Conventional solutions for charging automobiles require a user to manually plug the automobile into a wall socket or connect the vehicle to an external charging system via a plug. The charge rate is usually low, thereby requiring the vehicle to remain stationary at the conventional charge station for an extended period of time. As such, if the vehicle is accidently unplugged by another user or another problem occurs related to the charging of the automobile, the user may be unaware of the problem for some time. The user would then be required to execute another lengthy charge process during which further problems may occur. As such, conventional solutions for charging automobiles are inconvenient and inefficient.
Accordingly, a need exists for a more convenient way to perform an energy transfer with a vehicle. A need also exists for a more efficient way to perform an energy transfer with a vehicle. Embodiments of the present invention provide novel solutions to these needs and others as described below.
In one embodiment, a wheel includes a first portion configured to accept at least one energy transfer component. A second portion is configured to accept at least one interface, wherein the at least one energy transfer component and the at least one interface are configured to transfer energy between a vehicle and an energy transfer system.
In one embodiment, a tire includes a first portion including at least one energy transfer component. The tire also includes a second portion including an interface, wherein the interface is electrically coupled to the at least one energy transfer component. The tire includes a third portion including at least one electrical contact, wherein the at least one electrical contact is electrically coupled to the interface, and wherein the third portion defines an opening allowing access to the at least one electrical contact.
In one embodiment, a vehicle includes a component including a first member and a second member, wherein the first and second members are configured to rotate with respect to one another, and wherein the component is configured to allow at least one transfer of energy between the first and second members. The vehicle may also include a motor. The vehicle may further include an energy storage medium configured to power the motor to move the vehicle. The vehicle may also include an interface configured to transfer energy, via the component, to the energy storage medium, wherein the energy is received from a system separate from the vehicle.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to the same or similar elements.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the present invention will be discussed in conjunction with the following embodiments, it will be understood that they are not intended to limit the present invention to these embodiments alone. On the contrary, the present invention is intended to cover alternatives, modifications, and equivalents which may be included with the spirit and scope of the present invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
Some regions of the detailed descriptions which follow are presented in terms of procedures, logic blocks, processing and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing the terms such as “aborting,” “accepting,” “accessing,” “activating,” “adding,” “adjusting,” “allocating,” “allowing,” “analyzing,” “applying,” “assembling,” “assigning,” “authenticating,” “authorizing,” “balancing,” “blocking,” “calculating,” “capturing,” “causing,” “charging,” “combining,” “comparing,” “collecting,” “communicating,” “configuring,” “controlling,” “converting,” “creating,” “deactivating,” “debugging,” “decreasing,” “defining,” “delivering,” “depicting,” “detecting,” “determining,” “discharging,” “displaying,” “downloading,” “enabling,” “establishing,” “executing,” “forwarding,” “flipping,” “generating,” “grouping,” “hiding,” “identifying,” “increasing,” “initiating,” “instantiating,” “interacting,” “limiting,” “measuring,” “modifying,” “monitoring,” “moving,” “outputting,” “parsing,” “performing,” “placing,” “presenting,” “processing,” “programming,” “providing,” “provisioning,” “querying,” “receiving,” “regulating,” “removing,” “rendering,” “repeating,” “resuming,” “retaining,” “sampling,” “simulating,” “sending,” “sorting,” “storing,” “subtracting,” “suspending,” “tracking,” “transcoding,” “transforming,” “transmitting,” “unblocking,” “using,” “verifying,” or the like, may refer to the action and/or processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission and/or display devices.
As used herein, the term “coupled with” may refer to an arrangement of objects where at least two objects are in physical contact with one another (e.g., touching) or where at least two objects are separated by at least one other object (e.g., two objects that are coupled with one another may have at least one other object positioned between the two objects).
Vehicle 120 may be a vehicle with at least one wheel (e.g., an automobile, a bus, a motorcycle, a scooter, a personal transportation vehicle such as the Segway™, a golf cart, etc.), a vehicle configured to move on at least one rail or at least one track (e.g., a train, a trolley, a shuttle, etc.), a boat (e.g., a cruise liner, a ship, a yacht, a sailboat, a fishing boat, a speedboat, a houseboat, a dinghy, etc.), an aircraft (e.g., an airplane or fixed-wing aircraft, a rotary-wing aircraft such as a helicopter, a glider, an aerostat such as a balloon or blimp, etc.), etc. Vehicle 120 may be an all-electric vehicle (e.g., using only electricity to move the vehicle), a hybrid vehicle (e.g., using electricity and/or another source of energy to move the vehicle), a vehicle which uses a source of energy other than electricity to move the vehicle, etc. Energy transfer system 110 may be any system, device, component, etc. capable of performing an energy transfer with vehicle 120 (e.g., transferring energy to and/or transferring energy from vehicle 120). In one embodiment, energy transfer system 110 may be capable of communicating data with vehicle 120, communicating a clock signal (e.g., used to extract data transmitted over interface 130, used to synchronize circuits of energy transfer system 110 and/or vehicle 120, etc.) or other type of signal with vehicle 120, etc.
The energy transfer signal carried by interface 130 may be sufficient to charge an energy storage component of energy transfer system 110 (e.g., energy storage component 216 of
The term “energy transfer rate” as used herein may be an amount of energy per unit time. For example, an energy transfer rate may be a current (e.g., measured or expressed in units of amps, etc.), a power (e.g., measured or expressed in units of watts, kilowatts, etc.), etc. In one embodiment, an energy transfer rate may be calculated or determined at a particular time or instant (e.g., an instantaneous energy transfer rate), and therefore, may be distinguishable from an average energy transfer rate which can be calculated by dividing an amount of energy by a duration (e.g., a length of time during which the amount of energy is transferred).
As shown in
In one embodiment, signals communicated over energy transfer interface 132 may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Energy transfer interface 132 may be capable of implementing unidirectional signal communication and/or bidirectional signal communication. Energy transfer interface 132 may utilize single-ended signaling and/or differential signaling. And in one embodiment, signals communicated over signal interface 134 may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Signal interface 134 may be capable of implementing unidirectional signal communication and/or bidirectional signal communication. Signal interface 134 may utilize single-ended signaling and/or differential signaling.
Utilizing an energy transfer interface (e.g., 132, etc.) to communicate signals may reduce cost in one embodiment. For example, where an existing system does not include a dedicated signal interface capable of communicating signals between an energy transfer system and a vehicle, embodiments of the present invention can enable the use of existing components and interfaces (e.g., energy transfer interface 132) to communicate signals. In this manner, cost can be reduced since the system does not have to be redesigned and/or retrofitted to include the dedicated signal interface.
As shown in
As shown in
Although
In one embodiment, signals communicated between energy transfer system 110 and vehicle 120 (e.g., over interface 130, energy transfer interface 132, energy transfer interface 231, energy transfer interface 234, energy transfer interface 237, signal interface 134, etc.) may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. An interface (e.g., 130, 132, 231, 234, 237, 134, etc.) coupling energy transfer system 110 and vehicle 120 may implement unidirectional signal communication and/or bidirectional signal communication in one embodiment. And in one embodiment, signals may be communicated between energy transfer system 110 and vehicle 120 (e.g., over interface 130, energy transfer interface 132, energy transfer interface 231, energy transfer interface 234, energy transfer interface 237, signal interface 134, etc.) using single-ended signaling and/or differential signaling.
Energy may be transferred over one or more of the interfaces of system 200 between energy transfer system 110 and vehicle 120 (e.g., from energy transfer system 110 to vehicle 120, from vehicle 120 to energy transfer system 110, etc.) using at least one energy transfer component. For example, energy may be transferred over energy transfer interface 231 using energy transfer components 232 and 233, energy may be transferred over energy transfer interface 234 using energy transfer components 235 and 236, and energy may be transferred over energy transfer interface 237 using energy transfer components 238 and 239.
In one embodiment, energy transfer components 232 and 233 may include electrical contacts that are capable of implementing a wired interface for transferring energy when brought into physical contact with one another. For example, energy transfer component 232 may be a first electrical contact (e.g., disposed in or coupled with a plug) and energy transfer component 233 may be a second electrical contact (e.g., disposed in or coupled with a receptacle), where energy transfer component 232 may be brought into physical contact with energy transfer component 233 (e.g., responsive to the plug being plugged into the receptacle or otherwise mated to one another) to enable energy transfer over energy transfer interface 231. Alternatively, energy transfer component 233 may be a first electrical contact (e.g., disposed in or coupled with a plug) and energy transfer component 232 may be a second electrical contact (e.g., disposed in or coupled with a plug receptacle), where energy transfer component 233 may be brought into physical contact with energy transfer component 232 (e.g., responsive to the plug being plugged into the receptacle or otherwise mated to one another) to enable energy transfer over energy transfer interface 231. Energy transfer components 232 and 233 may include a respective plurality of electrical contacts that when brought into contact with one another enable a flow of electricity over energy transfer interface 231. Energy transfer components 232 and 233 may also include one or more respective features for aligning the electrical contacts (e.g., for positioning the plug with respect to the receptacle for aligning the respective electrical contacts of each energy transfer component), enabling the energy transfer components to remain secured to one another (e.g., during the energy transfer), to reduce the ability of a user to touch an energized component and be shocked or otherwise injured, some combination thereof, etc. And in one embodiment, energy transfer component 232 and/or energy transfer component 233 may be disposed in or coupled with a component (e.g., plug, receptacle, etc.) which also houses or is coupled with at least one other electrical contact configured to communicate a signal (e.g., a data signal, a clock signal, etc.).
Energy transfer components 235 and 236 may enable an inductive energy transfer between energy transfer system 110 and vehicle 120 over energy transfer interface 234 in one embodiment. For example, energy transfer component 235 may be capable of creating a magnetic field that enables an energy transfer over energy transfer interface 234 when energy transfer component 236 is disposed at least partially within the magnetic field created by energy transfer component 235. Energy transfer component 236 may be capable of creating a magnetic field that enables an energy transfer over energy transfer interface 234 when energy transfer component 235 is disposed at least partially within the magnetic field created by energy transfer component 236. In one embodiment, energy transfer component 235 may include at least one coil, energy transfer component 236 may include at least one coil, or both energy transfer components 235 and 236 may include at least one respective coil. Energy transfer components 235 and 236 may enable an energy transfer and/or signal communication between energy transfer system 110 and vehicle 120 without a wire directly connecting energy transfer component 235 to energy transfer component 236.
In one embodiment, energy transfer components 238 and 239 may be any components capable of sending and/or receiving wireless energy transmission signals. For example, energy transfer component 238 may convert electricity (e.g., from energy transfer system 110) into a wireless energy transmission signal for transmission to energy transfer component 239, where energy transfer component 239 may receive the wireless energy transmission signal and convert it into electricity for use by vehicle 120. As another example, energy transfer component 239 may convert electricity (e.g., from vehicle 120) into a wireless energy transmission signal for transmission to energy transfer component 238, where energy transfer component 238 may receive the wireless energy transmission signal and convert it into electricity for use by energy transfer system 110. The wireless energy transmission signals communicated between energy transfer components 238 and 239 may include radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, some combination thereof, etc. In this manner, energy transfer components 238 and 239 may enable a wireless energy transfer between energy transfer system 110 and vehicle 120 over energy transfer interface 237.
As shown in
Interface monitoring component 213 may monitor the interfaces coupled to interface component 211. For example, interface monitoring component 213 may detect a problem with one or more of the interfaces, determine which interface or interfaces are active and/or not active, determine whether the energy transfer is occurring sequentially or simultaneously over multiple interfaces between energy transfer system 110 and vehicle 120, determine which direction energy is transferred between energy transfer system 110 and vehicle 120, determine at least one attribute of the energy transfer (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.), some combination thereof, etc. In one embodiment, interface monitoring component 213 may communicate the results of the monitoring to energy distribution component 212, thereby providing feedback and enabling energy distribution component 212 to adjust or configure the energy transfer between energy transfer system 110 and vehicle 120. For example, if interface monitoring component 213 detects a problem with an interface, energy distribution component 212 may disable (e.g., stop energy transfer over) the interface. As another example, if interface monitoring component 213 detects that an attribute of an energy transfer over an interface (e.g., 231, 234, 237, etc.) exceeds a threshold or limit, then energy distribution component 212 may adjust the energy transfer accordingly (e.g., adjust the energy transfer so that the attribute is brought below the limit or threshold, disable the interface, etc.). In one embodiment, if a temperature of an energy transfer component (e.g., as measured by component 2664 of
As shown in
Interface monitoring component 223 may monitor the interfaces coupled to interface component 221. For example, interface monitoring component 223 may detect a problem with one or more of the interfaces, determine which interface or interfaces are active and/or not active, determine whether the energy transfer is occurring sequentially or simultaneously over multiple interfaces between energy transfer system 110 and vehicle 120, determine which direction energy is transferred between energy transfer system 110 and vehicle 120, determine at least one attribute of the energy transfer (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.), some combination thereof, etc. In one embodiment, interface monitoring component 223 may communicate the results of the monitoring to energy distribution component 222, thereby providing feedback and enabling energy distribution component 222 to adjust or configure the energy transfer between energy transfer system 110 and vehicle 120. For example, if interface monitoring component 223 detects a problem with an interface (e.g., 231, 234, 237, etc.), energy distribution component 222 may disable (e.g., stop energy transfer over) the interface. As another example, if interface monitoring component 223 detects that an attribute of an energy transfer over an interface (e.g., 231, 234, 237, etc.) exceeds a threshold or limit, then energy distribution component 222 may adjust the energy transfer accordingly (e.g., adjust the energy transfer so that the attribute is brought below the limit or threshold, disable the interface, etc.). In one embodiment, if a temperature of an energy transfer component (e.g., as measured by component 2462 of
As shown in
In one embodiment, signals (e.g., data signals, clock signals, etc.) may be communicated over an energy transfer interface (e.g., 132, 231, 234, 237, etc.) using an electromagnetic field surrounding at least one conductor of the energy transfer interface. For example, signal communication component 214 may alter (e.g., change the strength or amplitude over time) an electromagnetic field surrounding at least one conductor of an energy transfer interface to transmit the signals (e.g., data signals, clock signals, etc.) over the energy transfer interface. A component of vehicle 120 (e.g., signal communication component 224) may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field (e.g., for use by vehicle 120).
The signal (e.g., a data signal, a clock signal, etc.) communicated using the energy transfer interface may be supplied by communication interface 241 in one embodiment, where communication interface 241 is capable of communicating with vehicle 120 (e.g., over signal interface 134, over at least one energy transfer interface via signal communication component 214, etc.), with a component of energy transfer system 110, with another system or device located remotely from energy transfer system 110, etc. Communication interface 241 may be capable of sending and/or receiving communications over a cellular network (e.g., cellular data network, cellular phone network, etc.), thereby enabling communication between energy transfer system 110 and an external system (e.g., vehicle 120, interface system 550 of
As shown in
In one embodiment, signals (e.g., data signals, clock signals, etc.) may be communicated over an energy transfer interface (e.g., 132, 231, 234, 237, etc.) using an electromagnetic field surrounding at least one conductor of the energy transfer interface. For example, signal communication component 224 may alter (e.g., change the strength or amplitude over time) an electromagnetic field surrounding at least one conductor of an energy transfer interface to transmit the signals (e.g., data signals, clock signals, etc.) over the energy transfer interface. A component of energy transfer system 110 (e.g., signal communication component 214) may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field (e.g., for use by energy transfer system 110).
The signal (e.g., a data signal, a clock signal, etc.) communicated using the energy transfer interface may be supplied by communication interface 242 in one embodiment, where communication interface 242 is capable of communicating with energy transfer system 110 (e.g., over signal interface 134, over at least one energy transfer interface via signal communication component 224, etc.), with a component of vehicle 120, with another system or device located remotely from vehicle 120, etc. Communication interface 242 may be capable of sending and/or receiving communications over a cellular network (e.g., cellular data network, cellular phone network, etc.), thereby enabling communication between a vehicle (e.g., 120) and an external system (e.g., energy transfer system 110, interface system 550 of
In one embodiment, signals (e.g., data signals, clock signals, etc.) communicated between energy transfer system 110 and vehicle 120 may be encrypted. For example, a component of energy transfer system 110 (e.g., communication interface 241, signal communication component 214, etc.) may encrypt a signal which may be decrypted by a component of vehicle 120 (e.g., communication interface 242, signal communication component 224, etc.). As another example, a component of vehicle 120 (e.g., communication interface 242, signal communication component 224, etc.) may encrypt a signal which may be decrypted by a component of energy transfer system 110 (e.g., communication interface 241, signal communication component 214, etc.).
Different types of signals may be communicated simultaneously or contemporaneously over different interfaces (e.g., 132, 231, 234, 237, 134, etc.) in one embodiment. For example, one interface may be used to communicate data signals while another interface is used to communicate clock signals. As another example, one interface may be used to communicate signals in one direction while another interface is used to communicate signals in the other direction. As yet another example, a plurality of interfaces (e.g., 132, 231, 234, 237, 134, some combination thereof, etc.) may be used to implement parallel data communication. As a further example, one or more interfaces (e.g., 132, 231, 234, 237, 134, some combination thereof, etc.) may each be used to implement serial data communication. In this manner, system 200 may offer improved signal transfer capabilities over conventional systems.
In one embodiment, a clock signal and a data signal may be communicated over the same interface. For example, the clock signal may be encoded into the data signal by the transmitting device (e.g., communication interface 241, signal communication component 214, communication interface 242, signal communication component 224, etc.) and then extracted from the data signal by the receiving device (e.g., communication interface 241, signal communication component 214, communication interface 242, signal communication component 224, etc.). The combined data and clock signal may be communicated over an energy transfer interface (e.g., 132, 231, 234, 237, etc.) and/or over a separate signal interface (e.g., 134).
The length of the energy transfer interface (e.g., 130, 132, 231, 234, 237, etc.) coupling energy transfer system 110 and vehicle 120 may be variable or fixed. For example, a wired energy transfer interface may have a fixed length (e.g., the length of cabling, traces, etc. from interface component 211 to interface component 221, etc.) which may not vary responsive to a change in relative position or distance between the vehicle and the energy transfer system. As another example, an inductive energy transfer interface and/or wireless energy transfer interface may have a variable length, where the length may be based on the distance between the energy transfer system and the vehicle, the distance between an energy transfer component of the energy transfer system and an energy transfer component of the vehicle, etc. In one embodiment, an energy transfer interface may be less than 2 miles in length. In one embodiment, an energy transfer interface may be shorter (e.g., less than 1000 feet in length). And in one embodiment, an energy transfer interface may be even shorter (e.g., less than 100 feet in length, less than 20 feet in length, less than 10 feet in length, less than a foot in length, etc.).
As shown in
As shown in
Charge and/or discharge component 228 of vehicle 120 may supply an energy transfer signal to enable an energy transfer between energy transfer system 110 and vehicle 120, where the energy transfer signal may be supplied in accordance with an energy transfer profile, in accordance with a voltage, in accordance with an energy transfer rate, in accordance with a current, in accordance with a power, in accordance with another attribute, some combination thereof, etc. Charge and/or discharge component 228 may convert the energy transfer signal from AC to DC, may convert the energy transfer signal from DC to AC, may alter a waveform of the energy transfer signal, may supply a PWM energy transfer signal, some combination thereof, etc. In one embodiment, charge and/or discharge component 228 may supply an energy transfer signal sufficient to charge an energy storage component (e.g., energy storage component 216 of energy transfer system 110, energy storage component 226 of vehicle 120, etc.). And in one embodiment, charge and/or discharge component 228 may pass the energy transfer signal with little or no alteration.
Charge and/or discharge component 218 and/or charge and/or discharge component 228 may be capable of implementing an equalization charge of an energy storage component (e.g., 216, 226, some combination thereof, etc.). For example, charge and/or discharge component 218 and/or charge and/or discharge component 228 may raise the charge level of at least one cell of the energy storage component to make it substantially equal to a charge level of at least one other cell of the energy storage component. In one embodiment, charge and/or discharge component 218 and/or charge and/or discharge component 228 may be able to control the amount of energy transferred to each cell, a group of cells, etc. of an energy storage component (e.g., 216, 226, some combination thereof, etc.) independently of an amount of energy transferred to at least one other cell.
Charge and/or discharge component 218 and/or charge and/or discharge component 228 may be capable of filtering the energy transfer signal. For example, noise (e.g., from power grid 250, a component of energy transfer system 110, a component of vehicle 120, from another component, etc.) may be filtered from the energy transfer signal. In one embodiment, filtering the energy transfer signal may improve the transfer of signals (e.g., data signals, clock signals, etc.) over the energy transfer interface by improving bandwidth, improving data rate, improving the distance that the signals may be communicated, reducing jitter, reducing errors, some combination thereof, etc.
In one embodiment, charge and/or discharge component 218 and charge and/or discharge component 228 may work together to implement an energy transfer between energy transfer system 110 and vehicle 120. For example, when transferring energy from energy transfer system 110 to vehicle 120, charge and/or discharge component 218 may prepare the energy transfer signal for transmission (e.g., by altering the energy transfer signal as discussed above) while charge and/or discharge component 228 may pass the energy transfer signal with little or no alteration (e.g., to enable charging of energy storage component 226). As another example, when transferring energy from vehicle 120 to energy transfer system 110, charge and/or discharge component 228 may prepare the energy transfer signal for transmission (e.g., by altering the energy transfer signal as discussed above) while charge and/or discharge component 218 may pass the energy transfer signal with little or no alteration (e.g., to enable charging of energy storage component 216).
Charge and/or discharge component 218 and charge and/or discharge component 228 may perform multiple energy transfers simultaneously. The simultaneous energy transfers may be from energy transfer system 110 to vehicle 120 over one or more energy transfer interfaces (e.g., 130, 132, 231, 234, 237, etc.). Alternatively, the simultaneous energy transfers may be from vehicle 120 to energy transfer system 110 over one or more energy transfer interfaces (e.g., 130, 132, 231, 234, 237, etc.). In one embodiment, the simultaneous energy transfers may include at least one energy transfer from energy transfer system 110 to vehicle 120 and at least one energy transfer from vehicle 120 to energy transfer system 110. As such, energy may be transferred between energy transfer system 110 and vehicle 120 in different directions simultaneously. In one embodiment, simultaneous energy transfers in different directions may be used to charge energy storage component 226 of vehicle 120 (e.g., in accordance with a first attribute such as a first energy transfer rate, first current, etc.) while power source 227 simultaneously discharges (e.g., in accordance with a second attribute such as a second energy transfer rate, second current, etc.).
As shown in
In one embodiment, power management component 215 can enable at least two simultaneous or contemporaneous energy transfers. For example, power management component 215 can enable power source 217 to charge energy storage component 216 while energy from power grid 250 is supplied for transfer to vehicle 120 (e.g., via charge and/or discharge component 218, via interface component 211, etc.). As another example, power management component 215 can enable power grid 250 to charge energy storage component 216 while energy from power source 217 is supplied for transfer to vehicle 120 (e.g., via charge and/or discharge component 218, via interface component 211, etc.). And as yet another example, power management component 215 can enable power source 217 to charge energy storage component 216 while power grid 250 is also used to charge energy storage component 216. It should be appreciated that power management component 215 may source energy from any number of components (e.g., of system 200) and/or supply energy to any number of components (e.g., of system 200), where the sourcing and supplying may occur simultaneously (or contemporaneously) or sequentially.
As shown in
In one embodiment, power management component 225 can enable at least two simultaneous or contemporaneous energy transfers. For example, power management component 225 can enable power source 227 to charge energy storage component 226 while energy from energy transfer system 110 (e.g., received over an energy transfer interface such as 130, 132, 231, 234, 237, etc.) is also supplied to charge energy storage component 226. As another example, power management component 215 can supply energy from both energy storage component 226 and power source 227 for transfer to energy transfer system 110 over an energy transfer interface (e.g., received over an energy transfer interface such as 130, 132, 231, 234, 237, etc.). And as yet another example, power management component 225 can supply energy from energy transfer system 110 (e.g., received over an energy transfer interface such as 130, 132, 231, 234, 237, etc.) to charge energy storage component 226 while power management component 225 simultaneously supplies energy from power source 227 for transfer to energy transfer system 110 over an energy transfer interface (e.g., received over an energy transfer interface such as 130, 132, 231, 234, 237, etc.). It should be appreciated that power management component 225 may source energy from any number of components (e.g., of system 200) and/or supply energy to any number of components (e.g., of system 200), where the sourcing and supplying may occur simultaneously (or contemporaneously) or sequentially.
Energy storage component 216 may be any component capable of storing energy. In one embodiment, energy storage component 216 may include an energy storage medium, where the energy storage medium includes at least one battery, at least one capacitor, at least one ultracapacitor, some combination thereof, etc. In one embodiment, the energy storage medium may include a number of cells, where each cell can be accessed (e.g., by charge and/or discharge component 218, power management component 215, charge and/or discharge component 228, etc.) for charge, discharge, some combination thereof, etc. The cells may be individually accessed (e.g., separately from at least one other cell), accessed as a group which is a subset of all the cells of energy storage component 216, accessed as a group which includes all the cells of energy storage component 216, etc. In one embodiment, the energy storage medium of energy storage component 216 may utilize a chemistry such as lithium ion (e.g., lithium cobalt oxide, lithium nickel oxide, lithium aluminum oxide, lithium iron phosphate, lithium manganese oxide, etc.), lithium ion polymer, nickel metal hydride, nickel cadmium, nickel hydrogen, nickel zinc, silver zinc, lead acid, some combination thereof, etc.
As shown in
Power source 217 may be any component capable of generating energy. For example, power source 217 may supply energy generated using the sun, the wind, the flow of water or another fluid, heat (e.g., from the sun, the earth, etc.), a nuclear reaction, etc. In one embodiment, power source 217 may be located near (e.g., on the same plot of land, on an adjacent plot of land, on a plot of land in the same town, etc.) and/or owned by the same entity as at least one other component of system 200. In one embodiment, power source 217 may supply electricity in the form of AC, where the AC may have a phase (e.g., single-phase, three-phase, etc.), a voltage (e.g., 120 volts, 240 volts, 480 volts, etc.), and a frequency (e.g., 60 Hz, 50 Hz, etc.). It should be appreciated that the voltage and/or frequency may vary over a predetermined range (e.g., determined by a manufacturer of power source 217, determined by energy transfer system 110, etc.). In one embodiment, power source 217 may supply electricity in the form of DC, PWM, etc.
As shown in
As shown in
In one embodiment, an interface (e.g., 130, 132, 231, 234, 237, 134, etc.) used to transfer energy and/or communicate signals between energy transfer system 110 and vehicle 120 may be separate from, isolated from, not directly coupled to, and/or not part of a power line or transmission line (e.g., of power grid 250). In this manner, power grid 250 may be separate from an interface coupling energy transfer system 110 and vehicle 120. In one embodiment, an interface coupling energy transfer system 110 to power grid 250 may be isolated from an energy transfer interface (e.g., 130, 132, etc.) by a component capable of filtering or removing signals communicated between energy transfer system 110 and vehicle 120 from an energy transfer signal. For example, a transformer that supplies electricity to at least one circuit of energy transfer system 110 may be used to attenuate or not pass higher frequency signal components to the interface coupling energy transfer system 110 and power grid 250, where the attenuation of the higher frequency signal components may reduce unauthorized access to signals communicated between energy transfer system 110 and vehicle 120. As another example, a circuit (e.g., disposed on a printed circuit board, disposed within an integrated circuit, etc.) may be used to reduce unauthorized access to signals communicated between energy transfer system 110 and vehicle 120 (e.g., by reducing the ability of the signals to pass outside of energy transfer system 110 and/or vehicle 120, by isolating energy transfer system 110 from power grid 250, by filtering or removing the signals before passing outside of energy transfer system 110 and/or vehicle 120, etc.). As such, the ability of an external component (e.g., a component coupled to power grid 250, a system or device other than energy transfer system 110 and/or vehicle 120, etc.) to access signals communicated between energy transfer system 110 and vehicle 120 (e.g., over an energy transfer interface and/or a separate signal interface) can be advantageously reduced to improve security.
As shown in
Meter 219 may be used to determine the amount of energy received by energy transfer system 110 (e.g., as a result of an energy transfer from vehicle 120 to energy transfer system 110). In one embodiment, energy may be lost during the energy transfer, and therefore, the amount of energy transferred from vehicle 120 (e.g., as measured by meter 229) may be different from the amount of energy received by energy transfer system 110 (e.g., as measured by meter 219). Thus, the amount of energy measured by meter 219 may be advantageously used to more accurately or precisely account for (e.g., during a financial or payment transaction associated with the energy transfer) energy transferred from vehicle 120.
Meter 229 may be capable of monitoring energy transfers to vehicle 120 (e.g., from energy transfer system 110, etc.), from vehicle 120 (e.g., to energy transfer system 110, power grid 250, etc.), through vehicle 120, some combination thereof, etc. Meter 229 may store (or caused to be stored) at least one attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) of an energy transfer, where the at least one attribute may be associated with one or more times (e.g., a voltage, current, etc. associated with an energy transfer at a given time or times). The at least one attribute may also include at least one cumulative attribute (e.g., a total amount of energy transferred to vehicle 120 during at least one energy transfer, a total amount of energy transferred from vehicle 120 during at least one energy transfer, etc.) in one embodiment. In this manner, meter 229 may enable data to be collected over time and analyzed to determine trends, patterns, or the like.
Meter 229 may be used to determine the amount of energy received by vehicle 120 (e.g., as a result of an energy transfer from energy transfer system 110 to vehicle 120). In one embodiment, energy may be lost during the energy transfer, and therefore, the amount of energy transferred from energy transfer system 110 (e.g., as measured by meter 219) may be different from the amount of energy received by vehicle 120 (e.g., as measured by meter 229). Thus, the amount of energy measured by meter 229 may be advantageously used to more accurately or precisely account for (e.g., during a financial or payment transaction associated with the energy transfer) energy transferred from energy transfer system 110.
In one embodiment, meter 219 and meter 229 may be used to determine an amount of energy lost during an energy transfer between energy transfer system 110 and vehicle 120. For example, the difference between an amount of energy measured by meter 219 and an amount of energy measured by meter 229 may be used to determine an amount of energy lost during an energy transfer. And in one embodiment, the difference between an amount of energy measured by meter 219 and an amount of energy measured by meter 229 may be used to determine an efficiency of an energy transfer between energy transfer system 110 and vehicle 120, another attribute or parameter associated with the energy transfer, etc.
Although
In one embodiment, signals communicated between energy transfer system 110 and a vehicle (e.g., vehicle 320a over interface 330a, vehicle 320b over interface 330b, vehicle 320c over interface 330c, etc.) may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. An interface (e.g., 330a, 330b, 330c, etc.) coupling energy transfer system 110 and a vehicle (e.g., 320a, 320b, 320c, etc.) may implement unidirectional signal communication and/or bidirectional signal communication in one embodiment. And in one embodiment, signals may be communicated between energy transfer system 110 and a vehicle (e.g., vehicle 320a over interface 330a, vehicle 320b over interface 330b, vehicle 320c over interface 330c, etc.) using single-ended signaling and/or differential signaling.
In one embodiment, interface 330a may be implemented in accordance with (e.g., include components of, function similarly to, etc.) one or more of the interfaces described herein (e.g., interface 130, 132, 231, 234, 237, 134, etc.). Interface 330b may be implemented in accordance with (e.g., include components of, function similarly to, etc.) one or more of the interfaces described herein (e.g., interface 130, 132, 231, 234, 237, 134, etc.). Interface 330c may be implemented in accordance with (e.g., include components of, function similarly to, etc.) one or more of the interfaces described herein (e.g., interface 130, 132, 231, 234, 237, 134, etc.). And in one embodiment, one or more of the vehicles of system 300 (e.g., vehicle 320a, vehicle 320b, vehicle 320c, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) vehicle 120.
As shown in
As shown in
Signal communication component 214 may enable communication of signals (e.g., data signals, clock signals, etc.) over one or more of the interfaces (e.g., 330a, 330b, 330c, etc.). The multiple communications may occur over the same interface (e.g., 330a, etc.) or over multiple interfaces (e.g., 330a and 330b, etc.). The multiple communications may occur in the same direction between energy transfer system 110 and a vehicle (e.g., 320a, 320b, 320c, etc.) or in different directions. In one embodiment, the multiple communications may take place simultaneously or contemporaneously. The multiple communications may take place sequentially in one embodiment.
As shown in
Although
In one embodiment, one or more of the charge and/or discharge components (e.g., 418a, 418b, 418c, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) charge and/or discharge component 218. One or more of the meters (e.g., 419a, 419b, 419c, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) meter 219 in one embodiment. In one embodiment, one or more of the interface components (e.g., 411a, 411b, 411c, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) interface component 211. One or more of the communication interfaces (e.g., 441a, 441b, 441c, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) communication interface 241 in one embodiment.
As shown in
In one embodiment, power management component 215, either alone or in combination with at least one other component (e.g., charge and/or discharge component 418a, charge and/or discharge component 418b, charge and/or discharge component 418c, interface component 411a, interface component 411b, interface component 411c, some combination thereof, etc.), may control the one or more energy transfers between two or more vehicles. For example, as shown in
In one embodiment, the at least one energy transfer between two or more vehicles (e.g., implemented in accordance with power management component 215) may occur simultaneously or contemporaneously with at least one other energy transfer. For example, power management component 215 may be capable of enabling the at least one energy transfer between two or more vehicles simultaneously or contemporaneously with one or more energy transfers between a component (e.g., power grid 250, energy storage component 216, power source 217, etc.) and at least one vehicle (e.g., 320a, 320b, 320c, etc.).
As shown in
In one embodiment, a communication interface (e.g., 441a, 441b, 441c, etc.) may communicate signals with another component of system 400 using any of the signal communication techniques discussed herein. For example, a communication interface (e.g., 441a, 441b, 441c, etc.) may communicate signals with another component of system 400 (e.g., another communication interface, power management component 215, etc.) via modulation and/or demodulation, where both the communication interface (e.g., using a signal communication component similar to signal communication component 214) and the other component (e.g., using a signal communication component similar to signal communication component 214) are each capable of modulating and demodulating signals transferred over an interface coupling the communication interface and the other component. As another example, a communication interface (e.g., 441a, 441b, 441c, etc.) may communicate signals with another component of system 400 (e.g., another communication interface, power management component 215, etc.) via an electromagnetic field surrounding at least one conductor of an interface coupling the communication interface and the other component, where both the communication interface (e.g., using a signal communication component similar to signal communication component 214) and the other component (e.g., using a signal communication component similar to signal communication component 214) are each capable of altering the electromagnetic field surrounding the at least one conductor of the interface to communicate signals between the communication interface and the other component. Alternatively, a communication interface (e.g., 441a, 441b, 441c, etc.) may communicate signals with another component of system 400 using a separate signal interface (e.g., similar to signal interface 134) coupling the communication interface to the other component.
As shown in
Each of the set of components (e.g., 410, 420, 430, etc.) may be disposed in at least one respective housing in one embodiment. The one or more housings containing each set of components may be disposed at least partially in the ground, in a curb, in the water, in a sign, in a guard rail, in an overpass, in a street light, in a stoplight, etc. In one embodiment, each of the set of components (e.g., 410, 420, 430, etc.) may implement a respective charge station capable of performing an energy transfer with one or more vehicles (e.g., 120, 320a, 320b, 320c, etc.).
Power management component 215 may be located remotely from one or more components of system 400 (e.g., charge and/or discharge component 418a, set of components 410, etc.). In one embodiment, power management component 215 may be located in a first location (e.g., near a utility meter, utility service entrance, breaker box, near a building, near or attached to a building owned by an entity profiting from an energy transfer carried out using system 400, etc.), while the one or more other components are located in a second location (e.g., in or near a parking lot owned by an entity profiting from an energy transfer carried out using system 400, in or near a boat dock owned by an entity profiting from an energy transfer carried out using system 400, in or near an airport owned by an entity profiting from an energy transfer carried out using system 400, in a vehicle route, in an object disposed near a vehicle route, etc.). Power management component 215 may be coupled to a remotely-located component (e.g., charge and/or discharge component 418a, charge and/or discharge component 418b, charge and/or discharge component 418c, set of components 410, set of components 420, set of components 430, etc.) via single interface capable of transferring energy and/or communicating signals. Alternatively, power management component 215 may be coupled to a remotely-located component (e.g., charge and/or discharge component 418a, charge and/or discharge component 418b, charge and/or discharge component 418c, set of components 410, set of components 420, set of components 430, etc.) via a plurality of interfaces, where each interface may be capable of transferring energy and/or communicating signals.
Although
As shown in
As shown in
Registration component 610 may enable registration of one or more vehicles. For example, information may be collected about a vehicle (e.g., 120, 320a, 320b, 320c, etc.), about a user of the vehicle (e.g., an owner, lessee, driver, etc.), about preferences or attributes related to the vehicle, etc. The collected information may be stored in a memory or database (e.g., 650, 660, 665, 680, etc.) accessible to interface system 550. In one embodiment, the information may be collected using a user interface (e.g., GUI 900 of
As shown in
In one embodiment, at least one attribute may be determined using information related to an energy transfer system (e.g., 110) and information related to a vehicle (e.g., 120, 320a, 320b, 320c, etc.). For example, attributes compatible with the energy transfer system may be compared to attributes compatible with the vehicle to determine at least one attribute compatible with both the energy transfer system and the vehicle. The at least one attribute may then be filtered using other information (e.g., a state of the energy transfer system, a user preference associated with the energy transfer, etc.). For example, one or more attributes may be filtered which exceed a remaining capacity of the energy transfer system to transfer energy at a particular time, where the remaining capacity may vary over time based on, for example, a load on the energy transfer system due to charging other vehicles, a change in an amount of energy supplied by a component of the energy transfer system (e.g., energy storage component 216, power source 217, etc.), supplying electricity to a building or lights in a parking lot, etc. As another example, one or more attributes may be filtered which correspond to an energy transfer which cannot be performed (e.g., due to a problem with an energy transfer interface, due to a problem with a signal interface, etc.). As yet another example, one or more attributes may be filtered based on a user preference associated with a state of the energy transfer system (e.g., higher energy transfer rates should be filtered as the capacity of the energy transfer system to transfer energy goes down). As a further example, one or more attributes may be filtered based on a user preference associated with an energy transfer system (e.g., entered using GUI 800 of
At least one cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) may be determined based on a cost of electricity to the energy transfer system (e.g., as determined by the utility providing power, by a cost to purchase and/or install a power source such as power source 217, by a cost to operate a power source such as power source 217, etc.) and/or a cost of electricity to the vehicle (e.g., as determined by a cost to purchase and/or install a power source such as power source 227, by a cost to operate a power source such as power source 227, etc.). For example, a utility may charge more for power during the day than at night (e.g., due to variations in demand for electricity throughout the day), and therefore, the cost may be higher for an energy transfer performed during the day than for an energy transfer performed at night. As another example, a power source (e.g., 217, 227, etc.) which has a higher upfront cost (e.g., the cost to purchase and/or install the power source and any related components) and/or has a higher cost to operate (e.g., higher maintenance costs, higher fees for licensing the equipment, etc.) may result in a higher cost.
In one embodiment, at least one cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) may be determined based on supply of and/or demand for electricity. For example, if the demand for energy is low (e.g., caused by a fewer number of vehicles requesting energy from the energy transfer system, a larger number of vehicles requesting to transfer energy to the energy transfer system, etc.), then the cost may be lower. If the demand for energy is high (e.g., caused by a larger number of vehicles requesting energy from the energy transfer system, a smaller number of vehicles requesting to transfer energy to the energy transfer system, etc.), then the cost may be higher. As another example, if the supply of energy is low (e.g., the amount of energy capable of being transferred by the energy transfer system is low, a large number of vehicles requesting to transfer energy from the energy transfer system, a small number of vehicles requesting to transfer energy to the energy transfer system, etc.), then the cost may be higher. If the supply of energy is high (e.g., the amount of energy capable of being transferred by the energy transfer system is high, a small number of vehicles requesting to transfer energy from the energy transfer system, a large number of vehicles requesting to transfer energy to the energy transfer system, etc.), then the cost may be lower.
At least one cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) may be determined based on incentives presented to one or more parties to the transaction. For example, if the energy transfer system advertises for another party (e.g., entity, individual, etc.), directs business to the other party, etc., a cost of energy transferred to a vehicle may be lowered in exchange for a kickback (e.g., financial, exchange of services, etc.) to the energy transfer system (e.g., an entity associated therewith, an individual associated therewith, etc.) from the other party. In one embodiment, a region (e.g., 1095) of a GUI (e.g., 1000) may be used to present incentives. As another example, it may be advantageous to receive the energy at a higher energy transfer rate (e.g., an energy transfer system can accumulate a larger amount of energy more quickly that can be transferred to other vehicles for profit, the duration of the energy transfer to a vehicle can be reduced to enable use of the vehicle in a shorter amount of time, etc.), and therefore, the cost may be increased when transferred at a higher rate (e.g., an increase in the energy transfer rate may result in a larger overall cost for the energy transfer even though the same amount of energy may be transferred at both energy transfer rates).
In one embodiment, at least one cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) may be determined based on a user preference. For example, a user may input a preference (e.g., using region 842 of GUI 800 of
As shown in
Pre-transfer processing component 620 may handle problems which occur prior to performing an energy transfer. For example, pre-transfer processing component 620 may monitor and detect a problem with an interface (e.g., a plug is not properly inserted into a receptacle to enable energy transfer and/or signal communication over the interface, etc.). In one embodiment, pre-transfer processing component 620 may request that corrective action be taken (e.g., instruct a user to properly insert the plug into the receptacle, etc.), attempt corrective action without user participation (e.g., restart or reinitialize the interface to attempt to restore energy transfer capability and/or signal communication ability to the interface, etc.), etc. Pre-transfer processing component 620 may filter one or more attributes which correspond to the problem (e.g., if the problem with an interface cannot be corrected, if the problem is not corrected by a user within a predetermined period of time after notification, etc.), where the filtering may provide one or more attributes to be displayed on a GUI (e.g., 1000) for selection by a user (e.g., to initiate an energy transfer in accordance with at least one attribute selected using the GUI).
As shown in
In one embodiment, pre-transfer processing component 620 may increase security by communicating authentication results to a user (e.g., using auxiliary display region 1095 of GUI 1000, etc.), where the authentication results may correspond to an authentication of a user (e.g., responsive to a user entering an incorrect code to attempt to charge, discharge, use, and/or move the vehicle), an authentication of one or more components of the vehicle (e.g., authentication of energy storage component 226, authentication of charge and/or discharge component 228, authentication of security component 2820 of
In one embodiment, pre-transfer processing component 620 may be used to perform an authentication. For example, pre-transfer processing component 620 may be used to perform an authentication of a user to enable (e.g., if the authentication is successful) an energy transfer to a vehicle, an energy transfer from a vehicle, use of a vehicle, movement of a vehicle, some combination thereof, etc. As another example, pre-transfer processing component 620 may be used to perform an authentication of a component of a vehicle (e.g., 120) and/or of a component of an energy transfer system (e.g., 110) to enable (e.g., if the authentication is successful) communication between at least two systems (e.g., interface system 550, payment system 560, energy transfer system 110, vehicle 120, etc.), an energy transfer between an energy transfer system and a vehicle, a signal communication between an energy transfer system and a vehicle, some combination thereof, etc. In one embodiment, the authentication may be performed by pre-transfer processing component 620 alone or in combination with at least one other component (e.g., authentication component 1340 of
As shown in
In one embodiment, energy transfer processing component 630 may identify an interface corresponding to the problem (e.g., a plug is fully or partially removed from a receptacle during an energy transfer, the vehicle moves during an energy transfer which reduces an ability to transfer energy over an inductive interface or wireless interface, a component of an interface fails or goes offline, etc.). Energy transfer processing component 630 may determine if any interfaces remain to carry out the energy transfer. If at least one other interface is available, then energy transfer processing component 630 may adjust the energy transfer accordingly. For example, energy transfer processing component 630 may confirm the operability of one or more of the at least one interface, begin to transfer energy using an interface which was not being used to transfer energy, adjust at least one attribute of an interface which was being used to transfer energy (e.g., increase the amount of energy transferred over an interface which is already in use to accommodate the reduction in energy transferred caused by the deactivation of the interface associated with the problem, to carry out a request by a user for an increase in the energy transfer, to carry out an automated request for an increase in the energy transfer, etc.), etc. If no interfaces remain to carry out the energy transfer, then energy transfer processing component 630 may notify a user (e.g., using GUI 1000 of
In one embodiment, energy transfer processing component 630 may identify an attribute of the energy transfer corresponding to the problem (e.g., energy transfer system 110 may not be able to support an energy transfer at a selected power or current due to a problem with energy transfer system 110, due to an unforeseen change in load on energy transfer system 110, etc.). Energy transfer processing component 630 may determine if any attributes remain to carry out the energy transfer. If at least one other attribute is available, then energy transfer processing component 630 may adjust the energy transfer accordingly. For example, energy transfer processing component 630 may confirm the operability of one or more of the at least one attribute, begin to transfer energy in accordance with the one or more remaining attributes, etc. In one embodiment, at least one attribute may be selected from the one or more remaining attributes, where the selection is made automatically (e.g., by energy transfer system 110, by energy transfer processing component 630, etc.) or manually (e.g., by a user via a GUI such as GUI 1000, etc.). If no attributes remain to carry out the energy transfer, then energy transfer processing component 630 may notify a user (e.g., using GUI 1000 of
As shown in
In one embodiment, energy transfer processing component 630 may increase security by communicating authentication results to a user (e.g., for presentation using auxiliary display region 1095 of GUI 1000), where the authentication results may correspond to an authentication of a user (e.g., responsive to a user entering an incorrect code to attempt to charge, discharge, use and/or move the vehicle), an authentication of one or more components of the vehicle (e.g., authentication of energy storage component 226, authentication of charge and/or discharge component 228, authentication of security component 2820 of
Energy transfer processing component 630 may process information for an energy transfer. For example, energy transfer processing component 630 may collect and store information (e.g. in database 690), where the information may include the value or level of one or more attributes sampled at one or more times during the energy transfer. Energy transfer processing component 630 may process the stored information to determine trends, patterns, or the like for the energy transfer. In one embodiment, energy transfer processing component 630 may process the stored information by comparing data for one or more energy transfers associated with a particular vehicle (e.g., 120, 320a, 320b, 320c, etc.), comparing data for one or more energy transfers associated with a particular energy transfer system (e.g., 110), comparing data for one or more energy transfers associated with a particular vehicle (e.g., 120, 320a, 320b, 320c, etc.) against data for one or more energy transfers associated with at least one other vehicle, comparing data for one or more energy transfers associated with a particular energy transfer system (e.g., 110) against data for one or more energy transfers associated with at least one other energy transfer system, etc.
As shown in
In one embodiment, post-transfer processing component 640 may execute a payment transaction between two or more parties for at least one energy transfer. For example, responsive to receiving an indication that the at least one energy transfer has been concluded and/or responsive to receiving a cost for the at least one energy transfer, post-transfer processing component 640 may implement a funds transfer from a first account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 1080 of GUI 1000, etc.) associated with a vehicle and/or at least one user thereof to a second account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 941 of GUI 900, etc.) associated with an energy transfer system and/or at least one user thereof. As another example, responsive to receiving an indication that the at least one energy transfer has been concluded and/or responsive to receiving a cost for the at least one energy transfer, post-transfer processing component 640 may implement a funds transfer from a first account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 941 of GUI 900, etc.) associated with an energy transfer system and/or at least one user thereof to a second account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 1080 of GUI 1000, etc.) associated with a vehicle and/or at least one user thereof. In one embodiment, the term “payment system” (e.g., with reference to payment system 560, another payment system, etc.) as used herein may be a bank or other financial institution, a credit card company, an online payment service such as Paypal, etc.
In one embodiment, post-transfer processing component 640 may implement a funds transfer using a component of energy transfer system 110. For example, a payment interface (e.g., payment interface 1330 of
Post-transfer processing component 640 may communicate with an energy transfer system (e.g., 110) and/or a vehicle (e.g., 120, 320a, 320b, 320c, etc.) to increase security after an energy transfer. For example, post-transfer processing component 640 may communicate information about a location and/or status of a vehicle (e.g., 120, 320a, 320b, 320c, etc.) to a user (e.g., for presentation using GUI 1000 of
In one embodiment, post-transfer processing component 640 may increase security by communicating authentication results to a user (e.g., using GUI 1000 of
In one embodiment, post-transfer processing component 640 may implement a securing of one or more energy transfer interfaces after the energy transfer. After the one or more energy transfer interfaces are secured, an authentication procedure (e.g., an authentication of a user, an authentication of a component of an energy transfer system, an authentication of a component of a vehicle, some combination thereof, etc.) may be conducted (e.g., using pre-transfer processing component 620, authentication component 1340 of
In one embodiment, registration component 610 may access, generate, process and/or communicate any information presented using GUI 800 of
As shown in
In one embodiment, interface system 550 may enable an energy transfer system (e.g., 110) to more efficiently and conveniently perform an energy transfer with one or more vehicles (e.g., 120, 320a, 320b, 320c, etc.). For example, interface system 550 may coordinate an energy transfer between an energy transfer system and a vehicle regardless of the type of vehicle (e.g., make of vehicle, model of vehicle, year of manufacture of the vehicle, user modifications to the vehicle, etc.), the type of energy transfer interface or energy transfer interfaces used by the vehicle, the number of energy transfer interfaces used by the vehicle, etc. Interface system 550 may handle one or more aspects of the transaction (e.g., contacting a user of the vehicle, presenting one or more energy transfer options to the user, initiating the energy transfer based on a user selection of at least one of the options, communicating notifications to the user, handling or assisting in the handling of problems encountered during the energy transfer, collecting payment from the user, sending payment to the user, some combination thereof, etc.), thereby reducing the work or number of tasks performed by the energy transfer system (or a user of the energy transfer system) to conduct one or more energy transfers. In one embodiment, interface system 550 may communicate with a user (e.g., of the vehicle) who is not physically present at the vehicle and/or not physically present at the energy transfer system, thereby enabling an energy transfer to be setup and initiated regardless of the location of the user (e.g., of the vehicle).
Although
Although
The energy transfer systems of system 700 (e.g., 710a, 710b, 710c, etc.) may be located near one another in one embodiment. Alternatively, at least one of the energy transfer systems may be remotely located from at least one other energy transfer system. In one embodiment, the energy transfer systems of system 700 (e.g., 710a, 710b, 710c, etc.) may be associated with or owned by the same user (e.g. an organization or business, an individual, an owner, a lessee, an attendant, etc.). Alternatively, at least one of the energy transfer systems may be associated with or owned by a user (e.g., an organization or business, an individual, an owner, a lessee, an attendant, etc.) which is different from that of at least one other energy transfer system.
As shown in
In one embodiment, interface system 550 may be used to present a user interface (e.g., GUI 1000 of
In one embodiment, communications between a vehicle (e.g., 120, 320a, 320b, 320c, etc.) and an external system may be sent over a cellular network (e.g., cellular data network, cellular phone network, etc.) using a component of the vehicle (e.g., communication interface 242). For example, communication interface 242 may be used to transmit and receive communications over a cellular network with an external system, where the external system may be an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), an interface system (e.g., 550), a payment system (e.g., 560), etc.
In one embodiment, communications between a vehicle (e.g., 120, 320a, 320b, 320c, etc.) and an external system may be sent over a cellular network (e.g., cellular data network, cellular phone network, etc.) using a computer system (e.g., 790, 590, 592, 594, etc.) disposed in proximity to or within the vehicle. For example, a communication from the vehicle may be sent over an interface (e.g., a wired interface, a wireless interface which operates in accordance with a wireless standard such as 802.11x, Bluetooth, etc.) to a computer system (e.g., 790, 590, 592, 594, etc.), where the computer system may then transmit the communication to the external system using a cellular network. As another example, a communication may be sent to a computer system (e.g., 790, 590, 592, 594, etc.) over a cellular network, where the computer system may then transmit the communication to the vehicle over an interface (e.g., a wired interface, a wireless interface which operates in accordance with a wireless standard such as 802.11x, Bluetooth, etc.). In one embodiment, access to the cellular network may be granted or enabled by an application executed by the computer system (e.g., 790, 590, 592, 594, etc.), where the application may be used to register a vehicle (e.g., by causing GUI 900 of
Although
As shown in
GUI 800 may enable input of authentication information (e.g., credentials) associated with an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.). For example, region 830 may be used to input a username. Region 831 may be used to input a password. In one embodiment, the authentication information (e.g., entered using regions 830 and 831) may be used to perform an authentication of the energy transfer system (or a user of the energy transfer system) to enable (e.g., if the authentication is successful) communication with another system (e.g., interface system 550, payment system 560, vehicle 120, etc.), an energy transfer between the energy transfer system and a vehicle, communication of signals between the energy transfer system and a vehicle, some combination thereof, etc. The authentication information may be used to gain access to GUI 800 to make changes to a configuration of an energy transfer system or further configure an energy transfer system in one embodiment. And in one embodiment, authentication using information entered using GUI 800 (e.g., region 830, region 831, etc.) may be performed by a component of a vehicle (e.g., authentication component 1380 of
As shown in
Region 841 may be used to input or configure one or more attributes (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) associated with an energy transfer performed by the energy transfer system, where the attributes may be configured for the energy transfer system as a whole, for each set of components defined using region 840, for a plurality of components, for individual components, etc. For example, region 841 may be used to define a minimum value of an attribute (e.g., such that an energy transfer below the minimum value of the attribute will not be performed, energy transfers below the minimum value of the attribute will not be displayed for selection by a user on GUI 1000 of
In one embodiment, region 841 may be used to configure one or more attributes based on a variation in supply of energy. The supply of energy may be determined based upon a state of an energy transfer system (e.g., 110), where the state may include a remaining capacity of the energy transfer system to transfer energy (e.g., measured in units of a current, power, etc.). In one embodiment, the remaining capacity of the energy transfer system to transfer energy may be calculated by subtracting a current energy transfer rate of energy transferred to the energy transfer system (e.g., from power grid 250) from a maximum energy transfer rate of energy transferred to the energy transfer system (e.g., determined by power grid 250, a utility supplying power to the energy transfer system, a rating of an electrical service entrance supplying energy to the energy transfer system, a local building code, etc.) and then adding the result to a cumulative energy transfer rate (if any exists) supplied by components of the energy transfer system (e.g., energy storage component 216, power source 217, etc.) and/or supplied by one or more vehicles (e.g., 120, 320a, 320b, 320c, etc.). For example, region 841 may be used to define a first configuration (e.g., a value, range of values, etc.) of one or more attributes for a first supply level and a second configuration (e.g., a value, range of values, etc.) of one or more attributes for a second supply level. As such, in one embodiment, higher energy transfer rates may be excluded or prevented as the capacity of the energy transfer system to transfer energy decreases (e.g., as more vehicles request or receive energy from the energy transfer system).
Region 841 may be used to configure one or more attributes based on a variation in demand for energy. The demand for energy may be determined based upon a number of vehicles requesting or performing an energy transfer with the energy transfer system, an amount of energy being requested or transferred from the energy transfer system at a particular time, etc. For example, region 841 may be used to define a first configuration (e.g., a value, range of values, etc.) of one or more attributes for a first demand level and a second configuration (e.g., a value, range of values, etc.) of one or more attributes for a second demand level. As such, in one embodiment, lower energy transfer rates may be excluded or prevented as the capacity of the energy transfer system to transfer energy increases (e.g., as fewer vehicles request or receive energy from the energy transfer system).
