associations are then selected: each position of the shell 6 in the central zone 82 is associated with a position of the virtual object in the virtual space; and each position of the shell 6 in the peripheral zone 83 is associated with a travel speed of the virtual object in the virtual space.
Similarly, the cone 85 defines the angular tilting possible for the pivot axis Z about said center. An inner cone 86 within the outer cone 85 defines a central zone 87 and a peripheral zone 88.
The following associations are then selected: each position of the pivot axis Z in the central zone 86 is associated with an angular position of the virtual object in the virtual space; and each position of the shell 6 in the peripheral zone 88 is associated with a speed of rotation of the virtual object in the virtual space.
Finally, the angular sector 90 defines possible turning of the shell 6 about the pivot axis Z. An inner angular sector 91 within the angular sector 90 defines a central zone 92 and a peripheral zone 93.
The following associations are then selected: each angular position of the shell 6 in the central zone 92 is associated with an angular position of the virtual object in the virtual space; and each angular position of the shell 6 in the peripheral zone 93 is associated with a speed of rotation of the virtual object in the virtual space.
The same principles are applied to the scroll wheel 100.
In order to show up these various zones, the input peripheral of the invention is fitted with means for controlling the movement of the shell 6.
As can be seen in
The portion of the movement of the first slider 20 in which the first slider 20 does not come into contact with either of the foam pads 110 corresponds to the central zone 82. In this portion, the shell 6 is not subjected to any opposing force (except for low levels of friction). The portion of the movement of the first slider 20 in which the first slider 20 is in contact with one or the other of the foam pads 110 corresponds to the peripheral zone 83. In this portion, the shell 6 is subjected to a return force because of the first slider bearing against one or the other of the foam pads 110. The presence of a return force enables the operator to distinguish between the central zone and the peripheral zone.
By way of example, there follows a description of a rectilinear movement of the shell 6 in the direction 21, i.e. the direction in which the first slider 20 moves. This movement is represented in
In similar manner, the control means include foam pads 112 disposed on the first slider 20 so as to form resilient abutments against which the second slider 30 comes into abutment at the ends of its stroke. The foam pads 112 mark the boundary between the central zone 82 and the peripheral zone 84 for rectilinear movements along the direction 31.
The control means also comprise foam pads 113 (visible in
Finally, the control means include foam pads 114 (visible in
It is thus possible for all of the degrees of freedom of the shell 6 to define a central range in which the movement of the shell is free, and end ranges in which the shell is subjected to a return force towards the central range.
Similarly, the scroll wheel 100 carries foam pads 115 (visible in
Thus, so long as the shell is in the central zones, the software makes the position of the shell correspond to the position of the virtual object in the virtual space. The operator then has the impression of moving the virtual object displayed on the screen directly when moving the shell 6, in a manner that is very instinctive. If the operator pushes the shell 6 so that it enters into one of the peripheral zones, then the software associates the position of the shell 6 with movement at a given speed, e.g. in order to go quickly to some other portion of the virtual object in order to view said other portion.
The invention is not limited to the description above, but on the contrary covers any variant coming within the ambit defined by the claims.
In particular, although a particular linkage is shown that enables the shell to move in any manner relative to the base with the exception of moving in a transverse direction that is perpendicular to the bearing plane, the invention covers any other linkage providing this type of connection, such as for example a single connection element having a plane bottom end that slides on a plane surface of the baser and a spherical top end that is received in a complementary spherical cavity of the shell.
Although the hull is shown as having a side wall that extends inside the side wall of the shell, the side wall of the hull could extend over the outside of the side wall of the shell.
Although it is stated that speeds or positions are associated with the position of the shell and the position of the scroll wheel, it is possible to associate other parameters for manipulating the object therewith, such as zooms, or indeed color changes.
Although it is stated that each degree of freedom has an isotonic central range and elastic end ranges, it is possible to provide for each degree of freedom any possible configuration going from a degree of freedom that is completely isotonic, to a degree of freedom that is completely elastic.
Although in the example shown, the positions of the shell and of the scroll wheel in the central ranges are associated with positions of the virtual object, and the positions of the shell and of the scroll wheel in the end ranges are associated with travel speeds of the virtual object, other associations could be provided, such as a slow speed in the central range and a fast speed in the end ranges.
Furthermore, although the movement control means of the shell are constituted by foam pads that co-operate with moving portions of the peripheral, other control means could be used, such as servo-controlled motors leaving movement free in a central range while opposing a return force on such movements in end ranges. Alternatively, the peripheral need have no control means, or could have control means that act on only some of the degrees of freedom of the shell. It should be observed that the central and peripheral ranges managed by the software associated with the peripheral need not coincide with the central and peripheral ranges marked by the control means.
Although the shell is shown as including a member in the form of a scroll wheel for controlling an additional degree of freedom, the peripheral could include other types of control member, such as a pointer placed on the shell or some other location of the peripheral.
In addition, the peripheral may include other types of member, such as selection buttons 102 (visible in
Finally, although the input peripheral is described herein in association with computer design and display software, the input peripheral could be used as a member for manipulating a real object, for example via a manipulator arm.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/FR06/00170 | 1/25/2006 | WO | 00 | 7/25/2008 |