As shown in
Region 843 may be used to input information for configuring one or more costs associated with a discharge (e.g., a transfer of energy to the energy transfer system from one or more vehicles). For example, a minimum cost and/or maximum cost may be defined using region 843, where the minimum cost and/or maximum cost may be associated with a total cost for a discharge, an energy transfer rate cost, an energy transfer profile cost, some combination thereof, etc. As another example, costs for one or more discharges may be defined based upon an ability of a vehicle (e.g., 120, 320a, 320b, 320c, etc.) to supply energy and/or a demand for energy from the vehicle. In one embodiment, the relationship between cost (e.g., associated with at least one discharge) and supply may be input using an interactive feature (e.g., a table, graph, pie chart, or the like) displayed in region 843. The relationship between cost (e.g., associated with at least one discharge) and demand may be input using an interactive feature (e.g., a table, graph, pie chart, or the like) displayed in region 843 in one embodiment. Accordingly, costs for a discharge may be conveniently, efficiently and/or effectively configured using region 843.
As shown in
Region 847 may be used to configure charges and/or discharges between the energy transfer system and one or more vehicles. For example, region 847 may be used to specify a chronological ordering of one or more charges and/or one or more discharges. Region 847 may be used to enable and/or disable a charge, enable and/or disable a discharge, etc. Region 847 may be used to configure how the energy transfer system adapts to an addition of one or more vehicles (e.g., the energy transfer rate for at least one vehicle is lowered to enable an energy transfer to the additional vehicle or vehicles, etc.) and/or a removal of one of more vehicles (e.g., the energy transfer rate for at least one vehicle is increased after at least one energy transfer with at least one vehicle is completed, etc.).
As shown in
Region 850 may be used to configure signal communication of an energy transfer system (e.g., 110). In one embodiment, region 850 may be used to define how signals are communicated between the energy transfer system and an external system (e.g., interface system 550, one or more vehicles, a computer system such as computer system 570, etc.). For example, region 850 may be used to define which interfaces are used to communicate signals (e.g., using a signal interface such as interface 134, using an energy transfer interface such as energy transfer interface 231, 234, 237, etc.), how the signals are communicated over each type of interface (e.g., by configuring components used to communicate signals such as communication interface 241, signal communication component 214, power management component 215, etc.), etc. As another example, region 850 may be used to define parameters or attributes of signal communication (e.g., techniques used to secure data, a bandwidth, a data rate, jitter reduction techniques, synchronization techniques, error correction, etc.).
Region 850 may be used to define how signals are communicated within the energy transfer system (e.g., between communication interface 241 and power management component 215, between signal communication component 214 and power management component 215, etc.). For example, region 850 may be used to define which interfaces are used to communicate signals (e.g., using an energy transfer interface, using a separate signal communication interface, etc.) within the energy transfer system, how the signals are communicated over each type of interface (e.g., by configuring components used to communicate signals such as communication interface 241, signal communication component 214, power management component 215, etc.), etc. As another example, region 850 may be used to define parameters or attributes of signal communication (e.g., techniques used to secure data, a bandwidth, a data rate, jitter reduction techniques, synchronization techniques, error correction, etc.) within the energy transfer system.
As shown in
Region 852 may be used to configure a display of an energy transfer system (e.g., display device 511). For example, region 852 may be used to configure a state (e.g., enabled, disabled, etc.) of the display. A parameter or attribute of the display (e.g., a brightness, contrast, automatic dimming or powering off of the display after a predetermined time, etc.) may be configured using region 852. Region 852 may also be used to configure a parameter or attribute of a touch screen (e.g., sensitivity, x and y position calibration, etc.) corresponding to (e.g., overlaying) the display.
As shown in
Region 854 may be used to configure a payment interface (e.g., 1330 of
As shown in
In one embodiment, each of the regions (e.g., 805, 810, 811, 812, 813, 814, 830, 831, 840, 841, 842, 843, 844, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, etc.) of GUI 800 may be a field enabling entry of at least one character, a radio button, a menu, drop-down menu, an interactive image (e.g., enabling a user to make a selection using the image, modify the image, etc.), or any other element enabling the input of information.
Although
As shown in
GUI 900 may enable input of authentication information (e.g., credentials) associated with a vehicle (e.g., 120, 320a, 320b, 320c, etc.). For example, region 930 may be used to input a username. Region 931 may be used to input a password. In one embodiment, the authentication information (e.g., entered using regions 930 and 931) may be used to perform an authentication of the vehicle (or a user of the vehicle) to enable (e.g., if the authentication is successful) communication with another system (e.g., interface system 550, payment system 560, energy transfer system 110, etc.), an energy transfer between the vehicle and an energy transfer system, communication of signals between the vehicle and an energy transfer system, some combination thereof, etc. The authentication information may be used to gain access to GUI 900 to make changes to a configuration of a vehicle or further configure a vehicle in one embodiment. And in one embodiment, authentication using information entered using GUI 900 (e.g., region 930, 931, etc.) may be performed by a component of a vehicle (e.g., authentication component 1380 of
As shown in
Region 941 may enable information associated with a payment system (e.g., 560) to be entered. For example, a user may use region 941 to indicate a payment system (e.g., a name, website, etc.), to enter authentication information (e.g., username, password, etc.) associated with the payment system, to enter other information (e.g., account number, credit card number, etc.) used to execute a transaction with the payment system, etc. In one embodiment, entry of information using region 941 may enable more efficient payment for an energy transfer (e.g., as a user need not re-enter payment information for each energy transfer).
Region 950 may enable configuration of a graphical user interface (e.g., GUI 1000 of
As shown in
Region 952 may be used to configure email notifications associated with an energy transfer to and/or from a vehicle. For example, region 952 may be used to enable and/or disable notifications sent via email. Region 952 may be used to specify at least one email address to which notifications can be sent.
As shown in
Region 954 may be used to configure notifications sent via phone (e.g., as an automated call communicating the notification using sound) associated with an energy transfer to and/or from a vehicle. For example, region 954 may be used to enable and/or disable notifications sent via phone. Region 954 may be used to specify at least one recipient (e.g., a phone number, a portable electronic device, etc.) to which notifications may be sent.
As shown in
In one embodiment, region 960 may be used to configure one or more attributes based on a variation in supply of energy. The supply of energy may be determined based upon a remaining capacity (e.g., a remaining current, a remaining power, etc.) of the vehicle to transfer energy. For example, region 960 may be used to define a first configuration (e.g., a value, range of values, etc.) of one or more attributes for a first supply level and a second configuration (e.g., a value, range of values, etc.) of one or more attributes for a second supply level. As such, in one embodiment, higher energy transfer rates may be excluded or prevented as the capacity of the vehicle to transfer energy decreases (e.g., as more energy is requested from or transferred to an energy transfer system, as more energy is requested from or transferred to at least one other vehicle, as the ability of a power source of the vehicle to produce energy is reduced, etc.).
Region 960 may be used to configure one or more attributes based on a variation in demand for energy. The demand for energy may be determined based upon a number of systems (e.g., energy transfer systems, other vehicles, etc.) requesting or performing an energy transfer with the vehicle, an amount of energy being requested or transferred from the vehicle at a particular time, etc. For example, region 960 may be used to define a first configuration (e.g., a value, range of values, etc.) of one or more attributes for a first demand level and a second configuration (e.g., a value, range of values, etc.) of one or more attributes for a second demand level. As such, in one embodiment, lower energy transfer rates may be excluded or prevented as the capacity of the vehicle to transfer energy increases (e.g., as less energy is requested from or transferred to an energy transfer system, as less energy is requested from or transferred to at least one other vehicle, etc.).
As shown in
Region 962 may be used to input information for configuring one or more costs associated with a discharge (e.g., a transfer of energy from the vehicle). For example, a minimum cost and/or maximum cost may be defined using region 962, where the minimum cost and/or maximum cost may be associated with a total cost for a discharge, an energy transfer rate cost, an energy transfer profile cost, some combination thereof, etc. As another example, costs for one or more discharges may be defined based upon an ability of a vehicle (e.g., 120, 320a, 320b, 320c, etc.) to supply energy and/or a demand for energy from the vehicle. In one embodiment, the relationship between cost (e.g., associated with at least one discharge) and supply may be input using an interactive feature (e.g., a table, graph, pie chart, or the like) displayed in region 962. The relationship between cost (e.g., associated with at least one discharge) and demand may be input using an interactive feature (e.g., a table, graph, pie chart, or the like) displayed in region 962 in one embodiment. Accordingly, costs for a discharge may be conveniently, efficiently and/or effectively configured using region 962.
As shown in
Region 966 may be used to configure charges and/or discharges between the vehicle and another system (e.g., energy transfer system 110, one or more other vehicles, etc.). For example, region 966 may be used to specify a chronological ordering of one or more charges and/or one or more discharges. Region 966 may be used to enable and/or disable a charge, enable and/or disable a discharge, etc. Region 966 may be used to configure how the vehicle adapts to an addition or removal of one or more systems (e.g., energy transfer system 110, one or more other vehicles, etc.) receiving energy from the vehicle (e.g., lowering or increasing the energy transfer rate to accommodate the larger or smaller number of systems, etc.).
As shown in
Region 970 may be used to configure signal communication of a vehicle. In one embodiment, region 970 may be used to define how signals are communicated between the vehicle (e.g., 120, 320a, 320b, 320c, etc.) and an external system (e.g., interface system 550, energy transfer system 110, a computer system such as computer system 790, etc.). For example, region 970 may be used to define which interfaces are used to communicate signals (e.g., using a signal interface such as interface 134, using an energy transfer interface such as energy transfer interface 231, 234, 237, etc.), how the signals are communicated over each type of interface (e.g., by configuring components used to communicate signals such as communication interface 242, signal communication component 224, etc.), etc. As another example, region 970 may be used to define parameters or attributes of signal communication (e.g., techniques used to secure data, a bandwidth, a data rate, jitter reduction techniques, synchronization techniques, error correction, etc.).
Region 970 may be used to define how signals are communicated within the vehicle (e.g., between communication interface 242 and power management component 225, between signal communication component 224 and power management component 225, etc.). For example, region 970 may be used to define which interfaces are used to communicate signals (e.g., using an energy transfer interface, using a separate signal communication interface, etc.) within the vehicle, how the signals are communicated over each type of interface (e.g., by configuring components used to communicate signals such as communication interface 242, signal communication component 224, power management component 225, etc.), etc. As another example, region 970 may be used to define parameters or attributes of signal communication (e.g., techniques used to secure data, a bandwidth, a data rate, jitter reduction techniques, synchronization techniques, error correction, etc.) within the vehicle.
As shown in
Region 972 may be used to configure a display of a vehicle (e.g., display device 725, 521, 522, 523, etc.). For example, region 972 may be used to configure a state (e.g., enabled, disabled, etc.) of the display. A parameter or attribute of the display (e.g., a brightness, contrast, automatic dimming or powering off of the display after a predetermined time, etc.) may be configured using region 972. Region 972 may also be used to configure a parameter or attribute of a touch screen (e.g., sensitivity, x and y position calibration, etc.) corresponding to (e.g., overlaying) the display.
As shown in
In one embodiment, each of the regions (e.g., 905, 910, 911, 912, 913, 920, 921, 922, 930, 931, 940, 941, 950, 951, 952, 953, 954, 960, 961, 962, 963, 964, 965, 966, 967, 970, 971, 972, 973, etc.) of GUI 900 may be a field enabling entry of at least one character, a radio button, a menu, drop-down menu, an interactive image (e.g., enabling a user to make a selection using the image, modify the image, etc.), or any other element enabling the input of information.
Although
As shown in
GUI 1000 may be used to indicate the value of a parameter of the vehicle in one embodiment. For example, region 1015 may be used to indicate a temperature of the vehicle (e.g., an interior temperature, a water temperature, an oil temperature, etc.), a pressure of the vehicle (e.g., a manifold pressure, etc.), a fluid level (e.g., oil, coolant, washer fluid, etc.), a voltage (e.g., of energy storage component 226, of a battery of a key fob, etc.), another parameter, etc.
Region 1020 may be used to indicate the status (e.g., connected, disconnected, currently transferring energy, unable to transfer energy due to problem, able to communicate signals, unable to communicate signals, etc.) of at least one wired interface (e.g. 231), region 1021 may be used to indicate the status (e.g., connected, disconnected, currently transferring energy, unable to transfer energy due to problem, able to communicate signals, unable to communicate signals, etc.) of at least one inductive interface (e.g., 234), and region 1022 may be used to indicate the status (e.g., connected, disconnected, currently transferring energy, unable to transfer energy due to problem, able to communicate signals, unable to communicate signals, etc.) of at least one wireless interface (e.g., 237). Region 1023 may be used to indicate the status (e.g., connected, disconnected, currently transferring energy, unable to transfer energy due to problem, able to communicate signals, unable to communicate signals, etc.) of at least one signal interface (e.g., 134).
Region 1024 may be used to indicate a status of at least one energy transfer. For example, region 1024 may list one or more energy transfers currently being performed, one or more attributes of the one or more energy transfers, whether any problems have occurred with respect to the one or more energy transfers, etc. In one embodiment, region 1024 may include information (e.g., one or more attributes of the energy transfer, whether any problems have occurred with respect to the energy transfer, whether the energy transfer was completed successfully, etc.) about at least one energy transfer already performed. Region 1024 may include information about at least one energy transfer to be performed in the future (e.g., one or more attributes of the energy transfer, whether any problems have been identified which may impact the performance of the energy transfer, etc.). In one embodiment, region 1024 may list a plurality of energy transfers in a chronological ordering (e.g., an order in which the energy transfers are scheduled to be performed).
As shown in
In one embodiment, selection of one or more energy transfers using region 1060 may cause the one or more energy transfers to be performed. In one embodiment, one or more energy transfers selected using region 1060 may be performed responsive to an interaction with region 1070 of GUI 1000.
The at least one attribute (e.g., as indicated by row 1069) may include an energy transfer type (e.g., a “charge” or transfer of energy to the vehicle, a “discharge” or transfer of energy from the vehicle, etc.), an interface type (e.g., a wired interface including a plug and/or cable, an inductive interface, a wireless energy transfer interface, etc.), an energy transfer rate (e.g., a power measured in kilowatts, a current measured in amps, etc.), an energy transfer voltage (e.g., measured in volts, kilovolts, etc.), an energy transfer profile (e.g., 1115 of
It should be appreciated that a total cost determined based on an energy transfer rate may be distinguishable from a total cost determined based on a quantity of energy transferred. For example, where two different energy transfers are used to transfer the same quantity of energy at two different energy transfer rates, determining the total cost based on the quantity of energy transferred may result in the same total cost for the two energy transfers (e.g., since the same quantity of energy was transferred in each energy transfer). However, if the total cost is determined based upon an energy transfer rate, each energy transfer may have a different total cost (e.g., since each energy transfer is performed using a different energy transfer rate).
Each of the energy transfer profiles (e.g., 1115, 1125, 1135, 1145, etc.) may have different advantages and/or applications. For example, energy transfer profile 1115 may enable a more complete charge of an energy storage component (e.g., 216, 226, etc.) in a relatively low energy transfer duration. Energy transfer profile 1125 may result in a small energy transfer duration. Energy transfer profile 1135 may be used for interval charging or in applications where an energy storage component (e.g., 216, 226, etc.) requires or may benefit from being charged at different energy transfer rates. Energy transfer profile 1145 may result in a more complete charge of an energy storage component (e.g., 216, 226, etc.) when used with a lower energy transfer rate for a longer energy transfer duration (e.g., to implement a “trickle charge” or the like).
As shown in
Turning back to
In one embodiment, energy transfers with different energy transfer rates may have or be assigned different energy transfer rate costs. For example, the first row below row 1069 shows an energy transfer with an energy transfer rate of “200” and an energy transfer rate cost of $1.50, whereas the third row below row 1069 shows an energy transfer rate of “100” and an energy transfer rate cost of $0.32.
In one embodiment, a total cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) for an energy transfer may be determined based upon an energy transfer rate and an energy transfer profile. For example, considering the energy transfers associated with the first two rows of information in region 1060 below row 1069, each of the energy transfers use the same energy transfer rates (e.g., 200) and have the same energy transfer rate cost (e.g., $1.50). However, each of the energy transfers uses a different energy transfer profile (e.g., “A” versus “B”), thereby resulting in different energy transfer durations (e.g., 10 minutes versus eight minutes) and different total costs (e.g., $15 versus $12). As such, the total cost for each energy transfer may be determined based upon the energy transfer profile (e.g., which may affect or be used to determine the energy transfer duration) and the energy transfer rate (e.g., the total cost may be calculated by multiplying the energy transfer rate by the energy transfer duration).
The information displayed in region 1060 may be organized or sorted based on at least one attribute and/or at least one cost in one embodiment. For example, an interaction with GUI 1000 (e.g., an interaction with the column header labeled “Energy Transfer Type” in row 1069) may organize or sort the information based on an energy transfer type (e.g., producing a first grouping of energy transfers in region 1067 associated with a charge, producing a second grouping of energy transfers in region 1068 associated with a discharge, etc.). As another example, an interaction with GUI 1000 (e.g., an interaction with the column header labeled “Total Cost” in row 1069) may organize or sort the information based on a total cost (e.g., ordering the energy transfers within each of regions 1067 and 1068 from highest-to-lowest total cost). As yet another example, an interaction with GUI 1000 (e.g., a subsequent interaction with the column header labeled “Total Cost” in row 1069) may reorganize or re-sort the information based on a total cost (e.g., ordering the energy transfers within each of regions 1067 and 1068 from lowest-to-highest total cost).
As shown in
In one embodiment, GUI 1000 may enable a chronological ordering of a plurality of energy transfers. For example, a user may enter numbers in regions associated with energy transfers to indicate an order that the energy transfers should be performed in. As such, entering a “1” in region 1062, a “2” in region 1065, and a “3” in region 1064 may result in the following chronological ordering of energy transfers: an energy transfer associated with region 1062; then an energy transfer associated with region 1065; and then an energy transfer associated with region 1064. It should be appreciated that GUI 1000 may enable a chronological ordering of charges (e.g., an energy transfer to a vehicle) and/or discharges (e.g., an energy transfer from a vehicle).
A plurality of energy transfers selected using GUI 1000 may be performed simultaneously or contemporaneously (e.g., at least partially overlapping in time). In one embodiment, the plurality of energy transfers performed simultaneously or contemporaneously may be part of a chronological ordering defined using GUI 1000. For example, where three energy transfers are ordered using GUI 1000 and the first two energy transfers are capable of being performed simultaneously or contemporaneously, the first two energy transfers may be performed simultaneously or contemporaneously before performing the third energy transfer may be performed (e.g., the third energy transfer may begin during performance of the first two energy transfers or after the conclusion of one or both of the first two energy transfers).
In one embodiment, a plurality of energy transfers selected using GUI 1000 may be performed sequentially (e.g., one after another). The sequential energy transfers may be performed contiguously (e.g., with little or no time between energy transfers) and/or with a period of time in between two or more of the energy transfers. The period of time in between two or more of the energy transfers may be short (e.g., less than a second, less than a minute, etc.).
In one embodiment, the at least one energy transfer selected using GUI 1000 may be performed during a window of time. For example, the at least one energy transfer may be performed in a less than five hours. As another example, the at least one energy transfer may be performed in another time window (e.g., less than two hours, less than an hour, etc.). In one embodiment, the at least one energy transfer selected using GUI 1000 may be performed while a cost of energy (e.g., determined by a utility company and paid by a user of an energy transfer system) is constant or varies no more than a predetermined amount (e.g., by no more than 5%, by no more than 1%, etc.). And in one embodiment, a plurality of energy transfers with different energy transfer rates (e.g., listed in region 1060 for selection by a user) may be performed while a cost of energy (e.g., determined by a utility company and paid by a user of an energy transfer system) is constant or varies no more than a predetermined amount (e.g., by no more than 5%, by no more than 1%, etc.).
As shown in
Turning back to
At least one attribute displayed in region 1060 may be determined based on a user preference associated with the energy transfer. In one embodiment, one or more attributes (e.g., which are compatible with an energy transfer system and a vehicle) may be filtered (e.g., and therefore not displayed in region 1060) based on a user preference associated with an energy transfer system (e.g., entered using GUI 800 of
At least one cost displayed in region 1060 may be determined based on a cost of electricity to the energy transfer system (e.g., as determined by the utility providing power, as determined by an upfront cost and/or cost to operate a power source such as power source 217, etc.) and/or a cost of electricity to the vehicle (e.g., as determined by an upfront cost and/or cost to operate a power source such as power source 227, etc.). In one embodiment, at least one cost displayed in region 1060 may be determined based on supply of and/or demand for electricity. At least one cost displayed in region 1060 may be determined based on incentives presented to one or more parties to the transaction (e.g., using region 1095 of GUI 1000). And in one embodiment, at least one cost displayed in region 1060 may be determined based on a user preference (e.g., entered using region 842 of GUI 800, region 961 of GUI 900, region 843 of GUI 800, region 962 of GUI 900, etc.) associated with a transfer of energy to and/or from a vehicle, where the user preference may define a relationship between cost and a supply of electricity, between cost and a demand for electricity, etc.
In one embodiment, a cost (e.g., an energy transfer rate cost, an energy transfer profile cost, etc.) displayed in region 1060 may be determined by a user (e.g., an organization or business, an individual, an owner, a lessee, an attendant, etc.) of an energy transfer system (e.g., 110). And in one embodiment, a cost (e.g., an energy transfer rate cost, an energy transfer profile cost, etc.) displayed in region 1060 may be independent or (e.g., not based on) a cost for electricity charged by a utility company to a user (e.g., an organization or business, an individual, an owner, a lessee, an attendant, etc.) of an energy transfer system (e.g., 110).
As shown in
Region 1050 may enable a capacity level associated with an energy storage component (e.g., 216, 226, etc.) to be specified or selected, where the specified capacity level may be achieved by one or more energy transfers. For example, if the specified capacity level is above a current capacity level (e.g., indicated by region 1052 and/or region 1054), then one or more energy transfers may be performed to increase the capacity level of the energy storage component to the specified capacity level. As another example, if the specified capacity level is below a current capacity level (e.g., indicated by region 1052 and/or region 1054), then one or more energy transfers may be performed to decrease the capacity level of the energy storage component to the specified capacity level.
In one embodiment, the one or more energy transfers used to achieve the specified capacity level may include any combination and ordering of energy transfers to the energy storage component (e.g., 216, 226, etc.) and/or energy transfers from the energy storage component (e.g., 216, 226, etc.). For example, where the capacity level is to be increased, the capacity level may decreased, then increased a certain amount, then decreased, then finally increased to the specified level. As another example, where the capacity level is to be decreased, the capacity level may increased, then decreased a certain amount, then increased, then finally decreased to the specified level.
A capacity level may be specified using slider 1056 in one embodiment. For example, slider 1056 may be moved (e.g., to the left, to the right, etc.) to specify a capacity level measured in percent, a unit of energy, etc. In one embodiment, region 1058 may indicate the capacity level specified using slider 1056.
In one embodiment, region 1058 may be used to specify a capacity level. For example, a user may enter a capacity level using region 1058, where specified capacity level is measured in percent, a unit of energy, etc. In one embodiment, slider 1056 may indicate the capacity level specified using region 1058. For example, responsive to a user specifying a capacity level using region 1058, the position of slider 1056 may be automatically updated to indicate the capacity level specified using region 1058.
As shown in
In one embodiment, a cost (e.g., displayed in region 1060) may be determined based on an amount of energy used to increase a capacity level to the specified capacity level. For example, a cost (e.g., displayed in region 1060) may be a function of or otherwise determined based on at least one attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.), where the at least one attribute may be determined based on amount of energy used to increase a capacity level to the specified capacity level.
As shown in
E=(RET×t)+(REG×t)
where “E” may represent an amount of energy to be transferred (e.g., the difference between the specified capacity and the current capacity of an energy storage component), RET may represent an energy transfer rate, and REG may represent an energy generation rate (e.g., a rate at which a power source is capable of generating energy). As another example, a cost (e.g., displayed in region 1060) associated with an energy transfer may be determined based upon an energy transfer duration, where the energy transfer duration may be determined based on an energy generation rate of a power source. As yet another example, a capacity level (e.g., indicated by region 1052 and/or region 1054) may include or be determined based on an energy generation capability of a power source (e.g., a capacity level may be determined by a current capacity level of an energy storage component and an energy generation capability of a power source), and therefore, at least one attribute (e.g., displayed in region 1060) and/or at least one cost (e.g., displayed in region 1060) may be determined based on an energy generation capability of a power source (e.g., since the information displayed in region 1060 may be determined based on a capacity level specified using region 1050 as discussed herein).
As shown in
In one embodiment, the information displayed in region 1060 may be updated based on data entered in region 1059. For example, where region 1059 is used to enter a distance (e.g., a distance to be traveled on a next trip), one or more energy transfers capable of transferring an amount of energy sufficient to enable the vehicle to travel the specified distance (e.g., entered using region 1059) may be displayed in region 1060. As another example, where region 1059 is used to enter an amount of money (e.g., an amount a user wishes to spend on one or more energy transfers), one or more energy transfers with a total cost less than or equal to the specified amount of money may be displayed in region 1060. As yet another example, where region 1059 is used to enter an amount of time (e.g., a duration or window of time during which the one or more energy transfers can be performed), one or more energy transfers capable of being performed in the specified amount of time may be displayed in region 1060.
In one embodiment, a recommendation associated with one or more energy transfers may be communicated using GUI 1000. The recommendation may be communicated by displaying a border (e.g., similar to the dotted line of region 1075) around a cost or attribute of an energy transfer, by displaying an image (e.g., an arrow, etc.) in proximity to a cost or attribute of an energy transfer, by shading or highlighting a region associated with an energy transfer, by displaying a number in a region (e.g., 1061-1066) to recommend a chronological ordering of energy transfers, etc. The one or more energy transfers associated with the recommendation may be determined based on a threshold associated with an attribute (e.g., one or more energy transfers associated with an energy transfer rate above a predetermined energy transfer rate threshold, etc.), a threshold associated with a cost (e.g., one or more energy transfers associated with an cost below a predetermined cost threshold, etc.), a user preference (e.g., one or more energy transfers associated with a user preference input using GUI 800, GUI 900, etc.), an incentive (e.g., one or more energy transfers associated with an incentive, etc.), etc.
The recommendation communicated using GUI 1000 may be determined based upon a time of day in one embodiment. For example, if it is determined that a power source (e.g., 227) of a vehicle (e.g., 120) can only generate energy for a particular duration (e.g., using a time of day to estimate an amount of remaining sunlight, using a solar sensor to estimate an amount of remaining sunlight, etc.), the recommendation may suggest to a user that a discharge be performed (e.g., for all or part of the particular duration). As another example, if it is determined that the cost of energy (e.g., to the energy transfer system as set by the utility) will reduce at a particular time (e.g., at night when the cost of energy is usually lower from a utility), the recommendation may suggest to a user that a charge be initiated at or after the particular time.
As shown in
In one embodiment, if the code entered using region 1040 does not match the other information (e.g., a code entered using region 940 of
In one embodiment, a user may be authenticated (e.g., using authentication component 1340, authentication component 1380, authentication component 2822, authentication component 2842, computer system 2890, interface system 550, another component, some combination thereof, etc.) using other information associated with the user. For example, user authentication may involve comparing audio captured of a user's voice (e.g., captured using microphone 1323 of
Region 1040 may be displayed using a separate GUI (e.g., separate from a GUI used to display other information depicted in
In one embodiment, region 1040 may be displayed sequentially with other information of GUI 1000. For example, region 1040 may be displayed while the rest of the information of GUI 1000 is hidden or not displayed, where the rest of the information of GUI 1000 may be displayed responsive to (e.g., after) an authentication of a user (e.g., using information entered using region 1040). As another example, region 1040 may be displayed using a first GUI before the display of any other information of GUI 1000, where the rest of the information of GUI 1000 may be displayed using a second GUI responsive to (e.g., after) an authentication of a user (e.g., using information entered using region 1040). In this manner, security may be increased by reducing the amount of information (e.g., displayed using GUI 1000) accessible to an unauthorized user (e.g., who is not authorized to perform an energy transfer associated with the vehicle, who is not authorized to use and/or move the vehicle, etc.).
As shown in
In one embodiment, interface system 550 may enable monitoring of a vehicle. For example, image data (e.g., one or more still images, video, etc.) and/or audio data associated with a monitoring of a vehicle (e.g., 120, 320a, 320b, 320c, etc.) may be communicated to interface system 550. In one embodiment, the image data may be captured using a camera (e.g., 1321, 1371, etc.), and the audio data may be captured using a microphone (e.g., 1323, 1373, etc.). Interface system 550 (e.g., pre-transfer processing component 620, energy transfer processing component 630, post-transfer processing component 640, etc.) may process the received data (e.g., image data, audio data, etc.), where the processing may include decoding, encoding, decrypting, encrypting, filtering, changing at least one parameter of image data (e.g., brightness, contrast, saturation, hue, resolution, sharpness, bit depth, bit rate, sampling frequency, size when stored on a computer-readable medium, etc.), changing at least one parameter of audio data (e.g., volume, frequency response, tone, bit rate, sampling frequency, size when stored on a computer-readable medium, etc.), adapting the data for rendering by a component of a remote system (e.g., energy transfer system 110, vehicle 120, another computer system, a computer system capable of rendering GUI 1000, etc.), some combination thereof, etc. In one embodiment, interface system 550 may perform little or no processing of the received data. Interface system 550 may communicate image data and/or audio data back for rendering (e.g., using GUI 1000, a display, a speaker, etc.) by another system such as an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), a computer system associated with an energy transfer system (e.g., computer system 570, etc.), a vehicle (e.g., 120, 320a, 320b, 320c, etc.), a computer system associated with a vehicle (e.g., computer system 590, computer system 592, computer system 594, etc.), another computer system, some combination thereof, etc.
As shown in
In one embodiment, region 1095 may be used to display results of a user authentication. For example, if a user authentication is unsuccessful (e.g., incorrect authentication information is entered using region 1040, audio captured of a voice does not match that of an authorized user, an image captured of an eye does not match that of an authorized user, an image captured of a fingerprint does not match that of an authorized user, some combination thereof, etc.), a user may be notified (e.g., using a message displayed in region 1095) that the authentication was unsuccessful. GUI 1000 may be advantageously displayed using a display device (e.g., 511, 571, 591, 593, 595, 795, etc.) located remotely from a vehicle, thereby enabling a user (e.g., the owner of the vehicle, a user authorized to use and/or move the vehicle, etc.) who is also located remotely from the vehicle to be made aware that the vehicle has been stolen. In one embodiment, region 1090 may be used to report that a vehicle has been stolen responsive to information presented (e.g., using region 1095) as a result of performing a user authentication associated with the vehicle.
Region 1095 may be used to display results of an authentication of a component. For example, results of an authentication of a component (e.g., energy storage component 216, charge and/or discharge component 218, power management component 215, power source 217, interface component 211, etc.) of an energy transfer system (e.g., 110) and/or a component (e.g., energy storage component 226, charge and/or discharge component 228, power management component 225, power source 227, interface component 221, etc.) of a vehicle (e.g., 120, 320a, 320b, 320c, etc.) may be displayed using region 1095. Success of the authentication may be a prerequisite to communication between at least two systems (e.g., interface system 550, payment system 560, energy transfer system 110, vehicle 120, etc.), an energy transfer between the energy transfer system and the vehicle, a signal communication between the energy transfer system and the vehicle, some combination thereof, etc. Success of the authentication may be a prerequisite to movement and/or use of the vehicle. In one embodiment, the authentication may be performed using an authentication component of the energy transfer system (e.g., 1340 of
Region 1095 may be used to display incentives and/or advertisements in one embodiment. For example, an incentive (e.g., displayed using region 1095) may encourage a user to perform an energy transfer in exchange for a benefit to the user. The benefit may be a discount on an item (e.g., from a store affiliated with the energy transfer system, from a store providing a kick back or other reward to a user of the energy transfer system for referring business, etc.), a discount on another energy transfer (e.g., performed with the energy transfer system or another energy transfer system associated with the same user), currency (e.g., provided using dispenser 1331 of
As shown in
Although
Although
Although
Although
Post-transfer control component 1351 of energy transfer system 110 may be used to perform operations after an energy transfer between the energy transfer system (e.g., 110) and one or more vehicles (e.g., 120, 320a, 320b, 320c, etc.). Post-transfer control component 1351 may perform operations after an energy transfer (e.g., one or more of steps 2980 to 2990 of process 2900 of
As shown in
Post-transfer control component 1391 of vehicle 120 may be used to perform operations after an energy transfer between the vehicle (e.g., 120) and one or more energy transfer systems (e.g., 110, 710a, 710b, 710c, etc.). Post-transfer control component 1391 may perform operations after an energy transfer (e.g., one or more of steps 2980 to 2990 of process 2900 of
As shown in
Camera 1371 and/or microphone 1373 may be used to monitor the site of an energy transfer system before an energy transfer, during an energy transfer, after an energy transfer, or some combination thereof. For example, camera 1371 may capture one or more images (e.g., at least one still image, at least one frame of video data, etc.) of at least one other component of vehicle 120, at least one component of another vehicle (e.g., 320a, 320b, 320c, etc.), at least one component of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), a user of vehicle 120, a user attempting to perform an energy transfer involving vehicle 120, other objects at the site of an energy transfer, some combination thereof, etc. As another example, microphone 1373 may capture sound of at least one other component of vehicle 120, at least one other vehicle (e.g., 320a, 320b, 320c, etc.), at least one energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), a user of vehicle 120, a user attempting to perform an energy transfer involving vehicle 120, other objects at the site of an energy transfer, some combination thereof, etc. In one embodiment, camera 1371 and/or microphone 1373 may be disposed in or coupled with a body panel of vehicle 120, a frame member of vehicle 120, a component within an interior of vehicle 120, a trunk of vehicle 120, or another component of vehicle 120. In this manner, events outside or inside one or more compartments of vehicle 120 can be monitored using camera 1371 and/or microphone 1373.
As shown in
User interface 1325 may be any component capable of receiving a user input. For example, user interface 1325 may include at least one physical button or key, a touch screen disposed over or otherwise corresponding to one or more regions of display 511, an audio input system, a voice recognition system, an optical recognition system capable of recognizing a fingerprint or eye (e.g., a retina of an eye, some other part of an eye, a distance between two eyes, etc.), some combination thereof, etc. In one embodiment, user interface 1325 may be implemented in accordance with (e.g., include components of, function similarly to, etc.) input component 4180 of
As shown in
Authentication component 1340 may perform or assist in performing an authentication of a user. For example, authentication component 1340 may compare information associated with a user (e.g., a code entered using region 1040 of GUI 1000, audio captured of the user's voice, an image captured of the user's eye, an image captured of the user's fingerprint, etc.) to other information (e.g., a code entered using region 940 of GUI 900, audio captured of an authorized user's voice, an image captured of an authorized user's eye, an image captured of an authorized user's fingerprint, etc.) to determine if a user is authorized to perform an energy transfer between an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.) and a vehicle (e.g., 120, 320a, 320b, 320c, etc.). As another example, authentication component 1340 may compare information associated with a user (e.g., a code entered using region 1040 of GUI 1000, audio captured of the user's voice, an image captured of the user's eye, an image captured of the user's fingerprint, etc.) to other information (e.g., a code entered using region 940 of GUI 900, audio captured of an authorized user's voice, an image captured of an authorized user's eye, an image captured of an authorized user's fingerprint, etc.) to determine if a user is authorized to use and/or move a vehicle (e.g., 120, 320a, 320b, 320c, etc.). Results of the user authentication may be communicated to interface system 550 (e.g., for presentation to a user via GUI 1000 if the user authentication is unsuccessful, to proceed with selection of an energy transfer using GUI 1000 if the user authentication is successful, etc.), to a vehicle associated with the user undergoing the authentication (e.g., to enable one or more components of the vehicle to allow the user to use and/or move the vehicle, to disable one or more components of the vehicle to reduce the ability of the user to use and/or move the vehicle, etc.), etc.
As shown in
Payment interface 1330 may include at least one component configured to accept a payment associated with an energy transfer. For example, payment interface 1330 may include a payment receptacle capable of accepting coins, bills, checks, coupons, some combination thereof, etc. Payment interface may include a card reader capable of accepting payment via a credit card, debit card, gift card, etc., where the card reader may include a sensor capable of reading the card as it is slid through a slot of payment interface 1330, placed in proximity to a surface of payment interface 1330, placed on a surface of payment interface 1330, etc.
As shown in
Payment interface 1330 and/or dispenser 1331 may be used to provide payment for one or more energy transfers (e.g., where a user owes money due to an amount of energy transferred from an energy transfer system exceeding an amount of energy transferred to the energy transfer system) in one embodiment. For example, payment interface 1330 may be used to pay for the one or more energy transfers. As another example, dispenser 1331 may provide a coupon or an object associated with an incentive.
Although
A state of energy transfer system 110 (e.g., monitored and/or determined using energy transfer management component 1410) may be used to determine at least one attribute for an energy transfer. For example, the state of the energy transfer system may be used to filter attributes associated with energy transfers which exceed a capacity of the energy transfer system to transfer energy at a particular time, which cannot be performed (e.g., due to a problem with an energy transfer interface, due to a problem with a signal interface, etc.), etc. As another example, attributes may be filtered based upon a user preference associated with a state of the energy transfer system (e.g., higher energy transfer rates should be filtered as the capacity of the energy transfer system to transfer energy goes down). In one embodiment, the attributes which are not filtered may be displayed to a user for selection (e.g., in region 1060 of GUI 1000), while the attributes which are filtered may be hidden or not displayed to a user for selection. As such, embodiments can provide more efficient user interaction, more efficient data processing, a reduction in an amount of data transferred related to one or more energy transfers, etc.
In one embodiment, a state of energy transfer system 110 (e.g., monitored and/or determined using energy transfer management component 1410) may be used to determine at least one cost for an energy transfer. For example, the state of the energy transfer system may be used to determine a supply of energy and/or a demand for energy, where the supply and/or demand may be used to determine a cost of an energy transfer. As another example, a state of the energy transfer system may be used to determine an attribute for the energy transfer and the attribute may be used to determine a cost for the energy transfer, and therefore, the cost of an energy transfer may be determined based upon a state of the energy transfer system.
Energy transfer monitoring component 1412 may monitor the state of the energy transfer system (e.g., 110) over time. For example, data associated with one or more components or interfaces of the energy transfer system may be sampled or captured at a plurality of times. As such, in one embodiment, energy transfer monitoring component 1412 may provide real-time monitoring (or nearly real-time monitoring due to latencies associated with data reads, data writes, data transfer, etc.) of the energy transfer system. Additionally, in one embodiment, the data may be stored (e.g., in a memory of energy transfer system 110) for subsequent access and/or processing (e.g., to perform analysis used to determine trends, patterns, etc.).
In one embodiment, information associated with the state of the energy transfer system (e.g., monitored and/or determined using energy transfer monitoring component 1412) may be communicated to an external system. For example, communication interface 241 may be used to communicate the information associated with the state (e.g., represented by arrow 1422) to interface system 550 (e.g., for use in presenting one or more energy transfers for selection by a user via a GUI such as GUI 1000). In one embodiment, the information associated with the state may be used (e.g., by interface system 550) to determine at least one attribute associated with an energy transfer, determine at least one cost associated with an energy transfer, to determine a recommendation associated with an energy transfer, etc. In one embodiment, the information associated with the state may be used (e.g., by interface system 550) to determine at least one energy transfer to present to a user for selection (e.g., via a GUI such as GUI 1000).
As shown in
In one embodiment, energy transfer control component 1414 may control one or more energy transfers based on at least one communication with another system. For example, information about an energy transfer to be performed (e.g., represented by arrow 1424) may be received by communication interface 241 (e.g., communicated from interface system 550), where the information may include at least one attribute of one or more energy transfers to be performed. In one embodiment, the information may be determined (e.g., by interface system 550) based upon one or more user selections associated with at least one energy transfer (e.g., input using a GUI such as GUI 1000). In this manner, the information received by energy transfer system 110 (e.g., communicated from interface system 550) may be used to control or configure at least one component (e.g., of energy transfer system 110 and/or of another system such as at least one vehicle coupled to energy transfer system 110) to implement the one or more energy transfers.
Although
As shown in
At least one energy transfer component (e.g., 1645, 1655, 1662, etc.) may be disposed beside the vehicle route (e.g., 1605). For example, one or more energy transfer components (e.g., 1645) may be coupled with and/or disposed at least partially within a guardrail (e.g., 1640) located near or next to a vehicle route. As another example, one or more energy transfer components (e.g., 1655) may be coupled with and/or disposed at least partially within a sign or billboard (e.g., 1650) located near or next to a vehicle route. As yet another example, one or more energy transfer components (e.g., 1662) may be coupled with and/or disposed at least partially within a lamp or pole (e.g., 1660) located near or next to a vehicle route. As such, in one embodiment, energy may be transferred between a vehicle and an energy transfer system using at least one energy transfer component disposed on the side of the vehicle, the bottom of the vehicle, the top of the vehicle, the front of the vehicle, the rear of the vehicle, a wheel of the vehicle, a tire of the vehicle, another component of the vehicle, etc. Energy may be transferred between the vehicle and the energy transfer system as the vehicle moves toward the energy transfer component, as the vehicle passes by the energy transfer component, as the vehicle moves away from the energy transfer component, some combination thereof, etc.
As shown in
One or more of the energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 232, and therefore, the one or more energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may include at least one electrical contact (e.g., disposed in or coupled with a plug, disposed in or coupled with a receptacle, etc.). In one embodiment, one or more energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 235, and therefore, the one or more energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may be capable of enabling an inductive energy transfer over an energy transfer interface (e.g., 234) between the vehicle (e.g., 120) and the energy transfer system (e.g., 110). And in one embodiment, one or more energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 238, and therefore, the one or more energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, etc.) may be capable of enabling a wireless energy transfer over an energy transfer interface (e.g., 237) between the vehicle (e.g., 120) and the energy transfer system (e.g., 110).
As shown in
In one embodiment, a group of energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1665, 1675, etc.) may be activated (e.g., by interface component 211) simultaneously or contemporaneously to enable a plurality of energy transfers to be conducted with a vehicle simultaneously or contemporaneously. For example, energy transfer components 1610 and 1620 may be conduct energy transfers with a vehicle (e.g., 120) at a first time, and energy transfer components 1620 and 1630 may be conduct energy transfers with a vehicle (e.g., 120) at a second time. It should be appreciated that any combination of energy transfer components may be used to perform one or more energy transfers with a vehicle at any given time. For example, a first combination of energy transfer components may be used to perform one or more energy transfers with a vehicle at a first time, and a second combination of energy transfer components may be used to perform one or more energy transfers with a vehicle at a second time.
As shown in
In one embodiment, a group of energy transfer components (e.g., 1610, 1620, 1630, 1645, 1655, 1665, 1675, etc.) may be activated (e.g., by interface component 211) sequentially to enable one or more energy transfers to be conducted with a vehicle. For example, a first energy transfer component (e.g., 1610) may be used to perform a first energy transfer with a vehicle (e.g., 120). After the first energy transfer is completed, a second energy transfer component (e.g., 1620) may be used to perform a second energy transfer with the vehicle. As another example, a first group of energy transfer components (e.g., 1610 and 1645) may be used to perform a first energy transfer with a vehicle (e.g., 120), and a second group of energy transfer components (e.g., 1620 and 1655) may be used to perform a second energy transfer with the vehicle after the first energy transfer is completed.
Although
As shown in
One or more energy transfer components (e.g., 1711, 1712, 1713, 1714, 1715, etc.) may be coupled with or otherwise disposed at least partially within a wheel stop (e.g., 1710). A wheel stop may be any object placed, secured, integrally formed, etc. with the ground and capable of slowing down or stopping a vehicle as a tire or wheel of vehicle comes into contact with the wheel stop. In one embodiment, a first set of energy transfer components (e.g., 1711, 1712, and 1713) may be located on a first side or surface of the wheel stop for transferring energy with one or more energy transfer components located in a first region of a vehicle (e.g., coupled with or disposed within a portion of the body of the vehicle which overlaps one or more of the energy transfer components), and a second set of energy transfer components (e.g., 1714 and 1715) may be located on a second side or surface of the wheel stop for transferring energy with one or more energy transfer components located in a second region of a vehicle (e.g., coupled with or disposed within a wheel or tire of the vehicle). As such, in one embodiment, energy may be transferred between a vehicle and an energy transfer system using at least one energy transfer component located on the bottom of the vehicle, the front of the vehicle, the rear of the vehicle, a wheel of the vehicle, a tire of the vehicle, another component of the vehicle, etc. Energy may be transferred between the vehicle and the energy transfer system (e.g., using energy transfer component 1711, 1712, 1713, 1714, 1715, some combination thereof, etc.) while the vehicle is stationary and/or while the vehicle is moving (e.g., toward the energy transfer component, away from the energy transfer component, alternatively moving with respect to the energy transfer component, etc.).
As shown in
In one embodiment, a first set of energy transfer components (e.g., 1731, 1732, and 1733) may be located on a first side or surface (e.g., of the curb, of enclosure or housing 1730, etc.) for transferring energy with one or more energy transfer components located in a first region of a vehicle (e.g., coupled with or disposed within a portion of the body of the vehicle which overlaps one or more of the energy transfer components), and a second set of energy transfer components (e.g., 1734 and 1735) may be located on a second side or surface (e.g., of the curb, of enclosure or housing 1730, etc.) for transferring energy with one or more energy transfer components located in a second region of a vehicle (e.g., coupled with or disposed within a wheel or tire of the vehicle). As such, in one embodiment, energy may be transferred between a vehicle and an energy transfer system using at least one energy transfer component located on the bottom of the vehicle, the front of the vehicle, the rear of the vehicle, a wheel of the vehicle, a tire of the vehicle, another component of the vehicle, etc. Energy may be transferred between the vehicle and the energy transfer system (e.g., using energy transfer component 1731, 1732, 1733, 1734, 1735, some combination thereof, etc.) while the vehicle is stationary and/or while the vehicle is moving (e.g., toward the energy transfer component, away from the energy transfer component, alternatively moving with respect to the energy transfer component, etc.).
As shown in
One or more energy transfer components (e.g., 1783, 1785, etc.) may be coupled with or otherwise disposed at least partially within an object (e.g., enclosure or housing 1782, enclosure or housing 1784, etc.) coupled with and/or integrally formed with a building (e.g., 1780). In one embodiment, the object may be located near or within a line of sight of at least one energy transfer component of a vehicle. As such, one or more energy transfer components (e.g., 1783, 1785, etc.) may be used to perform an energy transfer with a vehicle when the vehicle is positioned (e.g., stationary, moving, etc.) in a first location (e.g., above or near energy transfer component 1721, 1722, 1723, 1724, etc.), in a second location (e.g., above or near energy transfer component 1725, 1726, 1727, 1728, etc.), some other location, etc. Thus, in one embodiment, energy may be transferred between a vehicle and an energy transfer system using at least one energy transfer component located on any side of the vehicle (e.g., top, bottom, front, rear, passenger side, driver side, pilot side, port, starboard, etc.), a wheel of the vehicle, a tire of the vehicle, another component of the vehicle, etc. Energy may be transferred between the vehicle and the energy transfer system (e.g., using energy transfer component 1783, 1785, some combination thereof, etc.) while the vehicle is stationary and/or while the vehicle is moving (e.g., toward the energy transfer component, away from the energy transfer component, alternatively moving with respect to the energy transfer component, etc.).
As shown in
In one embodiment, a group of energy transfer components configured to transfer energy with a particular vehicle (e.g., 1711-1715, 1721-1724, 1742, 1744, etc.) may be capable of implementing a plurality of different types of energy transfer interfaces. For example, energy transfer component 1742 may be capable of implementing a wired energy transfer interface, energy transfer component 1744 may be capable of implementing a wireless energy transfer interface, and energy transfer components 1711-1715 and 1721-1724 may be capable of implementing an inductive energy transfer interface. In this manner, embodiments of the present invention can improve compatibility with different types of vehicles, increase redundancy, enable simultaneous or contemporaneous energy transfers with the particular vehicle, some combination thereof, etc. And in one embodiment, a group of energy transfer components configured to transfer energy with a particular vehicle (e.g., 1711-1715, 1721-1724, 1742, 1744, etc.) may be coupled to a common set of components (e.g., 410) of an energy transfer system (e.g., 110).
As shown in
In one embodiment, a group of energy transfer components (e.g., 1711-1715, 1721-1728, 1731-1735, 1742, 1744, 1752, 1754, 1783, 1785, etc.) may be activated (e.g., by interface component 211) simultaneously or contemporaneously to enable a plurality of energy transfers to be conducted with a vehicle at any given time. For example, energy transfer components 1711, 1721, and 1742 may conduct simultaneous or contemporaneous energy transfers with a first vehicle (e.g., 320a), and energy transfer components 1731, 1725, and 1752 may conduct simultaneous or contemporaneous energy transfers with a second vehicle (e.g., 320b). It should be appreciated that any combination of energy transfer components may be used to perform one or more energy transfers with a vehicle at any given time. For example, a first combination of energy transfer components may be used to perform one or more energy transfers with a first vehicle at the same time as a second combination of energy transfer components are used to perform one or more energy transfers with a second vehicle.
As shown in
In one embodiment, a group of energy transfer components (e.g., 1711-1715, 1721-1728, 1731-1735, 1742, 1744, 1752, 1754, 1783, 1785, etc.) may be activated (e.g., by interface component 211) sequentially to enable one or more energy transfers to be conducted with a vehicle. For example, a first energy transfer component (e.g., 1711) may be used to perform a first energy transfer with a vehicle (e.g., 120). After the first energy transfer is completed, a second energy transfer component (e.g., 1721) may be used to perform a second energy transfer with the vehicle. As another example, a first group of energy transfer components (e.g., 1711 and 1712) may be used to perform a first energy transfer with a vehicle (e.g., 120), and a second group of energy transfer components (e.g., 1721 and 1722) may be used to perform a second energy transfer with the vehicle after the first energy transfer is completed.
As shown in
In one embodiment, energy transfer system 110 may be incorporated into an existing site (e.g., building, parking lot, boat dock, airport, etc.). For example, referring back to
Although
In one embodiment, vehicle 1802 may be implemented in accordance with vehicle 120 as discussed herein, and therefore, vehicle 1802 may include one or more features of vehicle 120 and/or function similarly to vehicle 120. And in one embodiment, one or more of the energy transfer components (e.g., 1711, 1714, 1721, 1742, 1744, 1812, etc.) depicted in
As shown in
Energy transfer components 1812 and 1824 may implement a wired interface (e.g., 231) in one embodiment. For example, at least one electrical contact of energy transfer component 1812 may be brought into physical contact with, and therefore electrically coupled to, at least one electrical contact of energy transfer component 1824 to enable one or more energy transfers between vehicle 1802 and an energy transfer system (e.g., 110). In one embodiment, energy transfer component 1812 may be housed or disposed within a plug on the end of a cable, where the cable provides an electrical coupling between the at least one electrical contact and at least one component of an energy transfer system (e.g., disposed within compartment 1813 of wheel stop 1710, within another portion of wheel stop 1710, within housing or enclosure 1740, in another location, etc.). In one embodiment, energy transfer component 1824 may be housed or disposed within a receptacle coupled with or disposed within body 1805 of vehicle 1802, where energy transfer component 1824 may be electrically coupled to at least one component of the vehicle (e.g., interface component 221, meter 229, charge and/or discharge component 228, power management component 225, energy storage component 226, power source 227, some other component of vehicle 120, etc.).
In one embodiment, energy transfer components 1812 and 1824 may implement a signal interface (e.g., 134). In this manner, the electrical contacts used to perform an energy transfer may also be configured to communicate signals (e.g., data signals, clock signals, etc.). And in one embodiment, an energy transfer component used to perform an energy transfer (e.g., 1812, 1824, etc.) may be housed with or disposed within the same component (e.g., a plug, a receptacle, etc.) as at least one other electrical contact used to implement a separate signal interface (e.g., 134).
As shown in
In one embodiment, energy transfer component 1822 and/or energy transfer component 1823 may be located towards the front of vehicle 1802. For example, energy transfer component 1822 and/or energy transfer component 1823 may be located behind the front bumper of vehicle 1802. Energy transfer component 1822 and/or energy transfer component 1823 may be located behind or at least partially within compartment 1807 (e.g., which houses at least one other component such as a headlight, parking light, proximity sensor, etc.). And in one embodiment, energy transfer component 1822 and/or energy transfer component 1823 may be located behind surface 1806 (e.g., a transparent or semi-transparent surface through which light from at least one headlight and/or at least one parking light passes, a painted surface such as a front fascia, etc.).
As shown in
At least one energy transfer between vehicle 1802 and an energy transfer system (e.g., 110) may be performed over an energy transfer interface implemented using energy transfer components 1714 and 1832, where the energy transfer interface implemented using energy transfer components 1714 and 1832 may be a wired interface (e.g., 231), an inductive interface (e.g., 234), a wireless interface (e.g., 237), some combination thereof, etc. Energy transfer component 1832 may be coupled with or disposed at least partially within tire 1830 (e.g., as described with respect to
As shown in
At least one energy transfer between vehicle 1802 and an energy transfer system (e.g., 110) may be performed over an energy transfer interface implemented using energy transfer components 1721 and 1834, where the energy transfer interface implemented using energy transfer components 1721 and 1834 may be a wired interface (e.g., 231), an inductive interface (e.g., 234), a wireless interface (e.g., 237), some combination thereof, etc. Energy transfer component 1834 may be coupled with or disposed at least partially within tire 1830 (e.g., as described with respect to
As shown in
In one embodiment, electrical contacts may protrude from a surface to enable an energy transfer with a vehicle. For example, at least one electrical contact may protrude from an energy transfer component of an energy transfer system (e.g., 1714, 1711, 1721, etc.) to make physical contact with an energy transfer component of a vehicle (e.g., 1821, 1832, 1834, etc.) and enable one or more energy transfers to be performed with a vehicle (e.g., 1802). As another example, at least one electrical contact may protrude from an energy transfer component of a vehicle (e.g., 1821, 1832, 1834, etc.) to make physical contact with an energy transfer component of an energy transfer system (e.g., 1714, 1711, 1721, etc.) and enable one or more energy transfers to be performed with a vehicle (e.g., 1802). As yet another example, an energy transfer with a vehicle may be performed using an electrical contact which protrudes from a surface of a vehicle (e.g., vehicle body 1805, tire 1830, wheel 1840, etc.), from the ground (e.g., surface 1890), from a surface of wheel stop 1710, from another component of an energy transfer system (e.g., 110), etc. In one embodiment, the electrical contact may automatically protrude or extend responsive to detecting that the vehicle or an energy transfer component of the vehicle is in an appropriate position to perform an energy transfer, where position detection (e.g., of the vehicle and/or the energy transfer component of the vehicle) may be performed in accordance with
As shown in
Components of an energy transfer system (e.g., 110) may be located or housed in one or more locations. For example, components may be housed within wheel stop 1710 (e.g., within compartment 1813, within other portions of wheel stop 1710, etc.), within housing or enclosure 1740, in another housing or enclosure, some combination thereof, etc. Components which are located at different locations may be coupled by an above-ground line (e.g., 1887) and/or an underground line (e.g., 1880). The line (e.g., above-ground line 1887, underground line 1880, etc.) may implement an energy transfer interface (e.g., 132) and/or a signal interface (e.g., 134). In one embodiment, the line (e.g., above-ground line 1887, underground line 1880, etc.) may include any number of conductors.
In one embodiment, at least some of the components of an energy transfer system (e.g., 110) may be located within compartment 1813 of wheel stop 1710. For example, compartment 1813 may enclose at least a portion of a set of components (e.g., 410, 420, 430, etc.). As another example, a power management component (e.g., 215) may be housed or enclosed in compartment 1813. And as another example, compartment 1813 may enclose an energy storage component (e.g., 216) and/or a power source (e.g., 217).
Compartment 1813 may be accessed from the bottom of wheel stop 1710 in one embodiment, thereby providing convenient access to components for repair, maintenance, modification, or the like. A door or cover at least partially covering compartment 1813 may reduce access to and/or seal components within compartment 1813 in one embodiment. Components within compartment 1813 may be coupled to and/or receive power from an above-ground line (e.g., 1887) and/or an underground line (e.g., 1880). In one embodiment, an underground line (e.g., 1880) may be routed into compartment 1813 from the bottom of wheel stop 1710 (e.g., as shown by line 1885) and/or through hole 1815 (e.g., shown by line 1816). Where an underground line (e.g., 1880) is routed into compartment 1813 through hole 1815, the line may be extended through hole 1817 (e.g., as shown by line 1816) which connects hole 1815 to compartment 1813. A line extending into or through hole 1815 may run alongside member 1870, through at least a portion of member 1870, etc.
As shown in
In one embodiment, energy transfer components of wheel stop 1710 (e.g., 1711, 1712, 1713, 1714, 1715, etc.) may be located in cavities (e.g., formed during molding, casting, or the like of wheel stop 1710) and secured using any fastening method (e.g., friction or press fit, using at least one fastener, using an adhesive, etc.). Wheel stop 1710 may have any number of cavities for accepting energy transfer components, thereby enabling wheel stop 1710 to be customized, upgraded (e.g., increasing the number, type, quality, etc. of energy transfer components), downgraded (e.g., decreasing the number, type, quality, etc. of energy transfer components to save cost or for some other reason), offered at various price points (e.g., each wheel stop of a different price includes a different number, type, quality, etc. of energy transfer components), etc. One or more energy transfer components of wheel stop 1710 may be covered (e.g., via a plug or insert placed into the cavity of the energy transfer component, by a door or cover, etc.) and/or manufactured into wheel stop 1710 (e.g., molded, casted, etc. into wheel stop 1710), thereby increasing the lifetime of the energy transfer components (e.g., by reducing exposure to light, moisture, dirt, debris, corrosive materials, contaminants, etc.), reducing vandalism or theft of the energy transfer components (e.g., since they are covered and out of sight), etc.
As such, in one embodiment, an energy transfer system may be installed by simply replacing existing wheel stops with wheel stop 1710 and running a line (e.g., capable of supplying enough power to enable one or more energy transfers with a vehicle and/or capable of communicating signals to and from components of the energy transfer system) to wheel stop 1710. Wheel stop 1710 may include a communication component (e.g., 241) capable of communicating with an external system (e.g., vehicle 1802, interface system 550, payment system 560, computer system 570, computer system 2890 of
Although
Additionally, although
In one embodiment, components of the energy transfer system (e.g., 1910, 1911, 1912, 1913, etc.) may be used alone (e.g., without components of vehicle 120) to determine the position of vehicle 120 with respect to energy transfer system 110. Components of the vehicle (e.g., 1940, 1941, 1942, 1943, etc.) may be used alone (e.g., without components of energy transfer system 110) to determine the position of vehicle 120 with respect to energy transfer system 110 in one embodiment. And in one embodiment, components of the energy transfer system (e.g., 1910, 1911, 1912, 1913, etc.) may be used in combination with components of the vehicle (e.g., 1940, 1941, 1942, 1943, etc.) to determine the position of vehicle 120 with respect to energy transfer system 110.
As shown in
Mechanical position detection component 1940 may include any mechanism capable of detecting position based upon a mechanical actuation. In one embodiment, component 1940 may include a sensor capable of detecting a force or pressure caused by a portion of the energy transfer system coming into contact with the sensor. For example, the sensor may determine the position of the vehicle by detecting that a tire of the vehicle has come into contact with another object (e.g., wheel stop 1710, housing or enclosure 1730, etc.), a side of the vehicle has come into contact with another object (e.g., a boat dock, object 1770, housing or enclosure 1740, etc.), or another portion of the vehicle has come into contact with another object. In one embodiment, component 1940 may detect a position of a vehicle by a physical movement of a mechanism (e.g., a button, lever, wire, spring, or the like) by a portion of the energy transfer system coming into contact with the mechanism. For example, a mechanism mounted to vehicle 120 may be deflected or moved as it comes into contact with an object (e.g., wheel stop 1710, housing or enclosure 1730, housing or enclosure 1740, etc.), thereby signaling that the vehicle is in a position to perform an energy transfer. And in another embodiment, component 1940 may detect a position of the vehicle with respect to the energy transfer system using another type of mechanical position detection.
As shown in
Optical position detection component 1941 may include any component capable of detecting position using light. In one embodiment, component 1941 may include a sensor (e.g., mounted on or in a portion of vehicle 120) capable of sensing light emitted from a light source (e.g., a bulb, light emitting diode, organic light emitting diode, etc.), where the sensor may detect a position of the vehicle responsive to a portion of the energy transfer system (e.g., a portion of wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.) blocking or interfering with the light generated by the light source. The light source may be mounted on or in a portion of vehicle 120. Component 1941 may include a camera (e.g., mounted on or in a portion of vehicle 120) for capturing at least one image (e.g., a still picture, video, etc.) of a portion of the energy transfer system (e.g., a portion of wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.), where analysis of the video may be used to determine a position of the vehicle with respect to the energy transfer system. In one embodiment, component 1941 may include a laser emitter and/or laser detector (e.g., mounted on or in a portion of vehicle 120) for determining a position of the vehicle. And in one embodiment, component 1941 may detect a position of the vehicle with respect to the energy transfer system using another type of optical position detection.
As shown in
Electrical position detection component 1942 may include any electrical component capable of detecting position. For example, component 1912 may include a capacitive proximity sensor (e.g., mounted on or in a portion of vehicle 120) capable of detecting the proximity of a portion of energy transfer system 110 (e.g., wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.). As another example, component 1942 may include an inductive proximity sensor (e.g., mounted on or in a portion of vehicle 120) capable of detecting the proximity of a portion of energy transfer system 110 (e.g., wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.). And as yet another example, component 1942 may include an ultrasonic proximity sensor (e.g., mounted on or in a portion of vehicle 120) capable of detecting the proximity of a portion of energy transfer system 110 (e.g., wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.). And as another example, component 1942 may detect a position of the vehicle with respect to the energy transfer system using another type of electrical position detection.
As shown in
Wave position detection component 1943 may include any component capable of detecting position using waves. For example, component 1943 may include a transmitter (e.g., mounted on or in a portion of vehicle 120) capable of emitting waves (e.g., electromagnetic waves, sound waves, etc.) toward an object (e.g., wheel stop 1710, enclosure or housing 1730, enclosure or housing 1740, etc.) and/or a receiver (e.g., mounted on or in a portion of vehicle 120) capable of detecting waves (e.g., electromagnetic waves, sound waves, etc.) reflected from the object. In this manner, the distance and/or position of the object with respect to component 1943, and therefore vehicle 120, can be determined. In one embodiment, component 1943 may determine the position of the object using radar.
In one embodiment, the position of the vehicle with respect to a portion of the energy transfer system (e.g., determined using component 1910, 1911, 1912, 1913, 1940, 1941, 1942, 1943, etc.) may be used to determine the position of at least one energy transfer component of the vehicle (e.g., 1821, 1822, 1823, 1824, 1832, 1834, 1842, 1844, etc.) with respect to at least one energy transfer component of the energy transfer system (e.g., 1711, 1742, 1744, 1812, 1714, 1721, etc.). For example, where the position of the vehicle with respect to the energy transfer system is determined using a first position (e.g., of a portion of the vehicle) and a second position (e.g., of a portion of the energy transfer system), the distance or relative position of an energy transfer component of the vehicle with respect to an energy transfer component of the energy transfer system may be determined by using a distance or relative position between the first position and the energy transfer component of the vehicle and also by using a distance or relative position between the second position and the energy transfer component of the energy transfer system. The distance or relative position between the first position and the energy transfer component of the vehicle may be relatively consistent across each model of vehicle, and therefore, may be stored as a lookup table or other data structure in a memory (e.g., of energy transfer system 110, of vehicle 120, etc.). Additionally, the distance or relative position between the second position and the energy transfer component of the energy transfer system may be stored as a lookup table or other data structure in a memory (e.g., of energy transfer system 110, of vehicle 120, etc.).
In one embodiment, one or more energy transfer interfaces may be activated and/or deactivated based on the position of a vehicle (e.g., 120) and/or a component thereof with respect to a component an energy transfer system (e.g., 110) and/or component thereof. For example, as a vehicle is moving with respect to an energy transfer system, it may be determined that the vehicle (or an energy transfer component thereof) is in a position to enable an energy transfer via a first energy transfer component (e.g., 1610, 1645, etc.) of an energy transfer system. Responsive thereto, a first interface (e.g., of the energy transfer system which is coupled to or includes the first energy transfer component) may be activated to enable an energy transfer between the vehicle and the energy transfer system via the first energy transfer component. Responsive to determining that the vehicle (or an energy transfer component thereof) is out of position to enable an energy transfer via the first energy transfer component, the first interface may be deactivated (e.g., causing the energy transfer via the first energy transfer component to be altered and/or ceased). Additionally, as the vehicle continues to move with respect to the energy transfer system, it may be determined that the vehicle (or an energy transfer component thereof) is in a position to enable an energy transfer via a second energy transfer component (e.g., 1620, 1655, etc.) of the energy transfer system. Responsive thereto, a second interface (e.g., of the energy transfer system which is coupled to or includes the second energy transfer component) may be activated to enable an energy transfer between the vehicle and the energy transfer system via the second energy transfer component. Responsive to determining that the vehicle (or an energy transfer component thereof) is out of position to enable an energy transfer via the second energy transfer component, the second interface may be deactivated (e.g., causing the energy transfer via the second energy transfer component to be altered and/or ceased). In one embodiment, this may be repeated as the vehicle is alternatively positioned (e.g., as the vehicle continues to move) to enable energy to be transferred with other energy components of the energy transfer system. In this manner, embodiments of the present invention can increase the amount of energy transferred between a vehicle and an energy transfer system (e.g., by transferring energy using more than one energy transfer component which are physically spaced apart), enable energy to be transferred between the vehicle and the energy transfer system while the vehicle is moving, reduce energy loss (e.g., by deactivating at least one energy transfer component which is activated but not used to transfer energy at a particular time), increase the lifetime of an energy transfer component (e.g., by deactivating the energy transfer component when not in use), etc.
As shown in
Although
In one embodiment, signals communicated between energy transfer system 110 and vehicle 120 (e.g., over energy transfer interface 2031, energy transfer interface 2034a, energy transfer interface 2034b, energy transfer interface 2034c, energy transfer interface 2034d, energy transfer interface 2037a, energy transfer interface 2037b, etc.) may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. An interface (e.g., 2031, 2034a, 2034b, 2034c, 2034d, 2037a, 2037b, etc.) coupling energy transfer system 110 and vehicle 120 may implement unidirectional signal communication and/or bidirectional signal communication in one embodiment. And in one embodiment, signals may be communicated between energy transfer system 110 and vehicle 120 (e.g., over energy transfer interface 2031, energy transfer interface 2034a, energy transfer interface 2034b, energy transfer interface 2034c, energy transfer interface 2034d, energy transfer interface 2037a, energy transfer interface 2037b, etc.) using single-ended signaling and/or differential signaling.
In one embodiment, position detection control component 2010 and/or position detection control component 2020 may determine the position of a vehicle or a component thereof with respect to an energy transfer system by configuring at least one energy transfer component (e.g., 2032, 2035a, 2035b, 2035c, 2035d, 2038a, 2038b, 2031, 2034a, 2034b, 2034c, 2034d, 2037a, 2037b, etc.) to operate in an energy transfer mode in one embodiment. For example, position detection control component 2010 and/or position detection control component 2020 may attempt an energy transfer between at least one energy transfer component of the energy transfer system (e.g., 2032, 2035a, 2035b, 2035c, 2035d, 2038a, 2038b, etc.) and at least one energy transfer component of the vehicle (e.g., 2031, 2034a, 2034b, 2034c, 2034d, 2037a, 2037b, etc.), where a result of the attempted energy transfer (e.g., whether any energy was transferred, a quantity of energy transferred, an efficiency of the energy transfer, a measured attribute of the energy transfer, etc.) may be used to determine whether or not the energy transfer components are in a position to perform an energy transfer. In one embodiment, the result of the attempted energy transfer may be determined by the system transferring the energy and/or by the system receiving the energy, where the result of the attempted energy transfer may be determined by measuring an electrical property associated with the at least one energy transfer component used to implement the attempted energy transfer (e.g., inductance across a coil, amperage of energy transferred via the at least one energy transfer component, another attribute of energy transferred via the at least one energy transfer component, etc.). And in one embodiment, the result of the energy transfer may be communicated between energy transfer system 110 and vehicle 120. In one embodiment, the attempted energy transfer used for position detection in an energy transfer mode may use little or very little energy, thereby reducing the amount of energy expended or wasted as a result of the position detection in an energy transfer mode.
Position detection control component 2010 and/or position detection control component 2020 may determine the position of a vehicle or a component thereof with respect to an energy transfer system by configuring at least one energy transfer component (e.g., 2032, 2035a, 2035b, 2035c, 2035d, 2038a, 2038b, 2031, 2034a, 2034b, 2034c, 2034d, 2037a, 2037b, etc.) to operate in a position detection mode in one embodiment. The position detection mode may be separate or distinct from an energy transfer mode used to transfer energy between energy transfer system 110 and vehicle 120, and may involve the use of different hardware and/or software than is used when the energy transfer component is configured to operate in an energy transfer mode. For example, where the energy transfer component is a coil (e.g., coupled with or disposed at least partially within a component of energy transfer system 110, coupled with or disposed at least partially beneath surface 1890, etc.) capable of implementing an energy transfer over an inductive interface (e.g., with a coil of the vehicle disposed in proximity to the coil of the energy transfer system), the coil may be energized (e.g., coupled to oscillator circuitry of component 2010, coupled to other circuitry of component 2010, etc.) and a response associated with the coil (e.g., a frequency of the oscillation of the oscillator circuitry) may be analyzed to determine if an object (e.g., a portion of energy transfer system 110, a portion of vehicle 120, etc.) is in proximity to the energy transfer component.
In one embodiment, the coil may be energized in the position detection mode by electrically coupling the coil to oscillator circuitry (or activating oscillator circuitry coupled to the coil), where a frequency of the oscillation of the oscillator circuitry may depend upon the inductance value of the coil. Since an object in proximity to the coil can affect its inductance value, component 2010 and/or component 2020 may detect that an object is in proximity to the coil based upon a change in the oscillation frequency (e.g., with respect to an oscillation frequency measured when an object is not in proximity to the coil, with respect to a base or reference oscillation frequency, etc.) or by measuring a particular oscillation frequency (e.g., a predetermined frequency or range of frequencies known to be caused by an object in proximity to the coil).
In one embodiment, component 2010 and/or component 2020 may be able to distinguish between different types of objects. For example, a first object (e.g., a wheel of vehicle 120) may produce a first response which is different from a second response produced by a second object (e.g., a body panel or undercarriage of vehicle 120) in proximity to the energy transfer component. As another example, a third object (e.g., a body panel or undercarriage of vehicle 120) may produce a third response which is different from a fourth response produced by a fourth object (e.g., an energy transfer component of vehicle 120) in proximity to the energy transfer component. In this manner, position detection of objects can be further improved. Additionally, since an energy transfer component can be distinguished from a non-energy transfer component, embodiments can advantageously use an energy transfer component to determine whether an energy transfer can be performed without actually initiating an energy transfer using the energy transfer component (e.g., without placing it in an energy transfer mode which can result in increased energy consumption compared with the position detection mode).
Component 2010 and/or component 2020 may be able to distinguish between objects at different distances from an energy transfer component in one embodiment. For example, a first object at a first distance (e.g., a wheel of vehicle 120) from the energy transfer component may produce a first response which is different from a second response produced by a second object at a second distance (e.g., a body panel or undercarriage of vehicle 120) from the energy transfer component. In this manner, position detection of objects can be further improved.
In one embodiment, component 2010 and/or component 2020 may activate energy transfer components sequentially. For example, component 2010 may activate a first energy transfer component (e.g., 2035a), and then component 2010 may activate a second energy transfer component (e.g., 2035b). As another example, component 2020 may activate a first energy transfer component (e.g., 2036a), and then component 2020 may activate a second energy transfer component (e.g., 2036b). In one embodiment, component 2010 and/or component 2020 may activate energy transfer components simultaneously or contemporaneously. For example, component 2010 may activate a first energy transfer component (e.g., 2035a) and a second energy transfer component (e.g., 2035b) contemporaneously. As another example, component 2020 may activate a first energy transfer component (e.g., 2036a) and a second energy transfer component (e.g., 2036b) contemporaneously.
A position detection control component (e.g., 2010, 2020, etc.) may activate a plurality of sets of energy transfer components sequentially or contemporaneously, where each of the energy transfer components in a particular set of energy transfer components may be activated sequentially or contemporaneously. In one embodiment, the plurality of sets of energy transfer components may be activated in a predetermined order. For example, one type of energy transfer component may be preferred over another type of energy transfer component (e.g., since it offers higher energy transfer rates, since it is more commonly used on vehicles, etc.), and therefore, component 2010 and/or component 2020 may activate at least one energy transfer component of the preferred type before at least one energy transfer component of a less-preferred type. In one embodiment, the ordering of the activation may be determined dynamically or on-the-fly. For example, responsive to an identification of the vehicle, component 2010 and/or component 2020 may determine which types of energy transfer components are used on the vehicle (e.g., by accessing a memory which stores an index of energy transfer component types for each type of vehicle). Component 2010 and/or component 2020 may then activate energy transfer components which are more commonly used on that type, make, etc. of vehicle. As another example, responsive to identifying a problem affecting one or more energy transfer components, component 2010 and/or component 2020 may activate energy transfer components which are not affected by an identified problem before those that are affected by an identified problem. As yet another example, responsive to determining a position of the vehicle (e.g., 120) and/or at least one energy transfer component of the vehicle, component 2010 and/or component 2020 may activate energy transfer components which are more likely to be in a position to perform an energy transfer (e.g., based on information which indicates a positioning of energy transfer components for a particular type of vehicle).
As shown in
At least one energy transfer component (e.g., 2035a, 2035b, 2035c, 2035d, etc.) of energy transfer system 110 may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 235, whereas at least one energy transfer component (e.g., 2036a, 2036b, 2036c, 2036d, etc.) of vehicle 120 may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 236. In this manner, an interface (e.g., 2034a, 2034b, 2034c, 2034d, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) inductive energy transfer interface 234 in one embodiment.
As shown in
Although
In one embodiment, the position detection components may be disposed adjacent to and/or in proximity to the energy transfer components. For example, position detection component 2120 may be disposed adjacent to and/or in proximity to energy transfer component 2110, position detection component 2121 may be disposed adjacent to or in proximity to energy transfer component 2111, etc. Additionally, position detection may be performed using at least one position detection component (e.g., as discussed with respect to
As an example, position detection component 2120 and/or energy transfer component 2110 may be used to detect the position of a first wheel of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), whereas position detection component 2128 and/or energy transfer component 2118 may be used to detect the position of a second wheel of the vehicle. The position of other components of the vehicle (e.g., another wheel, another tire, a body panel, an energy transfer component of the vehicle, etc.) may be determined using other position detection components, other energy transfer components, information about the vehicle (e.g., information about the wheel base and track width of the vehicle which may be used to determine a position of the other two wheels of the vehicle, information about a relative position between a wheel of the vehicle and an energy transfer component of the vehicle, other information, etc.), some combination thereof, etc. In this manner, energy transfer components of the vehicle may be determined for enabling one or more transfers of energy between the vehicle and an energy transfer system (e.g., 110).
In one embodiment, use of position detection components and energy transfer components to detect the position of a vehicle and/or and an energy transfer component may provide redundancy and/or improve the precision of position detection. For example, if position detection component 2120 is unable to detect a first wheel of a vehicle (e.g., because the vehicle is parked at an angle, not perfectly centered in the parking space, position detection component 2120 is malfunctioning or has failed, etc.), energy transfer component 2110 may be used to detect the first wheel. As such, redundancy is provided (e.g., to account for a component which has failed or is otherwise not functioning properly) by increasing the number of components used to perform position detection. Further, the precision of the position detection is improved by using information about which components detect the position of an object and which do not detect the position of an object. For example, if an object (e.g., a wheel of the vehicle) is detected by position detection component 2120 but is not detected by energy transfer components 2110 and 2111, then it may be determined that the object is located between energy transfer components 2110 and 2111.
Position detection components and/or energy transfer components may be used to determine the relative positioning of multiple vehicles with respect to one another in one embodiment. For example, if four objects are detected (e.g., using position detection component 2120 and/or energy transfer component 2110, using position detection component 2122 and/or energy transfer component 2112, using position detection component 2126 and/or energy transfer component 2116, and using position detection component 2128 and/or energy transfer component 2118), it may be unclear whether the four objects are four wheels of the same vehicle or two wheels of one vehicle and two wheels of another vehicle (e.g., parked side-by-side). However, at least one position detection component (e.g., 2121, 2124, 2127, etc.) and/or at least one energy transfer component (e.g., 2111, 2114, 2117, etc.) may be used to determine if an object (e.g., an undercarriage of a vehicle) is disposed above a respective component. As such, if an object is located above a component (e.g., a position detection component and/or an energy transfer component), then it may be determined that the four objects belong to the same vehicle. Alternatively, if an object (e.g., an undercarriage of a vehicle) is not located above a component (e.g., a position detection component and/or an energy transfer component), then it may be determined that the four objects belong to at least two separate vehicles (e.g., parked side-by-side). Thus, position detection of at least one respective energy transfer component of each vehicle can be improved.
Although
As shown in
One or more energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be disposed along a centerline of tire 2210 in one embodiment. In one embodiment, one or more energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be disposed to one side of tire 2210. And in one embodiment, one or more energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be disposed in a zigzag pattern, another pattern, etc.
An energy transfer component (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be oriented in an axial plane (e.g., a plane which is parallel or almost parallel to an axis of rotation of wheel 2220 and/or tire 2210) of tire 2210 and/or wheel 2220 in one embodiment. In one embodiment, an energy transfer component (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be oriented in at least one other plane (e.g., in a non-axial plane, etc.). In one embodiment, at least two of the energy transfer components (e.g., 2230, 2240, 2250, etc.) may be oriented in different planes. In one embodiment, all of the energy transfer components (e.g., 2230, 2240, 2250, etc.) may be oriented in different planes. And in one embodiment, one or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be disposed circumferentially around tire 2210.
One or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wired interface (e.g., 231), and therefore, one or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 233 in one embodiment. One or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over an inductive interface (e.g., 234), and therefore, one or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 236 in one embodiment. One or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wireless interface (e.g., 237), and therefore, one or more of the energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 239 in one embodiment.
In one embodiment, one or more energy transfer components (e.g., 2230, 2240, 2250, some combination thereof, etc.) may include a coil. A coil of an energy transfer component (e.g., 2230, 2240, 2250, etc.) may be oriented in an axial plane (e.g., a plane which is parallel or almost parallel to an axis of rotation of wheel 2220 and/or tire 2210) of tire 2210 and/or wheel 2220, where the coil may be wound around an axis perpendicular or almost perpendicular to an axis of rotation of wheel 2220 and/or tire 2210. In one embodiment, a coil of an energy transfer component (e.g., 2230, 2240, 2250, etc.) may be oriented in at least one other plane (e.g., in a non-axial plane, etc.), disposed circumferentially around tire 2210, some combination thereof, etc. As such, energy may be transferred and/or signals may be communicated using at least one coil of tire 2210 and another energy transfer component (e.g., 235) in proximity to the at least one coil of tire 2210. For example, where an energy transfer component (e.g., including a coil) of an energy transfer system (e.g., 110) is coupled with or at least partially disposed in the ground, energy may be transferred and/or signals may be communicated between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and the energy transfer system as a coil of tire 2210 passes through (e.g., as tire 2210 rolls along the ground near the energy transfer component of the energy transfer system, as tire 2210 sits in proximity to the energy transfer component of the energy transfer system, etc.) a magnetic field created by the energy transfer component of the energy transfer system.
Embodiments of the present invention may advantageously enable an energy transfer component of a vehicle (e.g., 2230, 2240, 2250, etc.) to be positioned relatively close to an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2210, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2230, 2240, 2250, etc.) may be positioned less than an inch from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2210, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2230, 2240, 2250, etc.) may be positioned at a different distance (e.g., within a few inches, within a foot, within a longer distance, etc.) from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2210, etc.). In this manner, embodiments of the present invention can improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110).
In one embodiment, energy transfer components (e.g., 2230, 2240, 2250, etc.) may be sequentially activated (e.g., to enable an energy transfer, communication of signals, etc.) and/or sequentially deactivated based upon an orientation of tire 2210 (e.g., a position of an energy transfer component of tire 2210 with respect to an energy transfer component of an energy transfer system). For example, as tire 2210 rolls along the ground, energy transfer component 2250 may be activated at a first time (e.g., when energy transfer component 2250 comes into proximity with the ground, when energy transfer component 2250 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2240 may be activated at a second time (e.g., when energy transfer component 2240 comes into proximity with the ground, when energy transfer component 2240 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2230 may be activated at a third time (e.g., when energy transfer component 2230 comes into proximity with the ground, when energy transfer component 2230 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), etc. As another example, as tire 2210 rolls along the ground, energy transfer component 2250 may be deactivated at a fourth time (e.g., when energy transfer component 2250 is no longer in proximity with the ground, when energy transfer component 2250 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2240 may be deactivated at a fifth time (e.g., when energy transfer component 2240 is no longer in proximity with the ground, when energy transfer component 2240 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2230 may be deactivated at a sixth time (e.g., when energy transfer component 2230 is no longer in proximity with the ground, when energy transfer component 2230 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), etc. In one embodiment, a plurality of energy transfer components may be active at any given time when sequentially activating and/or deactivating the energy transfer components (e.g., a plurality of energy transfer components may be contemporaneously active responsive to sequential activation of the plurality of energy transfer components, where the plurality of energy transfer components may then be sequentially deactivated, deactivated simultaneously or contemporaneously, etc.).
The orientation of the tire (e.g., the position of an energy transfer component of tire 2210 with respect to an energy transfer component of an energy transfer system) may be determined by a sensor coupled with tire 2210, with wheel 2220, with a portion of the vehicle which monitors rotation of tire 2210 and/or wheel 2220, some combination thereof, etc. The activation and deactivation of the energy transfer components may be controlled by interface component 221 (e.g., based on or responsive to information about the orientation of tire 2210) in one embodiment. As such, in one embodiment, sequential activation and/or sequential deactivation of energy transfer components based upon an orientation of the tire (e.g., the position of an energy transfer component of tire 2210 with respect to an energy transfer component of an energy transfer system) can reduce energy loss (e.g., by deactivating one or more energy transfer components which are not used to transfer energy at a particular time) and/or increase the lifetime of an energy transfer component by reducing the amount of time that the energy transfer component is activated and/or by increasing the amount of time that the energy transfer component is deactivated.
In one embodiment, two or more of the energy transfer components of tire 2210 may be simultaneously or contemporaneously activated. For example, energy transfer components 2230, 2240, and 2250 may be simultaneously or contemporaneously activated (e.g., when energy transfer component 2240 is nearest to the ground, when tire 2210 is in another orientation, etc.). In other embodiments, any number of energy transfer components may be simultaneously or contemporaneously activated to enable the performance of one or more energy transfers. As such, multiple energy transfers can be advantageously performed at any given time between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110) using multiple energy transfer components of tire 2210, thereby enabling a higher overall energy transfer rate, reducing the heat produced by each of energy transfer components, extending the lifetime of the energy transfer components, increasing the efficiency of the energy transfer (e.g., by operating each energy transfer component at a reduced load where they are more efficient, etc.), some combination thereof, etc.
In one embodiment, groups of energy transfer components may be sequentially activated and/or sequentially deactivated (e.g., based upon the orientation of tire 2210). For example, one group of energy transfer components may be activated before another group of energy transfer components, one group of energy transfer components may be deactivated before another group of energy transfer components, etc. Each group may have any number of energy transfer components. In one embodiment, at least one energy transfer component of a particular group may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. And in one embodiment, at least one energy transfer components of a particular group may be sequentially activated and/or sequentially deactivated.
The energy transfer components (e.g., 2230, 2240, 2250, etc.) and/or associated circuitry may remain in a first state (e.g., in a low-power state) until a request is received to activate one or more of the energy transfer components in one embodiment. The request may be communicated over a signal interface (e.g., 134) and/or over an energy transfer interface (e.g., 132). For example, a component (e.g., signal communication component 224 or another component of interface component 221) coupled to one or more energy transfer components may detect a request to activate at least one energy transfer component, where the request may be communicated over an energy transfer interface which includes an energy transfer component to be activated (e.g., one or more of the at least one energy transfer component associated with the request) and/or over another energy transfer interface which does not include an energy transfer component to be activated (e.g., one or more energy transfer components other than the at least one energy transfer component associated with the request). Responsive to the request, the at least one energy transfer component and/or associated circuitry may be configured (e.g., by interface component 221) in a second state to enable the at least one energy transfer component to transfer energy and/or communicate signals (e.g., data signals, clock signals, etc.). The at least one energy transfer component (e.g., 2230, 2240, 2250, etc.) and/or associated circuitry may be configured in the first state after the energy transfer and/or signal communication is completed. As such, where components of the vehicle consume less power in the first state than the second state, energy may be saved by configuring energy transfer components and/or associated circuitry in a first state when not in use or otherwise not needed to transfer energy and/or communicate signals.
As shown in
In one embodiment, one or more energy transfer components (e.g., 2230, 2240, 2250, etc.) of tire 2210 may improve or enhance at least one mechanical property of tire 2210. For example, one or more energy transfer components (e.g., 2230, 2240, 2250, etc.) of tire 2210 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2230, 2240, 2250, etc.) of tire 2210 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2230, 2240, 2250, etc.) of tire 2210 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2230, 2240, 2250, etc.) of tire 2210 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling tire 2210 to change shape or deform during operation.
Although
As shown in
One or more energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be disposed along a centerline of tire 2260 in one embodiment. In one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be disposed to one side of tire 2260. And in one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be disposed in a zigzag pattern, another pattern, etc.
An energy transfer component (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be oriented in a radial plane (e.g., a plane which is perpendicular or almost perpendicular to an axis of rotation of wheel 2220 and/or tire 2260) of tire 2260 and/or wheel 2220 in one embodiment. In one embodiment, an energy transfer component (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be oriented in at least one other plane (e.g., in a non-radial plane, etc.). In one embodiment, at least two of the energy transfer components (e.g., 2270, 2280, 2290, etc.) may be oriented in different planes. In one embodiment, all of the energy transfer components (e.g., 2270, 2280, 2290, etc.) may be oriented in different planes. And in one embodiment, one or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be disposed circumferentially around tire 2260.
One or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wired interface (e.g., 231), and therefore, one or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 233 in one embodiment. One or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over an inductive interface (e.g., 234), and therefore, one or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 236 in one embodiment. One or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wireless interface (e.g., 237), and therefore, one or more of the energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 239 in one embodiment.
In one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, some combination thereof, etc.) may include a coil. A coil of an energy transfer component (e.g., 2270, 2280, 2290, etc.) may be oriented in a radial plane (e.g., a plane which is perpendicular or almost perpendicular to an axis of rotation of wheel 2220 and/or tire 2260) of tire 2260 and/or wheel 2220, where the coil may be wound around an axis parallel or almost parallel to an axis of rotation of wheel 2220 and/or tire 2260. In one embodiment, a coil of an energy transfer component (e.g., 2270, 2280, 2290, etc.) may be oriented in at least one other plane (e.g., in a non-radial plane, etc.), disposed circumferentially around tire 2260, some combination thereof, etc. As such, energy may be transferred and/or signals may be communicated using at least one coil of tire 2260 and another energy transfer component (e.g., 235) in proximity to the at least one coil of tire 2260. For example, where an energy transfer component (e.g., including a coil) of an energy transfer system (e.g., 110) is coupled with or at least partially disposed in the ground, energy may be transferred and/or signals may be communicated between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and the energy transfer system as a coil of tire 2260 passes through (e.g., as tire 2260 rolls along the ground near the energy transfer component of the energy transfer system, as tire 2260 sits in proximity to the energy transfer component of the energy transfer system, etc.) a magnetic field created by the energy transfer component of the energy transfer system.
Embodiments of the present invention may advantageously enable an energy transfer component of a vehicle (e.g., 2270, 2280, 2290, etc.) to be positioned relatively close to an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2260, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2270, 2280, 2290, etc.) may be positioned less than an inch from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2260, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2270, 2280, 2290, etc.) may be positioned at a different distance (e.g., within a few inches, within a foot, within a longer distance, etc.) from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near tire 2260, etc.). In this manner, embodiments of the present invention can improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110).
In one embodiment, energy transfer components (e.g., 2270, 2280, 2290, etc.) may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. As such, in one embodiment, energy loss can be reduced and/or the lifetime of an energy transfer component can be extended by reducing the amount of time that the energy transfer component is activated and/or increasing the amount of time that the energy transfer component is deactivated.
Energy transfer components (e.g., 2270, 2280, 2290, etc.) may be sequentially activated and/or sequentially deactivated in one embodiment. As such, multiple energy transfers can be advantageously performed at any given time between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110) using multiple energy transfer components of tire 2260, thereby enabling a higher overall energy transfer rate, reducing the heat produced by each of energy transfer components, extending the lifetime of the energy transfer components, increasing the efficiency of the energy transfer (e.g., by operating each energy transfer component at a reduced load where they are more efficient, etc.), some combination thereof, etc.
In one embodiment, groups of energy transfer components of tire 2260 may be sequentially activated and/or sequentially deactivated. For example, one group of energy transfer components may be activated before another group of energy transfer components, one group of energy transfer components may be deactivated before another group of energy transfer components, etc. Each group may have any number of energy transfer components. In one embodiment, at least one energy transfer component of a particular group may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. And in one embodiment, at least one energy transfer components of a particular group may be sequentially activated and/or sequentially deactivated.
In one embodiment, the energy transfer components (e.g., 2270, 2280, 2290, etc.) and/or associated circuitry may remain in a first state (e.g., in a low-power state) until a request is received to activate one or more of the energy transfer components. The request may be communicated over a signal interface (e.g., 134) and/or over an energy transfer interface (e.g., 132). For example, a component (e.g., signal communication component 224 or another component of interface component 221) coupled to one or more energy transfer components may detect a request to activate at least one energy transfer component, where the request may be communicated over an energy transfer interface which includes an energy transfer component to be activated (e.g., one or more of the at least one energy transfer component associated with the request) and/or over another energy transfer interface which does not include an energy transfer component to be activated (e.g., one or more energy transfer components other than the at least one energy transfer component associated with the request). Responsive to the request, the at least one energy transfer component and/or associated circuitry may be configured (e.g., by interface component 221) in a second state to enable the at least one energy transfer component to transfer energy and/or communicate signals (e.g., data signals, clock signals, etc.). The at least one energy transfer component (e.g., 2270, 2280, 2290, etc.) and/or associated circuitry may be configured in the first state after the energy transfer and/or signal communication is completed. As such, where components of the vehicle consume less power in the first state than the second state, energy may be saved by configuring energy transfer components and/or associated circuitry in a first state when not in use or otherwise not needed to transfer energy and/or communicate signals.
As shown in
In one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may improve or enhance at least one mechanical property of tire 2260. For example, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling tire 2260 to change shape or deform during operation.
In one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may implement or replace a bead of tire 2260. One or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may implement or replace a belt (e.g., steel belt, nylon belt, etc.) of tire 2260. And in one embodiment, one or more energy transfer components (e.g., 2270, 2280, 2290, etc.) of tire 2260 may implement or replace another component of tire 2260.
Although
As shown in
One or more energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be disposed along a centerline of wheel 2310 in one embodiment. In one embodiment, one or more energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be disposed to one side of wheel 2310. And in one embodiment, one or more energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be disposed in a zigzag pattern, another pattern, etc.
An energy transfer component (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be oriented in an axial plane (e.g., a plane which is parallel or almost parallel to an axis of rotation of wheel 2310) of wheel 2310 in one embodiment. In one embodiment, an energy transfer component (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be oriented in at least one other plane (e.g., in a non-axial plane, etc.). In one embodiment, at least two of the energy transfer components (e.g., 2320, 2330, 2340, etc.) may be oriented in different planes. In one embodiment, all of the energy transfer components (e.g., 2320, 2330, 2340, etc.) may be oriented in different planes. And in one embodiment, one or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be disposed circumferentially around wheel 2310.
One or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wired interface (e.g., 231), and therefore, one or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 233 in one embodiment. One or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over an inductive interface (e.g., 234), and therefore, one or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 236 in one embodiment. One or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wireless interface (e.g., 237), and therefore, one or more of the energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 239 in one embodiment.
In one embodiment, one or more energy transfer components (e.g., 2320, 2330, 2340, some combination thereof, etc.) may include a coil. A coil of an energy transfer component (e.g., 2320, 2330, 2340, etc.) may be oriented in an axial plane (e.g., a plane which is parallel or almost parallel to an axis of rotation of wheel 2310) of wheel 2310, where the coil may be wound around an axis perpendicular or almost perpendicular to an axis of rotation of wheel 2310. In one embodiment, a coil of an energy transfer component (e.g., 2320, 2330, 2340, etc.) may be oriented in at least one other plane (e.g., in a non-axial plane, etc.), disposed circumferentially around wheel 2310, some combination thereof, etc. As such, energy may be transferred and/or signals may be communicated using at least one coil of wheel 2310 and another energy transfer component (e.g., 235) in proximity to the at least one coil of wheel 2310. For example, where an energy transfer component (e.g., including a coil) of an energy transfer system (e.g., 110) is coupled with or at least partially disposed in the ground, energy may be transferred and/or signals may be communicated between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and the energy transfer system as a coil of wheel 2310 passes through (e.g., as a tire mounted on wheel 2310 rolls along the ground near the energy transfer component of the energy transfer system, as wheel 2310 sits in proximity to the energy transfer component of the energy transfer system, etc.) a magnetic field created by the energy transfer component of the energy transfer system.
Embodiments of the present invention may advantageously enable an energy transfer component of a vehicle (e.g., 2320, 2330, 2340, etc.) to be positioned relatively close to an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2310, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2320, 2330, 2340, etc.) may be positioned less than an inch from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2310, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2320, 2330, 2340, etc.) may be positioned at a different distance (e.g., within a few inches, within a foot, within a longer distance, etc.) from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2310, etc.). In this manner, embodiments of the present invention can improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110).
In one embodiment, energy transfer components (e.g., 2320, 2330, 2340, etc.) may be sequentially activated (e.g., to enable an energy transfer, communication of signals, etc.) and/or sequentially deactivated based upon an orientation of wheel 2310 (e.g., a position of an energy transfer component of wheel 2310 with respect to an energy transfer component of an energy transfer system). For example, as wheel 2310 rolls along the ground, energy transfer component 2340 may be activated at a first time (e.g., when energy transfer component 2340 comes into proximity with the ground, when energy transfer component 2340 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2330 may be activated at a second time (e.g., when energy transfer component 2330 comes into proximity with the ground, when energy transfer component 2330 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2320 may be activated at a third time (e.g., when energy transfer component 2320 comes into proximity with the ground, when energy transfer component 2320 is in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), etc. As another example, as wheel 2310 rolls along the ground, energy transfer component 2340 may be deactivated at a fourth time (e.g., when energy transfer component 2340 is no longer in proximity with the ground, when energy transfer component 2340 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2330 may be deactivated at a fifth time (e.g., when energy transfer component 2330 is no longer in proximity with the ground, when energy transfer component 2330 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), energy transfer component 2320 may be deactivated at a sixth time (e.g., when energy transfer component 2320 is no longer in proximity with the ground, when energy transfer component 2320 is no longer in a position or otherwise capable of transferring energy and/or communicating signals with an energy transfer component of an energy transfer system, etc.), etc. In one embodiment, a plurality of energy transfer components may be active at any given time when sequentially activating and/or deactivating the energy transfer components (e.g., a plurality of energy transfer components may be contemporaneously active responsive to sequential activation of the plurality of energy transfer components, where the plurality of energy transfer components may then be sequentially deactivated, deactivated simultaneously or contemporaneously, etc.).
The orientation of the wheel (e.g., the position of an energy transfer component of wheel 2310 with respect to an energy transfer component of an energy transfer system) may be determined by a sensor coupled with a tire (e.g., mounted on wheel 2310), with wheel 2310, with a portion of the vehicle which monitors rotation of wheel 2310 and/or a tire mounted on wheel 2310, some combination thereof, etc. The activation and deactivation of the energy transfer components may be controlled by interface component 221 (e.g., based on or responsive to information about the orientation of wheel 2310) in one embodiment. As such, in one embodiment, sequential activation and/or sequential deactivation of energy transfer components based upon an orientation of the wheel (e.g., the position of an energy transfer component of wheel 2310 with respect to an energy transfer component of an energy transfer system) can reduce energy loss (e.g., by deactivating one or more energy transfer components which are not used to transfer energy at a particular time) and/or increase the lifetime of an energy transfer component by reducing the amount of time that the energy transfer component is activated and/or by increasing the amount of time that the energy transfer component is deactivated.
In one embodiment, two or more of the energy transfer components of wheel 2310 may be simultaneously or contemporaneously activated. For example, energy transfer components 2320, 2330, and 2340 may be simultaneously or contemporaneously activated (e.g., when energy transfer component 2330 is nearest to the ground, when wheel 2310 is in another orientation, etc.). In other embodiments, any number of energy transfer components may be simultaneously or contemporaneously activated to enable the performance of one or more energy transfers. As such, multiple energy transfers can be advantageously performed at any given time between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110) using multiple energy transfer components of wheel 2310, thereby enabling a higher overall energy transfer rate, reducing the heat produced by each of energy transfer components, extending the lifetime of the energy transfer components, increasing the efficiency of the energy transfer (e.g., by operating each energy transfer component at a reduced load where they are more efficient, etc.), some combination thereof, etc.
In one embodiment, groups of energy transfer components may be sequentially activated and/or sequentially deactivated (e.g., based upon the orientation of wheel 2310). For example, one group of energy transfer components may be activated before another group of energy transfer components, one group of energy transfer components may be deactivated before another group of energy transfer components, etc. Each group may have any number of energy transfer components. In one embodiment, at least one energy transfer component of a particular group may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. And in one embodiment, at least one energy transfer components of a particular group may be sequentially activated and/or sequentially deactivated.
The energy transfer components (e.g., 2320, 2330, 2340, etc.) and/or associated circuitry may remain in a first state (e.g., in a low-power state) until a request is received to activate one or more of the energy transfer components in one embodiment. The request may be communicated over a signal interface (e.g., 134) and/or over an energy transfer interface (e.g., 132). For example, a component (e.g., signal communication component 224 or another component of interface component 221) coupled to one or more energy transfer components may detect a request to activate at least one energy transfer component, where the request may be communicated over an energy transfer interface which includes an energy transfer component to be activated (e.g., one or more of the at least one energy transfer component associated with the request) and/or over another energy transfer interface which does not include an energy transfer component to be activated (e.g., one or more energy transfer components other than the at least one energy transfer component associated with the request). Responsive to the request, the at least one energy transfer component and/or associated circuitry may be configured (e.g., by interface component 221) in a second state to enable the at least one energy transfer component to transfer energy and/or communicate signals (e.g., data signals, clock signals, etc.). The at least one energy transfer component (e.g., 2320, 2330, 2340, etc.) and/or associated circuitry may be configured in the first state after the energy transfer and/or signal communication is completed. As such, where components of the vehicle consume less power in the first state than the second state, energy may be saved by configuring energy transfer components and/or associated circuitry in a first state when not in use or otherwise not needed to transfer energy and/or communicate signals.
As shown in
In one embodiment, one or more energy transfer components (e.g., 2320, 2330, 2340, etc.) of wheel 2310 may improve or enhance at least one mechanical property of wheel 2310. For example, one or more energy transfer components (e.g., 2320, 2330, 2340, etc.) of wheel 2310 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2320, 2330, 2340, etc.) of wheel 2310 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2320, 2330, 2340, etc.) of wheel 2310 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2320, 2330, 2340, etc.) of wheel 2310 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling wheel 2310 to change shape or deform during operation.
Although
As shown in
One or more energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be disposed along a centerline of wheel 2350 in one embodiment. In one embodiment, one or more energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be disposed to one side of wheel 2350. And in one embodiment, one or more energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be disposed in a zigzag pattern, another pattern, etc.
An energy transfer component (e.g., 2360, 2370, some combination thereof, etc.) may be oriented in a radial plane (e.g., a plane which is perpendicular or almost perpendicular to an axis of rotation of wheel 2350) of wheel 2350 in one embodiment. In one embodiment, an energy transfer component (e.g., 2360, 2370, some combination thereof, etc.) may be oriented in at least one other plane (e.g., in a non-radial plane, etc.). In one embodiment, at least two of the energy transfer components (e.g., 2360, 2370, etc.) may be oriented in different planes. In one embodiment, all of the energy transfer components (e.g., 2360, 2370, etc.) may be oriented in different planes. And in one embodiment, one or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be disposed circumferentially around wheel 2350.
One or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wired interface (e.g., 231), and therefore, one or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 233 in one embodiment. One or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over an inductive interface (e.g., 234), and therefore, one or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 236 in one embodiment. One or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wireless interface (e.g., 237), and therefore, one or more of the energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 239 in one embodiment.
In one embodiment, one or more energy transfer components (e.g., 2360, 2370, some combination thereof, etc.) may include a coil. A coil of an energy transfer component (e.g., 2360, 2370, etc.) may be oriented in a radial plane (e.g., a plane which is perpendicular or almost perpendicular to an axis of rotation of wheel 2350) of wheel 2350, where the coil may be wound around an axis parallel or almost parallel to an axis of rotation of wheel 2350. In one embodiment, a coil of an energy transfer component (e.g., 2360, 2370, etc.) may be oriented in at least one other plane (e.g., in a non-radial plane, etc.), disposed circumferentially around wheel 2350, some combination thereof, etc. As such, energy may be transferred and/or signals may be communicated using at least one coil of wheel 2350 and another energy transfer component (e.g., 235) in proximity to the at least one coil of wheel 2350. For example, where an energy transfer component (e.g., including a coil) of an energy transfer system (e.g., 110) is coupled with or at least partially disposed in the ground, energy may be transferred and/or signals may be communicated between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and the energy transfer system as a coil of wheel 2350 passes through (e.g., as a tire mounted on wheel 2350 rolls along the ground near the energy transfer component of the energy transfer system, as wheel 2350 sits in proximity to the energy transfer component of the energy transfer system, etc.) a magnetic field created by the energy transfer component of the energy transfer system.
Embodiments of the present invention may advantageously enable an energy transfer component of a vehicle (e.g., 2360, 2370, etc.) to be positioned relatively close to an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2350, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2360, 2370, etc.) may be positioned less than an inch from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2350, etc.). In one embodiment, an energy transfer component of a vehicle (e.g., 2360, 2370, etc.) may be positioned at a different distance (e.g., within a few inches, within a foot, within a longer distance, etc.) from an energy transfer component of an energy transfer system (e.g., coupled with or at least partially disposed in the ground, positioned near a roadway or other location where a vehicle may be located, positioned in another location near wheel 2350, etc.). In this manner, embodiments of the present invention can improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110).
In one embodiment, energy transfer components (e.g., 2360, 2370, etc.) may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. As such, in one embodiment, energy loss can be reduced and/or the lifetime of an energy transfer component can be extended by reducing the amount of time that the energy transfer component is activated and/or increasing the amount of time that the energy transfer component is deactivated.
Energy transfer components (e.g., 2360, 2370, etc.) may be sequentially activated and/or sequentially deactivated in one embodiment. As such, multiple energy transfers can be advantageously performed at any given time between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110) using multiple energy transfer components of wheel 2350, thereby enabling a higher overall energy transfer rate, reducing the heat produced by each of energy transfer components, extending the lifetime of the energy transfer components, increasing the efficiency of the energy transfer (e.g., by operating each energy transfer component at a reduced load where they are more efficient, etc.), some combination thereof, etc.
In one embodiment, groups of energy transfer components of wheel 2350 may be sequentially activated and/or sequentially deactivated. For example, one group of energy transfer components may be activated before another group of energy transfer components, one group of energy transfer components may be deactivated before another group of energy transfer components, etc. Each group may have any number of energy transfer components. In one embodiment, at least one energy transfer component of a particular group may be simultaneously (or contemporaneously) activated and/or simultaneously (or contemporaneously) deactivated. And in one embodiment, at least one energy transfer components of a particular group may be sequentially activated and/or sequentially deactivated.
In one embodiment, the energy transfer components (e.g., 2360, 2370, etc.) and/or associated circuitry may remain in a first state (e.g., in a low-power state) until a request is received to activate one or more of the energy transfer components. The request may be communicated over a signal interface (e.g., 134) and/or over an energy transfer interface (e.g., 132). For example, a component (e.g., signal communication component 224 or another component of interface component 221) coupled to one or more energy transfer components may detect a request to activate at least one energy transfer component, where the request may be communicated over an energy transfer interface which includes an energy transfer component to be activated (e.g., one or more of the at least one energy transfer component associated with the request) and/or over another energy transfer interface which does not include an energy transfer component to be activated (e.g., one or more energy transfer components other than the at least one energy transfer component associated with the request). Responsive to the request, the at least one energy transfer component and/or associated circuitry may be configured (e.g., by interface component 221) in a second state to enable the at least one energy transfer component to transfer energy and/or communicate signals (e.g., data signals, clock signals, etc.). The at least one energy transfer component (e.g., 2360, 2370, etc.) and/or associated circuitry may be configured in the first state after the energy transfer and/or signal communication is completed. As such, where components of the vehicle consume less power in the first state than the second state, energy may be saved by configuring energy transfer components and/or associated circuitry in a first state when not in use or otherwise not needed to transfer energy and/or communicate signals.
As shown in
In one embodiment, one or more energy transfer components (e.g., 2360, 2370, etc.) of wheel 2350 may improve or enhance at least one mechanical property of wheel 2350. For example, one or more energy transfer components (e.g., 2360, 2370, etc.) of wheel 2350 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2360, 2370, etc.) of wheel 2350 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2360, 2370, etc.) of wheel 2350 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2360, 2370, etc.) of wheel 2350 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling wheel 2350 to change shape or deform during operation.
Although
As shown in
Component 2480 may be any component capable of transferring energy and/or communicating signals between components which rotate with respect to one another. For example, first portion 2481 of component 2480 may be electrically coupled to line 2472 and/or 2477, where first portion 2481 may be coupled with, integrated with or otherwise stationary with respect to a component of a vehicle (e.g., second component 2434 of hub assembly 2430, component 2440, some combination thereof, etc.). Second portion 2482 of component 2480 may be electrically coupled to line 2470 and/or 2476, where second portion 2482 may be coupled with, integrated with or otherwise stationary with respect to another component (e.g., a component of wheel 2420, a component of tire 2410, first component 2432 of hub assembly 2430, some combination thereof, etc.). Since wheel 2420 and tire 2410 rotate with respect to the vehicle (e.g., second component 2434 of hub assembly 2430, component 2440, some combination thereof, etc.), component 2480 may be used to transfer energy and/or communicate signals between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and a component (e.g., tire 2410, wheel 2420, etc.) which rotates with respect thereto.
In one embodiment, first portion 2481 and second portion 2482 may include at least one respective electrical contact which may physically contact one another to enable energy to be transferred and/or signals to be communicated between first portion 2481 and second portion 2482. For example, first portion 2481 and second portion 2482 may implement a slip ring or other rotary electrical interface. In one embodiment, first portion 2481 and second portion 2482 may each include at least one respective coil which may implement an inductive interface capable of transferring energy and/or communicating signals between first portion 2481 and second portion 2482. And in one embodiment, first portion 2481 and second portion 2482 may each include at least one respective component of another type (e.g., configured to transmit and/or receive radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, some combination thereof, etc.) capable of transferring energy and/or communicating signals between first portion 2481 and second portion 2482.
As shown in
Wheel 2420 may include a plurality of portions. For example, first portion 2421 of wheel 2420 may include surface 2427 which interfaces with a surface of another component (e.g., rotor 2450, hub assembly 2430, etc.) when wheel 2420 mounts to hub assembly 2430. Portion 2422 may connect portion 2421 to portion 2423, where portion 2423 may be configured to accept or otherwise enable mounting of tire 2410. In one embodiment, portion 2422 may include at least one spoke, a disc with at least one hole formed therein, a disc without any holes, or some other type of member. In one embodiment, portion 2421 may be referred to a “hub” and portion 2423 may be referred to as a “rim.”
As shown in
Energy transfer component 2461 and/or line 2473 may be hidden or not visible from the outside of tire 2410 in one embodiment. For example, energy transfer component 2461 and/or line 2473 may be disposed between layers or portions 2412 and 2413 of tire 2410. Portion 2412 and portion 2413 may each include a portion of tire 2410 selected from a group consisting of a tread, a sidewall, a liner, a bead, a filler, a chafer, a steel belt, a nylon belt, a cord, a body ply, a cap ply, an edge cover which covers or overlaps a ply, an adhesive, some combination thereof, etc. In one embodiment, energy transfer component 2461 and/or line 2473 may be exposed or visible from the outside of the tire (e.g., coupled with an outer surface of tire 2410, set in tire 2410 such that one portion is visible and another portion is hidden, etc.).
As shown in
In one embodiment, energy transfer component 2460 may be disposed at least partially within or coupled with region 2425 of wheel 2420. Region 2425 may be a recessed or concave portion of wheel 2420 which is sized to accept energy transfer component 2460. In one embodiment, region 2425 may be shaped similarly to energy transfer component 2460 (e.g., region 2425 and energy transfer component 2460 may both be circular in shape, square in shape, trapezoidal in shape, alternatively shaped, etc.). And in one embodiment, region 2425 may have a different shape than that of energy transfer component 2460 (e.g., energy transfer component 2460 may be circular in shape and region 2425 may be square in shape, etc.).
Line 2470 and/or line 2476 may be routed through or along a portion of wheel 2410. For example, line 2476 may be routed through or along portion 2423 of wheel 2420 (e.g., on the outside of portion 2423, in a channel, in a groove, in a hole or other type of cavity, etc.). As another example, line 2470 and/or line 2476 may be routed through or along portion 2422 (e.g., including at least one spoke, a disc with at least one hole formed therein, a disc with no holes formed therein, etc.) of wheel 2420 (e.g., on the outside of portion 2422, in a channel, in a groove, in a hole or other type of cavity, etc.). And as yet another example, line 2470 and/or line 2476 may be routed through or along portion 2421 of wheel 2420 (e.g., on the outside of portion 2421, in a channel, in a groove, in a hole or other type of cavity, etc.). In one embodiment, an interface or line (e.g., 2470, 2476, etc.) may be routed through or along a portion of wheel 2420 (e.g., in a channel, in a groove, in a hole or other type of cavity, etc.) which is sized and/or shaped to accept the interface or line. And in one embodiment, a line (e.g., 2470 and/or 2476) may be secured to wheel 2420 using mechanism 2478 (e.g., a bracket secured by fastener 2479, a cover secured by fastener 2479, an adhesive, etc.).
As shown in
Line 2473 may electrically couple to line 2476 using contacts 2474 and 2475, where contact 2474 may be coupled with or disposed at least partially within tire 2410 and contact 2475 may be coupled with or disposed at least partially within wheel 2420. As such, in one embodiment, mounting tire 2410 on wheel 2420 may cause contacts 2474 and 2475 to come into physical contact and therefore electrically couple lines 2473 and 2476. In one embodiment, contact 2474 may be visible from an outside of tire 2410 when removed from wheel 2420, and contact 2475 may be visible from an outside of wheel 2420 when tire 2410 is removed from wheel 2420. And in one embodiment, contact 2475 may be located at or in proximity to a bead seat of wheel 2420, another region of portion 2423, etc. In this manner, energy may be transferred and/or signals may be communicated between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and an energy transfer system (e.g., 110) using an energy transfer component (e.g., 2461) of a tire (e.g., 2410).
As shown in
In one embodiment, the wheel studs (e.g., 2491a and 2491b) and corresponding holes in wheel 2420 may be used to align or locate contacts 2471a and 2471b with respect to one another. In one embodiment, wheel 2420 may be manufactured to fit on hub assembly 2430 in a limited number of orientations (e.g., using a non-uniform spacing of wheel studs 2491a and 2491b, using a key, pin, or other member used to align wheel 2420 with hub assembly 2430, etc.), thereby enabling alignment of contacts 2471a with contacts 2471b when wheel 2420 is mounted to the vehicle. In this manner, energy may be transferred and/or signals may be communicated between a vehicle and an energy transfer system when wheel 2420 is mounted to the vehicle.
In one embodiment, contacts 2471a and 2471b may be located with respect to one another such that contacts 2471a may align with contacts 2471b regardless of the orientation of wheel 2420 with respect to the vehicle (e.g., rotor 2450, hub assembly 2430, etc.). For example, multiple instances of contacts 2471a (e.g., disposed circumferentially around surface 2427) may be coupled to line 2470 and/or line 2476, thereby enabling at least one instance of contacts 2471a to physically contact contacts 2471b when wheel 2420 is mounted to the vehicle. As another example, multiple instances of contacts 2471b (e.g., disposed circumferentially around a surface of rotor 2450, first component 2432, etc.) may be coupled to line 2472 and/or line 2477, thereby enabling at least one instance of contacts 2471b to physically contact contacts 2471a when wheel 2420 is mounted to the vehicle. As yet another example, contacts 2471a may include at least one ring coupled with or disposed at least partially in surface 2427, thereby enabling the at least one ring of contacts 2471a to physically contact contacts 2471b when wheel 2420 is mounted to the vehicle. As a further example, contacts 2471b may include at least one ring coupled with or disposed at least partially in a surface (e.g., of rotor 2450, of first component 2432, etc.), thereby enabling the at least one ring of contacts 2471b to physically contact contacts 2471a when wheel 2420 is mounted to the vehicle. In this manner, energy may be transferred and/or signals may be communicated between a vehicle and an energy transfer system regardless of how wheel 2420 is orientated when mounted.
Line 2472 and/or line 2477 may be routed through or along a component (e.g., rotor 2450, first component 2432, component 2480, second component 2434, component 2440, another component, some combination thereof, etc.) of the vehicle. In one embodiment, line 2472 and/or line 2477 may be routed on the outside of the component (e.g., rotor 2450, first component 2432, component 2480, second component 2434, component 2440, another component, some combination thereof, etc.), in a feature (e.g., a channel, groove, hole, or other type of cavity, etc.) of the component (e.g., rotor 2450, first component 2432, component 2480, second component 2434, component 2440, another component, some combination thereof, etc.), etc. In one embodiment, line 2472 and/or line 2477 may be secured to the component (e.g., rotor 2450, first component 2432, component 2480, second component 2434, component 2440, another component, some combination thereof, etc.) using a mechanism (e.g., a bracket secured by a fastener, a cover secured by a fastener, an adhesive, etc.).
In one embodiment, signals communicated over an interface (e.g., including line 2470, line 2472, line 2473, line 2476, line 2477, some combination thereof, etc.) may be analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. An interface (e.g., including line 2470, line 2472, line 2473, line 2476, line 2477, some combination thereof, etc.) may implement unidirectional signal communication and/or bidirectional signal communication in one embodiment. And in one embodiment, signals may be communicated over an interface (e.g., including line 2470, line 2472, line 2473, line 2476, line 2477, some combination thereof, etc.) using single-ended signaling and/or differential signaling.
As shown in
Wheel 2420 may have at least one feature (e.g., 2426) which is capable of increasing the heat transfer from one or more energy transfer components of wheel 2420. In one embodiment, at least one feature (e.g., 2426) may increase heat transfer by increasing the surface area of wheel 2420 (e.g., similar to a fin of a heat sink). The at least one feature (e.g., 2426) may be shaped or otherwise configured to direct air (e.g., ambient air outside of wheel 2420) over a region of wheel 2420 (e.g. over surface 2428, over a portion of wheel 2420 to which an energy transfer component is attached, etc.), thereby increasing heat transfer from the one or more energy transfer components via convection, conduction, etc. In one embodiment, wheel 2420 may include at least one spoke (e.g., located in portion 2422), where the at least one spoke is shaped or otherwise configured to direct air (e.g., ambient air outside of wheel 2420) over a region of wheel 2420 (e.g. a portion of wheel 2420 to which an energy transfer component is attached), thereby increasing heat transfer from the one or more energy transfer components via convection, conduction, etc.
At least one feature (e.g., 2560a through 2560g) and/or at least one spoke (e.g., 2580a through 2580d) of wheel 2420 may be capable of increasing the heat transfer from one or more energy transfer components of wheel 2420. In one embodiment, at least one feature (e.g., 2560a through 2560g) and/or at least one spoke (e.g., 2580a through 2580d) of wheel 2420 may increase heat transfer by increasing the surface area of wheel 2420 (e.g., similar to a fin of a heat sink). In one embodiment, at least one feature (e.g., 2560a through 2560g) and/or at least one spoke (e.g., 2580a through 2580d) of wheel 2420 may increase heat transfer from one or more energy transfer components via convection. For example, at least one feature (e.g., 2560a through 2560g) of wheel 2420 may be shaped or otherwise configured to direct air or another fluid (e.g., as shown by arrows 2570a, 2570b, and 2570c) over one or more regions (e.g., 2530, 2540, 2550, etc.) of wheel 2420. As another example, at least one spoke (e.g., 2580a through 2580d) of wheel 2420 may be shaped or otherwise configured to direct air or another fluid (e.g., as shown by arrows 2590a, 2590b, and 2590c) over one or more regions (e.g., 2530, 2540, 2550, etc.) of wheel 2420.
Although
Turning back to
As shown in
In one embodiment, component 2464 may be configured to convert heat generated by an energy transfer component (e.g., 2460) into electrical energy. For example, component 2464 may be a thermoelectric cooler or other component capable of generating electricity responsive to a temperature differential being applied across a first side and a second side of component 2464. Component 2464 may be advantageously positioned with respect to an energy transfer component (e.g., 2460) to create a temperature differential across a first side (e.g., positioned adjacent to energy transfer component 2460) and a second side (e.g., positioned to adjacent to ambient air within region 2411) of component 2464, where the first side may be warmer than the second side in one embodiment. Energy generated by component 2464 may be transferred over an interface (e.g., lines 2470 and 2472) to a component of a vehicle (e.g., interface component 221, power management component 225, etc.), thereby enabling the energy to be accessed (e.g., for use, storage, etc.) by the vehicle and/or transferred to another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, energy generated by component 2464 may be transferred over an interface (e.g., lines 2470 and 2472) contemporaneously with energy from energy transfer component 2460 (e.g., by summing the voltages, summing the currents, etc.). In this manner, electricity may be advantageously generated using component 2464 to improve the efficiency of an energy transfer between a vehicle and an energy transfer system, improve the efficiency of an energy transfer between two or more vehicles, recover energy that would otherwise be lost, etc.
As shown in
In one embodiment, component 2465 may be configured to convert heat generated by an energy transfer component (e.g., 2461) into electrical energy. For example, component 2465 may be a thermoelectric cooler or other component capable of generating electricity responsive to a temperature differential being applied across a first side and a second side of component 2465. Component 2465 may be advantageously positioned with respect to an energy transfer component (e.g., 2461) to create a temperature differential across a first side (e.g., positioned adjacent to energy transfer component 2461) and a second side (e.g., positioned to adjacent to a portion of tire 2410, ambient air, etc.) of component 2465, where the first side may be warmer than the second side in one embodiment. Energy generated by component 2465 may be transferred over an interface (e.g., lines 2473, 2476, and 2477) to a component of a vehicle (e.g., interface component 221, power management component 225, etc.), thereby enabling the energy to be accessed (e.g., for use, storage, etc.) by the vehicle and/or transferred to another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, energy generated by component 2465 may be transferred over an interface (e.g., lines 2473, 2476, and 2477) contemporaneously with energy from energy transfer component 2461 (e.g., by summing the voltages, summing the currents, etc.). In this manner, electricity may be advantageously generated using component 2465 to improve the efficiency of an energy transfer between a vehicle and an energy transfer system, improve the efficiency of an energy transfer between two or more vehicles, recover energy that would otherwise be lost, etc.
As shown in
Component 2465 may be capable of transferring heat from an energy transfer component (e.g., 2461) via convection. For example, component 2465 may include a fan or other device capable of moving a fluid across an energy transfer component (e.g., 2461), across a component (e.g., a portion or surface of tire 2410, etc.) into which heat from an energy transfer component (e.g., 2461) is transferred, etc. In one embodiment, component 2465 may be powered by energy from line 2473.
As shown in
Component 2463 may be any component capable of monitoring or sensing a temperature of energy transfer component 2461. In one embodiment, component 2463 may be or include a thermocouple, thermistor, ultrasonic thermometer, infrared thermometer or pyrometer, laser thermometer or pyrometer, etc. Component 2463 may be powered using energy from line 2473 in one embodiment. In one embodiment, signals generated by component 2463 (e.g., representing or otherwise used to determine the a temperature of energy transfer component 2461) may be transferred to a component of the vehicle (e.g., interface component 221) over an interface (e.g., including lines 2473, 2476, and 2477) using at least one conductor used to transfer energy (e.g., between the vehicle and an energy transfer system) and/or at least one other conductor which is separate from at least one conductor used to transfer energy (e.g., between the vehicle and an energy transfer system). In one embodiment, a temperature associated with an energy transfer component (e.g., 2461) may be communicated over an interface (e.g., including lines 2473, 2476, and 2477) using analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. In one embodiment, a temperature associated with an energy transfer component (e.g., 2461) may be communicated over an interface (e.g., including lines 2473, 2476, and 2477) using unidirectional signal communication, bidirectional signal communication, single-ended signaling, differential signaling, some combination thereof, etc.
In one embodiment, component 2462 and/or component 2464 may be used to implement a control system for controlling the temperature of energy transfer component 2460 (e.g., in accordance with process 3800 of
In one embodiment, component 2463 and/or component 2465 may be used to implement a control system for controlling the temperature of energy transfer component 2461 (e.g., in accordance with process 3800 of
Accordingly, embodiments of the present invention can advantageously increase heat transfer from energy transfer components of a wheel (e.g., 2420) and/or a tire (e.g., 2410). Increasing heat transfer from an energy transfer component can extend the lifetime of the component, increase efficiency of energy transfer and/or signal communication, etc. Additionally, by transforming heat generated by an energy transfer component into electricity (e.g., using component 2464, component 2465, etc.), embodiments of the present invention can further increase the efficiency of an energy transfer.
In one embodiment, one or more energy transfer components (e.g., 2461, etc.) of tire 2410 may improve or enhance at least one mechanical property of tire 2410. For example, one or more energy transfer components (e.g., 2461, etc.) of tire 2410 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2461, etc.) of tire 2410 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2461, etc.) of tire 2410 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2461, etc.) of tire 2410 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling tire 2410 to change shape or deform during operation.
In one embodiment, one or more energy transfer components (e.g., 2460, etc.) of wheel 2420 may improve or enhance at least one mechanical property of wheel 2420. For example, one or more energy transfer components (e.g., 2460, etc.) of wheel 2420 may increase rigidity, strength, resistance to deformation, some combination thereof, etc. As another example, one or more energy transfer components (e.g., 2460, etc.) of wheel 2420 may increase lateral stiffness, longitudinal stiffness, some combination thereof, etc. As yet another example, one or more energy transfer components (e.g., 2460, etc.) of wheel 2420 may enable the tire to support circumferential loads. And as a further example, one or more energy transfer components (e.g., 2460, etc.) of wheel 2420 may be flexible (e.g., able to be deformed or bent, able to return to its original shape after deformation or bending, etc.), thereby enabling wheel 2420 to change shape or deform during operation.
Although
Further, although
In one embodiment, energy transfer component 2660 may be coupled with or at least partially disposed in the ground (e.g., similar to energy transfer components 1610 of
As shown in
In one embodiment, energy transfer component 2680 may be coupled with or at least partially disposed in component 2670, where component 2670 may be a connector or other member configured to be inserted into receptacle 2627 of vehicle 2620. Energy transfer component 2640 may be located at, adjacent to, etc. receptacle 2627. In this manner, component 2670 may be inserted into receptacle 2627 to align or otherwise position energy transfer components 2640 and 2680 such that energy may be transferred and/or signals may be communicated.
As shown in
In one embodiment, one or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wired interface (e.g., 231), and therefore, one or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 232 in one embodiment. One or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over an inductive interface (e.g., 234), and therefore, one or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 235 in one embodiment. One or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be used to transfer energy and/or communicate signals over a wireless interface (e.g., 237), and therefore, one or more of the energy transfer components (e.g., 2660, 2680, some combination thereof, etc.) may be implemented in accordance with (e.g., include components of, function similarly to, etc.) energy transfer component 238 in one embodiment.
As shown in
Component 2629 of vehicle 2620 may be any component disposed at least partially within vehicle 2620. For example, component 2629 may be a structural member (e.g., part of the frame, a body panel, etc.), an aesthetic member (e.g., a body panel or other component used primarily for aesthetic purposes, etc.), an aerodynamic member (e.g., used to direct air or another fluid through or around vehicle 2620), a hardware component (e.g., including circuitry), or any other component of vehicle 2620. In this manner, embodiments of the present invention may advantageously repurpose or use at least one component of a vehicle which is primarily used to perform another function to also transfer heat from one or more energy transfer components.
As shown in
The one or more components (e.g., 2632, 2642, 2662, 2682, etc.) may be capable of transferring heat from an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.) via conduction. For example, at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be configured to remove heat generated by an energy transfer component (e.g., 2630, 2640, 2660, 2680, some combination thereof, etc.) responsive to application of an electric potential across respective electrodes of each of the at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.). In one embodiment, at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be a thermoelectric cooler or a Peltier cooler. As another example, at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be a heat exchanger configured to remove heat from an energy transfer component (e.g., 2630, 2640, 2660, 2680, some combination thereof, etc.) responsive to a pumping of a fluid through the at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.). And as yet another example, at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be a heat pipe configured to remove heat from an energy transfer component (e.g., 2630, 2640, 2660, 2680, some combination thereof, etc.).
In one embodiment, the one or more components (e.g., 2632, 2642, 2662, 2682, etc.) may be configured to convert heat generated by an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.) into electrical energy. For example, at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be a thermoelectric cooler or other component capable of generating electricity responsive to a temperature differential being applied across a respective first side and a respective second side of the at least one component (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.). The one or more components (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be advantageously positioned with respect to an energy transfer component (e.g., 2630, 2640, 2660, 2680, some combination thereof, etc.) to create a temperature differential across a first side (e.g., positioned adjacent to the energy transfer component) and a second side (e.g., positioned to adjacent to ambient air, a component of vehicle 2620, a component of the energy transfer system, etc.) of the one or more components (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.), where the first side may be warmer than the second side in one embodiment. Energy generated by the one or more components (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) may be transferred over an interface to a component of a vehicle (e.g., interface component 221, power management component 225, etc.) and/or to a component of an energy transfer system (e.g., interface component 211, power management component 215, etc.), thereby enabling the energy to be accessed (e.g., for use, storage, etc.) by the vehicle, to be accessed (e.g., for use, storage, etc.) by the energy transfer system, to be transferred to another system (e.g., energy transfer system 110, another vehicle, etc.), some combination thereof, etc. In this manner, electricity may be advantageously generated using the one or more components (e.g., 2632, 2642, 2662, 2682, some combination thereof, etc.) to improve the efficiency of an energy transfer between a vehicle and an energy transfer system, improve the efficiency of an energy transfer between two or more vehicles, recover energy that would otherwise be lost, etc.
As shown in
One or more components (e.g., 2634, 2644, 2664, 2684, etc.) may be used to monitor or sense a temperature of an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.). The one or more components (e.g., 2634, 2644, 2664, 2684, etc.) may be or include a thermocouple, thermistor, ultrasonic thermometer, infrared thermometer or pyrometer, laser thermometer or pyrometer, etc. In one embodiment, signals (e.g., analog signals, digital signals, pulse width modulated signals, some combination thereof, etc.) generated by the one or more components (e.g., 2634, 2644, 2664, 2684, etc.) may be transferred over an interface to a component (e.g., interface component 211, another component, etc.) of an energy transfer system (e.g., 110) and/or to a component (e.g., interface component 221, another component, etc.) of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.), where the signals may represent or otherwise be used to determine a temperature of an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.).
In one embodiment, a temperature of an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.) may be used to control an energy transfer. For example, if a temperature of an energy transfer component (e.g., as measured by component 2634, component 2644, component 2664, component 2684, etc.) is determined to be above a predetermined threshold, then an attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) of the energy transfer may be adjusted to reduce the temperature of the energy transfer component.
In one embodiment, a first component (e.g., 2632, 2642, 2662, 2682, etc.) and/or a second component (e.g., 2634, 2644, 2664, 2684, etc.) may be used to implement a control system for controlling the temperature of an energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.) (e.g., in accordance with process 3800 of
Accordingly, embodiments of the present invention can advantageously increase heat transfer from at least one energy transfer component (e.g., 2630, 2640, 2660, 2680, etc.). Increasing heat transfer from an energy transfer component can extend the lifetime of the component, increase efficiency of energy transfer and/or signal communication, etc. Additionally, by transforming heat generated by an energy transfer component into electricity, embodiments of the present invention can further increase the efficiency of an energy transfer.
Although
In one embodiment, energy transfer component 2730 may be an energy transfer component of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.), whereas energy transfer component 2740 may be an energy transfer component of an energy transfer system (e.g., 110). In this case, component 2750 may be any component of the vehicle (e.g., any electrical component, mechanical component, etc. that may be affected, operationally or otherwise, by interference). Surface 2710 may be a surface of a body panel, an undercarriage, hull, fuselage, wing, propeller, blade of a helicopter, or some other component of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.) in one embodiment. Component 2750 may be coupled with or disposed at least partially within surface 2710. In one embodiment, component 2720 and/or energy transfer component 2730 may be coupled with or disposed at least partially within a surface of the vehicle (e.g., surface 2710).
Alternatively, energy transfer component 2730 may be an energy transfer component of an energy transfer system (e.g., 110), whereas energy transfer component 2740 may be an energy transfer component of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.). In this case, component 2750 may be any component of the energy transfer system (e.g., any electrical component, mechanical component, etc. that may be affected, operationally or otherwise, by interference). Surface 2710 may be a surface of an enclosure, housing, or the like of an energy transfer system in one embodiment. Component 2750 may be coupled with or disposed at least partially within surface 2710. In one embodiment, component 2720 and/or energy transfer component 2730 may be coupled with or disposed at least partially within a surface of the energy transfer system (e.g., surface 2710).
In one embodiment, component 2720 may shield or otherwise reduce interference received by component 2750. For example, where energy transfer components 2730 and 2740 may be capable of implementing an inductive interface (e.g., 234), component 2720 may shield or otherwise reduce a magnetic field received by (e.g., measured at) component 2750. As such, at least a portion of a magnetic field (e.g., represented by arrows 2741, 2742, 2743 and 2744) generated by energy transfer component 2740 may be received by energy transfer component 2730, where the magnetic field may be stopped or attenuated by component 2720 (e.g., thereby reducing a magnitude of the magnetic field measured at or nearby component 2750) to reduce interference received by component 2750. In one embodiment, a portion of the magnetic field (e.g., represented by arrows 2745 and 2746) generated by energy transfer component 2740 may be stopped or attenuated by component 2720 (e.g., thereby reducing a magnitude of the magnetic field measured at or nearby component 2750) to reduce interference received by component 2750, where the other portions of the magnetic field (e.g., represented by arrows 2745 and 2746) may not be usable or received by energy transfer component 2730 in one embodiment. Component 2720 may stop or attenuate a magnetic field (e.g., generated by energy transfer component 2740) by absorbing at least a portion of the magnetic field, reflecting at least a portion of the magnetic field, changing a shape of the magnetic field (e.g., of a plurality of magnetic field lines which define the magnetic field), some combination thereof, etc.
As another example, where energy transfer components 2730 and 2740 are capable of implementing a wireless interface (e.g., 237), component 2720 may shield or otherwise reduce energy (e.g., in the form of radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, some combination thereof, etc. which can be used to transfer energy and/or communicate signals between a vehicle and an energy transfer system) received by (e.g., measured at) component 2750. As such, at least a portion of the energy (e.g., represented by arrows 2741, 2742, 2743 and 2744) generated by energy transfer component 2740 may be received by energy transfer component 2730, where the energy may be stopped or attenuated by component 2720 (e.g., thereby reducing a magnitude of the energy measured at or nearby component 2750) to reduce interference received by component 2750. In one embodiment, a portion of the energy (e.g., represented by arrows 2745 and 2746) generated by energy transfer component 2740 may be stopped or attenuated by component 2720 (e.g., thereby reducing a magnitude of the energy measured at or nearby component 2750) to reduce interference received by component 2750, where the other portions of the energy (e.g., represented by arrows 2745 and 2746) may not be usable or received by energy transfer component 2730 in one embodiment. Component 2720 may stop or attenuate energy (e.g., generated by energy transfer component 2740) by absorbing at least a portion of the energy, reflecting at least a portion of the energy, changing a shape of the energy, some combination thereof, etc.
In one embodiment, component 2720 may shield or otherwise reduce other types of interference received by (e.g., measured at) component 2750 regardless of the type of interference and/or the component emitting or generating the interference. For example, component 2720 may shield or otherwise reduce electromagnetic interference, radio frequency interference, etc. As another example, component 2720 may shield or otherwise reduce interference emitted or generated by component 2740 and/or another component. Component 2720 may stop or attenuate interference by absorbing at least a portion of the interference, reflecting at least a portion of the interference, some combination thereof, etc.
Component 2720 may improve energy transfer and/or improve signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.) and an energy transfer system (e.g., 110) in one embodiment. For example, where energy transfer components 2730 and 2740 are capable of implementing an inductive interface (e.g., 234), component 2720 may change the size and/or shape of a magnetic field (e.g., generated by energy transfer component 2740) received by (e.g., measured at) energy transfer component 2730. In one embodiment, a portion of the magnetic field (e.g., represented by arrows 2743 and 2744) may be reflected or redirected (e.g., toward energy transfer component 2730 as shown by the bends in arrows 2743 and 2744). The portion of the magnetic field may be reflected and/or redirected off one or more surfaces of component 2720. Component 2720 may overlap at least two sides (e.g., two sides, three sides, four sides, five sides, etc.) of energy transfer component 2730 in one embodiment. In one embodiment, where energy transfer component 2730 is disposed at least partially within cavity 2715, a magnetic field that might otherwise include magnetic field lines which extended outside of cavity 2715 may be reshaped within cavity 2715 and in proximity to energy transfer component 2730. In this manner, a density of a magnetic field (e.g., generated by energy transfer component 2740) may be increased (e.g., the magnetic field may be concentrated) around energy transfer component 2730 to improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.) and an energy transfer system (e.g., 110).
As another example, where energy transfer components 2730 and 2740 are capable of implementing a wireless interface (e.g., 237), component 2720 may reflect or redirect (e.g., toward energy transfer component 2730 as shown by the bends in arrows 2743 and 2744) energy (e.g., in the form of radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, some combination thereof, etc. which can be used to transfer energy and/or communicate signals between a vehicle and an energy transfer system). Energy may be reflected and/or redirected off one or more surfaces of component 2720. In this manner, the strength and/or amount of the energy received by (e.g., measured at) energy transfer component 2730 may be increased to improve energy transfer and/or signal communication between a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.) and an energy transfer system (e.g., 110).
In one embodiment, component 2720 may be disposed on an underside (e.g., an undercarriage) of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, 2620, etc.), on a side of the vehicle, on the front of the vehicle, on a back of the vehicle, on the top of the vehicle, within a compartment (e.g., cabin, trunk, engine compartment, cockpit, storage bay, etc.) of the vehicle, some combination thereof, etc.
In one embodiment, component 2720 may be a layer disposed on or above surface 2710. In one embodiment, at least one other layer (e.g., an adhesive, some other material or component, etc.) may be disposed between surface 2710 and component 2720. In one embodiment, component 2720 may be a contiguous layer (e.g., without any gaps, holes, etc.). Alternatively, component 2720 may include a portion or surface with a gap, hole, or the like defined therein.
In one embodiment, component 2720 may be a homogenous material, a composite material, etc.
Component 2720 may be relatively formable or shapeable (e.g., including woven material, flexible material, etc.), thereby enabling component 2720 to be fit or applied to surfaces with a variety of different shapes and sizes. In one embodiment, component 2720 may be applied using a process such as spraying, chemical vapor deposition, physical vapor deposition, or the like.
As shown in
Although
Security component 2820 may be used to perform an authentication of another component in one embodiment. For example, authentication component 2822 may be used to perform an authentication of a component (e.g., authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, a component of energy transfer system 110, a component of an external system or external device, etc.) responsive to an interaction with the vehicle (e.g., an attempt to gain access to a compartment or region of the vehicle, an attempt to start the vehicle, an attempt to use or move the vehicle, an attempt to turn on a radio or other component of the vehicle, an attempt to transfer energy to and/or from an energy storage component, an attempt to transfer energy to and/or from another component of the vehicle, some combination thereof, etc.). In one embodiment, the interaction with the vehicle may be an attempt to transfer energy to and/or transfer energy from energy storage component 226, where the attempt to transfer energy to and/or from energy storage component 226 may be performed by the component undergoing authentication, a device which includes the component undergoing authentication, a system which includes the component undergoing authentication, or some combination thereof. The authentication may be performed using authentication component 2822 alone or in combination with processor 2825, where instructions or code used to carry out the authentication may be stored in memory 2826 for execution by authentication component 2822 and/or processor 2825. Accordingly, in one embodiment, security component 2820 may reduce unauthorized use of energy storage component 226 (e.g., by reducing the ability to use energy storage component 226 in a vehicle other than vehicle 120).
In one embodiment, security component 2820 may be used to perform one or more operations if an authentication is successful. For example, if the authentication is successful, then energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to enable energy to be transferred to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832 and/or interface 2817). In one embodiment, the energy transferred to energy storage medium 2810 via energy regulation component 2821 may be sufficient to charge energy storage medium. In one embodiment, the energy transferred from energy storage medium 2810 (e.g., over energy transfer interface 2832 and/or interface 2817) via energy regulation component 2821 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As shown in
And as yet another example, if the authentication is successful, then a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to control (e.g., using authentication component 2842, using processor 2845, etc.) energy regulation component 2841 to enable energy to be transferred to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
In one embodiment, security component 2820 may be used to perform one or more operations if an authentication is unsuccessful. For example, if the authentication is unsuccessful, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to perform (or to prevent altogether) an energy transfer to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832 and/or interface 2817). As another example, if the authentication is unsuccessful, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity transferred over energy transfer interface 2832 to, for example, motor 2850).
As yet another example, if the authentication is unsuccessful, energy regulation component 2821 may be advantageously controlled (e.g., by authentication component 2822, by processor 2825, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
In one embodiment, if the authentication performed using security component 2820 is unsuccessful, then a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to cause or enable security component 2840 to perform one or more operations. For example, responsive to a communication from security component 2820 associated with an unsuccessful authentication, energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce an ability to transfer energy (or to prevent altogether an energy transfer) to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to perform an energy transfer with another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As another example, if the authentication performed using security component 2820 is unsuccessful, then a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to advantageously control (e.g., using authentication component 2842, using processor 2845, etc.) energy regulation component 2841 to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As yet another example, responsive to a communication from security component 2820 associated with an unsuccessful authentication, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage component 226) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As a further example, if the authentication performed using security component 2820 is unsuccessful, a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to advantageously control (e.g., using authentication component 2842, using processor 2845, etc.) energy regulation component 2841 to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using vehicle movement control component 2844 or another component of vehicle 120, some combination thereof, etc.). As another example, if the authentication is unsuccessful, a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to vehicle movement control component 2844 to reduce (or prevent) the ability to use and/or move the vehicle (e.g., by disabling or otherwise changing a state of energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). As yet another example, if the authentication is unsuccessful, a communication may be sent (e.g., to interface system 550 for presentation in region 1095 of GUI 1000) to alert a user that the authentication was unsuccessful.
In one embodiment, authentication component 2822 may perform an authentication of a component (e.g., authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) by comparing an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data (e.g., stored in memory 2826, a register of processor 2825, another portion of security component 2820, etc.). In one embodiment, the identifier may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a unique identifier which is associated with only vehicle 120 and does not correspond to or otherwise identify any other vehicle. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, the identifier may be sent from the component undergoing authentication responsive to a request for identification sent from authentication component 2822. In one embodiment, communications between security component 2820 and the component undergoing authentication may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient). In one embodiment, the authentication may be successful (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., stored in memory 2826, stored in a register of processor 2825, stored in another portion of security component 2820, etc.). Alternatively, the authentication may be unsuccessful (e.g., the component undergoing authentication is determined not to be authorized) if the identifier associated with the component undergoing authentication does not match the authentication data (e.g., stored in memory 2826, stored in a register of processor 2825, stored in another portion of security component 2820, etc.).
In one embodiment, computer system 2890 may perform an authentication of a component (e.g., security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) by comparing an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data. For example, where the authentication data is stored in security component 2820 (e.g., stored in memory 2826, a register of processor 2825, another portion of security component 2820, etc.), the identifier and the authentication data may be sent (e.g., separately, together, sequentially, simultaneously, etc.) to computer system 2890 via communication interface 242 for comparison by computer system 2890.
As another example, where computer system 2890 includes or can otherwise access the authentication data (e.g., 2895), the identifier may be sent to computer system 2890 via communication interface 242 for comparison with authentication data 2895 by computer system 2890. Authentication data 2895 may be part of a data structure or database which includes an index of components (e.g., including energy storage component 226, security component 2820, some combination thereof, etc.) and respective authentication data corresponding to each of the components, where the data structure or database may be indexed using an identifier of a component (e.g., energy storage component 226, security component 2820, some combination thereof, etc.) to access authentication data for comparison to the identifier of the component undergoing authentication. In one embodiment, the identifier of the other component (e.g., energy storage component 226, security component 2820, some combination thereof, etc.) may be sent to computer system 2890 along with (e.g., simultaneously with, contemporaneously with, as part of the same data packet, etc.) or separate from (e.g., sequentially with, at another time than, in a different data packet, etc.) the identifier of the component undergoing authentication.
In one embodiment, the identifier of the component undergoing authentication may be sent (e.g., to computer system 2890) from the component undergoing authentication responsive to a request for identification sent from authentication component 2822. In one embodiment, the identifier sent to computer system 2890 may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, communications between security component 2820, the component undergoing authentication, computer system 2890, or some combination thereof, may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient). In one embodiment, the authentication may be successful (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., 2895, etc.). Alternatively, the authentication may be unsuccessful (e.g., the component undergoing authentication is determined not to be authorized) if the identifier associated with the component undergoing authentication does not match the authentication data (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., 2895, etc.). Results of the comparison (e.g., performed by computer system 2890) may be communicated to vehicle 120 (e.g., to enable energy regulation component 2821 to regulate energy transferred to and/or from energy storage medium 2810, to enable energy regulation component 2841 to reduce or increase energy supplied to motor 2850, to enable energy regulation component 2841 to reduce or increase energy supplied to another component of vehicle 120, to enable vehicle movement control component 2844 to control use and/or movement of vehicle 120, etc.) in one embodiment.
As shown in
Computer system 2890 may be implemented in accordance with (e.g., include components of, function similarly to, etc.) computer system 4100 of
It should be appreciated that the identifier (e.g., of the component undergoing authentication) may be different from the authentication data in one embodiment. For example, the identifier of the component undergoing authentication may be encrypted, whereas the authentication data may not be encrypted. In one embodiment, a hash value generated by performing a hash function on the identifier may be different than a hash value generated by performing the hash function on the authentication data. In this manner, the identifier and/or the authentication data may be processed (e.g., decrypted, altered, etc.) before performing the comparison in one embodiment.
In one embodiment, security component 2820 may be programmed by an authorized party (e.g., a manufacturer of security component 2820, a manufacturer of vehicle 120, a dealership authorized to service vehicle 120, etc.). For example, authentication data associated with a particular component of vehicle 120 (e.g., security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) may be written to security component 2820 (e.g., stored in memory 2826, a register of processor 2825, another portion of security component 2820, etc.). As such, energy storage component 226 may be configured by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.), where the programming of security component 2820 may be performed as a manufacturing operation (e.g., during manufacture of vehicle 120), as a service or maintenance operation (e.g., where energy storage component 226 is installed in vehicle 120 to replace another energy storage component which no longer works properly, has failed, has exceeded its lifespan, etc.), etc.
In one embodiment, authentication data 2895 may be updated or written (e.g., to a memory of computer system 2890, to a memory coupled to or otherwise accessible to computer system 2890, etc.) by an authorized party (e.g., a manufacturer of security component 2820, a manufacturer of vehicle 120, a dealership authorized to service vehicle 120, etc.) responsive to a programming of security component 2820. For example, where energy storage component 226 is configured as a manufacturing operation by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., where energy storage component 226 is the first energy storage component to be installed in vehicle 120 during manufacturing), authentication data 2895 may be written which is associated with vehicle 120 and/or the component thereof (e.g., security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.). As another example, where energy storage component 226 is configured as a service or maintenance operation by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., where energy storage component 226 is installed in vehicle 120 to replace another energy storage component which no longer works properly, has failed, has exceeded its lifespan, etc.), authentication data 2895 may be updated to reflect the replacement of another energy storage component with energy storage component 226 (e.g., by changing the association of vehicle 120 and/or a component thereof from the other energy storage component to energy storage component 226, security component 2820, authentication component 2822, etc.).
As shown in
In one embodiment, security component 2820 may located such that physical access to security component 2820 and/or interface 2817 is limited. For example, security component 2820 may be coupled with and/or disposed at least partially within housing 2830 of energy storage component 226. In one embodiment, security component 2820 may located such that access to security component 2820 and/or interface 2817 may only be obtained by tampering with (e.g., opening, altering, destroying, etc.) housing 2830. In this manner, the ability to bypass energy regulation component 2821 to obtain electrical access to (e.g., by cutting, splicing into, replacing, etc.) energy storage medium 2810 and/or interface 2817 is reduced. Thus, embodiments of the present invention can advantageously increase security by limiting physical access to security component 2820 and/or interface 2817.
As shown in
In one embodiment, at least one operation may be performed responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), where tampering detection component 2827 may send a communication to another component performing the at least one operation and/or control the other component to perform the at least one operation. For example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to perform (or to prevent altogether) an energy transfer to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). As another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As yet another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), energy regulation component 2821 may be advantageously controlled (e.g., by authentication component 2822, by processor 2825, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), energy regulation component 2821 may be advantageously controlled (e.g., by authentication component 2822, by processor 2825, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using security component 2840 or another component of vehicle 120, some combination thereof, etc.). As a further example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to vehicle movement control component 2844 to reduce (or prevent) the ability to use and/or move the vehicle (e.g., by disabling or otherwise changing a state of energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). As another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), a communication may be sent (e.g., to interface system 550 for presentation in region 1095 of GUI 1000) to alert a user to the tampering with the housing (e.g., 2830). And as yet another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), tampering detection component 2827 may cause secure data (e.g., stored in memory 2826, another memory of security component 2820, another memory of vehicle 120, a memory of an external system, etc.) to be deleted, erased, corrupted, or otherwise be modified to reduce unauthorized access to the secure information.
In one embodiment, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to cause or enable security component 2840 to perform one or more operations. For example, responsive to the communication from tampering detection component 2827, energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce an ability to transfer energy (or to prevent altogether an energy transfer) to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to perform an energy transfer with another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to advantageously control (e.g., using authentication component 2842, using processor 2845, etc.) energy regulation component 2841 to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As yet another example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830) and sending a communication to security component 2840, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As a further example, responsive to tampering detection component 2827 detecting a tampering with a housing (e.g., 2830), a communication may be sent (e.g., using communication component 2823 over energy transfer interface 2832 and/or signal interface 2834) to security component 2840 to advantageously control (e.g., using authentication component 2842, using processor 2845, etc.) energy regulation component 2841 to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using vehicle movement control component 2844 or another component of vehicle 120, some combination thereof, etc.).
As shown in
In one embodiment, communication component 2823 may communicate over a wired interface (e.g., including one or more conductors, lines, lanes, etc.) and/or a wireless interface (e.g., using radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, etc.). For example, communication component 2823 may communicate over an interface which operates in accordance with a wireless standard such as 802.11x, Bluetooth, etc. As another example, communication component 2823 may communicate over a cellular network (e.g., cellular data network, cellular phone network, etc.).
In one embodiment, a signal (e.g., a data signal, a clock signal, etc.) may be communicated over energy transfer interface 2832 using modulation and/or demodulation. For example, communication component 2823 may transmit a signal over energy transfer interface 2832 using modulation (e.g., amplitude modulation, frequency modulation, phase modulation, some combination thereof, etc.), where the energy transfer signal functions as the carrier wave. Upon receipt of the energy transfer signal, the signals (e.g., data signals, clock signals, etc.) carried by the energy transfer signal may be demodulated (e.g., using amplitude demodulation, frequency demodulation, phase demodulation, some combination thereof, etc.) by another component (e.g., communication component 2843, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.). As another example, communication component 2823 may demodulate (e.g., using amplitude demodulation, frequency demodulation, phase demodulation, some combination thereof, etc.) a signal from an energy transfer signal carried by energy transfer interface 2832, where the signal may be modulated (e.g., using amplitude modulation, frequency modulation, phase modulation, some combination thereof, etc.) by another component (e.g., communication component 2843, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.).
In one embodiment, a signal (e.g., data signals, clock signals, etc.) may be communicated over energy transfer interface 2832 using an electromagnetic field surrounding at least one conductor of the energy transfer interface. For example, communication component 2823 may alter (e.g., change the strength or amplitude over time of) an electromagnetic field surrounding at least one conductor of energy transfer interface 2832 to transmit the signals (e.g., data signals, clock signals, etc.) over the energy transfer interface. A component receiving the signals (e.g., communication component 2843, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.) may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field. As another example, where another component (e.g., communication component 2843, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.) alters (e.g., changes the strength or amplitude over time of) an electromagnetic field surrounding at least one conductor of energy transfer interface 2832 to transmit signals (e.g., data signals, clock signals, etc.) over the energy transfer interface, communication component 2823 may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field.
In one embodiment, energy transfer interface 2832 may be coupled to or part of a power system (e.g., a 12 volt power system of an automobile, etc.) of vehicle 120. A plurality of components of vehicle 120 may be coupled to and powered by the power system. In this manner, the number of interfaces required to support security component 2820 (e.g., communication interfaces enabling security component 2820 to communicate with security component 2840, another component of vehicle 120, an external system, etc.) may be reduced, thereby reducing the difficulty and/or cost of retrofitting vehicle 120 to include security component 2820 (e.g., since the existing power system can be used for communication in lieu of separate communication interfaces installed during the retrofit).
In one embodiment, signals (e.g., data signals, clock signals, etc.) communicated to and/or from security component 2820 may be encrypted. For example, a component of security component 2820 (e.g., authentication component 2822, communication component 2823, processor 2825, tampering detection component 2827, etc.) may encrypt a signal for decryption by a receiver of the communication (e.g., a component of security component 2840, communication interface 242, another component of vehicle 120, a component of an external system, etc.). As another example, a sender of a communication (e.g., a component of security component 2840, communication interface 242, another component of vehicle 120, a component of an external system, etc.) may encrypt a signal for decryption by a component of security component 2820 (e.g., authentication component 2822, communication component 2823, processor 2825, tampering detection component 2827, etc.).
In one embodiment, communication component 2823 may communicate via energy transfer interface 2832 using analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Communication component 2823 may communicate via energy transfer interface 2832 using unidirectional signal communication and/or bidirectional signal communication. In one embodiment, communication component 2823 may communicate via energy transfer interface 2832 using single-ended signaling and/or differential signaling.
In one embodiment, communication component 2823 may communicate via signal interface 2834 using analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Communication component 2823 may communicate via signal interface 2834 using unidirectional signal communication and/or bidirectional signal communication. In one embodiment, communication component 2823 may communicate via signal interface 2834 using single-ended signaling and/or differential signaling.
As shown in
In one embodiment, temperature regulation component 2828 may be used to maintain energy storage medium 2810 at a particular temperature or range of temperatures. The temperature or range of temperatures may be determined based upon an attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) of an energy transfer (e.g., to and/or from energy storage medium 2810, over interface 2817, etc.) in one embodiment. The temperature or range of temperatures may be determined based upon an ambient temperature outside vehicle 120, a speed of vehicle 120, an operational mode of vehicle 120 selected by a user, a distance which vehicle 120 is to be driven (e.g., selected by a user, automatically selected, etc.), some combination thereof, etc. And in one embodiment, the temperature or range of temperatures may be determined based upon an amount of time since the last movement of vehicle 120, an amount of time since a power state (e.g., on, off, powered, depowered, activated, deactivated, high power, low power, etc.) of vehicle 120 (or a component thereof) has been changed, some combination thereof, etc.
As shown in
In one embodiment, heat transfer component 2818 may be configured to convert heat generated by an energy storage medium (e.g., 2810) into electrical energy. For example, heat transfer component 2818 may be a thermoelectric cooler or other component capable of generating electricity responsive to a temperature differential being applied across a first side and a second side of heat transfer component 2818. Heat transfer component 2818 may be advantageously positioned with respect to an energy storage medium (e.g., 2810) to create a temperature differential across a first side (e.g., positioned adjacent to energy storage medium 2810) and a second side (e.g., positioned to adjacent to ambient air, housing 2830, another component of energy storage component 226, etc.) of heat transfer component 2818, where the first side may be warmer than the second side in one embodiment. Energy generated by heat transfer component 2818 may be transferred over an interface (e.g., 2817) to a component of a vehicle (e.g., interface component 221, power management component 225, energy regulation component 2821, energy storage medium 2810, etc.), thereby enabling the energy to be accessed (e.g., for use, storage, etc.) by the vehicle and/or transferred to another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, energy generated by heat transfer component 2818 may be transferred over an interface (e.g., lines 2817) contemporaneously with energy transferred to and/or from energy storage medium 2810 (e.g., by summing the voltages, summing the currents, etc.). In this manner, electricity may be advantageously generated using heat transfer component 2818 to improve the efficiency of an energy transfer to and/or from energy storage medium 2810, recover energy that would otherwise be lost, etc.
As shown in
In one embodiment, energy regulation component 2821 may limit or otherwise adjust an amount of energy transferred to and/or from energy storage medium 2810 responsive to a temperature of energy storage medium 2810 (e.g., measured using monitoring component 2829) and/or a control signal from temperature regulation component 2828. For example, if the temperature of energy storage medium 2810 reaches or exceeds a particular threshold, energy regulation component 2821 may reduce an amount of energy transferred to and/or from energy storage medium 2810 (e.g., until the temperature of energy storage medium 2810 falls below the particular threshold or another threshold). As another example, if temperature regulation component 2828 is no longer able to maintain the temperature of energy storage medium 2810 at a particular temperature or range of temperatures using heat transfer component 2818, energy regulation component 2821 may adjust (e.g., under control of or via input from temperature regulation component 2828) an amount of energy transferred to and/or from energy storage medium 2810 (e.g., until temperature regulation component 2828 is able to regain control of and/or maintain the temperature of energy storage medium 2810 at a particular temperature or range of temperatures using heat transfer component 2818).
In one embodiment, signals associated with temperature (e.g., of energy storage medium 2810, another component of vehicle 120, a component of an external system, the ambient air, etc.) may be communicated by security component 2820 to another component. For example, signals associated with temperature may be communicated by security component 2820 to another component of vehicle 120 (e.g., security component 2840, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.). And as another example, signals associated with temperature may be communicated by security component 2820 to an external system (e.g., energy transfer system 110, computer system 2890, another vehicle, etc.).
In one embodiment, signals associated with a parameter of one component may be communicated by security component 2820 to another component. For example, security component 2820 may communicate a parameter of motor 2850, where the parameter of motor 2850 may be a voltage, a current, a rotational speed or acceleration, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. As another example, security component 2820 may communicate a parameter of transmission 2860, where the parameter of transmission 2860 may be a speed of vehicle 120 (e.g., from a vehicle speed sensor coupled with transmission 2860), a currently selected gear, a rotational speed or acceleration of a component of transmission 2860, the state of one or more clutches of transmission 2860, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. As a further example, security component 2820 may communicate a parameter of braking system 2870, where the parameter of braking system 2870 may be a position or state of a brake pad or caliper, a position or state of a brake shoe or drum, a status or reading from a sensor (e.g., anti-lock braking system sensor, active handling system sensor, stability management system sensor, etc.) associated with braking system 2870, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. And as yet another example, security component 2820 may communicate a parameter of steering wheel 2880, where the parameter of steering wheel 2880 may be a position of steering wheel 2880, the state of a switch (e.g., for controlling a radio or navigation system, for controlling a Bluetooth speakerphone system, for controlling a cruise control system, etc.) of steering wheel 2880, a rotational speed or acceleration, an operational status (e.g., enabled or activated, disabled or deactivated), etc. And as yet a further example, security component 2820 may communicate a parameter of another component (e.g., a tire pressure monitoring component, an engine management system, security component 2840, an energy transfer component, interface component 221, power management component 225, energy storage component 226, power source 227, charge and/or discharge component 228, meter 229, another component of vehicle 120, etc.).
Operations performed by security component 2820 may be performed using one or more components of security component 2820. For example, authentication (e.g., of a component, of a user, etc.) may be performed using authentication component 2822 and/or processor 2825, where instructions or code used to carry out the authentication may be stored in memory 2826 for execution by authentication component 2822 and/or processor 2825. As another example, one or more operations performed responsive to a successful authentication (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, controlling vehicle movement control component 2844, sending a communication between security component 2820 and security component 2840, etc.) may be performed using at least one component (e.g., authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825, where instructions or code used to carry out the one or more operations may be stored in memory 2826 for execution by the at least one component (e.g., authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825. As yet another example, one or more operations performed responsive to an unsuccessful authentication (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, controlling vehicle movement control component 2844, sending a communication between security component 2820 and security component 2840, sending a communication to a user, etc.) may be performed using at least one component (e.g., authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825, where instructions or code used to carry out the one or more operations may be stored in memory 2826 for execution by the at least one component (e.g., authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825.
As another example, one or more operations performed responsive to detecting a tampering with housing 2830 (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, sending a communication to vehicle movement control component 2844, sending a communication to a user, etc.) may be performed using at least one component (e.g., tampering detection component 2827, authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825, where instructions or code used to carry out the one or more operations may be stored in memory 2826 for execution by the at least one component (e.g., tampering detection component 2827, authentication component 2822, communication component 2823, some combination thereof, etc.) and/or processor 2825. As a further example, communication with another component, device, system, etc. may be performed using at least one component (e.g., communication component 2823, authentication component 2822, tampering detection component 2827, some combination thereof, etc.) and/or processor 2825, where instructions or code used to carry out the communication may be stored in memory 2826 for execution by the at least one component (e.g., communication component 2823, authentication component 2822, tampering detection component 2827, some combination thereof, etc.) and/or processor 2825. And as yet another example, temperature regulation of energy storage medium 2810 may be performed using at least one component (e.g., temperature regulation component 2828, monitoring component 2829, some combination thereof, etc.) and/or processor 2825, where instructions or code used to carry out the temperature regulation may be stored in memory 2826 for execution by the at least one component (e.g., temperature regulation component 2828, monitoring component 2829, some combination thereof, etc.) and/or processor 2825.
In one embodiment, security component 2820 may include a plurality of integrated circuits (e.g., at least one application-specific integrated circuit (ASIC), at least one system-on-a-chip (SOC), at least one programmable system-on-a-chip (PSOC), another type of integrated circuit, etc.) attached to a plurality of printed circuit boards. Security component 2820 may include at least one integrated circuit (e.g., at least one application-specific integrated circuit (ASIC), at least one system-on-a-chip (SOC), at least one programmable system-on-a-chip (PSOC), another type of integrated circuit, etc.) attached to a single printed circuit board in one embodiment. In one embodiment, security component 2820 may be implemented by a single integrated circuit (e.g., an application-specific integrated circuit (ASIC), a system on a chip (SOC), programmable system on a chip (PSOC), etc.). And in one embodiment, components of security component 2820 may be implemented using a single die of an integrated circuit, more than one die of an integrated circuit, etc.
As shown in
In one embodiment, security component 2840 may be used to perform one or more operations if an authentication is successful. For example, if the authentication is successful, then energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to enable energy to be transferred to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
In one embodiment, vehicle movement control component 2844 may enable or activate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by causing a mechanical stop to be removed or disabled, where the state of the mechanical stop may be changed using a solenoid, stepper motor, or some other component. The mechanical stop may control (e.g., enable, disable, etc.) movement of: portions of motor 2850 (e.g., a rotor and a stator, an inner portion and an outer portion, etc.) with respect to one another; portions of transmission 2860 (e.g., an input shaft and an output shaft, an input shaft and a housing, an output shaft and a housing, one gear and another gear, a shift fork and a housing, a gear shift lever and a housing, etc.) with respect to one another; portions of braking system 2860 (e.g., a piston and a caliper, a brake pad and a caliper, a brake shoe and a drum, etc.) with respect to one another; steering wheel 2880; or some combination thereof. In one embodiment, vehicle movement control component 2844 may enable or activate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by changing the state of a clutch or other mechanism capable of engaging and/or disengaging motor 2850 and transmission 2860, at least two portions of transmission 2860, transmission 2860 and at least one wheel, at least two portions of braking system 2870 (e.g., which move a brake pad with respect to a rotor, a brake shoe with respect to a drum, etc.), steering wheel 2880 and a steering column, etc.
In one embodiment, vehicle movement control component 2844 may enable or activate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by sending a signal (e.g., analog signal, digital signal, pulse width modulated signal, clock signal, data signal, some combination thereof, etc.) to another component which is configured to control a state (e.g., enabled, activated, disabled, deactivated, etc.) of the component, where the other component may include hardware (e.g., circuitry, etc.) and/or software. In one embodiment, the other component may be disposed within a housing of or otherwise be part of the component.
In one embodiment, vehicle movement control component 2844 may override an attempt (e.g., by a user, by a component of vehicle 120, by another system or device, etc.) to set or change a state of a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) of vehicle 120. For example, vehicle movement control component 2844 may disable or deactivate motor 2850 (e.g., thereby reducing the ability of motor 2850 to move vehicle 120) even though energy is transferred to motor 2850 using energy regulation component 2841.
And as yet another example, if the authentication is successful, then a communication may be sent (e.g., using communication component 2843 over energy transfer interface 2832 and/or signal interface 2834) to security component 2820 to control (e.g., using authentication component 2822, using processor 2825, etc.) energy regulation component 2821 to enable energy to be transferred to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). In one embodiment, energy transferred to energy storage medium 2810 via energy regulation component 2821 may be sufficient to charge energy storage medium. In one embodiment, energy transferred from energy storage medium 2810 (e.g., over energy transfer interface 2832) via energy regulation component 2821 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
In one embodiment, security component 2840 may be used to perform one or more operations if an authentication is unsuccessful. For example, if the authentication is unsuccessful, then energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce an ability to transfer energy (or to prevent altogether an energy transfer) to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to perform an energy transfer with another system (e.g., energy transfer system 110, another vehicle, etc.). And in one embodiment, if the authentication is unsuccessful, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As another example, if the authentication is unsuccessful, energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As yet another example, if the authentication is unsuccessful, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in FIG. 2, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, another component of vehicle 120, security component 2820, another security component of vehicle 120, electronics associated with the door locks of vehicle 120, etc.) of vehicle 120 to function.
As a further example, if the authentication is unsuccessful, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using vehicle movement control component 2844 or another component of vehicle 120, some combination thereof, etc.). As another example, if the authentication is unsuccessful, then vehicle movement control component 2844 may be controlled to reduce unauthorized use and/or movement of the vehicle (e.g., by disabling or deactivating energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). As yet another example, if the authentication is unsuccessful, a communication may be sent (e.g., to interface system 550 for presentation in region 1095 of GUI 1000) to alert a user that the authentication was unsuccessful.
In one embodiment, vehicle movement control component 2844 may disable or deactivate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by causing a mechanical stop to be activated or applied, where the state of the mechanical stop may be changed using a solenoid, stepper motor, or some other component. The mechanical stop may control (e.g., enable, disable, etc.) movement of: portions of motor 2850 (e.g., a rotor and a stator, an inner portion and an outer portion, etc.) with respect to one another; portions of transmission 2860 (e.g., an input shaft and an output shaft, an input shaft and a housing, an output shaft and a housing, one gear and another gear, a shift fork and a housing, a gear shift lever and a housing, etc.) with respect to one another; portions of braking system 2860 (e.g., a piston and a caliper, a brake pad and a caliper, a brake shoe and a drum, etc.) with respect to one another; steering wheel 2880; or some combination thereof. In one embodiment, vehicle movement control component 2844 may disable or deactivate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by changing the state of a clutch or other mechanism capable of engaging and/or disengaging motor 2850 and transmission 2860, at least two portions of transmission 2860, transmission 2860 and at least one wheel, at least two portions of braking system 2870 (e.g., which move a brake pad with respect to a rotor, a brake shoe with respect to a drum, etc.), steering wheel 2880 and a steering column, etc.
In one embodiment, vehicle movement control component 2844 may disable or deactivate a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) by sending a signal (e.g., analog signal, digital signal, pulse width modulated signal, clock signal, data signal, some combination thereof, etc.) to another component which is configured to control a state (e.g., enabled, activated, disabled, deactivated, etc.) of the component, where the other component may include hardware (e.g., circuitry, etc.) and/or software. In one embodiment, the other component may be disposed within a housing of or otherwise be part of the component.
In one embodiment, vehicle movement control component 2844 may override an attempt (e.g., by a user, by a component of vehicle 120, by another system or device, etc.) to set or change a state of a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) of vehicle 120. For example, vehicle movement control component 2844 may disable or deactivate motor 2850 (e.g., thereby reducing the ability of motor 2850 to move vehicle 120) even though energy is transferred to motor 2850 using energy regulation component 2841.
In one embodiment, if the authentication performed using security component 2840 is unsuccessful, then a communication may be sent (e.g., using communication component 2843 over energy transfer interface 2832 and/or signal interface 2834) to security component 2820 to cause or enable security component 2820 to perform one or more operations. For example, responsive to a communication from security component 2840 associated with an unsuccessful authentication, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to perform (or to prevent altogether) an energy transfer to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). As another example, responsive to a communication from security component 2840, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850).
As yet another example, if the authentication performed using security component 2840 is unsuccessful, a communication may be sent (e.g., using communication component 2843 over energy transfer interface 2832 and/or signal interface 2834) to security component 2820 to advantageously control (e.g., using authentication component 2822, using processor 2825, etc.) energy regulation component 2821 to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
In one embodiment, authentication component 2842 may perform an authentication of a component (e.g., authentication component 2822, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) by comparing an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data (e.g., stored in memory 2846, a register of processor 2845, another portion of security component 2840, etc.). In one embodiment, the identifier may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a unique identifier which is associated with only vehicle 120 and does not correspond to or otherwise identify any other vehicle. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, the identifier may be sent from the component undergoing authentication responsive to a request for identification sent from authentication component 2842. In one embodiment, communications between security component 2840 and the component undergoing authentication may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient). In one embodiment, the authentication may be successful (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., stored in memory 2846, stored in a register of processor 2845, stored in another portion of security component 2840, etc.). Alternatively, the authentication may be unsuccessful (e.g., the component undergoing authentication is determined not to be authorized) if the identifier associated with the component undergoing authentication does not match the authentication data (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., stored in memory 2846, stored in a register of processor 2845, stored in another portion of security component 2840, etc.).
In one embodiment, computer system 2890 may perform an authentication of a component (e.g., security component 2820, authentication component 2822, energy storage component 226, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) by comparing an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data. For example, where the authentication data is stored in security component 2840 (e.g., stored in memory 2846, a register of processor 2845, another portion of security component 2840, etc.), the identifier and the authentication data may be sent (e.g., separately, together, sequentially, simultaneously, etc.) to computer system 2890 via communication interface 242 for comparison by computer system 2890.
As another example, where computer system 2890 includes or can otherwise access the authentication data (e.g., 2895), the identifier may be sent to computer system 2890 via communication interface 242 for comparison with authentication data 2895 by computer system 2890. Authentication data 2895 may be part of a data structure or database which includes an index of components (e.g., including security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) and respective authentication data corresponding to each of the components, where the data structure or database may be indexed using an identifier of a component (e.g., security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) to access authentication data for comparison to the identifier of the component undergoing authentication. In one embodiment, the identifier of the other component (e.g., security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) may be sent to computer system 2890 along with (e.g., simultaneously with, contemporaneously with, as part of the same data packet, etc.) or separate from (e.g., sequentially with, at another time than, in a different data packet, etc.) the identifier of the component undergoing authentication.
In one embodiment, the identifier of the component undergoing authentication may be sent (e.g., to computer system 2890) from the component undergoing authentication responsive to a request for identification sent from authentication component 2842. In one embodiment, the identifier sent to computer system 2890 may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, communications between security component 2840, the component undergoing authentication, computer system 2890, or some combination thereof, may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient). In one embodiment, the authentication may be successful (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., 2895, etc.). Alternatively, the authentication may be unsuccessful (e.g., the component undergoing authentication is determined not to be authorized) if the identifier associated with the component undergoing authentication does not match the authentication data (e.g., the component undergoing authentication is determined to be authorized) if the identifier associated with the component undergoing authentication matches the authentication data (e.g., 2895, etc.). Results of the comparison (e.g., performed by computer system 2890) may be communicated to vehicle 120 (e.g., to enable energy regulation component 2821 to regulate energy transferred to and/or from energy storage medium 2810, to enable energy regulation component 2841 to reduce or increase energy supplied to motor 2850, to enable energy regulation component 2841 to reduce or increase energy supplied to another component of vehicle 120, to enable vehicle movement control component 2844 to control use and/or movement of vehicle 120, etc.) in one embodiment.
It should be appreciated that the identifier (e.g., of the component undergoing authentication) may be different from the authentication data in one embodiment. For example, the identifier of the component undergoing authentication may be encrypted, whereas the authentication data may not be encrypted. In one embodiment, a hash value generated by performing a hash function on the identifier may be different than a hash value generated by performing the hash function on the authentication data. In this manner, the identifier and/or the authentication data may be processed (e.g., decrypted, altered, etc.) before performing the comparison in one embodiment.
In one embodiment, security component 2840 may be programmed by an authorized party (e.g., a manufacturer of security component 2840, a manufacturer of vehicle 120, a dealership authorized to service vehicle 120, etc.). For example, authentication data associated with a particular component of vehicle 120 (e.g., security component 2820, authentication component 2822, energy storage component 226, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.) may be written to security component 2840 (e.g., stored in memory 2846, a register of processor 2845, another portion of security component 2840, etc.). As such, security component 2840 may be configured by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., security component 2820, authentication component 2822, energy storage component 226, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.), where the programming of security component 2840 may be performed as a manufacturing operation (e.g., during manufacture of vehicle 120), as a service or maintenance operation (e.g., where security component 2840 or a component thereof is installed in vehicle 120 to replace another component which no longer works properly, has failed, has exceeded its lifespan, etc.), etc.
In one embodiment, authentication data 2895 may be updated or written (e.g., to a memory of computer system 2890, to a memory coupled to or otherwise accessible to computer system 2890, etc.) by an authorized party (e.g., a manufacturer of security component 2840, a manufacturer of vehicle 120, a dealership authorized to service vehicle 120, etc.) responsive to a programming of security component 2840. For example, where security component 2840 is configured as a manufacturing operation by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., where security component 2840 or a component thereof is installed in vehicle 120 during manufacturing), authentication data 2895 may be written which is associated with vehicle 120 and/or the component thereof (e.g., security component 2820, authentication component 2822, energy storage component 226, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.). As another example, where security component 2840 is configured as a service or maintenance operation by an authorized party to operate with vehicle 120 and/or a component thereof (e.g., where security component 2840 or a component thereof is installed in vehicle 120 to replace another component which no longer works properly, has failed, has exceeded its lifespan, etc.), authentication data 2895 may be updated to reflect the replacement of another component with security component 2840 or a component thereof (e.g., by changing the association of vehicle 120 and/or a component thereof from the other component to security component 2840, authentication component 2842, etc.).
As shown in
In one embodiment, security component 2840 may located such that physical access to security component 2840 and/or an associated interface (e.g., 2855, 2865, 2875, 2885, etc.) coupling a component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) to security component 2840 is limited. For example, security component 2840 may be coupled with and/or disposed at least partially within a housing of a component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). In one embodiment, security component 2840 may located such that access to security component 2840 and/or an associated interface (e.g., 2855, 2865, 2875, 2885, etc.) may only be obtained by tampering with (e.g., opening, altering, destroying, etc.) the housing of the component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). In this manner, the ability to bypass energy regulation component 2841 to obtain electrical access to (e.g., by cutting, splicing into, replacing, etc.) an associated interface (e.g., 2855, 2865, 2875, 2885, etc.) and/or another component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) is reduced. Thus, embodiments of the present invention can advantageously increase security by limiting physical access to security component 2840 and/or an associated interface (e.g., 2855, 2865, 2875, 2885, etc.).
As shown in
In one embodiment, at least one operation may be performed responsive to tampering detection component 2847 detecting a tampering with a housing of a component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), where tampering detection component 2847 may send a communication to another component performing the at least one operation and/or control the other component to perform the at least one operation. For example, responsive to tampering detection component 2847 detecting a tampering with a housing, energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce an ability to transfer energy (or to prevent altogether an energy transfer) to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to perform an energy transfer with another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As another example, responsive to tampering detection component 2847 detecting a tampering with a housing (e.g., of motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As yet another example, responsive to tampering detection component 2847 detecting a tampering with a housing, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As a further example, responsive to tampering detection component 2847 detecting a tampering with a housing (e.g., of motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using vehicle movement control component 2844 or another component of vehicle 120, some combination thereof, etc.).
As another example, responsive to tampering detection component 2847 detecting a tampering with a housing (e.g., of motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), vehicle movement control component 2844 may be controlled to reduce unauthorized use and/or movement of the vehicle (e.g., by disabling or deactivating energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). As yet another example, responsive to tampering detection component 2847 detecting a tampering with a housing, a communication may be sent (e.g., to interface system 550 for presentation in region 1095 of GUI 1000) to alert a user to the tampering with the housing. And as a further example, responsive to tampering detection component 2847 detecting a tampering with a housing, tampering detection component 2847 may cause secure data (e.g., stored in memory 2846, another memory of security component 2840, another memory of vehicle 120, a memory of an external system, etc.) to be deleted, erased, corrupted, or otherwise be modified to reduce unauthorized access to the secure information.
In one embodiment, responsive to tampering detection component 2847 detecting a tampering with a housing (e.g., of motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), a communication may be sent (e.g., using communication component 2843 over energy transfer interface 2832 and/or signal interface 2834) to security component 2820 to cause security component 2820 to perform one or more operations. For example, responsive to the communication from tampering detection component 2847, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to perform (or to prevent altogether) an energy transfer to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). As another example, responsive to the communication from tampering detection component 2847, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850).
As yet another example, responsive to tampering detection component 2847 detecting a tampering with a housing (e.g., of motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.), a communication may be sent (e.g., using communication component 2843 over energy transfer interface 2832 and/or signal interface 2834) to security component 2820 to advantageously control (e.g., using authentication component 2822, using processor 2825, etc.) energy regulation component 2821 to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As shown in
In one embodiment, communication component 2843 may communicate over a wired interface (e.g., including one or more conductors, lines, lanes, etc.) and/or a wireless interface (e.g., using radio waves, microwaves, infrared waves, visible light waves, ultraviolet waves, x-rays, gamma rays, etc.). For example, communication component 2843 may communicate over an interface which operates in accordance with a wireless standard such as 802.11x, Bluetooth, etc. As another example, communication component 2843 may communicate over a cellular network (e.g., cellular data network, cellular phone network, etc.).
In one embodiment, a signal (e.g., a data signal, a clock signal, etc.) may be communicated over energy transfer interface 2832 using modulation and/or demodulation. For example, communication component 2843 may transmit a signal over energy transfer interface 2832 using modulation (e.g., amplitude modulation, frequency modulation, phase modulation, some combination thereof, etc.), where the energy transfer signal functions as the carrier wave. Upon receipt of the energy transfer signal, the signals (e.g., data signals, clock signals, etc.) carried by the energy transfer signal may be demodulated (e.g., using amplitude demodulation, frequency demodulation, phase demodulation, some combination thereof, etc.) by another component (e.g., communication component 2823, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.). As another example, communication component 2843 may demodulate (e.g., using amplitude demodulation, frequency demodulation, phase demodulation, some combination thereof, etc.) a signal from an energy transfer signal carried by energy transfer interface 2832, where the signal may be modulated (e.g., using amplitude modulation, frequency modulation, phase modulation, some combination thereof, etc.) by another component (e.g., communication component 2823, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.).
In one embodiment, a signal (e.g., data signals, clock signals, etc.) may be communicated over energy transfer interface 2832 using an electromagnetic field surrounding at least one conductor of the energy transfer interface. For example, communication component 2843 may alter (e.g., change the strength or amplitude over time of) an electromagnetic field surrounding at least one conductor of energy transfer interface 2832 to transmit the signals (e.g., data signals, clock signals, etc.) over the energy transfer interface. A component receiving the signals (e.g., communication component 2823, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.) may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field. As another example, where another component (e.g., communication component 2823, another component of vehicle 120, a component of an external system accessing the energy transfer signal, etc.) alters (e.g., changes the strength or amplitude over time of) an electromagnetic field surrounding at least one conductor of energy transfer interface 2832 to transmit signals (e.g., data signals, clock signals, etc.) over the energy transfer interface, communication component 2843 may detect the changes in the electromagnetic field and recreate the signals (e.g., data signals, clock signals, etc.) based on the changes in the electromagnetic field.
In one embodiment, energy transfer interface 2832 may be coupled to or part of a power system (e.g., a 12 volt power system of an automobile, etc.) of vehicle 120. A plurality of components of vehicle 120 may be coupled to and powered by the power system. In this manner, the number of interfaces required to support security component 2840 (e.g., communication interfaces enabling security component 2840 to communicate with security component 2820, another component of vehicle 120, an external system, etc.) may be reduced, thereby reducing the difficulty and/or cost of retrofitting vehicle 120 to include security component 2840 (e.g., since the existing power system can be used for communication in lieu of separate communication interfaces installed during the retrofit).
In one embodiment, signals (e.g., data signals, clock signals, etc.) communicated to and/or from security component 2840 may be encrypted. For example, a component of security component 2840 (e.g., authentication component 2842, communication component 2843, processor 2845, tampering detection component 2847, etc.) may encrypt a signal for decryption by a receiver of the communication (e.g., a component of security component 2820, communication interface 242, another component of vehicle 120, a component of an external system, etc.). As another example, a sender of a communication (e.g., a component of security component 2820, communication interface 242, another component of vehicle 120, a component of an external system, etc.) may encrypt a signal for decryption by a component of security component 2840 (e.g., authentication component 2842, communication component 2843, processor 2845, tampering detection component 2847, etc.).
In one embodiment, communication component 2843 may communicate via energy transfer interface 2832 using analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Communication component 2843 may communicate via energy transfer interface 2832 using unidirectional signal communication and/or bidirectional signal communication. In one embodiment, communication component 2843 may communicate via energy transfer interface 2832 using single-ended signaling and/or differential signaling.
In one embodiment, communication component 2843 may communicate via signal interface 2834 using analog signals, digital signals, pulse width modulated signals, some combination thereof, etc. Communication component 2843 may communicate via signal interface 2834 using unidirectional signal communication and/or bidirectional signal communication. In one embodiment, communication component 2843 may communicate via signal interface 2834 using single-ended signaling and/or differential signaling.
In one embodiment, signals associated with temperature (e.g., of energy storage medium 2810, another component of vehicle 120, a component of an external system, the ambient air, etc.) may be communicated by security component 2840 to another component. For example, signals associated with temperature may be communicated by security component 2840 to another component of vehicle 120 (e.g., security component 2820, interface component 221, power management component 225, power source 227, another component of vehicle 120, etc.). And as another example, signals associated with temperature may be communicated by security component 2840 to an external system (e.g., energy transfer system 110, computer system 2890, another vehicle, etc.).
In one embodiment, signals associated with a parameter of one component may be communicated by security component 2840 to another component. For example, security component 2840 may communicate a parameter of motor 2850, where the parameter of motor 2850 may be a voltage, a current, a rotational speed or acceleration, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. As another example, security component 2840 may communicate a parameter of transmission 2860, where the parameter of transmission 2860 may be a speed of vehicle 120 (e.g., from a vehicle speed sensor coupled with transmission 2860), a currently selected gear, a rotational speed or acceleration of a component of transmission 2860, the state of one or more clutches of transmission 2860, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. As a further example, security component 2840 may communicate a parameter of braking system 2870, where the parameter of braking system 2870 may be a position or state of a brake pad or caliper, a position or state of a brake shoe or drum, a status or reading from a sensor (e.g., anti-lock braking system sensor, active handling system sensor, stability management system sensor, etc.) associated with braking system 2870, a temperature, an operational status (e.g., enabled or activated, disabled or deactivated), etc. And as yet another example, security component 2840 may communicate a parameter of steering wheel 2880, where the parameter of steering wheel 2880 may be a position of steering wheel 2880, the state of a switch (e.g., for controlling a radio or navigation system, for controlling a Bluetooth speakerphone system, for controlling a cruise control system, etc.) of steering wheel 2880, a rotational speed or acceleration, an operational status (e.g., enabled or activated, disabled or deactivated), etc. And as yet a further example, security component 2840 may communicate a parameter of another component (e.g., a tire pressure monitoring component, an engine management system, security component 2820, an energy transfer component, interface component 221, power management component 225, energy storage component 226, power source 227, charge and/or discharge component 228, meter 229, another component of vehicle 120, etc.).
Operations performed by security component 2840 may be performed using one or more components of security component 2840. For example, authentication (e.g., of a component, of a user, etc.) may be performed using authentication component 2842 and/or processor 2845, where instructions or code used to carry out the authentication may be stored in memory 2846 for execution by authentication component 2842 and/or processor 2845. As another example, one or more operations performed responsive to a successful authentication (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, controlling vehicle movement control component 2844, sending a communication between security component 2820 and security component 2840, etc.) may be performed using at least one component (e.g., authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845, where instructions or code used to carry out the one or more operations may be stored in memory 2846 for execution by the at least one component (e.g., authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845. As yet another example, one or more operations performed responsive to an unsuccessful authentication (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, controlling vehicle movement control component 2844, sending a communication between security component 2820 and security component 2840, sending a communication to a user, etc.) may be performed using at least one component (e.g., authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845, where instructions or code used to carry out the one or more operations may be stored in memory 2846 for execution by the at least one component (e.g., authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845.
As another example, one or more operations performed responsive to detecting a tampering with a housing (e.g., controlling energy regulation component 2821, controlling energy regulation component 2841, controlling vehicle movement control component 2844, sending a communication between security component 2820 and security component 2840, sending a communication to a user, etc.) may be performed using at least one component (e.g., tampering detection component 2847, authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845, where instructions or code used to carry out the one or more operations may be stored in memory 2846 for execution by the at least one component (e.g., tampering detection component 2847, authentication component 2842, communication component 2843, some combination thereof, etc.) and/or processor 2845. As a further example, communication with another component, device, system, etc. may be performed using at least one component (e.g., communication component 2843, authentication component 2842, tampering detection component 2847, some combination thereof, etc.) and/or processor 2845, where instructions or code used to carry out the communication may be stored in memory 2846 for execution by the at least one component (e.g., communication component 2843, authentication component 2842, tampering detection component 2847, some combination thereof, etc.) and/or processor 2845.
In one embodiment, security component 2840 may include a plurality of integrated circuits (e.g., at least one application-specific integrated circuit (ASIC), at least one system-on-a-chip (SOC), at least one programmable system-on-a-chip (PSOC), another type of integrated circuit, etc.) attached to a plurality of printed circuit boards. Security component 2840 may include at least one integrated circuit (e.g., at least one application-specific integrated circuit (ASIC), at least one system-on-a-chip (SOC), at least one programmable system-on-a-chip (PSOC), another type of integrated circuit, etc.) attached to a single printed circuit board in one embodiment. In one embodiment, security component 2840 may be implemented by a single integrated circuit (e.g., an application-specific integrated circuit (ASIC), a system on a chip (SOC), programmable system on a chip (PSOC), etc.). And in one embodiment, components of security component 2840 may be implemented using a single die of an integrated circuit, more than one die of an integrated circuit, etc.
As shown in
If the authentication of the user is successful, then one or more operations may be performed using authentication component 2822 and/or authentication component 2842. For example, if the authentication of the user is successful, then energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to enable energy to be transferred to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). In one embodiment, energy transferred to energy storage medium 2810 via energy regulation component 2821 may be sufficient to charge energy storage medium. In one embodiment, energy transferred from energy storage medium 2810 (e.g., over energy transfer interface 2832) via energy regulation component 2821 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As another example, if the authentication of the user is successful, then energy regulation component 2841 may be controlled (e.g., using authentication component 2842, using processor 2845, etc.) to enable energy to be transferred to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
If the authentication of the user is unsuccessful, then one or more operations may be performed using authentication component 2822 and/or authentication component 2842. For example, if the authentication of the user is unsuccessful, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to perform (or to prevent altogether) an energy transfer to and/or from energy storage medium 2810 (e.g., over energy transfer interface 2832). As another example, if the authentication of the user is unsuccessful, energy regulation component 2821 may be controlled (e.g., by authentication component 2822, by processor 2825, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850).
As yet another example, if the authentication of the user is unsuccessful, energy regulation component 2821 may be advantageously controlled (e.g., by authentication component 2822, by processor 2825, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As another example, if the authentication of the user is unsuccessful, then energy regulation component 2841 may be controlled (e.g., by authentication component 2842, by processor 2845, etc.) to reduce an ability to transfer energy (or to prevent altogether an energy transfer) to and/or from a component of vehicle 120 (e.g., over energy transfer interface 2832, over interface 2855, over interface 2865, over interface 2875, over interface 2885, over another interface, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to power motor 2850 to move vehicle 120. In one embodiment, the energy transferred via energy regulation component 2841 may be insufficient to perform an energy transfer with another system (e.g., energy transfer system 110, another vehicle, etc.). In one embodiment, the energy transferred via energy regulation component 2841 may be sufficient to power another component of vehicle 120 (e.g., a radio or navigation system, dashboard, lights, any of the components of vehicle 120 depicted in
As a further example, if the authentication of the user is unsuccessful, energy regulation component 2841 may be advantageously controlled (e.g., using authentication component 2842, using processor 2845, etc.) to reduce the ability to move or to prevent movement of vehicle 120 (e.g., by limiting the current, voltage, or another parameter of electricity to motor 2850). As another example, if the authentication of the user is unsuccessful, energy regulation component 2841 may be advantageously controlled (e.g., by authentication component 2842, by processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform an operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to enable a component (e.g., a radio or navigation system, an instrument located in a dashboard or other location of vehicle 120, interior lights, exterior lights, hazard lights, any of the components of vehicle 120 depicted in
As a further example, if the authentication of the user is unsuccessful, energy regulation component 2841 may be advantageously controlled (e.g., using authentication component 2842, using processor 2845, etc.) to provide a reduced amount of energy (e.g., from energy storage medium 2810) which is insufficient to perform a first operation (e.g., moving vehicle 120 using motor 2850, performing an energy transfer between vehicle 120 and an energy transfer system, performing an energy transfer between vehicle 120 and another vehicle, etc.) yet sufficient to perform a second operation (e.g., retain data stored in a volatile memory of vehicle 120, present a user interface configured to enable input of information associated with an authentication of a user, communicate data with a system external to vehicle 120, communicate a failure of an authentication to a user or another system, present another user interface enabling a user to report that vehicle 120 has been stolen, communicate to another user or another system that vehicle 120 has been stolen, reduce an ability to move vehicle 120 using vehicle movement control component 2844 or another component of vehicle 120, some combination thereof, etc.). As another example, if the authentication of the user is unsuccessful, vehicle movement control component 2844 may reduce (or prevent) the ability to use and/or move the vehicle (e.g., by disabling or otherwise changing a state of energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). As yet another example, if the authentication of the user is unsuccessful, a communication may be sent (e.g., to interface system 550 for presentation in region 1095 of GUI 1000) to alert a user that the authentication of the user was unsuccessful.
Accordingly, security component 2820 and/or security component 2840 can increase vehicle security responsive to one or more events. For example, security component 2820 may reduce unauthorized use of energy storage component 226 (e.g., by reducing the ability to use energy storage component 226 in a vehicle other than vehicle 120, by reducing unauthorized transfers of energy to and/or from energy storage component, etc.) responsive to a failure of an authentication of a component (e.g., authentication component 2842, interface component 221, power management component 225, power source 227, another component of vehicle 120, a component of energy transfer system 110, a component of an external system or external device, etc.), a failure of an authentication of a user, a tampering with a housing, some combination thereof, etc. As another example, security component 2840 may reduce unauthorized use of vehicle 120 (e.g., by reducing the ability to use an unauthorized component, device, or system to power, move, or otherwise use vehicle 120) responsive to a failure of an authentication of a component (e.g., authentication component 2822, interface component 221, power management component 225, power source 227, another component of vehicle 120, a component of energy transfer system 110, a component of an external system or external device, etc.), a failure of an authentication of a user, a tampering with a housing, some combination thereof, etc.
Although
In one embodiment, step 2905 may be performed using at least one position detection component. For example, step 2905 may be performed using at least one position detection component of a vehicle (e.g., 1940, 1941, 1942, 1943, some combination thereof, etc.) and/or at least one position detection component of an energy transfer system (e.g., 1910, 1911, 1912, 1913, some combination thereof, etc.).
Step 2905 may be performed using one or more types of position detection components in one embodiment. For example, step 2905 may be performed using at least one mechanical position detection component (e.g., 1910, 1940, etc.), at least one optical position detection component (e.g., 1911, 1941, etc.), at least one electrical position detection component (e.g., 1912, 1942, etc.), at least one wave position detection component (e.g., 1913, 1943, etc.), some combination thereof, etc.
In one embodiment, step 2905 may be performed using at least one energy transfer component of a vehicle and/or at least one energy transfer component of an energy transfer system. For example, at least one energy transfer component may be used to determine the position of a vehicle by activating (e.g., using position detection control component 2010, position detection control component 2020, some combination thereof, etc.) the at least one energy transfer component and analyzing the respective responses corresponding to each of the at least one energy transfer component (e.g., as discussed with respect to
Step 2905 may be performed by determining the type of one or more objects in one embodiment. For example, the position of a vehicle or a component thereof may be determined by distinguishing one component of a vehicle (e.g. a tire, a wheel, an energy transfer component, etc.) from another component of a vehicle (e.g., an undercarriage, a body panel, etc.), by distinguishing a component of a vehicle from another object (e.g., a component of another system or device, a non-metallic object, a person, another type of object, etc.), some combination thereof, etc.
In one embodiment, step 2905 may be performed by determining the distance of one or more objects (e.g., from an energy transfer component and/or a position detection component used to determine the distance or distances). For example, the position of a vehicle or a component thereof may be determined by distinguishing the distance of one component of a vehicle (e.g. a tire, a wheel, an energy transfer component, etc.) from the distance of another component of a vehicle (e.g., an undercarriage, a body panel, etc.), by distinguishing the distance of a component of a vehicle from the distance of another object (e.g., a component of another system or device, a non-metallic object, a person, another type of object, etc.), some combination thereof, etc.
Step 2905 may be performed by activating a plurality of energy transfer components sequentially in one embodiment. In one embodiment, step 2905 may be performed by activating a plurality of energy transfer components simultaneously or contemporaneously. And in one embodiment, step 2905 may be performed by activating a plurality of sets of energy transfer components sequentially and/or contemporaneously.
In one embodiment, step 2905 may be performed using at least one position detection component and at least one energy transfer component (e.g., as discussed with respect to
In one embodiment, step 2905 may involve determining the position of an energy transfer component of a vehicle and/or an energy transfer component of an energy transfer system based on an orientation (e.g., angular position, etc.) of a wheel of the vehicle (e.g., 1840, 2220, 2310, 2350, 2420, etc.) and/or a tire of the vehicle (e.g., 1830, 2210, 2260, 2410, etc.). The orientation of a wheel and/or tire may be determined using at least one sensor coupled with the tire, at least one sensor coupled with the wheel, at least one sensor coupled with a portion of the vehicle which monitors rotation of a tire and/or rotation of a wheel, some combination thereof, etc. In one embodiment, the position of an energy transfer component of a wheel and/or an energy transfer component of a tire may be determined based upon an orientation of the wheel and/or tire. For example, responsive to detecting in step 2905 that wheel 1840 and/or tire 1830 are in the orientation depicted in
Step 2905 may be performed before an energy transfer, during an energy transfer, after an energy transfer, or some combination thereof. For example, one or more components (e.g., pre-transfer control component 1350, pre-transfer control component 1390, pre-transfer processing component 620, etc.) may be used to detect, determine or otherwise access the position of the vehicle before an energy transfer to facilitate the initiation or setup of at least one energy transfer, to facilitate the initiation or setup of at least one transaction for the at least one energy transfer, for some other purpose, etc. As another example, one or more components (e.g., interface component 211, energy transfer management component 1410, interface component 221, energy transfer processing component 630, etc.) may be used to detect, determine or otherwise access the position of the vehicle during an energy transfer to facilitate the performance of at least one energy transfer, for some other purpose, etc. And as yet another example, one or more components (e.g., post-transfer control component 1351, post-transfer control component 1391, post-transfer processing component 640, etc.) may be used to detect, determine or otherwise access the position of the vehicle after an energy transfer to facilitate the conclusion of at least one energy transfer, to facilitate the conclusion of at least one transaction for the at least one energy transfer, for some other purpose, etc.
As shown in
Step 2910 may be performed before an energy transfer, during an energy transfer, after an energy transfer, or some combination thereof. For example, one or more components (e.g., pre-transfer control component 1350, pre-transfer control component 1390, pre-transfer processing component 620, interface component 211, interface component 221, etc.) may be used to communicate with the vehicle before an energy transfer to facilitate the initiation or setup of at least one energy transfer, to facilitate the initiation or setup of at least one transaction for the at least one energy transfer, for some other purpose, etc. As another example, one or more components (e.g., interface component 211, energy transfer management component 1410, interface component 221, energy transfer processing component 630, etc.) may be used to communicate with the vehicle during an energy transfer to facilitate the performance of at least one energy transfer, for some other purpose, etc. And as yet another example, one or more components (e.g., post-transfer control component 1351, post-transfer control component 1391, post-transfer processing component 640, interface component 211, interface component 221, etc.) may be used to communicate with the vehicle after an energy transfer to facilitate the conclusion of at least one energy transfer, to facilitate the conclusion of at least one transaction for the at least one energy transfer, for some other purpose, etc.
In one embodiment, step 2910 may involve establishing communication with a vehicle by determining at least one interface (e.g., an energy transfer interface, a signal interface, another type of interface, etc.) available to communicate signals, synchronizing components used to perform the communication (e.g., communication interface 241 and communication interface 242, at least one component of an energy transfer system and at least one component of the vehicle, etc.), executing at least one handshake procedure, some combination thereof, etc. Step 2910 may involve identifying the vehicle based on information about the vehicle (e.g., a vehicle identifier or other data used to identify the vehicle, data communicated from the vehicle, data communicated from the energy transfer system, etc.), an image (e.g., captured using camera 1321, camera 1371, etc.) of the license plate or another component of the vehicle, some combination thereof, etc. And in one embodiment, step 2910 may involve communicating information such as at least one attribute of an energy transfer (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.), at least one cost (e.g., billable to an individual and/or entity associated with the vehicle, billable to an individual and/or entity associated with the energy transfer system, etc.) associated with an energy transfer, authentication information (e.g., credentials, information associated with an authentication of a component, information associated with an authentication of a user, etc.), information associated with vehicle security (e.g., a result of an authentication of a component, a result of an authentication of a user, a detection of a tampering, image data or video data associated with surveillance or monitoring of a vehicle and/or an energy transfer system, audio data associated with surveillance or monitoring of a vehicle and/or an energy transfer system, etc.), any information presented by or input using GUI 800, any information presented by or input using GUI 900, any information presented by or input using GUI 1000, other types of information, some combination thereof, etc.
As shown in
In one embodiment, the monitoring in step 2915 may be performed using a component of the vehicle. For example, an attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) associated with an energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and another vehicle, etc.) may be determined or measured in step 2915 using a component of the vehicle (e.g., meter 229, etc.). As another example, a component of the vehicle may be used to determine or measure a status associated with an energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and at least one other vehicle, etc.) in step 2915, where the status associated with an energy transfer may be a status associated with an energy transfer interface (e.g., as displayed in region 1020, 1021, 1022, etc. of GUI 1000), a status associated with a signal interface (e.g., as displayed in region 1023 of GUI 1000), a status of at least one energy transfer (e.g., as displayed in region 1024 of GUI 1000), etc. As yet another example, a status (e.g., opened, closed, on, off, activated, deactivated, in a low-power mode, in a higher-power mode, in a location, at a rotational speed, etc.) of one or more components of a vehicle (e.g., a door, a hood, a trunk, a canopy, a headlight, an interior light, a radio, a communication system, a propeller, a rotor, etc.) may be determined or measured in step 2915 using a component of the vehicle (e.g., a sensor or other component configured to determine or measure the status). And as a further example, a parameter of the vehicle (e.g., a temperature, pressure, fluid level, voltage, rotational speed of a component, etc.) may be determined or measured in step 2915 using a sensor of the vehicle.
As another example, step 2915 may involve capturing (e.g., using camera 1371, another image capture device, etc.) one or more images (e.g., at least one still image, at least one frame of video data, etc.) of at least one component of the vehicle, at least one component of at least one energy transfer system, a user of the vehicle, a user attempting to perform an energy transfer involving the vehicle, other objects at the site of an energy transfer, some combination thereof, etc. And as yet another example, step 2915 may involve capturing (e.g., using microphone 1373, another audio capture device, etc.) sound of at least one component of the vehicle, at least one component of at least one energy transfer system, a user of the vehicle, a user attempting to perform an energy transfer involving the vehicle, other objects at the site of an energy transfer, some combination thereof, etc.
In one embodiment, step 2915 may be performed by a component of a system external to or separate from the vehicle (e.g., an energy transfer system, interface system 550, etc.). For example, step 2915 may involve capturing (e.g., using camera 1321, another image capture device, etc.) one or more images (e.g., at least one still image, at least one frame of video data, etc.) of at least one component of the vehicle, at least one component of at least one energy transfer system, a user of the vehicle, a user attempting to perform an energy transfer involving the vehicle, other objects at the site of an energy transfer, some combination thereof, etc. As another example, step 2915 may involve capturing (e.g., using microphone 1323, another audio capture device, etc.) sound of at least one component of the vehicle, at least one component of at least one energy transfer system, a user of the vehicle, a user attempting to perform an energy transfer involving the vehicle, other objects at the site of an energy transfer, some combination thereof, etc.
As yet another example, an attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) associated with an energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and at least one other vehicle, etc.) may be determined or measured in step 2915 using a component (e.g., meter 219, another component, etc.) of a system external to or separate from the vehicle (e.g., the energy transfer system, interface system 550, etc.). As another example, a component of a system other than the vehicle may be used to determine or measure a status associated with an energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and another vehicle, etc.) in step 2915, where the status associated with an energy transfer may be a status associated with an energy transfer interface (e.g., as displayed in region 1020, 1021, 1022, etc. of GUI 1000), a status associated with a signal interface (e.g., as displayed in region 1023 of GUI 1000), a status of at least one energy transfer (e.g., as displayed in region 1024 of GUI 1000), etc. As yet another example, a status (e.g., opened, closed, on, off, activated, deactivated, in a low-power mode, in a higher-power mode, in a certain location, rotational speed, etc.) of one or more components of a vehicle (e.g., a door, a hood, a trunk, a canopy, a headlight, an interior light, a radio, a communication system, a rotor, etc.) may be determined or measured in step 2915 using a component (e.g., a sensor or other component separate from the vehicle and configured to determine or measure the status) of a system other than the vehicle. And as a further example, a parameter of the vehicle (e.g., a temperature, pressure, fluid level, voltage, rotational speed of a component, etc.) may be determined or measured in step 2915 using a component (e.g., a sensor or other component separate from the vehicle and configured to determine or measure the parameter) of a system other than the vehicle.
In one embodiment, step 2915 may be performed using a component of the vehicle in combination with a component of a system external to or separate from the vehicle (e.g., the energy transfer system, interface system 550, etc.). For example, information from the component of the vehicle and information from the component of the system other than the vehicle may be combined in step 2915 (e.g., video data from each source may be merged or otherwise processed for contemporaneous display, audio data from each source may be merged or otherwise processed for contemporaneous playback, etc.), processed to determine a result (e.g., separate values of a parameter may be averaged or otherwise processed to determine a resultant value for the parameter, etc.), etc.
In one embodiment, step 2915 may involve communicating information which is measured or determined. For example, information may be communicated from the vehicle to another system (e.g., an energy transfer system, interface system 550, etc.), from an energy transfer system to another system (e.g., the vehicle, interface system 550, etc.), from one system (e.g., interface system 550) to another system (e.g., the vehicle, an energy transfer system, etc.), etc. As such, in one embodiment, step 2915 may implement remote monitoring of the vehicle, an energy transfer system, another vehicle or system, etc.
As shown in
Step 3010 involves performing an authentication of a first component. In one embodiment, the first component may be a component other than an energy storage component (e.g., 226) or any component thereof (e.g., energy storage medium 2810, security component 2820, authentication component 2822, etc.). For example, the first component may be security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, another component of the vehicle, a component of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), a component of a system other than the vehicle, etc. In one embodiment, the first component may be any component attempting to use or otherwise access energy storage component 226 or any component thereof (e.g., energy storage medium 2810, security component 2820, authentication component 2822, etc.). As such, in one embodiment, unauthorized use of and/or access to energy storage component 226 may be reduced (e.g., by reducing the ability or ease of using energy storage component 226 in a vehicle other than vehicle 120, by reducing unauthorized transfers of energy to and/or from energy storage component 226, etc.).
In one embodiment, the authentication in step 3010 may be performed by authentication component 2822. For example, authentication component 2822 may compare an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data (e.g., stored in memory 2826, a register of processor 2825, another portion of security component 2820, etc.). In one embodiment, the identifier may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a unique identifier which is associated with only the vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and does not correspond to or otherwise identify any other vehicle. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, the identifier may be sent in step 3010 from the component undergoing authentication responsive to a request for identification sent from authentication component 2822. In one embodiment, communications sent in step 3010 between security component 2820 and the component undergoing authentication may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient).
In one embodiment, the authentication in step 3010 may be performed by computer system 2890. For example, computer system 2890 may compare an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data. For example, where the authentication data is stored in security component 2820 (e.g., stored in memory 2826, a register of processor 2825, another portion of security component 2820, etc.), the identifier and the authentication data may be sent (e.g., separately, together, sequentially, simultaneously or contemporaneously, etc.) in step 3010 to computer system 2890 via communication interface 242 for comparison by computer system 2890.
As another example, where computer system 2890 includes or can otherwise access the authentication data (e.g., 2895), the identifier may be sent in step 3010 to computer system 2890 via communication interface 242 for comparison with authentication data 2895 by computer system 2890. Authentication data 2895 may be part of a data structure or database which includes an index of components (e.g., including energy storage component 226, security component 2820, some combination thereof, etc.) and respective authentication data corresponding to each of the components, where the data structure or database may be indexed in step 3010 using an identifier of a component (e.g., energy storage component 226, security component 2820, some combination thereof, etc.) to access authentication data for comparison to the identifier of the component undergoing authentication. In one embodiment, the identifier of the other component (e.g., energy storage component 226, security component 2820, some combination thereof, etc.) may be sent in step 3010 to computer system 2890 along with (e.g., simultaneously with, contemporaneously with, as part of the same data packet, etc.) or separate from (e.g., sequentially with, at another time than, in a different data packet, etc.) the identifier of the component undergoing authentication.
In one embodiment, the identifier of the component undergoing authentication may be sent (e.g., to computer system 2890) in step 3010 from the component undergoing authentication responsive to a request for identification sent from authentication component 2822. In one embodiment, the identifier sent in step 3010 to computer system 2890 may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, communications sent in step 3010 between security component 2820, the component undergoing authentication, computer system 2890, or some combination thereof, may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient).
In one embodiment, step 3010 may involve processing the identifier (e.g., of the component undergoing authentication) and/or the authentication data before comparison. For example, the identifier (e.g., of the component undergoing authentication) and/or the authentication data may be decrypted before comparison, alternatively processed or altered before comparison, etc.
As shown in
Step 3020 involves performing an authentication of a second component. In one embodiment, the second component may be an energy storage component (e.g., 226) or some component thereof (e.g., security component 2820, authentication component 2822, etc.). In one embodiment, the second component may be any component (of the vehicle, of another vehicle, of an energy transfer system, of another system or device, etc.) attempting to use or otherwise access a component of the vehicle (e.g., security component 2840, authentication component 2842, interface component 221, power management component 225, power source 227, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, another component of the vehicle, etc.). As such, in one embodiment, unauthorized access to vehicle 120 may be reduced (e.g., by reducing the ability or ease of using an unauthorized device or system to power, move, use or otherwise access to the vehicle or a component thereof).
In one embodiment, the authentication in step 3020 may be performed by authentication component 2842. For example, authentication component 2842 may compare an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data (e.g., stored in memory 2846, a register of processor 2845, another portion of security component 2840, etc.). In one embodiment, the identifier may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a unique identifier which is associated with only the vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and does not correspond to or otherwise identify any other vehicle. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, the identifier may be sent in step 3020 from the component undergoing authentication responsive to a request for identification sent from authentication component 2842. In one embodiment, communications sent in step 3020 between security component 2840 and the component undergoing authentication may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient).
In one embodiment, the authentication in step 3020 may be performed by computer system 2890. For example, computer system 2890 may compare an identifier (e.g., generated and/or sent from the component undergoing authentication) to authentication data. For example, where the authentication data is stored in security component 2840 (e.g., stored in memory 2846, a register of processor 2845, another portion of security component 2840, etc.), the identifier and the authentication data may be sent (e.g., separately, together, sequentially, simultaneously, contemporaneously, etc.) in step 3020 to computer system 2890 via communication interface 242 for comparison by computer system 2890.
As another example, where computer system 2890 includes or can otherwise access the authentication data (e.g., 2895), the identifier may be sent in step 3020 to computer system 2890 via communication interface 242 for comparison with authentication data 2895 by computer system 2890. Authentication data 2895 may be part of a data structure or database which includes an index of components (e.g., including security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) and respective authentication data corresponding to each of the components, where the data structure or database may be indexed in step 3020 using an identifier of a component (e.g., security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) to access authentication data for comparison to the identifier of the component undergoing authentication. In one embodiment, the identifier of the other component (e.g., security component 2840, a component which includes security component 2840, motor 2850, transmission 2860 braking system 2870, steering wheel 2880, some combination thereof, etc.) may be sent in step 3020 to computer system 2890 along with (e.g., simultaneously with, contemporaneously with, as part of the same data packet, etc.) or separate from (e.g., sequentially with, at another time than, in a different data packet, etc.) the identifier of the component undergoing authentication.
In one embodiment, the identifier of the component undergoing authentication may be sent (e.g., to computer system 2890) in step 3020 from the component undergoing authentication responsive to a request for identification sent from authentication component 2842. In one embodiment, the identifier sent in step 3020 to computer system 2890 may be a unique identifier which is associated with only the component undergoing authentication and does not correspond to or otherwise identify any other component. In one embodiment, the identifier may be a key (e.g., public key, private key, etc.), data encrypted or encoded by a component performing the authentication or by another trusted party, etc. In one embodiment, communications sent in step 3020 between security component 2840, the component undergoing authentication, computer system 2890, or some combination thereof, may be encrypted (e.g., by the sender) and/or decrypted (e.g., by the recipient).
In one embodiment, step 3020 may involve processing the identifier (e.g., of the component undergoing authentication) and/or the authentication data before comparison. For example, the identifier (e.g., of the component undergoing authentication) and/or the authentication data may be decrypted before comparison, alternatively processed or altered before comparison, etc.
As shown in
Step 3030 involves generating data to present a user interface for authenticating a user. For example, data may be generated in step 3030 to present a GUI (e.g., 1000) with a region (e.g., 1040) enabling a user to enter information (e.g., a code, a username, a password, etc.) used to authenticate the user (e.g., to determine if the user is authorized to perform an energy transfer associated with the vehicle, use the vehicle, move the vehicle, etc.). The information (e.g., a code, a username, a password, etc.) used to authenticate the user may be entered using a region of the GUI (e.g., character entry region 1044 including one or more “soft keys” enabling the input of a character such as a letter, number, symbol, etc.), an input device of the vehicle (e.g., one or more physical buttons or keys, a touch screen, an audio input system, a voice recognition system, an optical recognition system capable of recognizing a fingerprint or eye, etc.), an input device of an energy transfer system (e.g., one or more physical buttons or keys, a touch screen, a voice recognition system, an optical recognition system capable of recognizing a fingerprint or eye, etc.), etc. The user interface may be displayed on a display device (e.g., 725, 521, 522, 523, etc.) of the vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), a display device (e.g., 795, 591, 593, 595, etc.) of a computer system (e.g., 790, 590, 592, 594, etc.), a display device (e.g., 511, etc.) of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), another display device, etc. The data may be generated in step 3030 to display the user interface responsive to an interaction with the vehicle (e.g., in step 3005), a change in speed of the vehicle, a change in acceleration of the vehicle, a stopping of the vehicle, a change in status of a component of the vehicle (e.g., an opening of a door, a closing of a door, a setting of a parking brake, a release of a parking brake, a placement of a gear shift lever in a “park” setting, a gear change implemented within the transmission, etc.), some combination thereof, etc.
As shown in
As shown in
Step 3045 involves determining whether any tampering is detected. For example, step 3045 may involve determining whether any tampering is detected (e.g., by tampering detection component 2827) with a housing (e.g., 2830) of an energy storage component (e.g., 226). As another example, step 3045 may involve determining whether any tampering is detected (e.g., by tampering detection component 2847) with a housing of another component (e.g., motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.). In one embodiment, step 3045 may be performed by tampering detection component 2827, tampering detection component 2847, processor 2825, processor 2845, a component of an energy transfer system, a component of interface system 550 (e.g., pre-transfer processing component 620, energy transfer processing component 630, post-transfer processing component 640, etc.), computer system 2890, some combination thereof, etc.
If tampering is not detected in step 3045, then step 3050 may be performed. Alternatively, if tampering is detected in step 3045, then step 3055 may be performed.
As shown in
As shown in
Step 3060 involves reducing the ability to move and/or use the vehicle. Step 3060 may be performed by providing a reduced amount of energy to and/or from a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) of the vehicle (e.g., by controlling or otherwise using energy regulation component 2821, energy regulation component 2841, some combination thereof, etc.), by altering at least one parameter (e.g., by limiting the current, voltage, or another parameter) of energy transferred to and/or from a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) of the vehicle (e.g., by controlling or otherwise using energy regulation component 2821, energy regulation component 2841, some combination thereof, etc.), by disabling or deactivating a component (e.g., energy storage component 226, motor 2850, transmission 2860, braking system 2870, steering wheel 2880, etc.) of the vehicle (e.g., by controlling or otherwise using vehicle movement control component 2844), some combination thereof, etc.
As shown in
Step 3070 involves generating data to present information associated with the monitoring of the vehicle (e.g., as performed in step 2915 of process 2900). The information associated with the monitoring of the vehicle may be presented (e.g., based on data generated in step 3070) using a region (e.g., 1030) of a GUI (e.g., 1000) in one embodiment. And in one embodiment, the information associated with the monitoring of the vehicle may be presented (e.g., based on data generated in step 3070) to an authenticated or authorized user (e.g., associated with information entered using GUI 900), a user other than the user causing the authentication failure and tampering, etc.
In one embodiment, the information associated with the monitoring of the vehicle may be presented (e.g., based on data generated in step 3070) using a component of the vehicle (e.g., display device 521, display device 522, display device 523, display device 725, speaker 1374, etc.). In one embodiment, the information associated with the monitoring of the vehicle may be presented (e.g., based on data generated in step 3070) using a component (e.g., an audio output component, a display device, etc.) of a system (e.g., computer system 590, computer system 592, computer system 594, computer system 790, energy transfer system 110, another energy transfer system, etc.) which is located remotely from the vehicle, thereby enabling remote monitoring of the vehicle without requiring the user to be physically at (e.g., outside of, inside of, etc.) or near the vehicle.
In one embodiment, step 3070 may involve communicating the data to the system presenting the information associated with the monitoring of the vehicle. And in one embodiment, step 3070 may involve communicating the data to the system presenting the information associated with the monitoring of the vehicle via interface system 550 (e.g., from the system performing the monitoring of the vehicle to interface system 550, from interface system 550 to the system presenting the information associated with the monitoring of the vehicle, etc.).
As shown in
In one embodiment, the user interface may be presented (e.g., based on data generated in step 3075) using a component of the vehicle (e.g., display device 521, display device 522, display device 523, display device 725, speaker 1374, etc.). In one embodiment, the user interface may be presented (e.g., based on data generated in step 3075) using a component (e.g., an audio output component, a display device, etc.) of a system (e.g., computer system 590, computer system 592, computer system 594, computer system 790, energy transfer system 110, another energy transfer system, etc.) which is located remotely from the vehicle, thereby enabling a user to report that the vehicle has been stolen without requiring the user to be physically at (e.g., outside of, inside of, etc.) or near the vehicle. And in one embodiment, data associated with the reporting that the vehicle has been stolen may be sent in step 3080 via interface system 550 (e.g., from the system presenting the user interface to interface system 550, from interface system 550 to a system associated with the authorities and/or a system configured to process the request to report the vehicle as stolen, etc.).
Although
Turning back to
Step 3120 involves determining an updated position of the vehicle (e.g., after repositioning the vehicle responsive to the instructions generated in step 3110). Step 3120 may be performed similarly to and/or analogously to step 2905 in one embodiment.
As shown in
Step 3140 involves determining one or more energy transfer components (e.g., capable of implementing an energy transfer between at least one vehicle and at least one energy transfer system, between at least one vehicle and at least one other vehicle, etc.). Step 3140 may be performed by a component of the vehicle (e.g., interface component 221, pre-transfer control component 1390, some combination thereof, etc.), a component of an energy transfer system (e.g., interface component 211, pre-transfer control component 1350, energy transfer management component 1410, some combination thereof, etc.), a component of interface system 550 (e.g., pre-transfer processing component 620, energy transfer processing component 630, etc.), a component of another system, some combination thereof, etc. In one embodiment, step 3140 may be performed similarly to and/or analogously to one or more steps of process 3200 of
Although
Step 3320 involves accessing at least one respective response corresponding to each of the at least one energy transfer component. In one embodiment, step 3320 may be performed by a component of a system which also includes one or more of the at least one energy transfer component and/or by a component of a system which does not include one or more of the at least one energy transfer component. In one embodiment, the response accessed in step 3320 may include or otherwise be associated with a value of an attribute (e.g., an energy transfer type, an interface type, a power, a current, a voltage, an energy transfer profile, a duration, a waveform, a temperature, etc.) and/or another electrical parameter (e.g., an inductance, an impedance, etc.). And in one embodiment, step 3320 may be performed in accordance with the discussion of
As shown in
Although
Turning back to
Step 3160 involves determining whether a problem with at least one of the one or more energy transfer interfaces (e.g., determined in step 3150) has been detected. Step 3160 may be performed by a component of the vehicle (e.g., interface component 221, pre-transfer control component 1390, some combination thereof, etc.), a component of an energy transfer system (e.g., interface component 211, pre-transfer control component 1350, energy transfer management component 1410, some combination thereof, etc.), a component of interface system 550 (e.g., pre-transfer processing component 620, energy transfer processing component 630, etc.), a component of another system, some combination thereof, etc. If it is determined in step 3160 that a problem has not been detected, then process 3100 may conclude. Alternatively, if it is determined in step 3160 that a problem has been detected, then step 3170 may be performed.
As shown in
Although
Turning back to
Step 3420 involves determining at least one attribute (e.g., at least one energy transfer type, at least one interface type, at least one power, at least one current, at least one voltage, at least one energy transfer profile, at least one duration, at least one waveform, at least one temperature, etc.) associated with an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.). In one embodiment, the at least one attribute may be compatible with the energy transfer system.
As shown in
Step 3440 involves determining at least one user preference associated with an energy transfer. In one embodiment, the user preference may be associated with the energy transfer system (e.g., entered using GUI 800 of
As shown in
Although
Turning back to
Step 2940 involves generating data to present a user interface including the at least one attribute (e.g., determined in step 2930) and the at least one cost (e.g., determined in step 2935). In one embodiment, the at least one attribute and the at least one cost may be presented (e.g., based on data generated in step 2940) in at least one region (e.g., 1060) of a GUI (e.g., 1000). In one embodiment, the at least one attribute and the at least one cost may be presented (e.g., based on data generated in step 2940) using an audio user interface (e.g., enabling a user to interact with the energy transfer system and/or the vehicle using the user's voice or other sound), where the audio user interface may be implemented using at least one audio output device (e.g., speaker 1324, speaker 1374, etc.) and/or at least one audio input device (e.g., microphone 1323, microphone 1373, etc.). And in one embodiment, the at least one attribute and the at least one cost may be presented (e.g., based on data generated in step 2940) using another type of interface (e.g., including at least one button, at least one key, at least one trackball, at least one joystick, at least one pen, at least one touch input device, another type of mechanical user interface, another type of electrical user interface, another type of optical user interface, another type of wave-based user interface, etc.).
The user interface (e.g., presented based on data generated in step 2940) may enable a user to make a selection, where the selection may be of or associated with at least one energy transfer (e.g., associated with the at least one attribute and/or the at least one cost), of or associated with at least one attribute, of or associated with at least one cost, some combination thereof, etc. In one embodiment, the user interface (e.g., presented based on data generated in step 2940) may enable a user to initiate (e.g., responsive to the selection, responsive to an interaction with another region of a GUI such as region 1070 of GUI 1000, etc.) at least one energy transfer (e.g., associated with the at least one attribute and/or the at least one cost). The user interface (e.g., presented based on data generated in step 2940) may enable the ordering (e.g., a chronological ordering) of a plurality of energy transfers to be performed, where the plurality of energy transfers may include at least one charge of an energy storage component (e.g., 216, 226, etc.) and/or at least one discharge of an energy storage component (e.g., 216, 226, etc.).
In one embodiment, the at least one attribute and the at least one cost may each be presented (e.g., based on data generated in step 2940) as a respective list within the user interface (e.g., within region 1060 of GUI 1000, within another graphical user interface, within an audio user interface, within another type of user interface, etc.). The user interface may also include a listing of at least one energy transfer interface, where each of the at least one energy transfer interface corresponds to at least one respective attribute of the at least one attribute (e.g., determined in step 2930). The at least one energy transfer interface may include a first interface of a first type and a second interface of a second type, where the first and second types are different from one another.
In one embodiment, the user interface (e.g., GUI 1000) may be displayed (e.g., based on data generated in step 2940) on a display device (e.g., 725, 521, 522, 523, etc.) of the vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), a display device (e.g., 795, 591, 593, 595, etc.) of a computer system (e.g., 790, 590, 592, 594, etc.), a display device (e.g., 511, etc.) of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), another display device, etc. In one embodiment, the user interface (e.g., GUI 1000) may be displayed (e.g., based on data generated in step 2940) on a display device of a computer system located remotely from the vehicle and the energy transfer system. And in one embodiment, the user interface (e.g., GUI 1000) may be displayed (e.g., displayed based on data generated in step 2940) on a display device of a portable electronic device
In one embodiment, step 2940 may be performed responsive to an authentication of a user (e.g., as performed in step 3035), an authentication of a component (e.g., as performed in step 3010, step 3020, etc.), some combination thereof, etc. And in one embodiment, step 2940 may be performed responsive to any of the preceding steps of process 2900.
As shown in
In one embodiment, the at least one recommendation may be determined in step 2945 based on a time of day. For example, if it is determined that a power source (e.g., 227) of a vehicle (e.g., 120) can only generate energy for a particular duration (e.g., using a time of day to estimate an amount of remaining sunlight, using a solar sensor to estimate an amount of remaining sunlight, etc.), the at least one recommendation may suggest to a user that a discharge be performed (e.g., for all or part of the particular duration). As another example, if it is determined that the cost of energy (e.g., to the energy transfer system as set by the utility) will reduce at a particular time (e.g., at night when the cost of energy is usually lower from a utility), the recommendation may suggest to a user that a charge be initiated at or after the particular time.
Communication of the at least one recommendation in step 2945 may involve displaying an image as part of a GUI (e.g., 1000, the user interface presented based on data generated in step 2940, etc.) and/or changing the appearance of a GUI (e.g., 1000, the user interface presented based on data generated in step 2940, etc.). In one embodiment, the recommendation may be communicated by displaying a border (e.g., similar to the dotted line of region 1075 as shown in
As shown in
Step 2955 involves generating a request (e.g., based on the at least one selection of step 2950) to perform an energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and at least one other vehicle, etc.). In one embodiment, the request generated in step 2955 may be a request to perform at least one energy transfer (e.g., between the vehicle and an energy transfer system, between the vehicle and at least one other vehicle, etc.) in accordance with at least one attribute associated with the selection of step 2950. The request may be generated in step 2955 responsive to an interaction (e.g., with a region of a GUI such as region 1070 of GUI 1000, speech or sound input to an audio user interface, etc.) of a user interface (e.g., GUI 1000, another graphical user interface, an audio user interface, another type of user interface, etc.) in one embodiment. The request generated in step 2955 may identify or otherwise be associated with at least one source of energy (e.g., at least one vehicle, at least one energy transfer system, etc.), at least one recipient of energy (e.g., at least one vehicle, at least one energy transfer system, etc.), at least one energy transfer type (e.g., charge, discharge, etc.), at least one interface type (e.g., plug/cable, inductive, wireless, etc.), at least one energy transfer rate, at least one energy transfer voltage, at least one energy transfer profile, at least one energy transfer rate cost, at least one energy transfer profile cost, at least one total cost, at least one energy transfer duration, some combination thereof, etc.
In one embodiment, step 2955 may involve identifying one or more energy transfer interfaces (e.g., 132, 231, 234, 237, 2031, 2034a, 2034b, 2034c, 2034d, 2037a, 2037b, 2832, etc.) used to perform at least one energy transfer associated with the request. In one embodiment, step 2955 may be performed using a component of a vehicle (e.g., interface component 221, pre-transfer control component 1390, etc.), a component of an energy transfer system (e.g., interface component 211, energy transfer management component 1410, pre-transfer control component 1350, etc.), a component of interface system 550 (e.g., pre-transfer processing component 620, energy transfer processing component 630, etc.), a component of another system (e.g., computer system 790, computer system 590, computer system 592, computer system 594, etc.), some combination thereof, etc.
In one embodiment, step 2955 may involve communicating the request from one system to another. For example, step 2955 may involve communicating the request from the system generating the request and/or at which the request originates (e.g., a system used to present the user interface based on data generated in step 2940, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.) to a component of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), a component of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), a component of interface system 550, to another system, etc. As another example, step 2955 may involve communicating the request from the system generating the request and/or at which the request originates (e.g., a system used to present the user interface based on data generated in step 2940, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.) to a component of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and/or a component of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), where the request may be communicated via interface system 550 (e.g., from the system generating the request and/or at which the request originates to interface system 550, from interface system 550 to the vehicle and/or the energy transfer system, etc.).
As shown in
Step 2965 involves determining whether an interrupt is detected. In one embodiment, the interrupt may be associated with at least one component of an energy transfer system, at least one component of a vehicle, at least one energy transfer interface (e.g., coupling an energy transfer system to at least one vehicle, at least one vehicle to at least one other vehicle, etc.), some combination thereof, etc. In one embodiment, the interrupt may be associated with a problem or other condition which is monitored or detected by a component of an energy transfer system (e.g., interface monitoring component 213, energy transfer monitoring component 1412, etc.) and/or a component of a vehicle (e.g., interface monitoring component 223, etc.). In one embodiment, step 2965 may involve detecting a problem with at least one energy transfer interface (e.g., determined in step 2925, used to transfer energy in step 2960, etc.), at least one component of at least one vehicle, at least one component of at least one energy transfer system, some combination thereof, etc. In one embodiment, step 2965 may involve determining whether an interrupt is detected during or responsive to the performance of at least one energy transfer (e.g., performed in step 2960). And in one embodiment, step 2965 may be performed using a component of a vehicle (e.g., interface component 221, etc.), a component of an energy transfer system (e.g., interface component 211, energy transfer management component 1410, etc.), a component of interface system 550 (e.g., energy transfer processing component 630, etc.), a component of another system (e.g., computer system 790, computer system 590, computer system 592, computer system 594, etc.), some combination thereof, etc.
If it is determined that an interrupt is detected in step 2965, then step 2970 may be performed. Alternatively, if it is determined that an interrupt is not detected in step 2965, then step 2980 may be performed.
As shown in
Step 3520 involves determining whether the problem (e.g., associated with the energy transfer interface identified in step 3510) can be corrected. If the problem can be corrected, then one or more operations may be taken in step 3530 to correct the problem. In one embodiment, correction of the problem in step 3530 may involve performing at least one operation to enable at least one energy transfer interface and/or at least one component thereof (e.g., at least one energy transfer component, a line or interface coupled to at least one energy transfer component, circuitry or another component of or coupled to the energy transfer component, etc.) to perform at least one energy transfer in accordance with at least one additional attribute, where the at least one additional attribute may include one or more attributes that at least one energy transfer may not be performed in accordance with due to the problem (e.g., before correction of the problem).
For example, where a problem can be automatically corrected (e.g., with reduced or no user participation), then one or more operations (e.g., restarting or reinitializing an interface in an attempt to restore thereto an ability to transfer energy and/or communicate signals, restoring or upgrading firmware, initializing another component or circuitry to operate in place of the component or circuitry associated with the problem, etc.) may be performed using at least one component of the vehicle (e.g., energy distribution component 222, another component of interface component 221, another component of the vehicle, etc.) and/or at least one component of the energy transfer system (e.g., energy distribution component 212, another component of interface component 211, energy transfer management component 1410, another component of the energy transfer system, etc.). As another example, where the problem can be corrected with user participation, then the user may be instructed to attempt or perform one or more operations to correct the problem. In one embodiment, where a plug is not properly inserted into a receptacle to enable energy transfer and/or signal communication over the interface, the user may be instructed to properly insert the plug into the receptacle, take some other corrective action, etc. The user may be instructed in step 3530 using a user interface (e.g., GUI 1000, an audio user interface, another type of user interface, etc.), using a speaker (e.g., 1324, 1374, etc.), using a display device (e.g., 725, 521, 522, 523, etc.) of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), using a display device (e.g., 795, 591, 593, 595, etc.) of a computer system (e.g., 790, 590, 592, 594, etc.), using a display device (e.g., 511, etc.) of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), using another display device, some combination thereof, etc. Alternatively, if the problem cannot be corrected, then step 3540 may be performed.
Step 3540 involves determining whether at least one other attribute (e.g., at least one energy transfer type, at least one interface type, at least one power, at least one current, at least one voltage, at least one energy transfer profile, at least one duration, at least one waveform, at least one temperature, etc.) and/or at least one other energy transfer interface are available (e.g., to perform an energy transfer and/or communicate signals between a vehicle and an energy transfer system, between a vehicle and at least one other vehicle, etc.). Step 3540 may be performed similarly to and/or analogously to step 3170 of process 3100 in one embodiment. If at least one other attribute and at least one other energy transfer interface are not available (e.g., to perform an energy transfer and/or communicate signals), then step 3550 may be performed. Alternatively, if at least one other attribute and/or at least one other energy transfer interface are available (e.g., to perform an energy transfer and/or communicate signals), then step 3560 may be performed.
In one embodiment, step 3540 may involve automatically determining or selecting one or more of the available attributes for performing at least one energy transfer and/or communicating signals (e.g., using at least one energy transfer interface associated with the problem and identified in step 3510, using at energy transfer interface which is not associated with the problem and which is not identified in step 3510, etc.). And in one embodiment, step 3540 may involve automatically determining or selecting one or more of the available energy transfer interfaces for performing at least one energy transfer and/or communicating signals.
As shown in
In one embodiment, step 3550 may involve communicating a notification from one system to another. For example, step 3550 may involve communicating a notification from a first system (e.g., the vehicle, the energy transfer system, a system performing one or more steps of process 3500, a system performing one or more steps of process 2900, etc.) to at least one other system (e.g., a system used to present GUI 1000 or another user interface, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.). As another example, step 3550 may involve communicating a notification from a first system (e.g., the vehicle, the energy transfer system, a system performing one or more steps of process 3500, a system performing one or more steps of process 2900, etc.) to at least one other system (e.g., a system used to present GUI 1000 or another user interface, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.) via interface system 550 (e.g., from the first system to interface system 550, from interface system 550 to the at least one other system, etc.).
As shown in
Although
Step 3620 involves determining whether the problem (e.g., associated with the energy transfer interface identified in step 3610) can be corrected. If the problem can be corrected, then one or more operations may be taken in step 3630 to correct the problem. In one embodiment, correction of the problem in step 3630 may involve performing at least one operation to enable at least one energy transfer interface and/or at least one component thereof (e.g., at least one energy transfer component, a line or interface coupled to at least one energy transfer component, circuitry or another component of or coupled to the energy transfer component, etc.) to perform at least one energy transfer in accordance with at least one additional attribute, where the at least one additional attribute may include one or more attributes that at least one energy transfer may not be performed in accordance with due to the problem (e.g., before correction of the problem).
For example, where a problem can be automatically corrected (e.g., with reduced or no user participation), then one or more operations (e.g., restarting or reinitializing an interface in an attempt to restore thereto an ability to transfer energy and/or communicate signals, restoring or upgrading firmware, initializing another component or circuitry to operate in place of the component or circuitry associated with the problem, etc.) may be performed using at least one component of the vehicle (e.g., energy distribution component 222, another component of interface component 221, another component of the vehicle, etc.) and/or at least one component of the energy transfer system (e.g., energy distribution component 212, another component of interface component 211, energy transfer management component 1410, another component of the energy transfer system, etc.). As another example, where the problem can be corrected with user participation, then the user may be instructed to attempt or perform one or more operations to correct the problem. In one embodiment, where a plug is not properly inserted into a receptacle to enable energy transfer and/or signal communication over the interface, the user may be instructed to properly insert the plug into the receptacle, take some other corrective action, etc. The user may be instructed in step 3630 using a user interface (e.g., GUI 1000, an audio user interface, another type of user interface, etc.), using a speaker (e.g., 1324, 1374, etc.), using a display device (e.g., 725, 521, 522, 523, etc.) of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), using a display device (e.g., 795, 591, 593, 595, etc.) of a computer system (e.g., 790, 590, 592, 594, etc.), using a display device (e.g., 511, etc.) of an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), using another display device, some combination thereof, etc. Alternatively, if the problem cannot be corrected, then step 3640 may be performed.
Step 3640 involves determining whether at least one other attribute (e.g., at least one energy transfer type, at least one interface type, at least one power, at least one current, at least one voltage, at least one energy transfer profile, at least one duration, at least one waveform, at least one temperature, etc.) and/or at least one other energy transfer interface are available (e.g., to perform an energy transfer and/or communicate signals between a vehicle and an energy transfer system, between a vehicle and at least one other vehicle, etc.). Step 3640 may be performed similarly to and/or analogously to step 3170 of process 3100 in one embodiment. If at least one other attribute and at least one other energy transfer interface are not available (e.g., to perform an energy transfer and/or communicate signals), then step 3650 may be performed. Alternatively, if at least one other attribute and/or at least one other energy transfer interface are available (e.g., to perform an energy transfer and/or communicate signals), then step 3660 may be performed.
In one embodiment, step 3640 may involve automatically determining or selecting one or more of the available attributes for performing at least one energy transfer and/or communicating signals (e.g., using at least one energy transfer interface associated with the problem and identified in step 3610, using at energy transfer interface which is not associated with the problem and which is not identified in step 3610, etc.). And in one embodiment, step 3640 may involve automatically determining or selecting one or more of the available energy transfer interfaces for performing at least one energy transfer and/or communicating signals.
As shown in
In one embodiment, step 3650 may involve communicating a notification from one system to another.
For example, step 3650 may involve communicating a notification from a first system (e.g., the vehicle, the energy transfer system, a system performing one or more steps of process 3600, a system performing one or more steps of process 2900, etc.) to at least one other system (e.g., a system used to present GUI 1000 or another user interface, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.). As another example, step 3650 may involve communicating a notification from a first system (e.g., the vehicle, the energy transfer system, a system performing one or more steps of process 3600, a system performing one or more steps of process 2900, etc.) to at least one other system (e.g., a system used to present GUI 1000 or another user interface, computer system 790, computer system 590, computer system 592, computer system 594, some combination thereof, etc.) via interface system 550 (e.g., from the first system to interface system 550, from interface system 550 to the at least one other system, etc.).
As shown in
As shown in
Although
Turning back to
As shown in
Step 2980 involves concluding at least one energy transfer. In one embodiment, step 2980 may involve concluding at least one energy transfer which was begun in step 2960. The at least one energy transfer may be concluded in step 2980 in accordance with the request generated in step 2955 (e.g., at the conclusion of at least one energy transfer associated with the request generated in step 2955, etc.), in accordance with at least one attribute associated with the selection of step 2950 (e.g., at the conclusion of at least one energy transfer performed in accordance with at least one attribute associated with the selection of step 2950, etc.), some combination thereof, etc. In one embodiment, step 2960 may be performed by deactivating and/or configuring at least one energy transfer component (e.g., of at least one vehicle, of at least one energy transfers system, etc.) to operate in a mode other than an energy transfer mode (e.g., a position detection mode, an idle mode, a low-power mode, a mode in which at least one energy transfer component is depowered, etc.). And in one embodiment, step 2980 may be performed using a component of a vehicle (e.g., interface component 221, post-transfer control component 1391, etc.), a component of an energy transfer system (e.g., interface component 211, energy transfer management component 1410, post-transfer control component 1351, etc.), a component of interface system 550 (e.g., energy transfer processing component 630, post-transfer processing component 640, etc.), a component of another system (e.g., computer system 790, computer system 590, computer system 592, computer system 594, etc.), some combination thereof, etc.
In one embodiment, step 2980 may involve measuring an amount of energy received by each party to the transaction. For example, where energy is transferred from an energy transfer system (e.g., 110) to a vehicle (e.g., 120) in steps 2960 to 2980, step 2980 may involve measuring an amount of energy received by the vehicle (e.g., using meter 229 and/or meter 219). As another example, where energy is transferred from a vehicle (e.g., 120) to an energy transfer system (e.g., 110) in steps 2960 to 2980, step 2980 may involve measuring an amount of energy received by the energy transfer system (e.g., using meter 219 and/or meter 229).
In one embodiment, step 2980 may involve determining (e.g., using meter 219 and meter 229) an amount of energy lost during an energy transfer between energy transfer system 110 and vehicle 120. For example, the difference between an amount of energy measured by meter 219 and an amount of energy measured by meter 229 may be used in step 2980 to determine an amount of energy lost during an energy transfer. And in one embodiment, the difference between an amount of energy measured by meter 219 and an amount of energy measured by meter 229 may be used in step 2980 to determine an efficiency of an energy transfer between energy transfer system 110 and vehicle 120, another attribute or parameter associated with the energy transfer, etc.
In one embodiment, the at least one energy transfer performed in steps 2960 to 2980 may include a plurality of energy transfers. The plurality of energy transfers may be performed contemporaneously or sequentially. Alternatively, the plurality of energy transfers may be performed contemporaneously and sequentially. For example, a set of energy transfers may be performed contemporaneously, where the set of energy transfers may be followed by at least one other energy transfer. As another example, at least one energy transfer may be performed, where the at least one energy transfer may be followed by a set of energy transfers which are performed contemporaneously. And in one embodiment, the at least one energy transfer performed in steps 2960 to 2980 may be performed in an order selected by a user (e.g. using region 1060 of GUI 1000, another user interface, etc.).
As shown in
Step 2990 involves executing a payment transaction for energy transferred (e.g., as a result of at least one energy transfer performed in one or more of steps 2960 to 2980). In one embodiment, step 2990 may involve implementing a funds transfer from a first account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 1080 of GUI 1000, etc.) associated with a vehicle and/or at least one user thereof to a second account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 941 of GUI 900, etc.) associated with an energy transfer system and/or at least one user thereof. In one embodiment, step 2990 may involve implementing a funds transfer from a first account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 941 of GUI 900, etc.) associated with an energy transfer system and/or at least one user thereof to a second account (e.g., held by or otherwise accessible using payment system 560 or another payment system, selected or identified by a user using region 1080 of GUI 1000, etc.) associated with a vehicle and/or at least one user thereof. In one embodiment, step 2990 may involve providing an object associated with a benefit (e.g., currency, a coupon, a gift card, an incentive such as a discount, etc.) to a user (e.g., via dispenser 1331). In one embodiment, step 2990 may involve the use of a payment interface (e.g., 1330). And in one embodiment, step 2990 may be performed using a component of a vehicle (e.g., post-transfer control component 1391, interface component 221, etc.), a component of an energy transfer system (e.g., interface component 211, energy transfer management component 1410, post-transfer control component 1351, etc.), a component of interface system 550 (e.g., energy transfer processing component 630, post-transfer processing component 640, etc.), a component of another system (e.g., computer system 790, computer system 590, computer system 592, computer system 594, payment system 560, etc.), some combination thereof, etc.
In one embodiment, step 2990 may involve executing a payment transaction for an amount of energy received by each party to the transaction (e.g., as measured in step 2980). For example, where energy is transferred from an energy transfer system (e.g., 110) to a vehicle (e.g., 120) in steps 2960 to 2980, step 2990 may involve executing a payment transaction for an amount of energy received by the vehicle (e.g., as measured using meter 229 and/or meter 219). As another example, where energy is transferred from a vehicle (e.g., 120) to an energy transfer system (e.g., 110) in steps 2960 to 2980, step 2980 may involve executing a payment transaction for an amount of energy received by the energy transfer system (e.g., as measured using meter 219 and/or meter 229). As yet another example, step 2990 may involve executing a payment transaction for a net amount of energy transferred between at least two parties to a transaction (e.g., where at least one energy transfer is performed from a first party to a second party and where at least one other energy transfer is performed from the second party to the first party).
Although
As shown in
In one embodiment, the first energy transfer component may be an energy transfer component of or coupled with a wheel of a vehicle (e.g., energy transfer component 1844) and/or an energy transfer component of or coupled with a tire of a vehicle (e.g., energy transfer component 1834). In this case, step 3710 may involve determining (e.g., based on an orientation and/or angular position of the wheel and/or tire) that the first energy transfer component is less than a predetermined distance from a surface (e.g., 1890, a surface of a road, etc.) and/or from an energy transfer component of an energy transfer system, in another position (e.g., enabling an energy transfer), etc. Alternatively, the first energy transfer component may be an energy transfer component of an energy transfer system, where step 3710 may involve determining that the first energy transfer component is less than a predetermined distance from a component of a vehicle (e.g., an energy transfer component of and/or coupled with a wheel, an energy transfer component of and/or coupled with a tire, another component of the vehicle, etc.), in another position (e.g., enabling an energy transfer), etc.
In one embodiment, the first energy transfer component may be an energy transfer component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, etc.) which is located remotely from a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.). In this case, step 3710 may involve determining that the vehicle (or at least one energy transfer component thereof) is less than a predetermined distance from the first energy transfer component, in another position (e.g., enabling an energy transfer), etc., where the vehicle may be moving and/or stationary with respect to the first energy transfer component. Alternatively, the first energy transfer component may be an energy transfer component of a vehicle. In this case, step 3710 may involve determining that the first energy transfer component is less than a predetermined distance from a component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, another component of the energy transfer system, etc.), in another position (e.g., enabling an energy transfer), etc., where the first energy transfer component may be moving and/or stationary with respect to the energy transfer system or a component thereof.
As shown in
Step 3730 involves determining the first energy transfer component out of position to enable an energy transfer. In one embodiment, step 3730 may be performed similarly to and/or analogously to step 2905 of process 2900.
In one embodiment, where the first energy transfer component is an energy transfer component of or coupled with a wheel of a vehicle (e.g., energy transfer component 1844) and/or an energy transfer component of or coupled with a tire of a vehicle (e.g., energy transfer component 1834), step 3730 may involve determining (e.g., based on an orientation and/or angular position of the wheel and/or tire) that the first energy transfer component is greater than a predetermined distance from a surface (e.g., 1890, a surface of a road, etc.) and/or from an energy transfer component of an energy transfer system, in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc. Alternatively, where the first energy transfer component is an energy transfer component of an energy transfer system, step 3730 may involve determining that the first energy transfer component is greater than a predetermined distance from a component of a vehicle (e.g., an energy transfer component of and/or coupled with a wheel, an energy transfer component of and/or coupled with a tire, another component of the vehicle, etc.), in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc.
In one embodiment, where the first energy transfer component is an energy transfer component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, etc.) which is located remotely from a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), step 3730 may involve determining that the vehicle (or at least one energy transfer component thereof) is greater than a predetermined distance from the first energy transfer component, in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc. In this case, the vehicle may be moving and/or stationary with respect to the first energy transfer component. Alternatively, where the first energy transfer component may be an energy transfer component of a vehicle, step 3730 may involve determining that the first energy transfer component is greater than a predetermined distance from a component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, another component of the energy transfer system, etc.), in another position (e.g., enabling an energy transfer), etc. In this case, the first energy transfer component may be moving and/or stationary with respect to the energy transfer system.
As shown in
Step 3750 involves determining a second energy transfer component in position to enable an energy transfer. In one embodiment, step 3750 may be performed while a vehicle is moving (e.g., along a roadway) and/or while a component of the vehicle is moving (e.g., a wheel is turning, a tire is turning, etc.). In one embodiment, step 3750 may be performed similarly to and/or analogously to step 2905 of process 2900.
In one embodiment, the second energy transfer component may be an energy transfer component of or coupled with a wheel of a vehicle (e.g., energy transfer component 1842) and/or an energy transfer component of or coupled with a tire of a vehicle (e.g., energy transfer component 1832). In this case, step 3750 may involve determining (e.g., based on an orientation and/or angular position of the wheel and/or tire) that the second energy transfer component is less than a predetermined distance from a surface (e.g., 1890, a surface of a road, etc.) and/or from an energy transfer component of an energy transfer system, in another position (e.g., enabling an energy transfer), etc. Alternatively, the second energy transfer component may be an energy transfer component of an energy transfer system, where step 3750 may involve determining that the second energy transfer component is less than a predetermined distance from a component of a vehicle (e.g., an energy transfer component of and/or coupled with a wheel, an energy transfer component of and/or coupled with a tire, another component of the vehicle, etc.), in another position (e.g., enabling an energy transfer), etc.
In one embodiment, the second energy transfer component may be an energy transfer component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, etc.) which is located remotely from a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.). In this case, step 3750 may involve determining that the vehicle (or at least one energy transfer component thereof) is less than a predetermined distance from the second energy transfer component, in another position (e.g., enabling an energy transfer), etc., where the vehicle may be moving and/or stationary with respect to the second energy transfer component. Alternatively, the second energy transfer component may be an energy transfer component of a vehicle. In this case, step 3750 may involve determining that the second energy transfer component is less than a predetermined distance from a component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, another component of the energy transfer system, etc.), in another position (e.g., enabling an energy transfer), etc., where the second energy transfer component may be moving and/or stationary with respect to the energy transfer system.
As shown in
Step 3770 involves determining the second energy transfer component out of position to enable an energy transfer. In one embodiment, step 3770 may be performed similarly to and/or analogously to step 2905 of process 2900.
In one embodiment, where the second energy transfer component is an energy transfer component of or coupled with a wheel of a vehicle (e.g., energy transfer component 1844) and/or an energy transfer component of or coupled with a tire of a vehicle (e.g., energy transfer component 1834), step 3770 may involve determining (e.g., based on an orientation and/or angular position of the wheel and/or tire) that the second energy transfer component is greater than a predetermined distance from a surface (e.g., 1890, a surface of a road, etc.) and/or from an energy transfer component of an energy transfer system, in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc. Alternatively, where the second energy transfer component is an energy transfer component of an energy transfer system, step 3770 may involve determining that the second energy transfer component is greater than a predetermined distance from a component of a vehicle (e.g., an energy transfer component of and/or coupled with a wheel, an energy transfer component of and/or coupled with a tire, another component of the vehicle, etc.), in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc.
In one embodiment, where the second energy transfer component is an energy transfer component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, etc.) which is located remotely from a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), step 3770 may involve determining that the vehicle (or at least one energy transfer component thereof) is greater than a predetermined distance from the second energy transfer component, in another position (e.g., where an ability to perform an energy transfer is reduced or prevented), etc. In this case, the vehicle may be moving and/or stationary with respect to the second energy transfer component. Alternatively, where the second energy transfer component may be an energy transfer component of a vehicle, step 3770 may involve determining that the second energy transfer component is greater than a predetermined distance from a component of an energy transfer system (e.g., energy transfer component 1610, energy transfer component 1620, energy transfer component 1630, energy transfer component 1645, energy transfer component 1655, energy transfer component 1662, energy transfer component 1665, energy transfer component 1675, another component of the energy transfer system, etc.), in another position (e.g., enabling an energy transfer), etc. In this case, the second energy transfer component may be moving and/or stationary with respect to the energy transfer system.
As shown in
Accordingly, embodiments of the present invention may enable one or more energy transfer interfaces to be activated and/or deactivated based on the position of a vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.) and/or a component thereof with respect to a component an energy transfer system (e.g., 110, 710a, 710b, 710c, etc.) and/or component thereof. For example, as a vehicle moves with respect to an energy transfer system (e.g., along vehicle route 1605, in a parking lot, in another location and/or manner, etc.), at least one energy transfer interface may be activated and/or deactivated (e.g., in accordance with one or more steps of process 3700) to enable one or more energy transfers (e.g., each associated with the same financial transaction between the same parties) to be performed (e.g., as the relative positioning between the vehicle and the energy transfer system changes, as the vehicle is located in different positions with respect to the energy transfer system, as the energy transfer system is located in different positions with respect to the vehicle, etc.). As another example, as a component of a vehicle (e.g., a tire, a wheel, an energy transfer component, another component, etc.) moves with respect to an energy transfer system (e.g., as a tire rolls along a surface of a roadway, as a wheel rotates, as another component of the vehicle rotates or alternatively moves with respect to the energy transfer system, etc.), at least one energy transfer interface may be activated and/or deactivated (e.g., in accordance with one or more steps of process 3700) to enable one or more energy transfers (e.g., associated with the same financial transaction between the same parties) to be performed (e.g., as the relative positioning between the vehicle and the energy transfer system changes, as the relative positioning between at least one energy transfer component of the vehicle and at least one energy transfer component of the energy transfer system changes, as the vehicle and/or at least one component thereof is located in different positions with respect to the energy transfer system and/or at least one component thereof, as the energy transfer system and/or at least one component thereof is located in different positions with respect to the vehicle and/or at least one component thereof, etc.). In this manner, embodiments of the present invention can increase the amount of energy transferred between a vehicle and an energy transfer system (e.g., by transferring energy using more than one energy transfer component which are physically spaced apart), enable energy to be transferred between the vehicle and the energy transfer system while the vehicle is moving, reduce energy loss (e.g., by deactivating at least one energy transfer component which is activated but not used to transfer energy at a particular time), increase the lifetime of an energy transfer component (e.g., by deactivating the energy transfer component when not in use, by using at least one other energy transfer component to contemporaneously perform the energy transfer and thereby enabling the energy transfer rate and/or at least one other attribute of energy transferred via the energy transfer component to be reduced, etc.), etc.
In one embodiment, one or more steps of process 3700 may be performed contemporaneously. For example, the second interface may be activated in step 3760 contemporaneously with the deactivation of the first interface in step 3740.
Although
As shown in
Step 3820 involves determining whether the temperature (e.g., monitored in step 3810) is below a first threshold (e.g., corresponding to a particular temperature or range of temperatures). In one embodiment, the first threshold may be predetermined (e.g., specified during manufacture by a manufacturer, specified by a dealership, specified by a service center, specified by another party or entity, some combination thereof, etc.) in one embodiment. In one embodiment, the first threshold may be determined on-the-fly (e.g., based on a state of a vehicle or a component thereof, based on a state of an energy transfer system or a component thereof, some combination thereof, etc.). The first threshold may be specified automatically (e.g., by a component of a vehicle, by a component of an energy transfer system, by a component of interface system 550 and/or another system, some combination thereof, etc.) and/or specified by a user (e.g., using GUI 800, GUI 900, another user interface, etc.).
If it is determined that the temperature (e.g., monitored in step 3810) is below the first threshold, then heat transfer from the component may be reduced in step 3830. Step 3830 may involve configuring and/or controlling another component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, 2818, some combination thereof, etc.) to reduce an amount of heat transferred from the component (e.g., associated with the temperature monitored in step 3810). In one embodiment, the temperature of the component may remain the same or increase as a result of step 3830. Alternatively, if it is determined in step 3820 that the temperature (e.g., monitored in step 3810) is not below the first threshold, then step 3840 may be performed.
As shown in
If it is determined that the temperature (e.g., monitored in step 3810) is below the second threshold, then heat transfer from the component may be maintained in step 3850. Step 3850 may involve configuring and/or controlling another component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, 2818, some combination thereof, etc.) to maintain an amount of heat transferred from the component (e.g., associated with the temperature monitored in step 3810). In one embodiment, the temperature of the component may remain the same as a result of step 3850. In one embodiment, the temperature of the component may increase or decrease as a result of step 3850.
Alternatively, if it is determined in step 3840 that the temperature (e.g., monitored in step 3810) is not below the second threshold, then heat transfer from the component may be increased in step 3860. Step 3860 may involve configuring and/or controlling another component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, 2818, some combination thereof, etc.) to increase an amount of heat transferred from the component (e.g., associated with the temperature monitored in step 3810). In one embodiment, the temperature of the component may remain the same as a result of step 3860. In one embodiment, the temperature of the component may increase or decrease as a result of step 3860.
As shown in
Step 3870 involves determining whether the temperature (e.g., monitored in step 3810, step 3865, an average thereof, some combination thereof, etc.) is below the second threshold (e.g., used in step 3840). If it is determined that the temperature (e.g., monitored in step 3865) is below the second threshold, then heat transfer from the component may be maintained in step 3850. Step 3850 may involve configuring and/or controlling another component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, 2818, some combination thereof, etc.) to maintain an amount of heat transferred from the component (e.g., associated with the temperature monitored in step 3810 and/or step 3865). In one embodiment, the temperature of the component may remain the same as a result of step 3850. In one embodiment, the temperature of the component may increase or decrease as a result of step 3850.
Alternatively, if it is determined in step 3870 that the temperature (e.g., monitored in step 3810, step 3865, an average thereof, some combination thereof, etc.) is not below the second threshold, then at least one attribute (e.g., at least one energy transfer type, at least one interface type, at least one power, at least one current, at least one voltage, at least one energy transfer profile, at least one duration, at least one waveform, at least one temperature, some combination thereof, etc.) may be changed or adjusted to reduce heat transfer from the component. In this manner, the temperature of the component can be reduced by reducing the heat generated by the component (e.g., alone or in combination with heat being transferred from the component by the other component). In one embodiment, step 3880 may be performed responsive to a determination that the other component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, 2818, some combination thereof, etc.) is unable to increase heat transfer from the component and/or the heat transfer capability of the other component is maximized. In one embodiment, step 3880 may be performed responsive to a determination that the component is in thermal runaway (e.g., despite heat transfer from the other component) and/or the component is in an unstable state associated to a temperature thereof.
As shown in
Accordingly, process 3800 may be used to control the temperature of a component. For example, where the second threshold is higher than the first threshold (e.g., a temperature or range of temperatures corresponding to the second threshold is higher than a temperature or range of temperatures corresponding to the first threshold), process 3800 may be used to control the temperature of the component to stay substantially within the first and second thresholds (e.g., although the temperature of the component may temporarily rise above the second threshold and/or temporarily fall below the first threshold, the temperature may be adjusted to return to a temperature between the first and second thresholds).
In one embodiment, the first threshold (e.g., used in step 3820) and/or the second threshold (e.g., used in step 3840, step 3870, etc.) may be dynamically adjusted (e.g., during operation of the component) to vary the temperature of the component. For example, the temperature of an energy storage medium (e.g., 2810) may be changed (e.g., by adjusting the first threshold used in step 3820 and/or the second threshold used in step 3840 and/or step 3870) responsive to or while energy is transferred to and/or from the energy storage medium. As another example, the temperature of an energy transfer component (e.g., 233, 236, 239, 1821, 1822, 1823, 1824, 1832, 1834, 1842, 1844, 2033, 2036a, 2036b, 2036c, 2036d, 2039a, 2039b, 2230, 2240, 2250, 2270, 2280, 2290, 2320, 2330, 2340, 2360, 2370, 2460, 2461, 2630, 2640, 2730, 2740, 232, 235, 238, 1610, 1620, 1630, 1645, 1655, 1662, 1665, 1675, 1711, 1712, 1713, 1714, 1715, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1731, 1732, 1733, 1734, 1735, 1742, 1744, 1752, 1754, 1783, 1785, 1812, 2032, 2035a, 2035b, 2035c, 2035d, 2038a, 2038b, 2110, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2660, 2680, 2730, 2740, etc.) may be changed (e.g., by adjusting the first threshold used in step 3820 and/or the second threshold used in step 3840 and/or step 3870) responsive to or while energy is transferred via the energy transfer component (e.g., to perform one or more energy transfers between at least one vehicle and at least one energy transfer system, between at least one vehicle and at least one other vehicle, etc.). In one embodiment, the first threshold (e.g., used in step 3820) and/or the second threshold (e.g., used in step 3840 and/or step 3870) may be adjusted based on a user input and/or user preference (e.g., entered using a GUI such as GUI 800, GUI 900, GUI 1000, etc.), based on an automated input and/or automated request (e.g., by a vehicle or a component thereof, by an energy transfer system or a component thereof, by interface system 550 or a component thereof, by another system, etc.).
Although
Step 3920 involves converting heat associated with the energy transfer into electrical energy. In one embodiment, step 3920 may be performed by a component (e.g., heat transfer component 2818, a component of an energy transfer system which operates analogously or similarly to heat transfer component 2818, etc.) positioned with respect to (e.g., coupled with, disposed on or touching, disposed adjacent to, disposed in proximity to, etc.) an energy storage medium (e.g., 2810, an energy storage medium of an energy transfer system, etc.) such that heat generated by the energy storage medium can be converted into electrical energy by the component (e.g., heat transfer component 2818, a component of an energy transfer system which operates analogously or similarly to heat transfer component 2818, etc.). In one embodiment, step 3920 may be performed by a component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, etc.) positioned with respect to (e.g., coupled with, disposed on or touching, disposed adjacent to, disposed in proximity to, etc.) an energy transfer component (e.g., of a vehicle, of an energy transfer system, etc.) such that heat generated by the energy transfer component can be converted into electrical energy by the component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, etc.).
As shown in
As another example, where the heat is generated by an energy transfer component (e.g., of a vehicle, of an energy transfer system, etc.) receiving energy from another system (e.g., a vehicle, energy transfer system, another system, etc.), electrical energy generated from the heat may be combined in step 3930 with energy of the energy transfer (e.g., energy received by the energy transfer component over the energy transfer interface as part of the energy transfer performed in step 3910). In this manner, energy that would otherwise be lost as heat may be converted into electrical energy (e.g., for use by the system including the energy transfer component, for transfer to and use by another system, etc.), thereby increasing the amount of energy accessible via the energy transfer component (e.g., accessible to the system including the energy transfer component, accessible to another system, etc.) and/or improving the efficiency of the energy transfer over the energy transfer interface (e.g., to the system including the energy transfer component from another system).
As a further example, where the heat is generated by an energy storage medium (e.g., 2810, of a vehicle, of an energy transfer system, etc.) receiving energy (e.g., as part of a charge of the energy storage medium, etc.) from another component or system (e.g., a vehicle, energy transfer system, another system, etc.), electrical energy generated from the heat may be combined in step 3930 with energy of the energy transfer (e.g., energy transferred over the energy transfer interface to the energy storage medium as part of the energy transfer performed in step 3910). In one embodiment, step 3930 may involve energy regulation component 2821 combining electrical energy from heat transfer component 2818 with energy received over energy transfer interface 2832, where the electrical energy and energy received over energy transfer interface 2832 may be transferred to energy storage medium 2810 over interface 2817 (e.g., to charge energy storage medium). In this manner, energy that would otherwise be lost as heat may be converted into electrical energy and accessed by the energy storage medium (e.g., for charging thereof, etc.), thereby increasing the amount of energy transferred to the energy storage medium and/or improving the efficiency of the energy transfer to the energy storage medium.
As yet another example, where the heat is generated by an energy storage medium (e.g., 2810, of a vehicle, of an energy transfer system, etc.) transferring or transmitting energy (e.g., as part of a discharge of the energy storage medium, etc.) to another component or system (e.g., a vehicle, energy transfer system, another system, etc.), electrical energy generated from the heat may be combined in step 3930 with energy of the energy transfer (e.g., energy transferred or transmitted over the energy transfer interface from the energy storage medium as part of the energy transfer performed in step 3910). In one embodiment, step 3930 may involve energy regulation component 2821 combining electrical energy from heat transfer component 2818 with energy received over interface 2817 (e.g., from energy storage medium 2810), where the electrical energy and energy received over interface 2817 may be transferred to another component (e.g., of the energy storage component including the energy storage medium, of a vehicle including the energy storage medium, of an energy transfer system, to another system, etc.) over energy transfer interface 2832. In this manner, energy that would otherwise be lost as heat may be converted into electrical energy and transferred over the energy transfer interface, thereby increasing the amount of energy transferred over the energy transfer interface and/or improving the efficiency of the energy transfer over the energy transfer interface.
As shown in
In one embodiment, steps 3930 and 3940 may be performed contemporaneously. Alternatively, steps 3930 and 3940 may be performed sequentially. In one embodiment, step 3930 may be optional and not performed. In one embodiment, step 3940 may be optional and not performed. And in one embodiment, steps 3930 and 3940 may be mutually exclusive.
Although
Step 4020 involves transferring heat from the at least one energy transfer component using energy from the interface (e.g., using energy transferred in step 4010 as part of the energy transfer). In one embodiment, step 4020 may involve supplying the energy from the interface to a component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, etc.) positioned with respect to (e.g., coupled with, disposed on or touching, disposed adjacent to, disposed in proximity to, etc.) the energy transfer component (e.g., of a vehicle, of an energy transfer system, etc.) such that heat can be transferred from the at least one energy transfer component by the component (e.g., 2464, 2465, 2632, 2642, 2662, 2682, etc.), where the component may be configured to transfer heat from the at least one energy transfer component responsive to supplying energy to the component. In this manner, the lifetime of the at least one energy transfer component can be extended, the efficiency of energy transfer and/or signal communication using the at least one energy transfer component can be increased (e.g., by reducing a temperature of the energy transfer component to enable energy to be transferred and/or signals to be communicated more efficiently), etc. Additionally, embodiments of the present invention can advantageously reduce the number of components in the system (e.g., by utilizing an energy transfer interface to supply energy to the component instead of using a separate interface), thereby reducing the cost of the system, reducing the cost to retrofit to the system if the component is added after manufacturing, reducing the failure rate of the system, etc.
Although
In one embodiment, computer system 4100 may be used to implement computer system 570, computer system 590, computer system 592, computer system 594, computer system 790, computer system 2890, at least one component of at least one vehicle (e.g., 120, 320a, 320b, 320c, 1802, etc.), at least one component of at least one energy transfer system (e.g., 110, 710a, 710b, 710c, etc.), interface system 550, payment system 560, some combination thereof, etc. And in one embodiment, one or more components of computer system 4100 may be disposed in and/or coupled with a housing or enclosure.
In one embodiment, depicted by dashed lines 4130, computer system 4100 may include at least one processor (e.g., 4110) and at least one memory (e.g., 4120). Processor 4110 may be or include a central processing unit (CPU) or other type of processor. Depending on the configuration and/or type of computer system environment, memory 4120 may be or include volatile memory (e.g., RAM), non-volatile memory (e.g., ROM, flash memory, etc.), some combination thereof, etc. Additionally, memory 4120 may be removable, non-removable, etc.
In one embodiment, computer system 4100 may include additional storage (e.g., removable storage 4140, non-removable storage 4145, etc.). Removable storage 4140 and/or non-removable storage 4145 may include volatile memory, non-volatile memory, some combination thereof, etc. Additionally, removable storage 4140 and/or non-removable storage 4145 may include CD-ROM, digital versatile disks (DVD), other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage, other magnetic storage devices, or any other medium which can be used to store information for access by computer system 4100.
As shown in
Communication interface 4170 may also couple computer system 4100 to one or more external input components (e.g., a keyboard, a mouse, a trackball, a joystick, a pen, a voice input device, a touch input device, etc.). In one embodiment, communication interface 4170 may couple computer system 4100 to one or more external output components (e.g., a display, a speaker, a printer, etc.). And in one embodiment, communication interface 4170 may include a plug, receptacle, cable, slot or any other component capable of coupling to and/or communicating with another component, device, system, etc.
Input component 4180 may include any component capable of receiving or enabling the input of information. For example, input component 4180 may be or include a keyboard, at least one button or key, a mouse, a trackball, a joystick, a pen, a voice input device, a touch input device, another type of input component, etc. Output component 4190 may include any component capable of transmitting or enabling the output of information. For example, output component 4190 may be or include a display, a speaker, a printer, another type of output component, etc.
As shown in
In one embodiment, a memory of computer system 4100 (e.g., memory 4120, removable storage 4140, non-removable storage 4145, frame buffer 4160, some combination thereof, etc.) may be a computer-readable medium (or computer-usable medium, or computer-readable storage medium, etc.) and may include instructions that when executed by a processor (e.g., 4110, 4150, etc.) implement a method of managing at least one transfer of energy (e.g., in accordance with process 2900 of
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is, and is intended by the applicant to be, the invention is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction thereto. Hence, no limitation, element, property, feature, advantage, or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The present application is a divisional of U.S. patent application Ser. No. 13/015,986, filed Jan. 28, 2011, entitled “IMPROVING ENERGY TRANSFER WITH VEHICLES,” naming Bryan Marc Failing as the inventor, which claims the benefit of U.S. Provisional Patent Application No. 61/350,771, filed Jun. 2, 2010, entitled “MANAGING A TRANSFER OF ENERGY AND INCREASING VEHICLE SECURITY.” Those applications are incorporated herein by reference in their entirety and for all purposes. The present application is related to U.S. patent application Ser. No. 13/015,957, filed Jan. 28, 2011, entitled “MANAGING AN ENERGY TRANSFER BETWEEN A VEHICLE AND AN ENERGY TRANSFER SYSTEM,” naming Bryan Marc Failing as the inventor, which claims the benefit of U.S. Provisional Patent Application No. 61/350,771, filed Jun. 2, 2010, entitled “MANAGING A TRANSFER OF ENERGY AND INCREASING VEHICLE SECURITY.” Those applications are incorporated herein by reference in their entirety and for all purposes. The present application is related to U.S. patent application Ser. No. 13/016,017, filed Jan. 28, 2011, entitled “INCREASING VEHICLE SECURITY,” naming Bryan Marc Failing as the inventor, which claims the benefit of U.S. Provisional Patent Application No. 61/350,771, filed Jun. 2, 2010, entitled “MANAGING A TRANSFER OF ENERGY AND INCREASING VEHICLE SECURITY.” Those applications are incorporated herein by reference in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3037575 | Quinn | Jun 1962 | A |
3979650 | Jamison et al. | Sep 1976 | A |
4024448 | Christianson et al. | May 1977 | A |
4052655 | Vizza | Oct 1977 | A |
4072927 | O'Neil | Feb 1978 | A |
4081737 | Miyahara | Mar 1978 | A |
4110732 | Jarocha et al. | Aug 1978 | A |
4139071 | Tackett | Feb 1979 | A |
4148008 | Lusk et al. | Apr 1979 | A |
4158802 | Rose, II | Jun 1979 | A |
4223255 | Goldman et al. | Sep 1980 | A |
4229728 | Tremba | Oct 1980 | A |
4258304 | Bourke | Mar 1981 | A |
4272755 | Broetto | Jun 1981 | A |
4300120 | Surman | Nov 1981 | A |
4308492 | Mori et al. | Dec 1981 | A |
4338587 | Chiappetti | Jul 1982 | A |
4345197 | Wheadon et al. | Aug 1982 | A |
4347472 | Lemelson | Aug 1982 | A |
4361202 | Minovitch | Nov 1982 | A |
4383210 | Wilkinson | May 1983 | A |
4476947 | Rynbrandt | Oct 1984 | A |
4496896 | Melocik et al. | Jan 1985 | A |
4504761 | Triplett | Mar 1985 | A |
4510484 | Snyder | Apr 1985 | A |
4525662 | Kato et al. | Jun 1985 | A |
4532418 | Meese et al. | Jul 1985 | A |
4542462 | Morishita et al. | Sep 1985 | A |
4588939 | Yoshiyuki et al. | May 1986 | A |
4667141 | Steele | May 1987 | A |
4731547 | Alenduff et al. | Mar 1988 | A |
4737761 | Dosjoub et al. | Apr 1988 | A |
4749873 | Mutoh et al. | Jun 1988 | A |
4911217 | Dunn et al. | Mar 1990 | A |
4947151 | Rosenberger | Aug 1990 | A |
4966034 | Bock et al. | Oct 1990 | A |
5006843 | Hauer | Apr 1991 | A |
5049802 | Mintus et al. | Sep 1991 | A |
5072380 | Randelman et al. | Dec 1991 | A |
5150034 | Kyoukane et al. | Sep 1992 | A |
5157319 | Klontz et al. | Oct 1992 | A |
5157321 | Kato et al. | Oct 1992 | A |
5184058 | Hesse et al. | Feb 1993 | A |
5196845 | Myatt | Mar 1993 | A |
5202617 | Nor | Apr 1993 | A |
5204819 | Ryan | Apr 1993 | A |
5220268 | Rose et al. | Jun 1993 | A |
5229703 | Harris | Jul 1993 | A |
5252078 | Langenbahn | Oct 1993 | A |
5254935 | Vercesi et al. | Oct 1993 | A |
5263565 | Wilkinson | Nov 1993 | A |
5264776 | Hulsey | Nov 1993 | A |
5272431 | Nee | Dec 1993 | A |
5281792 | Lee et al. | Jan 1994 | A |
5281904 | Tomkins | Jan 1994 | A |
5297664 | Tseng et al. | Mar 1994 | A |
5301096 | Klontz et al. | Apr 1994 | A |
5306999 | Hoffman | Apr 1994 | A |
5311973 | Tseng et al. | May 1994 | A |
5315227 | Pierson et al. | May 1994 | A |
5319299 | Maehara | Jun 1994 | A |
5323098 | Hamaguchi et al. | Jun 1994 | A |
5323099 | Bruni et al. | Jun 1994 | A |
5323737 | Farrell | Jun 1994 | A |
5327065 | Bruni et al. | Jul 1994 | A |
5327066 | Smith | Jul 1994 | A |
5341083 | Klontz et al. | Aug 1994 | A |
5341280 | Divan et al. | Aug 1994 | A |
5349535 | Gupta | Sep 1994 | A |
5351187 | Hassett | Sep 1994 | A |
5352982 | Nakazawa et al. | Oct 1994 | A |
5369352 | Toepfer et al. | Nov 1994 | A |
5369353 | Erdman | Nov 1994 | A |
5371454 | Marek | Dec 1994 | A |
5375335 | Friton et al. | Dec 1994 | A |
5382948 | Richmond | Jan 1995 | A |
5408209 | Tanzer et al. | Apr 1995 | A |
5412304 | Abbott | May 1995 | A |
5412323 | Kato et al. | May 1995 | A |
5413493 | Hoffman | May 1995 | A |
5422624 | Smith | Jun 1995 | A |
5429524 | Wakata et al. | Jul 1995 | A |
5433623 | Wakata et al. | Jul 1995 | A |
5434493 | Woody et al. | Jul 1995 | A |
5444352 | Hutchings | Aug 1995 | A |
5448152 | Albright | Sep 1995 | A |
5455466 | Parks et al. | Oct 1995 | A |
5457378 | Woody | Oct 1995 | A |
5458496 | Itou et al. | Oct 1995 | A |
5461298 | Lara et al. | Oct 1995 | A |
5461299 | Bruni | Oct 1995 | A |
5462439 | Keith | Oct 1995 | A |
5463303 | Hall et al. | Oct 1995 | A |
5467006 | Sims | Nov 1995 | A |
5473938 | Handfield et al. | Dec 1995 | A |
5477122 | Hall et al. | Dec 1995 | A |
5481176 | DeBiasi et al. | Jan 1996 | A |
5483143 | Hall et al. | Jan 1996 | A |
5487002 | Diller et al. | Jan 1996 | A |
5488285 | Hosobuchi | Jan 1996 | A |
5498948 | Bruni et al. | Mar 1996 | A |
5499185 | Tanzer et al. | Mar 1996 | A |
5503059 | Pacholok | Apr 1996 | A |
5506489 | Abbott et al. | Apr 1996 | A |
5521443 | Imura et al. | May 1996 | A |
5521838 | Rosendahl | May 1996 | A |
5523666 | Hoelzl et al. | Jun 1996 | A |
5528113 | Boys et al. | Jun 1996 | A |
5539296 | Ito | Jul 1996 | A |
5545046 | Masuda et al. | Aug 1996 | A |
5545966 | Ramos et al. | Aug 1996 | A |
5548200 | Nor et al. | Aug 1996 | A |
5549443 | Hammerslag | Aug 1996 | A |
5556284 | Itou et al. | Sep 1996 | A |
5557268 | Hughes et al. | Sep 1996 | A |
5563491 | Tseng | Oct 1996 | A |
5565755 | Keith | Oct 1996 | A |
5568036 | Hulsey et al. | Oct 1996 | A |
5572109 | Keith | Nov 1996 | A |
5573090 | Ross | Nov 1996 | A |
5577920 | Itou et al. | Nov 1996 | A |
5581171 | Kerfoot et al. | Dec 1996 | A |
5583418 | Honda et al. | Dec 1996 | A |
5594315 | Ramos et al. | Jan 1997 | A |
5594317 | Yeow et al. | Jan 1997 | A |
5594318 | Nor et al. | Jan 1997 | A |
5596258 | Kimura et al. | Jan 1997 | A |
5596261 | Suyama | Jan 1997 | A |
5598084 | Keith | Jan 1997 | A |
5600222 | Hall et al. | Feb 1997 | A |
5606237 | Biasotti et al. | Feb 1997 | A |
5608306 | Rybeck et al. | Mar 1997 | A |
5614808 | Konoya et al. | Mar 1997 | A |
5617003 | Odachi et al. | Apr 1997 | A |
5623194 | Boll et al. | Apr 1997 | A |
5625272 | Takahashi | Apr 1997 | A |
5627448 | Okada et al. | May 1997 | A |
5627752 | Buck et al. | May 1997 | A |
5629606 | Asada | May 1997 | A |
5633577 | Matsumae et al. | May 1997 | A |
5635693 | Benson et al. | Jun 1997 | A |
5635817 | Shiska | Jun 1997 | A |
5637977 | Saito et al. | Jun 1997 | A |
5642270 | Green et al. | Jun 1997 | A |
5646500 | Wilson | Jul 1997 | A |
5654621 | Seelig | Aug 1997 | A |
5656916 | Hotta | Aug 1997 | A |
5656923 | Schultz et al. | Aug 1997 | A |
5657233 | Cherrington et al. | Aug 1997 | A |
5661391 | Ito et al. | Aug 1997 | A |
5663496 | Handfield et al. | Sep 1997 | A |
5669470 | Ross | Sep 1997 | A |
5670860 | Conrady et al. | Sep 1997 | A |
5684379 | Svedoff | Nov 1997 | A |
5684380 | Woody et al. | Nov 1997 | A |
5696367 | Keith | Dec 1997 | A |
5703461 | Minoshima et al. | Dec 1997 | A |
5703462 | Woody et al. | Dec 1997 | A |
5708427 | Bush | Jan 1998 | A |
5710502 | Poumey | Jan 1998 | A |
5710556 | Nishimura et al. | Jan 1998 | A |
5711558 | Woody | Jan 1998 | A |
5711648 | Hammerslag | Jan 1998 | A |
5714864 | Rose et al. | Feb 1998 | A |
5719483 | Abbott et al. | Feb 1998 | A |
5741966 | Handfield et al. | Apr 1998 | A |
5749984 | Frey et al. | May 1998 | A |
5751135 | Fukushima et al. | May 1998 | A |
5757595 | Ozawa et al. | May 1998 | A |
5777565 | Hayashi et al. | Jul 1998 | A |
5778326 | Moroto et al. | Jul 1998 | A |
5788033 | Lucking et al. | Aug 1998 | A |
5790976 | Boll et al. | Aug 1998 | A |
5793306 | Vershinin et al. | Aug 1998 | A |
5803215 | Henze et al. | Sep 1998 | A |
5816643 | Itou et al. | Oct 1998 | A |
5820395 | Hashizawa | Oct 1998 | A |
5821638 | Boys et al. | Oct 1998 | A |
5821728 | Schwind | Oct 1998 | A |
5821731 | Kuki et al. | Oct 1998 | A |
5831841 | Nishino | Nov 1998 | A |
5839085 | Yoshikawa et al. | Nov 1998 | A |
5845268 | Moore | Dec 1998 | A |
5847537 | Parmley, Sr. | Dec 1998 | A |
5850135 | Kuki et al. | Dec 1998 | A |
5852394 | Watanabe et al. | Dec 1998 | A |
5880536 | Mardirossian | Mar 1999 | A |
5883492 | Koenck | Mar 1999 | A |
5889386 | Koenck | Mar 1999 | A |
5898909 | Yoshihara | Apr 1999 | A |
5903064 | Norberg | May 1999 | A |
5903134 | Takeuchi | May 1999 | A |
5907231 | Watanabe et al. | May 1999 | A |
RE36225 | Harris | Jun 1999 | E |
5909099 | Watanabe et al. | Jun 1999 | A |
5909100 | Watanabe et al. | Jun 1999 | A |
5917307 | Watanabe et al. | Jun 1999 | A |
5926004 | Henze | Jul 1999 | A |
5927938 | Hammerslag | Jul 1999 | A |
5929599 | Watanabe et al. | Jul 1999 | A |
5936381 | Suh | Aug 1999 | A |
5941328 | Lyons et al. | Aug 1999 | A |
5951229 | Hammerslag | Sep 1999 | A |
5952813 | Ochiai | Sep 1999 | A |
5956259 | Hartsell, Jr. et al. | Sep 1999 | A |
5982139 | Parise | Nov 1999 | A |
5983347 | Brinkmeyer et al. | Nov 1999 | A |
5984706 | Kakuta et al. | Nov 1999 | A |
6006148 | Strong | Dec 1999 | A |
6011320 | Miyamoto et al. | Jan 2000 | A |
6018293 | Smith | Jan 2000 | A |
6026868 | Johnson, Jr. | Feb 2000 | A |
6029092 | Stein | Feb 2000 | A |
6037745 | Koike et al. | Mar 2000 | A |
6046510 | Kawanobe et al. | Apr 2000 | A |
6049191 | Terazoe et al. | Apr 2000 | A |
6060861 | Feng | May 2000 | A |
6067008 | Smith | May 2000 | A |
6078163 | Horie et al. | Jun 2000 | A |
6081205 | Williams | Jun 2000 | A |
6084318 | Mardirossian | Jul 2000 | A |
6084381 | Kajiura | Jul 2000 | A |
6085124 | Choi | Jul 2000 | A |
6087806 | Fujioka | Jul 2000 | A |
6095270 | Ishikawa | Aug 2000 | A |
6100603 | Gold | Aug 2000 | A |
6100663 | Boys et al. | Aug 2000 | A |
6104160 | Iwata et al. | Aug 2000 | A |
6107691 | Gore et al. | Aug 2000 | A |
6114834 | Parise | Sep 2000 | A |
6123569 | Fukushima et al. | Sep 2000 | A |
6127800 | Kuki et al. | Oct 2000 | A |
6137262 | Hauer | Oct 2000 | A |
6147473 | Koo | Nov 2000 | A |
6150794 | Yamada et al. | Nov 2000 | A |
6154005 | Hyogo et al. | Nov 2000 | A |
6157162 | Hayashi et al. | Dec 2000 | A |
6175212 | Oguri | Jan 2001 | B1 |
6185501 | Smith et al. | Feb 2001 | B1 |
6194854 | Uchibori et al. | Feb 2001 | B1 |
6194997 | Buchner et al. | Feb 2001 | B1 |
6195648 | Simon et al. | Feb 2001 | B1 |
6198251 | Landon | Mar 2001 | B1 |
6208040 | Mardirossian | Mar 2001 | B1 |
6218932 | Stippler | Apr 2001 | B1 |
6225776 | Chai | May 2001 | B1 |
6239577 | Koike et al. | May 2001 | B1 |
6252380 | Koenck | Jun 2001 | B1 |
6253980 | Murakarni et al. | Jul 2001 | B1 |
6275143 | Stobbe | Aug 2001 | B1 |
6281660 | Abe | Aug 2001 | B1 |
6291969 | Kaneko | Sep 2001 | B1 |
6297614 | Hyogo | Oct 2001 | B2 |
6300742 | Hung | Oct 2001 | B1 |
6300882 | Inoue | Oct 2001 | B1 |
6301531 | Pierro et al. | Oct 2001 | B1 |
6307347 | Ronning | Oct 2001 | B1 |
6307349 | Koenck et al. | Oct 2001 | B1 |
6310464 | Koo | Oct 2001 | B1 |
6310465 | Najima | Oct 2001 | B2 |
6316908 | Kajiura | Nov 2001 | B2 |
6317338 | Boys | Nov 2001 | B1 |
6320351 | Ng et al. | Nov 2001 | B1 |
6320352 | Terazoe | Nov 2001 | B2 |
6323566 | Meier | Nov 2001 | B1 |
6329909 | Siedentop et al. | Dec 2001 | B1 |
6334354 | Vaughn et al. | Jan 2002 | B2 |
6337556 | Kutsuzawa | Jan 2002 | B2 |
6342845 | Hilliard et al. | Jan 2002 | B1 |
6346792 | Summerfield et al. | Feb 2002 | B1 |
6351098 | Kaneko | Feb 2002 | B1 |
RE37610 | Tsuchiya et al. | Mar 2002 | E |
6356049 | Oguri | Mar 2002 | B2 |
6356052 | Koike | Mar 2002 | B2 |
6362594 | Kajiura | Mar 2002 | B2 |
6362732 | Konchin et al. | Mar 2002 | B1 |
6373148 | Daiss et al. | Apr 2002 | B1 |
6373221 | Koike et al. | Apr 2002 | B1 |
6373380 | Robertson et al. | Apr 2002 | B1 |
6380701 | Kahlon et al. | Apr 2002 | B1 |
6396241 | Ramos et al. | May 2002 | B1 |
6397990 | Brien et al. | Jun 2002 | B1 |
6405106 | Sheth et al. | Jun 2002 | B1 |
6412604 | Schuster | Jul 2002 | B1 |
6417784 | Hilliard et al. | Jul 2002 | B1 |
6421600 | Ross | Jul 2002 | B1 |
6445084 | Daiss et al. | Sep 2002 | B1 |
6448740 | Kirkpatrick | Sep 2002 | B1 |
6456041 | Terada et al. | Sep 2002 | B1 |
6456047 | Gohara et al. | Sep 2002 | B1 |
6458000 | Shappell | Oct 2002 | B2 |
6459234 | Kajiura | Oct 2002 | B2 |
6462650 | Balzer et al. | Oct 2002 | B1 |
6487477 | Woestman et al. | Nov 2002 | B1 |
6522027 | Morillon et al. | Feb 2003 | B1 |
6522241 | Baudard | Feb 2003 | B1 |
6525510 | Ayano et al. | Feb 2003 | B1 |
6525672 | Chainer et al. | Feb 2003 | B2 |
6535133 | Gohara | Mar 2003 | B2 |
6535143 | Miyamoto et al. | Mar 2003 | B1 |
6549115 | Daiss et al. | Apr 2003 | B1 |
6574603 | Dickson et al. | Jun 2003 | B1 |
6583521 | Lagod et al. | Jun 2003 | B1 |
6586909 | Trepka | Jul 2003 | B1 |
6605922 | Tamai et al. | Aug 2003 | B2 |
6609419 | Bankart et al. | Aug 2003 | B1 |
6611210 | Hilliard et al. | Aug 2003 | B2 |
6614204 | Pellegrino et al. | Sep 2003 | B2 |
6618650 | Nakai et al. | Sep 2003 | B1 |
6621178 | Morillon | Sep 2003 | B2 |
6624611 | Kirmuss | Sep 2003 | B2 |
6631775 | Chaney | Oct 2003 | B1 |
6636145 | Murakami et al. | Oct 2003 | B1 |
6650086 | Chang | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6657556 | Ogura et al. | Dec 2003 | B2 |
6662642 | Breed et al. | Dec 2003 | B2 |
6673479 | McArthur et al. | Jan 2004 | B2 |
6683391 | Enoyoshi et al. | Jan 2004 | B1 |
6684156 | Fujimoto et al. | Jan 2004 | B2 |
6686724 | Coates et al. | Feb 2004 | B2 |
6700475 | Geber et al. | Mar 2004 | B1 |
6703929 | Baudard | Mar 2004 | B2 |
6707274 | Karr | Mar 2004 | B1 |
6707373 | Moreau | Mar 2004 | B2 |
6710575 | Youn | Mar 2004 | B2 |
6727800 | Dutu | Apr 2004 | B1 |
6727809 | Smith | Apr 2004 | B1 |
6738697 | Breed | May 2004 | B2 |
6745911 | Maestranzi | Jun 2004 | B1 |
6747437 | Chiu | Jun 2004 | B2 |
6748797 | Breed et al. | Jun 2004 | B2 |
6766949 | Terranova et al. | Jul 2004 | B2 |
6768413 | Kemmann et al. | Jul 2004 | B1 |
6782739 | Ratti et al. | Aug 2004 | B2 |
6789733 | Terranova et al. | Sep 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6794847 | Hosoda et al. | Sep 2004 | B2 |
6794849 | Mori et al. | Sep 2004 | B2 |
6805090 | Bertness et al. | Oct 2004 | B2 |
6822551 | Li et al. | Nov 2004 | B2 |
6828692 | Simon | Dec 2004 | B2 |
6833784 | Ishii et al. | Dec 2004 | B1 |
6850108 | Shin | Feb 2005 | B2 |
6850153 | Murakami et al. | Feb 2005 | B1 |
6850824 | Breed | Feb 2005 | B2 |
6850898 | Murakami et al. | Feb 2005 | B1 |
6856820 | Kolls | Feb 2005 | B1 |
6864804 | Allen et al. | Mar 2005 | B1 |
6870467 | Simon | Mar 2005 | B2 |
6870475 | Fitch et al. | Mar 2005 | B2 |
6876174 | Samittier Marti et al. | Apr 2005 | B1 |
6879889 | Ross | Apr 2005 | B2 |
6882904 | Petrie et al. | Apr 2005 | B1 |
6885111 | Volpi | Apr 2005 | B2 |
6906495 | Cheng et al. | Jun 2005 | B2 |
6912503 | Quarendon et al. | Jun 2005 | B1 |
6915122 | Meradi | Jul 2005 | B2 |
6917180 | Harrison et al. | Jul 2005 | B2 |
6924621 | Jabaji et al. | Aug 2005 | B2 |
6924735 | Ueda et al. | Aug 2005 | B2 |
6930410 | Ikeda et al. | Aug 2005 | B2 |
6938468 | Lin | Sep 2005 | B1 |
6941197 | Murakami et al. | Sep 2005 | B1 |
6946816 | Pfab et al. | Sep 2005 | B2 |
6947881 | Murakami et al. | Sep 2005 | B1 |
6954007 | Meier et al. | Oct 2005 | B1 |
6959592 | Caretta | Nov 2005 | B2 |
6975092 | Edington et al. | Dec 2005 | B2 |
6975997 | Murakami et al. | Dec 2005 | B1 |
6978873 | Ishioka | Dec 2005 | B2 |
6988026 | Breed et al. | Jan 2006 | B2 |
6996458 | Pincu et al. | Feb 2006 | B2 |
7002265 | Potega | Feb 2006 | B2 |
7005959 | Amagasa et al. | Feb 2006 | B2 |
7006914 | Cahoon | Feb 2006 | B1 |
7009310 | Cheung et al. | Mar 2006 | B2 |
7015827 | Allen et al. | Mar 2006 | B2 |
7021132 | Nigon et al. | Apr 2006 | B2 |
7027890 | Wilson | Apr 2006 | B2 |
7034714 | Dunn et al. | Apr 2006 | B2 |
7038331 | Yasukura | May 2006 | B2 |
7039389 | Johnson, Jr. | May 2006 | B2 |
7039508 | Lin et al. | May 2006 | B2 |
7042196 | Ka-Lai et al. | May 2006 | B2 |
7050897 | Breed et al. | May 2006 | B2 |
7063146 | Schultz et al. | Jun 2006 | B2 |
7068991 | Parise | Jun 2006 | B2 |
7071840 | Allen et al. | Jul 2006 | B2 |
7079013 | Zimmer | Jul 2006 | B2 |
7081693 | Hamel et al. | Jul 2006 | B2 |
7082359 | Breed | Jul 2006 | B2 |
7082406 | Dickson | Jul 2006 | B1 |
7089099 | Shostak et al. | Aug 2006 | B2 |
7091839 | Situ et al. | Aug 2006 | B2 |
7095311 | Coates et al. | Aug 2006 | B2 |
7096727 | Adamson et al. | Aug 2006 | B2 |
7096984 | Ono et al. | Aug 2006 | B2 |
7103460 | Breed | Sep 2006 | B1 |
7120520 | Seto et al. | Oct 2006 | B2 |
7129834 | Naruse et al. | Oct 2006 | B2 |
7138728 | LeRow et al. | Nov 2006 | B2 |
7141321 | McArthur et al. | Nov 2006 | B2 |
7142951 | Pincu et al. | Nov 2006 | B2 |
7146258 | Pincu et al. | Dec 2006 | B2 |
7146853 | Fischer et al. | Dec 2006 | B2 |
7150187 | Caretta | Dec 2006 | B2 |
7159129 | Pincu et al. | Jan 2007 | B2 |
7161476 | Hardman et al. | Jan 2007 | B2 |
7164117 | Breed et al. | Jan 2007 | B2 |
7164211 | Tafoya et al. | Jan 2007 | B1 |
7168308 | Mancosu et al. | Jan 2007 | B2 |
7170201 | Hamel et al. | Jan 2007 | B2 |
7173348 | Voda et al. | Feb 2007 | B2 |
7181409 | Murakami et al. | Feb 2007 | B1 |
7183937 | Park et al. | Feb 2007 | B2 |
7190319 | Forster et al. | Mar 2007 | B2 |
7193334 | Hiramitsu et al. | Mar 2007 | B2 |
7193394 | Ueda et al. | Mar 2007 | B2 |
7201384 | Chaney | Apr 2007 | B2 |
7201813 | Shimura | Apr 2007 | B2 |
7208912 | Ghabra et al. | Apr 2007 | B2 |
7212989 | Taniguchi et al. | May 2007 | B1 |
7215240 | Uehara | May 2007 | B2 |
7227335 | Sakakibara et al. | Jun 2007 | B2 |
7233843 | Budhraja et al. | Jun 2007 | B2 |
7233857 | Cahoon | Jun 2007 | B2 |
7239110 | Cheng et al. | Jul 2007 | B2 |
7245043 | Voda et al. | Jul 2007 | B2 |
7248017 | Cheng et al. | Jul 2007 | B2 |
7251993 | Okubo | Aug 2007 | B1 |
7253725 | Breed et al. | Aug 2007 | B2 |
7254994 | Schulze | Aug 2007 | B2 |
7256505 | Arms et al. | Aug 2007 | B2 |
7256516 | Buchanan et al. | Aug 2007 | B2 |
7260371 | Yones | Aug 2007 | B1 |
7268665 | Inagaki et al. | Sep 2007 | B2 |
7274169 | Burgan et al. | Sep 2007 | B2 |
7274975 | Miller | Sep 2007 | B2 |
7292137 | Gilbert et al. | Nov 2007 | B2 |
7301441 | Inada et al. | Nov 2007 | B2 |
7301442 | Kolpasky et al. | Nov 2007 | B2 |
7309966 | Wobben | Dec 2007 | B2 |
7313467 | Breed et al. | Dec 2007 | B2 |
7317262 | Nishijima et al. | Jan 2008 | B2 |
7323964 | Shyu et al. | Jan 2008 | B1 |
7339347 | Elder et al. | Mar 2008 | B2 |
7358701 | Field et al. | Apr 2008 | B2 |
7361998 | Hamel et al. | Apr 2008 | B2 |
7363806 | Huang et al. | Apr 2008 | B2 |
7365455 | Hamel et al. | Apr 2008 | B2 |
7365633 | Inoue et al. | Apr 2008 | B2 |
7373222 | Wright et al. | May 2008 | B1 |
7373713 | Forster et al. | May 2008 | B2 |
7375492 | Calhoon et al. | May 2008 | B2 |
7376631 | King et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
7379800 | Breed | May 2008 | B2 |
7388349 | Elder et al. | Jun 2008 | B2 |
7390222 | Ciancanelli et al. | Jun 2008 | B2 |
7402978 | Pryor | Jul 2008 | B2 |
7405536 | Watts | Jul 2008 | B2 |
7408453 | Breed | Aug 2008 | B2 |
7412309 | Honda | Aug 2008 | B2 |
7414380 | Tang et al. | Aug 2008 | B2 |
7415332 | Ito et al. | Aug 2008 | B2 |
7420520 | Forster et al. | Sep 2008 | B2 |
7421321 | Breed et al. | Sep 2008 | B2 |
7427865 | Elder et al. | Sep 2008 | B2 |
7429801 | Adamson et al. | Sep 2008 | B2 |
7429805 | Hamel et al. | Sep 2008 | B2 |
7430462 | Chiu et al. | Sep 2008 | B2 |
7430471 | Simon | Sep 2008 | B2 |
7436150 | Daboussi | Oct 2008 | B2 |
7439851 | Fleury et al. | Oct 2008 | B2 |
7439928 | Forster et al. | Oct 2008 | B2 |
7443057 | Nunally | Oct 2008 | B2 |
7444192 | Dickinson et al. | Oct 2008 | B2 |
7444210 | Breed et al. | Oct 2008 | B2 |
7450790 | Jalali et al. | Nov 2008 | B1 |
7451839 | Perlman | Nov 2008 | B2 |
7459911 | Merkle | Dec 2008 | B2 |
7462951 | Baarman | Dec 2008 | B1 |
7467034 | Breed et al. | Dec 2008 | B2 |
7471066 | Ambrosio et al. | Dec 2008 | B2 |
7477039 | Rodarte | Jan 2009 | B2 |
7486045 | Yamaguchi et al. | Feb 2009 | B2 |
7498767 | Brown et al. | Mar 2009 | B2 |
7498768 | Stoschek et al. | Mar 2009 | B2 |
7502353 | Bolz | Mar 2009 | B2 |
7508091 | Binder | Mar 2009 | B2 |
7515034 | Inoue | Apr 2009 | B2 |
7520355 | Chaney | Apr 2009 | B2 |
7521890 | Lee et al. | Apr 2009 | B2 |
7522878 | Baarman | Apr 2009 | B2 |
7525283 | Cheng et al. | Apr 2009 | B2 |
7525284 | Iwane et al. | Apr 2009 | B2 |
7525286 | Wang | Apr 2009 | B2 |
7525290 | Miyata | Apr 2009 | B2 |
7527288 | Breed | May 2009 | B2 |
7549327 | Breed | Jun 2009 | B2 |
7550869 | Higuchi et al. | Jun 2009 | B2 |
7550943 | Spartano et al. | Jun 2009 | B2 |
7551069 | Cohen | Jun 2009 | B2 |
7554288 | Gangstoe et al. | Jun 2009 | B2 |
7554316 | Stevens et al. | Jun 2009 | B2 |
7555370 | Breed et al. | Jun 2009 | B2 |
7565396 | Hoshina | Jul 2009 | B2 |
7567057 | Elder et al. | Jul 2009 | B2 |
7567919 | Koga | Jul 2009 | B1 |
7573373 | Nguyen | Aug 2009 | B2 |
7582979 | Oyobe et al. | Sep 2009 | B2 |
7589433 | Otani et al. | Sep 2009 | B2 |
7590472 | Hakim et al. | Sep 2009 | B2 |
7595606 | Loubeyre | Sep 2009 | B2 |
7598700 | Elder et al. | Oct 2009 | B2 |
7602142 | Weber et al. | Oct 2009 | B2 |
7603894 | Breed | Oct 2009 | B2 |
7605496 | Stevens et al. | Oct 2009 | B2 |
7605561 | Yamazaki et al. | Oct 2009 | B2 |
7612528 | Baarman et al. | Nov 2009 | B2 |
7613551 | Watanabe et al. | Nov 2009 | B2 |
7613924 | Shankar et al. | Nov 2009 | B2 |
7617394 | Tsuboka et al. | Nov 2009 | B2 |
7622891 | Cheng et al. | Nov 2009 | B2 |
7622897 | Eberhard et al. | Nov 2009 | B2 |
7629772 | Eberhard et al. | Dec 2009 | B2 |
7629773 | Eberhard et al. | Dec 2009 | B2 |
7630802 | Breed | Dec 2009 | B2 |
7631554 | Behrends et al. | Dec 2009 | B2 |
7639514 | Baarman | Dec 2009 | B2 |
7640185 | Giordano et al. | Dec 2009 | B1 |
7642670 | Rosendahl | Jan 2010 | B2 |
7650210 | Breed | Jan 2010 | B2 |
7657438 | Obayashi et al. | Feb 2010 | B2 |
7663502 | Breed | Feb 2010 | B2 |
7667348 | Konno et al. | Feb 2010 | B2 |
7671567 | Eberhard et al. | Mar 2010 | B2 |
7672756 | Breed | Mar 2010 | B2 |
7675261 | Elder et al. | Mar 2010 | B2 |
7679314 | Elder et al. | Mar 2010 | B2 |
7679336 | Gale et al. | Mar 2010 | B2 |
7679486 | Okada | Mar 2010 | B2 |
7679524 | Hofer et al. | Mar 2010 | B2 |
7683570 | Krauer et al. | Mar 2010 | B2 |
7688022 | Alvarez-Troncoso et al. | Mar 2010 | B2 |
7688024 | Kamaga | Mar 2010 | B2 |
7692366 | Thiesen | Apr 2010 | B2 |
7692404 | Harris | Apr 2010 | B2 |
7692430 | Emori et al. | Apr 2010 | B2 |
7693609 | Kressner et al. | Apr 2010 | B2 |
7693626 | Breed et al. | Apr 2010 | B2 |
7698078 | Kelty et al. | Apr 2010 | B2 |
7698219 | Kremen et al. | Apr 2010 | B2 |
7705602 | Bertness | Apr 2010 | B2 |
7710071 | Elizalde Rodarte | May 2010 | B2 |
7714536 | Silberg et al. | May 2010 | B1 |
7714537 | Cheng et al. | May 2010 | B2 |
7715187 | Hotelling et al. | May 2010 | B2 |
7715951 | Forbes, Jr. et al. | May 2010 | B2 |
7719232 | Kelty et al. | May 2010 | B2 |
7725348 | Allen et al. | May 2010 | B1 |
7728551 | Reed et al. | Jun 2010 | B2 |
7728717 | Rebholz-Goldmann | Jun 2010 | B2 |
7734500 | Allen et al. | Jun 2010 | B1 |
7739529 | Hardman et al. | Jun 2010 | B2 |
7741816 | Kelty et al. | Jun 2010 | B2 |
7747739 | Bridges et al. | Jun 2010 | B2 |
7751975 | Allen et al. | Jul 2010 | B2 |
7755329 | Kohn et al. | Jul 2010 | B2 |
7760080 | Breed et al. | Jul 2010 | B2 |
7761203 | Yamada | Jul 2010 | B2 |
7764197 | Allen et al. | Jul 2010 | B2 |
7768148 | Frias et al. | Aug 2010 | B2 |
7768229 | Zhang et al. | Aug 2010 | B2 |
7778746 | McLeod et al. | Aug 2010 | B2 |
7781942 | Hatano | Aug 2010 | B2 |
7782021 | Kelty et al. | Aug 2010 | B2 |
7782633 | Yamauchi et al. | Aug 2010 | B2 |
7783390 | Miller | Aug 2010 | B2 |
7786704 | Kelty et al. | Aug 2010 | B2 |
7786864 | Shostak et al. | Aug 2010 | B1 |
7789176 | Zhou | Sep 2010 | B2 |
7791217 | Kamaga | Sep 2010 | B2 |
7792613 | Kressner et al. | Sep 2010 | B2 |
7795840 | Vogel et al. | Sep 2010 | B2 |
7795841 | Matsumoto | Sep 2010 | B2 |
7804272 | Morita et al. | Sep 2010 | B2 |
7804274 | Baxter et al. | Sep 2010 | B2 |
7804845 | Alrabady | Sep 2010 | B2 |
7821227 | Howell et al. | Oct 2010 | B2 |
7825537 | Freer | Nov 2010 | B2 |
7830117 | Ambrosio et al. | Nov 2010 | B2 |
7834583 | Elder et al. | Nov 2010 | B2 |
7838142 | Scheucher | Nov 2010 | B2 |
7839027 | Shelton et al. | Nov 2010 | B2 |
7839117 | Elder et al. | Nov 2010 | B2 |
7841431 | Zhou | Nov 2010 | B2 |
7844370 | Pollack et al. | Nov 2010 | B2 |
7847518 | Ichikawa et al. | Dec 2010 | B2 |
7859171 | Micallef | Dec 2010 | B2 |
7859219 | Harris | Dec 2010 | B2 |
7863858 | Gangstoe et al. | Jan 2011 | B2 |
7863861 | Cheng et al. | Jan 2011 | B2 |
7868587 | Stevens et al. | Jan 2011 | B2 |
7868736 | Fukushima et al. | Jan 2011 | B2 |
7869576 | Rodkey et al. | Jan 2011 | B1 |
7869940 | Dare | Jan 2011 | B2 |
7872443 | Ward | Jan 2011 | B2 |
7880337 | Farkas | Feb 2011 | B2 |
7880436 | Fischer et al. | Feb 2011 | B2 |
7880594 | Breed et al. | Feb 2011 | B2 |
7884569 | Ward | Feb 2011 | B2 |
7885893 | Alexander | Feb 2011 | B2 |
7886166 | Shnekendorf et al. | Feb 2011 | B2 |
7886857 | Fujitake | Feb 2011 | B2 |
7889096 | Breed | Feb 2011 | B2 |
7890218 | Adams et al. | Feb 2011 | B2 |
7899588 | Soma et al. | Mar 2011 | B2 |
7906935 | Kissel, Jr. | Mar 2011 | B2 |
7906937 | Bhade et al. | Mar 2011 | B2 |
7911184 | Kohn | Mar 2011 | B2 |
7912625 | Cahoon | Mar 2011 | B2 |
7916467 | Hotelling et al. | Mar 2011 | B2 |
7917251 | Kressner et al. | Mar 2011 | B2 |
7919907 | Reichenbach et al. | Apr 2011 | B2 |
7920102 | Breed | Apr 2011 | B2 |
7924147 | Mathias et al. | Apr 2011 | B2 |
7925440 | Allen et al. | Apr 2011 | B2 |
7928693 | Hafner et al. | Apr 2011 | B2 |
7928699 | Kohn | Apr 2011 | B2 |
7933695 | Yamaguchi | Apr 2011 | B2 |
7939192 | Hermann | May 2011 | B2 |
7940028 | Hermann | May 2011 | B1 |
7944667 | Ouwerkerk | May 2011 | B2 |
7945502 | Mashinsky et al. | May 2011 | B2 |
7948207 | Scheucher | May 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7949435 | Pollack et al. | May 2011 | B2 |
7950570 | Marchasin et al. | May 2011 | B2 |
7952319 | Lowenthal et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7952324 | Cheng et al. | May 2011 | B2 |
7952325 | Baxter et al. | May 2011 | B2 |
7953369 | Baarman | May 2011 | B2 |
7956570 | Lowenthal et al. | Jun 2011 | B2 |
7957846 | Hakim et al. | Jun 2011 | B2 |
7984774 | Ippolito | Jul 2011 | B2 |
7984852 | Outwater | Jul 2011 | B2 |
7986126 | Bucci et al. | Jul 2011 | B1 |
7986215 | Beehler et al. | Jul 2011 | B2 |
7988453 | Loo et al. | Aug 2011 | B2 |
7989986 | Baarman et al. | Aug 2011 | B2 |
7991665 | Hafner et al. | Aug 2011 | B2 |
7994908 | Tonegawa et al. | Aug 2011 | B2 |
7996098 | Dickinson et al. | Aug 2011 | B2 |
7999506 | Hollar et al. | Aug 2011 | B1 |
7999665 | Chander et al. | Aug 2011 | B2 |
8000858 | Tonegawa et al. | Aug 2011 | B2 |
8004243 | Paryani et al. | Aug 2011 | B2 |
8008888 | Oyobe | Aug 2011 | B2 |
8010812 | Forbes, Jr. et al. | Aug 2011 | B2 |
8011237 | Gao et al. | Sep 2011 | B2 |
8011255 | Arms et al. | Sep 2011 | B2 |
8013569 | Hartman | Sep 2011 | B2 |
8013570 | Baxter et al. | Sep 2011 | B2 |
8013611 | Elder et al. | Sep 2011 | B2 |
8019501 | Breed | Sep 2011 | B2 |
8019697 | Ozog | Sep 2011 | B2 |
8022667 | Anderson | Sep 2011 | B2 |
8024073 | Imes et al. | Sep 2011 | B2 |
8024084 | Breed | Sep 2011 | B2 |
8025118 | Scheucher | Sep 2011 | B2 |
8025526 | Tormey et al. | Sep 2011 | B1 |
8026632 | Cook et al. | Sep 2011 | B2 |
8026698 | Scheucher | Sep 2011 | B2 |
8027760 | Chattot | Sep 2011 | B2 |
8028780 | Sagawa et al. | Oct 2011 | B2 |
8030882 | Ito et al. | Oct 2011 | B2 |
8030888 | Pandya et al. | Oct 2011 | B2 |
8032233 | Forbes, Jr. et al. | Oct 2011 | B2 |
8035255 | Kurs et al. | Oct 2011 | B2 |
8035340 | Stevens et al. | Oct 2011 | B2 |
8035341 | Genzel et al. | Oct 2011 | B2 |
8036788 | Breed | Oct 2011 | B2 |
8039995 | Stevens et al. | Oct 2011 | B2 |
8042631 | Grieve et al. | Oct 2011 | B2 |
8044786 | Berdichevsky et al. | Oct 2011 | B2 |
8049460 | Krauer et al. | Nov 2011 | B2 |
8051285 | Shankar et al. | Nov 2011 | B2 |
8054038 | Kelty et al. | Nov 2011 | B2 |
8054039 | Bauerle et al. | Nov 2011 | B2 |
8054048 | Woody et al. | Nov 2011 | B2 |
8054169 | Bettecken et al. | Nov 2011 | B2 |
8058836 | Ichikawa et al. | Nov 2011 | B2 |
8058841 | Chander et al. | Nov 2011 | B2 |
8059007 | Hermann et al. | Nov 2011 | B2 |
8061626 | Flick | Nov 2011 | B2 |
8063757 | Frey et al. | Nov 2011 | B2 |
8069100 | Taylor et al. | Nov 2011 | B2 |
8072182 | Vasilantone | Dec 2011 | B2 |
8072184 | Bhade et al. | Dec 2011 | B2 |
8076016 | Baglino et al. | Dec 2011 | B2 |
8078359 | Small et al. | Dec 2011 | B2 |
8082065 | Imes et al. | Dec 2011 | B2 |
8082743 | Hermann et al. | Dec 2011 | B2 |
8084154 | Scheucher | Dec 2011 | B2 |
8084991 | Yoda et al. | Dec 2011 | B2 |
8085034 | Sirton | Dec 2011 | B2 |
8086355 | Stanczak et al. | Dec 2011 | B1 |
8089747 | Storck et al. | Jan 2012 | B2 |
8092081 | Hermann et al. | Jan 2012 | B2 |
8093861 | Christensen | Jan 2012 | B2 |
8097984 | Baarman et al. | Jan 2012 | B2 |
8098041 | Kokotovich et al. | Jan 2012 | B2 |
8098044 | Taguchi | Jan 2012 | B2 |
8099195 | Imes et al. | Jan 2012 | B2 |
8102241 | Okada et al. | Jan 2012 | B2 |
8102248 | Yasuda et al. | Jan 2012 | B2 |
8103386 | Ichikawa et al. | Jan 2012 | B2 |
8103387 | Gothard | Jan 2012 | B2 |
8103389 | Golden et al. | Jan 2012 | B2 |
8103391 | Ferro et al. | Jan 2012 | B2 |
8106539 | Schatz et al. | Jan 2012 | B2 |
8106627 | Rossi | Jan 2012 | B1 |
8108076 | Imes et al. | Jan 2012 | B2 |
8109353 | Gurol et al. | Feb 2012 | B2 |
8111043 | Redmann | Feb 2012 | B2 |
8111143 | Tong et al. | Feb 2012 | B2 |
8113310 | Gurol et al. | Feb 2012 | B2 |
8115610 | Lionetti et al. | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8116915 | Kempton | Feb 2012 | B2 |
8117857 | Kelty et al. | Feb 2012 | B2 |
8120308 | Ward | Feb 2012 | B2 |
8120311 | Baarman et al. | Feb 2012 | B2 |
8120364 | Elder et al. | Feb 2012 | B2 |
8121741 | Taft et al. | Feb 2012 | B2 |
8121754 | Tyndall et al. | Feb 2012 | B2 |
8125099 | Flick | Feb 2012 | B2 |
8125180 | Grider et al. | Feb 2012 | B2 |
8125183 | Katsunaga | Feb 2012 | B2 |
8125324 | Frey et al. | Feb 2012 | B2 |
8130088 | Unno | Mar 2012 | B2 |
8131413 | Yuan | Mar 2012 | B2 |
8131486 | Leonard et al. | Mar 2012 | B2 |
8135614 | Allen et al. | Mar 2012 | B2 |
8138715 | Lowenthal et al. | Mar 2012 | B2 |
8138718 | Dower | Mar 2012 | B2 |
8143842 | Tyler et al. | Mar 2012 | B2 |
8143843 | Ichikawa | Mar 2012 | B2 |
8150573 | Shimizu et al. | Apr 2012 | B2 |
8151127 | Hardman et al. | Apr 2012 | B2 |
8153290 | Hermann et al. | Apr 2012 | B2 |
8154246 | Heitmann | Apr 2012 | B1 |
8154256 | Kreiner et al. | Apr 2012 | B2 |
8164301 | Uchida | Apr 2012 | B2 |
8166809 | Weston | May 2012 | B2 |
8167772 | Stoicoviciu et al. | May 2012 | B2 |
8169104 | Cunningham et al. | May 2012 | B2 |
8169183 | Obayashi | May 2012 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8169186 | Haddad et al. | May 2012 | B1 |
8169311 | Breed | May 2012 | B1 |
8169340 | Oyobe et al. | May 2012 | B2 |
8174244 | Otake | May 2012 | B2 |
8178995 | Amano et al. | May 2012 | B2 |
8179086 | Nakaso et al. | May 2012 | B2 |
8179091 | Kissel, Jr. | May 2012 | B2 |
8179237 | Yoshizawa | May 2012 | B2 |
8183819 | Sugano | May 2012 | B2 |
8183821 | Sakurai | May 2012 | B2 |
8183826 | Tuffner et al. | May 2012 | B2 |
8188705 | Wakayama | May 2012 | B2 |
8198855 | Fukui et al. | Jun 2012 | B2 |
8198859 | Tyler et al. | Jun 2012 | B2 |
8212520 | Takada et al. | Jul 2012 | B2 |
8212527 | Zhang et al. | Jul 2012 | B2 |
8220568 | Stoicoviciu | Jul 2012 | B2 |
8229611 | Yamada | Jul 2012 | B2 |
8229616 | Aridome et al. | Jul 2012 | B2 |
8232671 | Andre et al. | Jul 2012 | B2 |
8232765 | Billmaier | Jul 2012 | B2 |
8232875 | Uchida | Jul 2012 | B2 |
8234027 | Yamada | Jul 2012 | B2 |
8234189 | Taylor et al. | Jul 2012 | B2 |
8237403 | Ishii | Aug 2012 | B2 |
8240406 | Stoicoviciu et al. | Aug 2012 | B2 |
8244422 | Fujitake | Aug 2012 | B2 |
8245041 | Shankar et al. | Aug 2012 | B2 |
8248027 | Sakoda et al. | Aug 2012 | B2 |
8249933 | Sakakibara et al. | Aug 2012 | B2 |
8250398 | Solomon et al. | Aug 2012 | B2 |
8258743 | Tyler et al. | Sep 2012 | B2 |
8258744 | Ishii et al. | Sep 2012 | B2 |
8258746 | Kirchner | Sep 2012 | B2 |
8259423 | Gale et al. | Sep 2012 | B2 |
8264196 | Mera | Sep 2012 | B2 |
8264197 | Shimoyama | Sep 2012 | B2 |
8266075 | Ambrosio et al. | Sep 2012 | B2 |
8266465 | Hardman et al. | Sep 2012 | B2 |
8269452 | Watanabe | Sep 2012 | B2 |
8274378 | Flick | Sep 2012 | B2 |
8274379 | Flick | Sep 2012 | B2 |
8278875 | Hagenmaier, Jr. et al. | Oct 2012 | B2 |
8278881 | Woody et al. | Oct 2012 | B2 |
8284053 | DeLine | Oct 2012 | B2 |
8289144 | Zhu et al. | Oct 2012 | B2 |
8290648 | Yamada | Oct 2012 | B2 |
8290649 | Iwashita et al. | Oct 2012 | B2 |
8292052 | Bohori et al. | Oct 2012 | B2 |
8294415 | Fujitake | Oct 2012 | B2 |
8294419 | Sasaki | Oct 2012 | B2 |
8294420 | Kocher | Oct 2012 | B2 |
8299748 | Soma et al. | Oct 2012 | B2 |
8299754 | Hayashigawa et al. | Oct 2012 | B2 |
8299891 | Yamamoto et al. | Oct 2012 | B2 |
8301079 | Baarman | Oct 2012 | B2 |
8301080 | Baarman | Oct 2012 | B2 |
8301320 | Hyde et al. | Oct 2012 | B2 |
8301322 | Mitsutani | Oct 2012 | B2 |
8301365 | Niwa et al. | Oct 2012 | B2 |
8304935 | Karalis et al. | Nov 2012 | B2 |
8305032 | McKenna | Nov 2012 | B2 |
8305033 | Cavanaugh | Nov 2012 | B2 |
8307922 | Perlman et al. | Nov 2012 | B2 |
8307967 | Patwardhan | Nov 2012 | B2 |
8310108 | Inoue et al. | Nov 2012 | B2 |
8311690 | Tanaka | Nov 2012 | B2 |
8315561 | Baarman | Nov 2012 | B2 |
8315745 | Creed | Nov 2012 | B2 |
8315930 | Littrell | Nov 2012 | B2 |
8317000 | Miki | Nov 2012 | B2 |
8319358 | Curry et al. | Nov 2012 | B2 |
8319474 | Mitake et al. | Nov 2012 | B2 |
8321081 | Nakamura | Nov 2012 | B2 |
8324759 | Karalis et al. | Dec 2012 | B2 |
8324858 | Hill et al. | Dec 2012 | B2 |
8324859 | Rossi | Dec 2012 | B2 |
8324860 | Young et al. | Dec 2012 | B2 |
8326470 | Mirle | Dec 2012 | B2 |
8326485 | Hyde et al. | Dec 2012 | B2 |
8330414 | Takahashi et al. | Dec 2012 | B2 |
8330415 | Sato et al. | Dec 2012 | B2 |
8330594 | Suzuki et al. | Dec 2012 | B2 |
8331621 | Allen et al. | Dec 2012 | B1 |
8332078 | Narel et al. | Dec 2012 | B2 |
8332099 | Hyde et al. | Dec 2012 | B2 |
8335062 | Haines et al. | Dec 2012 | B2 |
8338990 | Baarman et al. | Dec 2012 | B2 |
8344686 | Gaul et al. | Jan 2013 | B2 |
8346166 | Baarman | Jan 2013 | B2 |
8346167 | Baarman | Jan 2013 | B2 |
8346401 | Pollack et al. | Jan 2013 | B2 |
8350525 | Handler | Jan 2013 | B2 |
8350527 | Ichikawa | Jan 2013 | B2 |
8351856 | Baarman | Jan 2013 | B2 |
8352095 | Kim et al. | Jan 2013 | B2 |
8352107 | Hyde et al. | Jan 2013 | B2 |
8354821 | Cheng et al. | Jan 2013 | B2 |
8354822 | Suzuki | Jan 2013 | B2 |
8354913 | Solomon et al. | Jan 2013 | B2 |
8355832 | Rosendahl | Jan 2013 | B2 |
8355965 | Yamada | Jan 2013 | B2 |
8358227 | Katrak et al. | Jan 2013 | B2 |
8359126 | Tate, Jr. et al. | Jan 2013 | B2 |
8359132 | Laberteaux et al. | Jan 2013 | B2 |
8359133 | Yu et al. | Jan 2013 | B2 |
8362651 | Hamam et al. | Jan 2013 | B2 |
8364609 | Ozog | Jan 2013 | B2 |
8368348 | Reddy | Feb 2013 | B2 |
8368349 | Zyren | Feb 2013 | B2 |
8368350 | Iwanaga et al. | Feb 2013 | B2 |
8368351 | Zyren | Feb 2013 | B2 |
8368352 | Ichikawa et al. | Feb 2013 | B2 |
8373310 | Baarman et al. | Feb 2013 | B2 |
8374729 | Chapel et al. | Feb 2013 | B2 |
8378623 | Kusch et al. | Feb 2013 | B2 |
8378627 | Asada et al. | Feb 2013 | B2 |
8378628 | Ichikawa et al. | Feb 2013 | B2 |
8380380 | Sasaki | Feb 2013 | B2 |
8384344 | Rogers | Feb 2013 | B1 |
8384358 | Biondo et al. | Feb 2013 | B2 |
8386103 | Tran | Feb 2013 | B2 |
8387452 | Brusarosco et al. | Mar 2013 | B2 |
8390245 | Niwa et al. | Mar 2013 | B2 |
8390246 | Taguchi et al. | Mar 2013 | B2 |
8390247 | Harris et al. | Mar 2013 | B1 |
8392048 | Colarelli, III et al. | Mar 2013 | B2 |
8392101 | Hyde et al. | Mar 2013 | B2 |
8393423 | Gwozdek et al. | Mar 2013 | B2 |
8396624 | Hyde et al. | Mar 2013 | B2 |
8400017 | Kurs et al. | Mar 2013 | B2 |
8400106 | Midrouillet et al. | Mar 2013 | B2 |
8400107 | Taguchi et al. | Mar 2013 | B2 |
8401722 | Gale et al. | Mar 2013 | B2 |
8405345 | Suganuma et al. | Mar 2013 | B2 |
8405346 | Trigiani | Mar 2013 | B2 |
8405347 | Gale et al. | Mar 2013 | B2 |
8405360 | Young et al. | Mar 2013 | B2 |
8407144 | Roberts et al. | Mar 2013 | B2 |
8410369 | Kim et al. | Apr 2013 | B2 |
8410636 | Kurs et al. | Apr 2013 | B2 |
8410760 | Formanski et al. | Apr 2013 | B2 |
8412454 | Hyde et al. | Apr 2013 | B2 |
8415918 | Tonegawa | Apr 2013 | B2 |
8415919 | Saito et al. | Apr 2013 | B2 |
8417402 | Basir | Apr 2013 | B2 |
8417415 | Phelan | Apr 2013 | B2 |
8417598 | Pinkusevich et al. | Apr 2013 | B2 |
8418823 | Matsumura | Apr 2013 | B2 |
8421409 | Ichikawa | Apr 2013 | B2 |
8421410 | Takada et al. | Apr 2013 | B2 |
8421411 | Takada et al. | Apr 2013 | B2 |
8421592 | Gunasekara et al. | Apr 2013 | B1 |
8423209 | Ichikawa | Apr 2013 | B2 |
8423211 | Li | Apr 2013 | B2 |
8423223 | Nakamura et al. | Apr 2013 | B2 |
8423273 | Mineta | Apr 2013 | B2 |
8427103 | Ohtomo | Apr 2013 | B2 |
8428804 | Sakai et al. | Apr 2013 | B2 |
8432125 | Takada et al. | Apr 2013 | B2 |
8432131 | Lowenthal et al. | Apr 2013 | B2 |
8432175 | Hein | Apr 2013 | B2 |
8433471 | Christensen et al. | Apr 2013 | B2 |
8437882 | Craig et al. | May 2013 | B2 |
8441154 | Karalis et al. | May 2013 | B2 |
8441373 | Jonsson et al. | May 2013 | B2 |
8442698 | Fahimi et al. | May 2013 | B2 |
8446046 | Fells et al. | May 2013 | B2 |
8446124 | Nagy et al. | May 2013 | B2 |
8447543 | Dickinson et al. | May 2013 | B2 |
8450877 | Baarman et al. | May 2013 | B2 |
8450966 | Krauer et al. | May 2013 | B2 |
8450967 | Lowenthal et al. | May 2013 | B2 |
8452477 | Ergen et al. | May 2013 | B2 |
8452490 | Lakirovich et al. | May 2013 | B2 |
8452532 | Hyde et al. | May 2013 | B2 |
8452642 | Matsuyama | May 2013 | B2 |
8452661 | Karch et al. | May 2013 | B2 |
8457797 | Imes et al. | Jun 2013 | B2 |
8457821 | Shaffer | Jun 2013 | B2 |
8457873 | Hyde et al. | Jun 2013 | B2 |
8459213 | Moriarty et al. | Jun 2013 | B2 |
8460028 | Tormey et al. | Jun 2013 | B2 |
8461719 | Kesler et al. | Jun 2013 | B2 |
8461720 | Kurs et al. | Jun 2013 | B2 |
8461721 | Karalis et al. | Jun 2013 | B2 |
8461722 | Kurs et al. | Jun 2013 | B2 |
8463472 | Watanabe | Jun 2013 | B2 |
8463473 | Booth et al. | Jun 2013 | B2 |
8463483 | Welchko et al. | Jun 2013 | B2 |
8466583 | Karalis et al. | Jun 2013 | B2 |
8466654 | Cook et al. | Jun 2013 | B2 |
8466655 | Mitsutani | Jun 2013 | B2 |
8466660 | Iizuka et al. | Jun 2013 | B2 |
8469122 | Perlman et al. | Jun 2013 | B2 |
8471410 | Karalis et al. | Jun 2013 | B2 |
8473131 | Leary | Jun 2013 | B2 |
8473132 | Ichikawa et al. | Jun 2013 | B2 |
8476788 | Karalis et al. | Jul 2013 | B2 |
8476865 | Iwanaga et al. | Jul 2013 | B2 |
8478452 | Pratt et al. | Jul 2013 | B2 |
8478469 | Ueo et al. | Jul 2013 | B2 |
8482158 | Kurs et al. | Jul 2013 | B2 |
8482250 | Soar | Jul 2013 | B2 |
8483901 | Ichihara | Jul 2013 | B2 |
8487480 | Kesler et al. | Jul 2013 | B1 |
8487584 | Taylor-Haw et al. | Jul 2013 | B2 |
8487589 | Bohme et al. | Jul 2013 | B2 |
8487636 | Mitsutani et al. | Jul 2013 | B2 |
8489315 | Yamamoto | Jul 2013 | B2 |
8493022 | Bertness | Jul 2013 | B2 |
8493024 | Kissel, Jr. | Jul 2013 | B2 |
8493025 | Turner | Jul 2013 | B2 |
8493026 | Sahinoglu et al. | Jul 2013 | B2 |
8497601 | Hall et al. | Jul 2013 | B2 |
8498763 | Hafner et al. | Jul 2013 | B2 |
8498920 | Elam et al. | Jul 2013 | B2 |
8499910 | Hubner | Aug 2013 | B2 |
8501361 | Uemura et al. | Aug 2013 | B2 |
8502498 | Fecher | Aug 2013 | B2 |
8502499 | Xiao et al. | Aug 2013 | B2 |
8502500 | Baxter et al. | Aug 2013 | B2 |
8504219 | Kim et al. | Aug 2013 | B2 |
8504227 | Ichishi | Aug 2013 | B2 |
8504228 | Obayashi et al. | Aug 2013 | B2 |
8508077 | Stevens et al. | Aug 2013 | B2 |
8508185 | Basham et al. | Aug 2013 | B2 |
8508186 | Morita et al. | Aug 2013 | B2 |
8508348 | Suzuki et al. | Aug 2013 | B2 |
8509954 | Imes et al. | Aug 2013 | B2 |
8509957 | Tsuchiya | Aug 2013 | B2 |
8509976 | Kempton | Aug 2013 | B2 |
8511606 | Lutke et al. | Aug 2013 | B1 |
8513915 | Patel | Aug 2013 | B2 |
8519562 | Gibbs et al. | Aug 2013 | B2 |
8519839 | Mituta | Aug 2013 | B2 |
8521337 | Johnson | Aug 2013 | B1 |
8525470 | Gale et al. | Sep 2013 | B2 |
8525473 | Shimizu et al. | Sep 2013 | B2 |
8525480 | Anderson | Sep 2013 | B2 |
8527132 | Mineta | Sep 2013 | B2 |
8527134 | Huchard et al. | Sep 2013 | B2 |
8531162 | Hafner et al. | Sep 2013 | B2 |
8531284 | Liu | Sep 2013 | B2 |
8532839 | Drees et al. | Sep 2013 | B2 |
8536826 | Matsuoka et al. | Sep 2013 | B2 |
8536831 | Kanno | Sep 2013 | B2 |
8536833 | Ohnuki | Sep 2013 | B2 |
8538330 | Baarman | Sep 2013 | B2 |
8538621 | Ross et al. | Sep 2013 | B2 |
8541903 | Burk | Sep 2013 | B2 |
8541978 | Fukuo et al. | Sep 2013 | B2 |
8543247 | Boss et al. | Sep 2013 | B2 |
8543285 | Allen et al. | Sep 2013 | B2 |
8544622 | Vollenwyder et al. | Oct 2013 | B2 |
8545284 | Baarman et al. | Oct 2013 | B2 |
8548659 | Tanaka | Oct 2013 | B2 |
8552592 | Schatz et al. | Oct 2013 | B2 |
8552685 | Kanno | Oct 2013 | B2 |
8558504 | Brown et al. | Oct 2013 | B2 |
8561770 | Stoicoviciu | Oct 2013 | B2 |
8564241 | Masuda | Oct 2013 | B2 |
8564403 | Landau-Holdsworth et al. | Oct 2013 | B2 |
8564454 | Oizumi et al. | Oct 2013 | B2 |
8565930 | Miwa | Oct 2013 | B2 |
8565950 | Ishibashi | Oct 2013 | B2 |
8569914 | Karalis et al. | Oct 2013 | B2 |
8571731 | Hyde et al. | Oct 2013 | B2 |
8571740 | Hyde et al. | Oct 2013 | B2 |
8571791 | Hyde et al. | Oct 2013 | B2 |
8573994 | Kiko et al. | Nov 2013 | B2 |
8575897 | Masuda | Nov 2013 | B2 |
8577528 | Uyeki | Nov 2013 | B2 |
8581445 | Ichikawa | Nov 2013 | B2 |
8583551 | Littrell et al. | Nov 2013 | B2 |
8587153 | Schatz et al. | Nov 2013 | B2 |
8587154 | Fells et al. | Nov 2013 | B2 |
8587155 | Giler et al. | Nov 2013 | B2 |
8588985 | Stanczak et al. | Nov 2013 | B2 |
8594859 | Contreras Delpiano et al. | Nov 2013 | B2 |
8594871 | Uchida | Nov 2013 | B2 |
8594886 | Saito | Nov 2013 | B2 |
8595122 | Kamer et al. | Nov 2013 | B2 |
8598743 | Hall et al. | Dec 2013 | B2 |
8600556 | Nesler et al. | Dec 2013 | B2 |
8600564 | Imes et al. | Dec 2013 | B2 |
8604750 | Turner et al. | Dec 2013 | B2 |
8604751 | Mitsutani | Dec 2013 | B2 |
8606445 | Yaguchi et al. | Dec 2013 | B2 |
8610396 | Hunter et al. | Dec 2013 | B2 |
8610400 | Stevens et al. | Dec 2013 | B2 |
8610401 | Kim et al. | Dec 2013 | B2 |
8610554 | Liu | Dec 2013 | B2 |
8611824 | Ichikawa | Dec 2013 | B2 |
8615355 | Inbarajan et al. | Dec 2013 | B2 |
8618696 | Kurs et al. | Dec 2013 | B2 |
8618766 | Anderson et al. | Dec 2013 | B2 |
8618767 | Ishii et al. | Dec 2013 | B2 |
8618770 | Baarman | Dec 2013 | B2 |
8618771 | Ichikawa | Dec 2013 | B2 |
8624549 | Sridhar et al. | Jan 2014 | B2 |
8626344 | Imes et al. | Jan 2014 | B2 |
8626349 | Stanczak et al. | Jan 2014 | B2 |
8627906 | Lacour | Jan 2014 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8629652 | Partovi et al. | Jan 2014 | B2 |
8629654 | Partovi et al. | Jan 2014 | B2 |
8639392 | Chassin | Jan 2014 | B2 |
8639409 | Ramaswamy et al. | Jan 2014 | B2 |
8639922 | Phatak | Jan 2014 | B2 |
8643253 | Micallef | Feb 2014 | B1 |
8643326 | Campanella et al. | Feb 2014 | B2 |
8643329 | Prosser et al. | Feb 2014 | B2 |
8643341 | Hamaguchi et al. | Feb 2014 | B2 |
8648566 | Billmaier | Feb 2014 | B2 |
8648700 | Gilbert | Feb 2014 | B2 |
8653698 | Baarman et al. | Feb 2014 | B2 |
8653788 | Masuda | Feb 2014 | B2 |
8659270 | Hermann et al. | Feb 2014 | B2 |
8660709 | Harvey et al. | Feb 2014 | B2 |
8664915 | Sutardja | Mar 2014 | B2 |
8666572 | Mitsutani | Mar 2014 | B2 |
8669676 | Karalis et al. | Mar 2014 | B2 |
8674549 | Teo et al. | Mar 2014 | B2 |
8674571 | Lee | Mar 2014 | B2 |
8676389 | Golden et al. | Mar 2014 | B2 |
8676401 | Asada et al. | Mar 2014 | B2 |
8676636 | Genschel et al. | Mar 2014 | B2 |
8680813 | Lowenthal et al. | Mar 2014 | B2 |
8686591 | Mitsutani | Apr 2014 | B2 |
8686598 | Schatz et al. | Apr 2014 | B2 |
8686685 | Moshfeghi | Apr 2014 | B2 |
8686687 | Rossi | Apr 2014 | B2 |
8692410 | Schatz et al. | Apr 2014 | B2 |
8692412 | Fiorello et al. | Apr 2014 | B2 |
8692513 | Gaul et al. | Apr 2014 | B2 |
8694185 | Sakamoto et al. | Apr 2014 | B2 |
8698346 | Kamaga | Apr 2014 | B2 |
8698451 | King et al. | Apr 2014 | B2 |
8698452 | Scheucher | Apr 2014 | B2 |
8700187 | Forbes, Jr. | Apr 2014 | B2 |
8700225 | Pratt et al. | Apr 2014 | B2 |
8706650 | Ozog | Apr 2014 | B2 |
8710372 | Karner | Apr 2014 | B2 |
8710795 | Scheucher | Apr 2014 | B2 |
8710796 | Muller et al. | Apr 2014 | B2 |
8710797 | Niwa | Apr 2014 | B2 |
8710798 | Turner | Apr 2014 | B2 |
8716902 | Rhodes et al. | May 2014 | B2 |
8716903 | Kurs et al. | May 2014 | B2 |
8716974 | Sakoda et al. | May 2014 | B2 |
8716976 | Kai et al. | May 2014 | B2 |
8717160 | Liu | May 2014 | B2 |
8718844 | Krause et al. | May 2014 | B2 |
8718856 | Leary | May 2014 | B2 |
8723366 | Fiorello et al. | May 2014 | B2 |
8723477 | Gaul et al. | May 2014 | B2 |
8723478 | Billmaier | May 2014 | B2 |
8725331 | Yoshida | May 2014 | B2 |
8725338 | Tanaka | May 2014 | B2 |
8725551 | Ambrosio et al. | May 2014 | B2 |
8729737 | Schatz et al. | May 2014 | B2 |
8729857 | Stahlin et al. | May 2014 | B2 |
8729859 | Cook et al. | May 2014 | B2 |
8729865 | Scheucher | May 2014 | B2 |
8736224 | Gale et al. | May 2014 | B2 |
8736225 | Chen et al. | May 2014 | B2 |
8736226 | Mukai et al. | May 2014 | B2 |
8737026 | Ueno et al. | May 2014 | B2 |
8738194 | Creed | May 2014 | B2 |
8742718 | Sugiyama et al. | Jun 2014 | B2 |
8749334 | Boys et al. | Jun 2014 | B2 |
8749353 | Balgard et al. | Jun 2014 | B2 |
8751058 | Hyde et al. | Jun 2014 | B2 |
8751059 | Hyde et al. | Jun 2014 | B2 |
8754614 | Paryani et al. | Jun 2014 | B2 |
8754743 | Ishibashi | Jun 2014 | B2 |
8760115 | Kinser et al. | Jun 2014 | B2 |
8760116 | Fujii | Jun 2014 | B2 |
8765276 | Baglino et al. | Jul 2014 | B2 |
8766484 | Baarman et al. | Jul 2014 | B2 |
8766487 | Dibben et al. | Jul 2014 | B2 |
8766591 | Takada et al. | Jul 2014 | B2 |
8766595 | Gaul et al. | Jul 2014 | B2 |
8768533 | Ichikawa | Jul 2014 | B2 |
8772973 | Kurs | Jul 2014 | B2 |
8774995 | Ishibashi | Jul 2014 | B2 |
8774997 | Ichikawa et al. | Jul 2014 | B2 |
8779719 | Matsuki | Jul 2014 | B2 |
8779720 | Gaul et al. | Jul 2014 | B2 |
8781809 | Bridges | Jul 2014 | B2 |
8791666 | Yokoyama et al. | Jul 2014 | B2 |
8796881 | Davis | Aug 2014 | B2 |
8796987 | Scheucher | Aug 2014 | B2 |
8796990 | Paparo et al. | Aug 2014 | B2 |
8798829 | Ichikawa | Aug 2014 | B2 |
8798830 | Sobue et al. | Aug 2014 | B2 |
8799185 | Kang | Aug 2014 | B2 |
8803484 | Iizuka et al. | Aug 2014 | B2 |
8810060 | Kamaga | Aug 2014 | B2 |
8810061 | Sugiyama et al. | Aug 2014 | B2 |
8810192 | Bridges et al. | Aug 2014 | B2 |
8810205 | Ichikawa | Aug 2014 | B2 |
8816537 | Ichikawa | Aug 2014 | B2 |
8816645 | Dickinson et al. | Aug 2014 | B2 |
8818591 | Bercovici | Aug 2014 | B2 |
8818624 | Small et al. | Aug 2014 | B2 |
8829731 | Baarman et al. | Sep 2014 | B2 |
8829848 | Kotooka et al. | Sep 2014 | B2 |
8829851 | Prosser et al. | Sep 2014 | B2 |
8829853 | Hill et al. | Sep 2014 | B2 |
8831513 | Baarman | Sep 2014 | B2 |
8831807 | Dehmann | Sep 2014 | B2 |
8836271 | Mitake et al. | Sep 2014 | B2 |
8836281 | Ambrosio et al. | Sep 2014 | B2 |
8847544 | Ang | Sep 2014 | B2 |
8847548 | Kesler et al. | Sep 2014 | B2 |
8849499 | Profitt-Brown et al. | Sep 2014 | B2 |
8849687 | Hakim et al. | Sep 2014 | B2 |
8853892 | Fells et al. | Oct 2014 | B2 |
8853997 | Fung | Oct 2014 | B2 |
8853999 | Haddad et al. | Oct 2014 | B2 |
8854011 | Ichikawa et al. | Oct 2014 | B2 |
8855558 | Baarman | Oct 2014 | B2 |
8855829 | Golden et al. | Oct 2014 | B2 |
8860362 | Kamen et al. | Oct 2014 | B2 |
8860366 | Muller et al. | Oct 2014 | B2 |
8860367 | Murayama | Oct 2014 | B2 |
8860369 | Zyren | Oct 2014 | B2 |
8862288 | Vavrina et al. | Oct 2014 | B2 |
8863870 | Gwozdek et al. | Oct 2014 | B2 |
8866436 | Lowenthal et al. | Oct 2014 | B2 |
8866437 | Ichikawa | Oct 2014 | B2 |
8866444 | Stewart et al. | Oct 2014 | B2 |
8872474 | Scheucher | Oct 2014 | B2 |
8884468 | Lemmens et al. | Nov 2014 | B2 |
8884469 | Lemmens et al. | Nov 2014 | B2 |
8884581 | Widmer et al. | Nov 2014 | B2 |
8890366 | Wang et al. | Nov 2014 | B2 |
8890470 | Partovi | Nov 2014 | B2 |
8890472 | Mashinsky | Nov 2014 | B2 |
8890473 | Muller et al. | Nov 2014 | B2 |
8896264 | Partovi | Nov 2014 | B2 |
8896434 | Ichikawa | Nov 2014 | B2 |
8898278 | Bridges et al. | Nov 2014 | B2 |
8899492 | Kelty et al. | Dec 2014 | B2 |
8899903 | Saad et al. | Dec 2014 | B1 |
8901778 | Kesler et al. | Dec 2014 | B2 |
8901779 | Kesler et al. | Dec 2014 | B2 |
8901881 | Partovi | Dec 2014 | B2 |
8903560 | Miller | Dec 2014 | B2 |
8907531 | Hall et al. | Dec 2014 | B2 |
8912686 | Stoner, Jr. et al. | Dec 2014 | B2 |
8912687 | Kesler et al. | Dec 2014 | B2 |
8912753 | Pudar et al. | Dec 2014 | B2 |
8912912 | Menard | Dec 2014 | B2 |
8918336 | Ferro et al. | Dec 2014 | B2 |
8918376 | Ambrosio et al. | Dec 2014 | B2 |
8922066 | Kesler et al. | Dec 2014 | B2 |
8928276 | Kesler et al. | Jan 2015 | B2 |
8928280 | Sugiyama et al. | Jan 2015 | B2 |
8933594 | Kurs et al. | Jan 2015 | B2 |
8935112 | Lowenthal et al. | Jan 2015 | B2 |
8937408 | Ganem et al. | Jan 2015 | B2 |
8937454 | Baarman et al. | Jan 2015 | B2 |
8937455 | Mitsutani | Jan 2015 | B2 |
8946924 | Pessina | Feb 2015 | B2 |
8946938 | Kesler et al. | Feb 2015 | B2 |
8947047 | Partovi et al. | Feb 2015 | B2 |
8947186 | Kurs et al. | Feb 2015 | B2 |
8957549 | Kesler et al. | Feb 2015 | B2 |
8958938 | Basir | Feb 2015 | B2 |
8963486 | Kirby et al. | Feb 2015 | B2 |
8963488 | Campanella et al. | Feb 2015 | B2 |
8963492 | Rossi | Feb 2015 | B2 |
8968949 | Hermann et al. | Mar 2015 | B2 |
8970060 | Ichikawa et al. | Mar 2015 | B2 |
8970182 | Paryani et al. | Mar 2015 | B2 |
8975864 | Kim | Mar 2015 | B2 |
8981716 | Bianco | Mar 2015 | B2 |
8983875 | Shelton et al. | Mar 2015 | B2 |
8994338 | Khan et al. | Mar 2015 | B2 |
9002575 | Harvey et al. | Apr 2015 | B2 |
9008956 | Hyde et al. | Apr 2015 | B2 |
9014953 | Breed et al. | Apr 2015 | B2 |
9020668 | Park et al. | Apr 2015 | B2 |
9026347 | Gadh et al. | May 2015 | B2 |
9030153 | Littrell | May 2015 | B2 |
9030172 | Ono | May 2015 | B2 |
9031874 | Kremen | May 2015 | B2 |
9035499 | Kesler et al. | May 2015 | B2 |
9036371 | Baarman | May 2015 | B2 |
9037507 | Tate, Jr. | May 2015 | B2 |
9041348 | Murawaka | May 2015 | B2 |
9043038 | Kempton | May 2015 | B2 |
9043059 | Ishibashi et al. | May 2015 | B2 |
9045053 | Ishibashi | Jun 2015 | B2 |
9054550 | Akai et al. | Jun 2015 | B2 |
9059485 | Dickinson et al. | Jun 2015 | B2 |
9065423 | Ganem et al. | Jun 2015 | B2 |
9067503 | Turner | Jun 2015 | B2 |
9073442 | Ichikawa | Jul 2015 | B2 |
9073554 | Hyde et al. | Jul 2015 | B2 |
9079498 | Small et al. | Jul 2015 | B2 |
9083205 | Igata | Jul 2015 | B2 |
9090170 | Mashinsky et al. | Jul 2015 | B2 |
9093724 | Fujitake | Jul 2015 | B2 |
9093853 | Schatz et al. | Jul 2015 | B2 |
9095729 | John | Aug 2015 | B2 |
9101777 | John | Aug 2015 | B2 |
9105959 | Kesler et al. | Aug 2015 | B2 |
9106203 | Kesler et al. | Aug 2015 | B2 |
9114717 | Yamamoto et al. | Aug 2015 | B2 |
9121073 | Miller et al. | Sep 2015 | B2 |
9123049 | Hyde et al. | Sep 2015 | B2 |
9145063 | Welschholz | Sep 2015 | B2 |
9150113 | Ichikawa | Oct 2015 | B2 |
9151692 | Breed | Oct 2015 | B2 |
9154002 | Norconk et al. | Oct 2015 | B2 |
9156362 | Soden et al. | Oct 2015 | B2 |
9160203 | Fiorello et al. | Oct 2015 | B2 |
9172116 | Ross et al. | Oct 2015 | B2 |
9180784 | Turner et al. | Nov 2015 | B2 |
9184595 | Kurs et al. | Nov 2015 | B2 |
9190874 | Baarman | Nov 2015 | B2 |
9197093 | Sagata | Nov 2015 | B2 |
9199538 | Masuda | Dec 2015 | B2 |
9201407 | Baxter et al. | Dec 2015 | B2 |
9201408 | Baxter et al. | Dec 2015 | B2 |
9227519 | Heuer et al. | Jan 2016 | B2 |
9231411 | Baarman et al. | Jan 2016 | B2 |
9246336 | Kurs et al. | Jan 2016 | B2 |
9246356 | Baarman | Jan 2016 | B2 |
9247588 | Baarman et al. | Jan 2016 | B2 |
9256905 | Mashinsky et al. | Feb 2016 | B2 |
9276437 | Partovi et al. | Mar 2016 | B2 |
9283857 | Shelton et al. | Mar 2016 | B2 |
9283862 | Bridges et al. | Mar 2016 | B2 |
9299093 | Kidston et al. | Mar 2016 | B2 |
9318898 | John | Apr 2016 | B2 |
9318912 | Baarman et al. | Apr 2016 | B2 |
9318922 | Hall et al. | Apr 2016 | B2 |
9321361 | Kamen et al. | Apr 2016 | B2 |
9331526 | Stevens et al. | May 2016 | B2 |
9350202 | Baarman | May 2016 | B2 |
9352659 | Turner | May 2016 | B1 |
9358894 | Shelton et al. | Jun 2016 | B2 |
9365123 | Flack | Jun 2016 | B2 |
9365124 | Soden et al. | Jun 2016 | B2 |
9365128 | Sarkar et al. | Jun 2016 | B2 |
9368976 | Baarman | Jun 2016 | B2 |
9369182 | Kurs et al. | Jun 2016 | B2 |
9381822 | Scheucher | Jul 2016 | B2 |
9396867 | Kurs | Jul 2016 | B2 |
9400990 | Genschel et al. | Jul 2016 | B2 |
9419450 | Paryani et al. | Aug 2016 | B2 |
9421875 | Flack | Aug 2016 | B1 |
9421878 | Tremblay et al. | Aug 2016 | B2 |
9431835 | Lowenthal et al. | Aug 2016 | B2 |
9436948 | Bridges et al. | Sep 2016 | B2 |
9443358 | Breed | Sep 2016 | B2 |
9444520 | Hall et al. | Sep 2016 | B2 |
9452684 | Shelton et al. | Sep 2016 | B2 |
9459110 | Kristinsson et al. | Oct 2016 | B2 |
9461501 | Partovi et al. | Oct 2016 | B2 |
9469211 | Baxter et al. | Oct 2016 | B2 |
9487099 | Muller et al. | Nov 2016 | B2 |
9496719 | Kesler et al. | Nov 2016 | B2 |
9496750 | Hayashigawa et al. | Nov 2016 | B2 |
9505317 | Littrell | Nov 2016 | B2 |
9515494 | Kurs et al. | Dec 2016 | B2 |
9515495 | Kurs et al. | Dec 2016 | B2 |
9533599 | Soden et al. | Jan 2017 | B2 |
9544022 | Stevens et al. | Jan 2017 | B2 |
9544683 | Ganem et al. | Jan 2017 | B2 |
9553724 | Takikita | Jan 2017 | B2 |
9561730 | Widmer et al. | Feb 2017 | B2 |
9569805 | Mashinsky et al. | Feb 2017 | B2 |
9577436 | Kesler et al. | Feb 2017 | B2 |
9577437 | Fells et al. | Feb 2017 | B2 |
9577440 | Partovi et al. | Feb 2017 | B2 |
9584189 | Kurs et al. | Feb 2017 | B2 |
9596005 | Kurs et al. | Mar 2017 | B2 |
9597974 | Lowenthal et al. | Mar 2017 | B2 |
9597976 | Dickinson et al. | Mar 2017 | B2 |
9601261 | Schatz et al. | Mar 2017 | B2 |
9601266 | Karalis et al. | Mar 2017 | B2 |
9601270 | Kurs et al. | Mar 2017 | B2 |
9601943 | Partovi et al. | Mar 2017 | B2 |
9602168 | Lamenza et al. | Mar 2017 | B2 |
9608460 | Muzaffer | Mar 2017 | B2 |
9608472 | Moshfeghi | Mar 2017 | B2 |
9610852 | Lowenthal et al. | Apr 2017 | B2 |
9610856 | Lowenthal et al. | Apr 2017 | B2 |
9623761 | Gale et al. | Apr 2017 | B2 |
9646435 | Outwater et al. | May 2017 | B2 |
9647460 | Becker et al. | May 2017 | B2 |
9662161 | Ganem et al. | May 2017 | B2 |
9666071 | Breed | May 2017 | B2 |
9674771 | Bridges et al. | Jun 2017 | B2 |
9688156 | Heuer et al. | Jun 2017 | B2 |
9697575 | Mashinsky et al. | Jul 2017 | B2 |
9698607 | Kesler et al. | Jul 2017 | B2 |
9701212 | Baarman et al. | Jul 2017 | B2 |
9705346 | Bonwit et al. | Jul 2017 | B2 |
9711991 | Hall et al. | Jul 2017 | B2 |
9742204 | Kurs et al. | Aug 2017 | B2 |
9744858 | Hall et al. | Aug 2017 | B2 |
9748039 | Kurs et al. | Aug 2017 | B2 |
9754300 | Kempton et al. | Sep 2017 | B2 |
9754718 | Hall et al. | Sep 2017 | B2 |
9764653 | Sarkar et al. | Sep 2017 | B2 |
9780605 | Kurs et al. | Oct 2017 | B2 |
9783073 | Mashinsky et al. | Oct 2017 | B2 |
9793721 | Partovi et al. | Oct 2017 | B2 |
9806541 | Schatz et al. | Oct 2017 | B2 |
9819200 | Solomon et al. | Nov 2017 | B2 |
9827861 | Gale et al. | Nov 2017 | B2 |
9837570 | Retti | Dec 2017 | B2 |
9843228 | Kurs et al. | Dec 2017 | B2 |
9843230 | John | Dec 2017 | B2 |
9849788 | Dickinson et al. | Dec 2017 | B2 |
9853488 | Fincham et al. | Dec 2017 | B2 |
9873347 | Brown | Jan 2018 | B2 |
9878629 | Lowenthal et al. | Jan 2018 | B2 |
9889761 | Lowenthal et al. | Feb 2018 | B2 |
9902276 | Bianco et al. | Feb 2018 | B2 |
9902280 | Gale et al. | Feb 2018 | B2 |
9908427 | Baxter et al. | Mar 2018 | B2 |
9908435 | Hill et al. | Mar 2018 | B2 |
9937812 | Billmaier | Apr 2018 | B1 |
9948145 | Sealy et al. | Apr 2018 | B2 |
9975444 | Sarkar et al. | May 2018 | B2 |
9981563 | Flack | May 2018 | B2 |
9981566 | Ichikawa | May 2018 | B2 |
10044229 | Partovi et al. | Aug 2018 | B2 |
10084348 | Kesler et al. | Sep 2018 | B2 |
10090567 | Austin | Oct 2018 | B2 |
10097011 | Kesler et al. | Oct 2018 | B2 |
10106048 | Haddad et al. | Oct 2018 | B2 |
10135262 | Solomon et al. | Nov 2018 | B2 |
10148298 | Jo | Dec 2018 | B2 |
10150381 | Lowenthal et al. | Dec 2018 | B2 |
10163283 | Outwater et al. | Dec 2018 | B2 |
10166876 | Falk et al. | Jan 2019 | B2 |
10189359 | Lowenthal et al. | Jan 2019 | B2 |
10211658 | Bonwit et al. | Feb 2019 | B2 |
10218224 | Campanella et al. | Feb 2019 | B2 |
10230243 | Schatz et al. | Mar 2019 | B2 |
10240935 | Breed | Mar 2019 | B2 |
10252633 | Baxter et al. | Apr 2019 | B2 |
10263474 | Moslifeghi | Apr 2019 | B2 |
10264352 | Ganem et al. | Apr 2019 | B2 |
10279698 | Bridges et al. | May 2019 | B2 |
10286792 | Shelton et al. | May 2019 | B2 |
10300800 | Kurs et al. | May 2019 | B2 |
10340745 | Kurs et al. | Jul 2019 | B2 |
10343535 | Cook et al. | Jul 2019 | B2 |
10348136 | John | Jul 2019 | B2 |
10384553 | Sarkar et al. | Aug 2019 | B2 |
10410789 | Kurs | Sep 2019 | B2 |
10442302 | Kintner-Meyer | Oct 2019 | B2 |
10446317 | Hall et al. | Oct 2019 | B2 |
10486541 | Littrell | Nov 2019 | B2 |
10493853 | Widmer et al. | Dec 2019 | B2 |
10518650 | Heuer et al. | Dec 2019 | B2 |
10536034 | Kurs et al. | Jan 2020 | B2 |
10556513 | Kamen et al. | Feb 2020 | B2 |
10559980 | Kurs et al. | Feb 2020 | B2 |
10573093 | Breed | Feb 2020 | B2 |
10598541 | Bunner | Mar 2020 | B2 |
10604019 | Heuer et al. | Mar 2020 | B2 |
10604021 | Brown | Mar 2020 | B2 |
10673282 | Campanella et al. | Jun 2020 | B2 |
10682922 | Shelton et al. | Jun 2020 | B2 |
10714986 | Partovi | Jul 2020 | B2 |
10723231 | Sarkar et al. | Jul 2020 | B2 |
10730395 | Billmaier | Aug 2020 | B2 |
10793014 | Haddad et al. | Oct 2020 | B2 |
10810804 | Lowenthal et al. | Oct 2020 | B2 |
10812979 | Outwater et al. | Oct 2020 | B2 |
10833509 | Solomon et al. | Nov 2020 | B2 |
10843580 | Pollack et al. | Nov 2020 | B2 |
10850625 | Lowenthal et al. | Dec 2020 | B2 |
10850633 | Haddad et al. | Dec 2020 | B2 |
10873210 | Lowenthal et al. | Dec 2020 | B2 |
10879733 | Lowenthal et al. | Dec 2020 | B2 |
10892639 | Bridges et al. | Jan 2021 | B2 |
10906423 | Bridges et al. | Feb 2021 | B2 |
10913372 | Baxter et al. | Feb 2021 | B2 |
11022994 | Golden et al. | Jun 2021 | B2 |
11114896 | Kurs et al. | Sep 2021 | B2 |
11114897 | Kurs et al. | Sep 2021 | B2 |
11121580 | Partovi et al. | Sep 2021 | B2 |
11151552 | Levy et al. | Oct 2021 | B2 |
20010004201 | Kajiura | Jun 2001 | A1 |
20010012208 | Boys | Aug 2001 | A1 |
20020027501 | Yamanaka et al. | Mar 2002 | A1 |
20020067078 | Hogarth | Jun 2002 | A1 |
20020117897 | Takahashi | Aug 2002 | A1 |
20020130771 | Osborne et al. | Sep 2002 | A1 |
20020145404 | Dasgupta et al. | Oct 2002 | A1 |
20030011276 | Nowottnick | Jan 2003 | A1 |
20030102966 | Konchin et al. | Jun 2003 | A1 |
20030137277 | Mori et al. | Jul 2003 | A1 |
20030152088 | Kominami et al. | Aug 2003 | A1 |
20030200025 | Ross | Oct 2003 | A1 |
20030205619 | Terranova et al. | Nov 2003 | A1 |
20030209063 | Adamson et al. | Nov 2003 | A1 |
20030209064 | Adamson et al. | Nov 2003 | A1 |
20030230443 | Cramer et al. | Dec 2003 | A1 |
20040010358 | Oesterling et al. | Jan 2004 | A1 |
20040035617 | Chaney | Feb 2004 | A1 |
20040036354 | Kazmierczak | Feb 2004 | A1 |
20040069549 | Ono et al. | Apr 2004 | A1 |
20040070365 | Chiu | Apr 2004 | A1 |
20040164558 | Adamson et al. | Aug 2004 | A1 |
20040205032 | Routtenberg et al. | Oct 2004 | A1 |
20040230480 | Kanayama | Nov 2004 | A1 |
20040263099 | Maslov et al. | Dec 2004 | A1 |
20040267617 | Yanase | Dec 2004 | A1 |
20050001589 | Edington et al. | Jan 2005 | A1 |
20050052080 | Maslov et al. | Mar 2005 | A1 |
20050068161 | Ichinose | Mar 2005 | A1 |
20050073395 | Choi | Apr 2005 | A1 |
20050146220 | Hamel et al. | Jul 2005 | A1 |
20050154508 | Honda | Jul 2005 | A1 |
20050163063 | Kuchler et al. | Jul 2005 | A1 |
20050178632 | Ross | Aug 2005 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050200463 | Situ et al. | Sep 2005 | A1 |
20050248447 | Yaqub | Nov 2005 | A1 |
20050274556 | Chaney | Dec 2005 | A1 |
20050285569 | Rao et al. | Dec 2005 | A1 |
20060005736 | Kumar | Jan 2006 | A1 |
20060028167 | Czubay et al. | Feb 2006 | A1 |
20060055513 | French et al. | Mar 2006 | A1 |
20060061322 | Yamazaki et al. | Mar 2006 | A1 |
20060089844 | Dickinson et al. | Apr 2006 | A1 |
20060226703 | Schreiber | Oct 2006 | A1 |
20060244411 | Wobben | Nov 2006 | A1 |
20060273756 | Bowling et al. | Dec 2006 | A1 |
20060284839 | Breed et al. | Dec 2006 | A1 |
20060287783 | Walker | Dec 2006 | A1 |
20070028958 | Retti | Feb 2007 | A1 |
20070050240 | Belani et al. | Mar 2007 | A1 |
20070052386 | Lin | Mar 2007 | A1 |
20070080795 | Ichikawa | Apr 2007 | A1 |
20070090810 | Dickinson et al. | Apr 2007 | A1 |
20070126395 | Suchar | Jun 2007 | A1 |
20070126561 | Breed | Jun 2007 | A1 |
20070131505 | Kim | Jun 2007 | A1 |
20070139012 | Hayashigawa | Jun 2007 | A1 |
20070170886 | Plishner | Jul 2007 | A1 |
20070198150 | Kato | Aug 2007 | A1 |
20070203860 | Golden et al. | Aug 2007 | A1 |
20070205881 | Breed | Sep 2007 | A1 |
20070210935 | Yost et al. | Sep 2007 | A1 |
20070216348 | Shionoiri et al. | Sep 2007 | A1 |
20070251621 | Prost | Nov 2007 | A1 |
20070282495 | Kempton et al. | Dec 2007 | A1 |
20070284158 | Choi | Dec 2007 | A1 |
20080007202 | Pryor | Jan 2008 | A1 |
20080039979 | Bridges et al. | Feb 2008 | A1 |
20080040223 | Bridges et al. | Feb 2008 | A1 |
20080040263 | Pollack et al. | Feb 2008 | A1 |
20080040295 | Kaplan et al. | Feb 2008 | A1 |
20080040296 | Bridges et al. | Feb 2008 | A1 |
20080052145 | Kaplan et al. | Feb 2008 | A1 |
20080053716 | Scheucher | Mar 2008 | A1 |
20080065290 | Breed et al. | Mar 2008 | A1 |
20080067974 | Zhang et al. | Mar 2008 | A1 |
20080077286 | Oyobe et al. | Mar 2008 | A1 |
20080084138 | Micallef | Apr 2008 | A1 |
20080086240 | Breed | Apr 2008 | A1 |
20080111519 | Vasilantone | May 2008 | A1 |
20080113226 | Dasgupta et al. | May 2008 | A1 |
20080119966 | Breed et al. | May 2008 | A1 |
20080136371 | Sutardja | Jun 2008 | A1 |
20080140278 | Breed | Jun 2008 | A1 |
20080150490 | Koziara et al. | Jun 2008 | A1 |
20080154800 | Fein et al. | Jun 2008 | A1 |
20080154801 | Fein et al. | Jun 2008 | A1 |
20080167756 | Golden et al. | Jul 2008 | A1 |
20080179889 | Matsui | Jul 2008 | A1 |
20080203973 | Gale et al. | Aug 2008 | A1 |
20080218122 | Takano et al. | Sep 2008 | A1 |
20080221746 | Plishner | Sep 2008 | A1 |
20080272906 | Breed | Nov 2008 | A1 |
20080280192 | Drozdz et al. | Nov 2008 | A1 |
20080281663 | Hakim et al. | Nov 2008 | A1 |
20080297109 | Sandberg et al. | Dec 2008 | A1 |
20080304212 | Seff et al. | Dec 2008 | A1 |
20080312782 | Berdichevsky et al. | Dec 2008 | A1 |
20080319893 | Mashinsky et al. | Dec 2008 | A1 |
20090010028 | Baarman et al. | Jan 2009 | A1 |
20090021213 | Johnson | Jan 2009 | A1 |
20090023056 | Adams et al. | Jan 2009 | A1 |
20090024255 | Penzenstadler et al. | Jan 2009 | A1 |
20090024458 | Palmer | Jan 2009 | A1 |
20090024545 | Golden et al. | Jan 2009 | A1 |
20090030712 | Bogolea et al. | Jan 2009 | A1 |
20090040029 | Bridges et al. | Feb 2009 | A1 |
20090043519 | Bridges et al. | Feb 2009 | A1 |
20090043520 | Pollack et al. | Feb 2009 | A1 |
20090057041 | Kamaga | Mar 2009 | A1 |
20090058371 | Nakajima et al. | Mar 2009 | A1 |
20090063228 | Forbes, Jr. | Mar 2009 | A1 |
20090063680 | Bridges et al. | Mar 2009 | A1 |
20090066287 | Pollack et al. | Mar 2009 | A1 |
20090079384 | Harris | Mar 2009 | A1 |
20090079389 | Ohtomo | Mar 2009 | A1 |
20090082957 | Agassi et al. | Mar 2009 | A1 |
20090088907 | Lewis et al. | Apr 2009 | A1 |
20090102433 | Kamaga | Apr 2009 | A1 |
20090102636 | Tranchina | Apr 2009 | A1 |
20090121659 | Oyobe et al. | May 2009 | A1 |
20090139781 | Straubel | Jun 2009 | A1 |
20090140698 | Eberhard et al. | Jun 2009 | A1 |
20090140700 | Eberhard et al. | Jun 2009 | A1 |
20090143929 | Eberhard et al. | Jun 2009 | A1 |
20090144150 | Sakakibara et al. | Jun 2009 | A1 |
20090149290 | Wallner et al. | Jun 2009 | A1 |
20090153099 | Mahawili | Jun 2009 | A1 |
20090167254 | Eberhard et al. | Jul 2009 | A1 |
20090174778 | Allen et al. | Jul 2009 | A1 |
20090177580 | Lowenthal et al. | Jul 2009 | A1 |
20090177595 | Dunlap et al. | Jul 2009 | A1 |
20090192927 | Berg et al. | Jul 2009 | A1 |
20090200988 | Bridges et al. | Aug 2009 | A1 |
20090210357 | Pudar et al. | Aug 2009 | A1 |
20090212637 | Baarman et al. | Aug 2009 | A1 |
20090222143 | Kempton | Sep 2009 | A1 |
20090224724 | Ma et al. | Sep 2009 | A1 |
20090228388 | Axelrod et al. | Sep 2009 | A1 |
20090228403 | Elam et al. | Sep 2009 | A1 |
20090251300 | Yasuda et al. | Oct 2009 | A1 |
20090259603 | Housh et al. | Oct 2009 | A1 |
20090287578 | Paluszek et al. | Nov 2009 | A1 |
20090299918 | Cook et al. | Dec 2009 | A1 |
20090302801 | Katsunaga | Dec 2009 | A1 |
20090313032 | Hafner et al. | Dec 2009 | A1 |
20090313033 | Hafner et al. | Dec 2009 | A1 |
20090313034 | Ferro et al. | Dec 2009 | A1 |
20090313098 | Hafner et al. | Dec 2009 | A1 |
20090313103 | Ambrosio et al. | Dec 2009 | A1 |
20090313104 | Hafner et al. | Dec 2009 | A1 |
20090313174 | Hafner et al. | Dec 2009 | A1 |
20090326725 | Carlson et al. | Dec 2009 | A1 |
20100006356 | Curry et al. | Jan 2010 | A1 |
20100010685 | Kang | Jan 2010 | A1 |
20100013435 | Tu | Jan 2010 | A1 |
20100017043 | Kressner et al. | Jan 2010 | A1 |
20100017045 | Nesler et al. | Jan 2010 | A1 |
20100017249 | Fincham et al. | Jan 2010 | A1 |
20100018785 | Samuel | Jan 2010 | A1 |
20100019723 | Ichikawa | Jan 2010 | A1 |
20100019734 | Oyobe et al. | Jan 2010 | A1 |
20100026243 | Tatsumi | Feb 2010 | A1 |
20100039062 | Gu et al. | Feb 2010 | A1 |
20100045232 | Chen et al. | Feb 2010 | A1 |
20100049396 | Ferro et al. | Feb 2010 | A1 |
20100049533 | Ferro et al. | Feb 2010 | A1 |
20100049610 | Ambrosio et al. | Feb 2010 | A1 |
20100049639 | Ferro et al. | Feb 2010 | A1 |
20100049737 | Ambrosio et al. | Feb 2010 | A1 |
20100057282 | Katrak et al. | Mar 2010 | A1 |
20100057306 | Ishii et al. | Mar 2010 | A1 |
20100065344 | Collings, III | Mar 2010 | A1 |
20100072946 | Sugano | Mar 2010 | A1 |
20100072953 | Mitsutani | Mar 2010 | A1 |
20100076878 | Burr et al. | Mar 2010 | A1 |
20100082277 | Ballard | Apr 2010 | A1 |
20100082464 | Keefe | Apr 2010 | A1 |
20100094496 | Hershkovitz et al. | Apr 2010 | A1 |
20100097036 | Wakayama | Apr 2010 | A1 |
20100103702 | Baarman | Apr 2010 | A1 |
20100106631 | Kurayama et al. | Apr 2010 | A1 |
20100106641 | Chassin et al. | Apr 2010 | A1 |
20100109604 | Boys et al. | May 2010 | A1 |
20100114800 | Yasuda et al. | May 2010 | A1 |
20100114801 | Plishner | May 2010 | A1 |
20100133916 | Sato | Jun 2010 | A1 |
20100134067 | Baxter et al. | Jun 2010 | A1 |
20100138093 | Oku et al. | Jun 2010 | A1 |
20100138363 | Batterberry et al. | Jun 2010 | A1 |
20100141203 | Graziano et al. | Jun 2010 | A1 |
20100145535 | Tyler et al. | Jun 2010 | A1 |
20100145837 | Graziano et al. | Jun 2010 | A1 |
20100145885 | Graziano et al. | Jun 2010 | A1 |
20100156193 | Rhodes et al. | Jun 2010 | A1 |
20100156349 | Littrell | Jun 2010 | A1 |
20100156355 | Bauerle et al. | Jun 2010 | A1 |
20100161393 | Littrell | Jun 2010 | A1 |
20100161469 | Littrell | Jun 2010 | A1 |
20100161480 | Littrell | Jun 2010 | A1 |
20100161481 | Littrell | Jun 2010 | A1 |
20100161482 | Littrell | Jun 2010 | A1 |
20100161517 | Littrell | Jun 2010 | A1 |
20100161518 | Littrell | Jun 2010 | A1 |
20100164439 | Ido | Jul 2010 | A1 |
20100171368 | Schatz et al. | Jul 2010 | A1 |
20100174667 | Vitale et al. | Jul 2010 | A1 |
20100179862 | Chassin et al. | Jul 2010 | A1 |
20100179893 | Burke et al. | Jul 2010 | A1 |
20100188040 | Reed | Jul 2010 | A1 |
20100188042 | Yeh | Jul 2010 | A1 |
20100191585 | Smith | Jul 2010 | A1 |
20100198440 | Fujitake | Aug 2010 | A1 |
20100198751 | Jacobus | Aug 2010 | A1 |
20100201309 | Meek | Aug 2010 | A1 |
20100207572 | Kirby et al. | Aug 2010 | A1 |
20100207588 | Lowenthal et al. | Aug 2010 | A1 |
20100211340 | Lowenthal et al. | Aug 2010 | A1 |
20100211643 | Lowenthal et al. | Aug 2010 | A1 |
20100213898 | Hayashigawa | Aug 2010 | A1 |
20100217452 | McCord et al. | Aug 2010 | A1 |
20100217549 | Galvin et al. | Aug 2010 | A1 |
20100217651 | Crabtree et al. | Aug 2010 | A1 |
20100228415 | Paul | Sep 2010 | A1 |
20100231163 | Mashinsky | Sep 2010 | A1 |
20100231164 | Yang | Sep 2010 | A1 |
20100231340 | Fiorello et al. | Sep 2010 | A1 |
20100235006 | Brown | Sep 2010 | A1 |
20100235008 | Forbes, Jr. et al. | Sep 2010 | A1 |
20100235304 | Mikos | Sep 2010 | A1 |
20100241299 | Ito et al. | Sep 2010 | A1 |
20100241560 | Landau-Holdsworth et al. | Sep 2010 | A1 |
20100250043 | Scheucher | Sep 2010 | A1 |
20100250590 | Galvin | Sep 2010 | A1 |
20100256830 | Kressner et al. | Oct 2010 | A1 |
20100259110 | Kurs et al. | Oct 2010 | A1 |
20100259217 | Baarman et al. | Oct 2010 | A1 |
20100262566 | Yamamoto | Oct 2010 | A1 |
20100268411 | Taguchi | Oct 2010 | A1 |
20100271172 | Takikita | Oct 2010 | A1 |
20100271192 | Mituta | Oct 2010 | A1 |
20100274570 | Proefke et al. | Oct 2010 | A1 |
20100274656 | Genschel et al. | Oct 2010 | A1 |
20100277121 | Hall et al. | Nov 2010 | A1 |
20100280675 | Tate, Jr. et al. | Nov 2010 | A1 |
20100283426 | Redmann | Nov 2010 | A1 |
20100283432 | Ellwanger et al. | Nov 2010 | A1 |
20100289331 | Shionoiri et al. | Nov 2010 | A1 |
20100292855 | Kintner-Meyer | Nov 2010 | A1 |
20100292877 | Lee | Nov 2010 | A1 |
20100301802 | Iida | Dec 2010 | A1 |
20100301810 | Biondo et al. | Dec 2010 | A1 |
20100306033 | Oved et al. | Dec 2010 | A1 |
20100308769 | Baba | Dec 2010 | A1 |
20100308939 | Kurs | Dec 2010 | A1 |
20100309778 | Young | Dec 2010 | A1 |
20100315197 | Solomon et al. | Dec 2010 | A1 |
20100318250 | Mitsutani | Dec 2010 | A1 |
20100320018 | Gwozdek et al. | Dec 2010 | A1 |
20100320964 | Lathrop et al. | Dec 2010 | A1 |
20100320966 | Baxter et al. | Dec 2010 | A1 |
20100328314 | Ellingham et al. | Dec 2010 | A1 |
20100332076 | Dickinson et al. | Dec 2010 | A1 |
20110001356 | Pollack | Jan 2011 | A1 |
20110003183 | Baglino et al. | Jan 2011 | A1 |
20110004358 | Pollack et al. | Jan 2011 | A1 |
20110004406 | Davis | Jan 2011 | A1 |
20110007824 | Bridges et al. | Jan 2011 | A1 |
20110010043 | Lafky | Jan 2011 | A1 |
20110010158 | Bridges | Jan 2011 | A1 |
20110010281 | Wass | Jan 2011 | A1 |
20110012563 | Paryani et al. | Jan 2011 | A1 |
20110013322 | Gale et al. | Jan 2011 | A1 |
20110014501 | Scheucher | Jan 2011 | A1 |
20110016063 | Pollack et al. | Jan 2011 | A1 |
20110017529 | Durney | Jan 2011 | A1 |
20110022254 | Johas Teener et al. | Jan 2011 | A1 |
20110022256 | Asada et al. | Jan 2011 | A1 |
20110025267 | Kamen et al. | Feb 2011 | A1 |
20110025556 | Bridges et al. | Feb 2011 | A1 |
20110029144 | Muller et al. | Feb 2011 | A1 |
20110029146 | Muller et al. | Feb 2011 | A1 |
20110029157 | Muzaffer | Feb 2011 | A1 |
20110029170 | Hyde et al. | Feb 2011 | A1 |
20110029187 | Hyde et al. | Feb 2011 | A1 |
20110029189 | Hyde et al. | Feb 2011 | A1 |
20110031047 | Tarr | Feb 2011 | A1 |
20110040666 | Crabtree et al. | Feb 2011 | A1 |
20110043161 | Artieda et al. | Feb 2011 | A1 |
20110043165 | Kinser et al. | Feb 2011 | A1 |
20110046798 | Imes et al. | Feb 2011 | A1 |
20110047102 | Grider et al. | Feb 2011 | A1 |
20110049978 | Sasaki et al. | Mar 2011 | A1 |
20110050164 | Partovi et al. | Mar 2011 | A1 |
20110050168 | Yoo et al. | Mar 2011 | A1 |
20110060535 | Arms et al. | Mar 2011 | A1 |
20110066515 | Horvath et al. | Mar 2011 | A1 |
20110068739 | Smith | Mar 2011 | A1 |
20110071923 | Kende et al. | Mar 2011 | A1 |
20110071932 | Agassi et al. | Mar 2011 | A1 |
20110074231 | Soderberg | Mar 2011 | A1 |
20110074346 | Hall et al. | Mar 2011 | A1 |
20110074348 | Villa Gazulla et al. | Mar 2011 | A1 |
20110074351 | Bianco et al. | Mar 2011 | A1 |
20110077805 | Hyde et al. | Mar 2011 | A1 |
20110077806 | Hyde et al. | Mar 2011 | A1 |
20110077808 | Hyde et al. | Mar 2011 | A1 |
20110078092 | Kim et al. | Mar 2011 | A1 |
20110082612 | Ichikawa | Apr 2011 | A1 |
20110082616 | Small et al. | Apr 2011 | A1 |
20110082618 | Small et al. | Apr 2011 | A1 |
20110082619 | Small et al. | Apr 2011 | A1 |
20110082620 | Small et al. | Apr 2011 | A1 |
20110082627 | Small et al. | Apr 2011 | A1 |
20110084658 | Yamamoto et al. | Apr 2011 | A1 |
20110087399 | Hyde et al. | Apr 2011 | A1 |
20110093127 | Kaplan | Apr 2011 | A1 |
20110093396 | Parkos et al. | Apr 2011 | A1 |
20110095618 | Schatz et al. | Apr 2011 | A1 |
20110099111 | Levy et al. | Apr 2011 | A1 |
20110099144 | Levy et al. | Apr 2011 | A1 |
20110106329 | Donnelly et al. | May 2011 | A1 |
20110106336 | Eikeland et al. | May 2011 | A1 |
20110109263 | Sakoda et al. | May 2011 | A1 |
20110115303 | Baarman et al. | May 2011 | A1 |
20110118919 | Park et al. | May 2011 | A1 |
20110121778 | Oyobe et al. | May 2011 | A1 |
20110127956 | Mitsutani | Jun 2011 | A1 |
20110133693 | Lowenthal et al. | Jun 2011 | A1 |
20110140656 | Starr et al. | Jun 2011 | A1 |
20110140658 | Outwater et al. | Jun 2011 | A1 |
20110140835 | Ishibashi | Jun 2011 | A1 |
20110144823 | Muller et al. | Jun 2011 | A1 |
20110145141 | Blain | Jun 2011 | A1 |
20110148350 | Wegener et al. | Jun 2011 | A1 |
20110148351 | Ichikawa | Jun 2011 | A1 |
20110148353 | King et al. | Jun 2011 | A1 |
20110153131 | Kressner et al. | Jun 2011 | A1 |
20110153474 | Tormey et al. | Jun 2011 | A1 |
20110156494 | Mashinsky | Jun 2011 | A1 |
20110156642 | Noguchi et al. | Jun 2011 | A1 |
20110161143 | Tajima | Jun 2011 | A1 |
20110163542 | Farkas | Jul 2011 | A1 |
20110163716 | Gale et al. | Jul 2011 | A1 |
20110163717 | Gale et al. | Jul 2011 | A1 |
20110169447 | Brown et al. | Jul 2011 | A1 |
20110172841 | Forbes, Jr. | Jul 2011 | A1 |
20110174875 | Wurzer | Jul 2011 | A1 |
20110175458 | Baarman | Jul 2011 | A1 |
20110175569 | Austin | Jul 2011 | A1 |
20110178959 | Nakajima et al. | Jul 2011 | A1 |
20110181240 | Baarman et al. | Jul 2011 | A1 |
20110184600 | Kristinsson et al. | Jul 2011 | A1 |
20110184842 | Melen | Jul 2011 | A1 |
20110187320 | Murayama | Aug 2011 | A1 |
20110187321 | Hirayama | Aug 2011 | A1 |
20110191220 | Kidston et al. | Aug 2011 | A1 |
20110191265 | Lowenthal et al. | Aug 2011 | A1 |
20110196692 | Chavez, Jr. et al. | Aug 2011 | A1 |
20110199047 | Fujii | Aug 2011 | A1 |
20110199048 | Yokoyama et al. | Aug 2011 | A1 |
20110202192 | Kempton | Aug 2011 | A1 |
20110202213 | Rosendahl | Aug 2011 | A1 |
20110202219 | Ishibashi | Aug 2011 | A1 |
20110202221 | Sobue et al. | Aug 2011 | A1 |
20110202418 | Kempton et al. | Aug 2011 | A1 |
20110204711 | Norconk et al. | Aug 2011 | A1 |
20110204845 | Paparo et al. | Aug 2011 | A1 |
20110208370 | Lee | Aug 2011 | A1 |
20110213656 | Turner | Sep 2011 | A1 |
20110213983 | Staugaitis et al. | Sep 2011 | A1 |
20110215758 | Stahlin et al. | Sep 2011 | A1 |
20110221384 | Scheucher | Sep 2011 | A1 |
20110221385 | Partovi et al. | Sep 2011 | A1 |
20110221387 | Steigerwald et al. | Sep 2011 | A1 |
20110224841 | Profitt-Brown et al. | Sep 2011 | A1 |
20110224852 | Profitt-Brown et al. | Sep 2011 | A1 |
20110225105 | Scholer et al. | Sep 2011 | A1 |
20110227531 | Rajakaruna | Sep 2011 | A1 |
20110227532 | Niwa | Sep 2011 | A1 |
20110231029 | Ichikawa et al. | Sep 2011 | A1 |
20110231044 | Fassnacht | Sep 2011 | A1 |
20110246259 | Hostyn et al. | Oct 2011 | A1 |
20110254503 | Widmer et al. | Oct 2011 | A1 |
20110254504 | Haddad et al. | Oct 2011 | A1 |
20110254505 | Evander et al. | Oct 2011 | A1 |
20110258112 | Eder et al. | Oct 2011 | A1 |
20110270462 | Amano et al. | Nov 2011 | A1 |
20110270476 | Doppler et al. | Nov 2011 | A1 |
20110270480 | Ishibashi et al. | Nov 2011 | A1 |
20110270487 | Dickinson et al. | Nov 2011 | A1 |
20110273137 | Nakatsuji et al. | Nov 2011 | A1 |
20110276448 | Perper et al. | Nov 2011 | A1 |
20110278940 | Krishna et al. | Nov 2011 | A1 |
20110278950 | Baarman | Nov 2011 | A1 |
20110279083 | Asai et al. | Nov 2011 | A1 |
20110282508 | Goutard et al. | Nov 2011 | A1 |
20110282513 | Son et al. | Nov 2011 | A1 |
20110285210 | Lemmens et al. | Nov 2011 | A1 |
20110285349 | Widmer et al. | Nov 2011 | A1 |
20110291491 | Lemmens et al. | Dec 2011 | A1 |
20110291612 | Fujitake | Dec 2011 | A1 |
20110291615 | Pandya et al. | Dec 2011 | A1 |
20110298298 | Baarman | Dec 2011 | A1 |
20110298417 | Stewart et al. | Dec 2011 | A1 |
20110302108 | Werner | Dec 2011 | A1 |
20110304298 | Gow et al. | Dec 2011 | A1 |
20110309791 | Mitake et al. | Dec 2011 | A1 |
20110316478 | Lowenthal et al. | Dec 2011 | A1 |
20110316479 | Baxter et al. | Dec 2011 | A1 |
20110320056 | Brown et al. | Dec 2011 | A1 |
20120001487 | Pessina | Jan 2012 | A1 |
20120004798 | Sakamoto et al. | Jan 2012 | A1 |
20120005031 | Jammer | Jan 2012 | A1 |
20120005125 | Jammer | Jan 2012 | A1 |
20120005126 | Oh et al. | Jan 2012 | A1 |
20120007553 | Ichikawa et al. | Jan 2012 | A1 |
20120007557 | Hayashigawa | Jan 2012 | A1 |
20120010769 | Sourioux et al. | Jan 2012 | A1 |
20120013298 | Prosser et al. | Jan 2012 | A1 |
20120013299 | Prosser et al. | Jan 2012 | A1 |
20120013300 | Prosser et al. | Jan 2012 | A1 |
20120013302 | Genzel et al. | Jan 2012 | A1 |
20120016546 | Nilssen et al. | Jan 2012 | A1 |
20120016551 | Krause et al. | Jan 2012 | A1 |
20120019196 | Fung | Jan 2012 | A1 |
20120019205 | Kressner et al. | Jan 2012 | A1 |
20120019206 | Sekido et al. | Jan 2012 | A1 |
20120019215 | Wenger et al. | Jan 2012 | A1 |
20120021258 | Kelty et al. | Jan 2012 | A1 |
20120025758 | Bohori et al. | Feb 2012 | A1 |
20120025759 | Kressner | Feb 2012 | A1 |
20120032633 | Cordes et al. | Feb 2012 | A1 |
20120032636 | Bianco | Feb 2012 | A1 |
20120032637 | Kotooka et al. | Feb 2012 | A1 |
20120041855 | Sterling et al. | Feb 2012 | A1 |
20120044843 | Levy et al. | Feb 2012 | A1 |
20120046795 | Kelty | Feb 2012 | A1 |
20120049621 | Shinoda | Mar 2012 | A1 |
20120049793 | Ross et al. | Mar 2012 | A1 |
20120053771 | Yoshida | Mar 2012 | A1 |
20120054125 | Clifton et al. | Mar 2012 | A1 |
20120056580 | Kai et al. | Mar 2012 | A1 |
20120059775 | Oh et al. | Mar 2012 | A1 |
20120068551 | Pooley et al. | Mar 2012 | A1 |
20120074902 | Scheucher | Mar 2012 | A1 |
20120074903 | Nakashima | Mar 2012 | A1 |
20120081073 | Niemann et al. | Apr 2012 | A1 |
20120083930 | Ilic et al. | Apr 2012 | A1 |
20120091832 | Soderberg | Apr 2012 | A1 |
20120091949 | Campanella et al. | Apr 2012 | A1 |
20120091950 | Campanella et al. | Apr 2012 | A1 |
20120091954 | Matsuki | Apr 2012 | A1 |
20120091957 | Masuda | Apr 2012 | A1 |
20120091958 | Ichikawa et al. | Apr 2012 | A1 |
20120091961 | Hani et al. | Apr 2012 | A1 |
20120098490 | Masuda | Apr 2012 | A1 |
20120104868 | Baarman et al. | May 2012 | A1 |
20120104998 | Takada et al. | May 2012 | A1 |
20120105002 | Eikeland et al. | May 2012 | A1 |
20120106672 | Shelton et al. | May 2012 | A1 |
20120109401 | Shelton et al. | May 2012 | A1 |
20120109402 | Shelton et al. | May 2012 | A1 |
20120109403 | Shelton et al. | May 2012 | A1 |
20120109797 | Shelton et al. | May 2012 | A1 |
20120109798 | Shelton et al. | May 2012 | A1 |
20120112531 | Kesler et al. | May 2012 | A1 |
20120112532 | Kesler et al. | May 2012 | A1 |
20120112534 | Kesler et al. | May 2012 | A1 |
20120112535 | Karalis et al. | May 2012 | A1 |
20120112536 | Karalis et al. | May 2012 | A1 |
20120112538 | Kesler et al. | May 2012 | A1 |
20120112552 | Baarman et al. | May 2012 | A1 |
20120112553 | Stoner, Jr. et al. | May 2012 | A1 |
20120112691 | Kurs et al. | May 2012 | A1 |
20120112694 | Frisch et al. | May 2012 | A1 |
20120112696 | Ikeda et al. | May 2012 | A1 |
20120112697 | Heuer et al. | May 2012 | A1 |
20120112698 | Yoshimura et al. | May 2012 | A1 |
20120116575 | Prosser et al. | May 2012 | A1 |
20120119569 | Karalis et al. | May 2012 | A1 |
20120119575 | Kurs et al. | May 2012 | A1 |
20120119576 | Kesler et al. | May 2012 | A1 |
20120119698 | Karalis et al. | May 2012 | A1 |
20120126747 | Kiko et al. | May 2012 | A1 |
20120133324 | Baarman et al. | May 2012 | A1 |
20120133326 | Ichikawa et al. | May 2012 | A1 |
20120139489 | Gaul et al. | Jun 2012 | A1 |
20120139490 | Ishii | Jun 2012 | A1 |
20120143423 | Theisen et al. | Jun 2012 | A1 |
20120146581 | Tu | Jun 2012 | A1 |
20120146582 | Lei et al. | Jun 2012 | A1 |
20120146583 | Gaul et al. | Jun 2012 | A1 |
20120150360 | Kirchner et al. | Jun 2012 | A1 |
20120150670 | Taylor et al. | Jun 2012 | A1 |
20120153893 | Schatz et al. | Jun 2012 | A1 |
20120153894 | Widmer | Jun 2012 | A1 |
20120153895 | Gale et al. | Jun 2012 | A1 |
20120153896 | Rossi | Jun 2012 | A1 |
20120154242 | Nakatani | Jun 2012 | A1 |
20120158229 | Schaefer | Jun 2012 | A1 |
20120161696 | Cook et al. | Jun 2012 | A1 |
20120161704 | Gaul et al. | Jun 2012 | A1 |
20120161925 | Gale et al. | Jun 2012 | A1 |
20120166011 | Oba et al. | Jun 2012 | A1 |
20120166012 | Lee et al. | Jun 2012 | A1 |
20120166240 | Jones et al. | Jun 2012 | A1 |
20120166269 | Payne et al. | Jun 2012 | A1 |
20120169282 | Helnerus et al. | Jul 2012 | A1 |
20120169283 | Lowenthal et al. | Jul 2012 | A1 |
20120173061 | Hanley et al. | Jul 2012 | A1 |
20120173074 | Yasko et al. | Jul 2012 | A1 |
20120173292 | Solomon et al. | Jul 2012 | A1 |
20120175967 | Dibben et al. | Jul 2012 | A1 |
20120179311 | Skaff et al. | Jul 2012 | A1 |
20120179323 | Profitt-Brown et al. | Jul 2012 | A1 |
20120181876 | Baarman et al. | Jul 2012 | A1 |
20120181981 | Wechlin et al. | Jul 2012 | A1 |
20120181983 | Khan et al. | Jul 2012 | A1 |
20120184338 | Kesler et al. | Jul 2012 | A1 |
20120185379 | Tu | Jul 2012 | A1 |
20120187757 | Wechlin et al. | Jul 2012 | A1 |
20120191524 | Ambrosio et al. | Jul 2012 | A1 |
20120191600 | Boot | Jul 2012 | A1 |
20120193929 | Karner | Aug 2012 | A1 |
20120194127 | Kobayashi et al. | Aug 2012 | A1 |
20120197693 | Karner et al. | Aug 2012 | A1 |
20120200260 | Karner et al. | Aug 2012 | A1 |
20120203410 | Wechlin et al. | Aug 2012 | A1 |
20120206092 | Yukizane | Aug 2012 | A1 |
20120206096 | John | Aug 2012 | A1 |
20120206098 | Kim | Aug 2012 | A1 |
20120206100 | Brown et al. | Aug 2012 | A1 |
20120209465 | Dehmann | Aug 2012 | A1 |
20120215725 | Imes et al. | Aug 2012 | A1 |
20120221160 | Hafner et al. | Aug 2012 | A1 |
20120228952 | Hall et al. | Sep 2012 | A1 |
20120228953 | Kesler et al. | Sep 2012 | A1 |
20120228954 | Kesler et al. | Sep 2012 | A1 |
20120234971 | Bugash et al. | Sep 2012 | A1 |
20120235474 | Mannino et al. | Sep 2012 | A1 |
20120235501 | Kesler et al. | Sep 2012 | A1 |
20120235502 | Kesler et al. | Sep 2012 | A1 |
20120235503 | Kesler et al. | Sep 2012 | A1 |
20120235504 | Kesler et al. | Sep 2012 | A1 |
20120235505 | Schatz et al. | Sep 2012 | A1 |
20120235566 | Karalis et al. | Sep 2012 | A1 |
20120235633 | Kesler et al. | Sep 2012 | A1 |
20120235634 | Hall et al. | Sep 2012 | A1 |
20120239117 | Kesler et al. | Sep 2012 | A1 |
20120242159 | Lou et al. | Sep 2012 | A1 |
20120248886 | Kesler et al. | Oct 2012 | A1 |
20120248887 | Kesler et al. | Oct 2012 | A1 |
20120248888 | Kesler et al. | Oct 2012 | A1 |
20120248981 | Karalis et al. | Oct 2012 | A1 |
20120249066 | Ichikawa | Oct 2012 | A1 |
20120249068 | Ishida | Oct 2012 | A1 |
20120249097 | Baarman | Oct 2012 | A1 |
20120256494 | Kesler et al. | Oct 2012 | A1 |
20120256586 | Becker et al. | Oct 2012 | A1 |
20120256589 | Ichikawa | Oct 2012 | A1 |
20120259735 | Taylor et al. | Oct 2012 | A1 |
20120259749 | Park et al. | Oct 2012 | A1 |
20120262115 | Ichikawa et al. | Oct 2012 | A1 |
20120274277 | Masuda et al. | Nov 2012 | A1 |
20120274278 | Igata | Nov 2012 | A1 |
20120277945 | Ichikawa | Nov 2012 | A1 |
20120280655 | Schneider et al. | Nov 2012 | A1 |
20120286571 | Baarman et al. | Nov 2012 | A1 |
20120286723 | Ukita et al. | Nov 2012 | A1 |
20120286728 | Bella et al. | Nov 2012 | A1 |
20120290159 | McGee et al. | Nov 2012 | A1 |
20120293122 | Murawaka | Nov 2012 | A1 |
20120299537 | Kikuchi | Nov 2012 | A1 |
20120306439 | Ichikawa et al. | Dec 2012 | A1 |
20120313434 | Billmaier | Dec 2012 | A1 |
20120313449 | Kurs et al. | Dec 2012 | A1 |
20120313742 | Kurs et al. | Dec 2012 | A1 |
20120319649 | Billmaier | Dec 2012 | A1 |
20120319651 | Outwater et al. | Dec 2012 | A1 |
20130006461 | Kim | Jan 2013 | A1 |
20130007949 | Kurs et al. | Jan 2013 | A1 |
20130009593 | Takahashi et al. | Jan 2013 | A1 |
20130020878 | Karalis et al. | Jan 2013 | A1 |
20130020983 | Ishikawa et al. | Jan 2013 | A1 |
20130024046 | Toriya et al. | Jan 2013 | A1 |
20130025751 | Dassano et al. | Jan 2013 | A1 |
20130026988 | Igata | Jan 2013 | A1 |
20130033118 | Karalis et al. | Feb 2013 | A1 |
20130033230 | Falk et al. | Feb 2013 | A1 |
20130038272 | Sagata | Feb 2013 | A1 |
20130038282 | Shimokawa | Feb 2013 | A1 |
20130038402 | Karalis et al. | Feb 2013 | A1 |
20130041854 | Littrell | Feb 2013 | A1 |
20130049689 | Hayashigawa et al. | Feb 2013 | A1 |
20130049971 | Hermann | Feb 2013 | A1 |
20130057206 | Takahashi et al. | Mar 2013 | A1 |
20130057214 | Stevens | Mar 2013 | A1 |
20130057364 | Kesler et al. | Mar 2013 | A1 |
20130062966 | Verghese et al. | Mar 2013 | A1 |
20130063075 | Miller et al. | Mar 2013 | A1 |
20130069441 | Verghese et al. | Mar 2013 | A1 |
20130069492 | Rippel et al. | Mar 2013 | A1 |
20130069590 | Niemann et al. | Mar 2013 | A1 |
20130069753 | Kurs et al. | Mar 2013 | A1 |
20130073350 | Blustein | Mar 2013 | A1 |
20130076154 | Baarman et al. | Mar 2013 | A1 |
20130079962 | Ishikawa et al. | Mar 2013 | A1 |
20130082645 | Fukada | Apr 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130093393 | Shimotani et al. | Apr 2013 | A1 |
20130095758 | Baarman | Apr 2013 | A1 |
20130099563 | Partovi et al. | Apr 2013 | A1 |
20130099587 | Lou et al. | Apr 2013 | A1 |
20130099743 | Zyren | Apr 2013 | A1 |
20130113423 | Baarman et al. | May 2013 | A1 |
20130119933 | Flack et al. | May 2013 | A1 |
20130124320 | Karner | May 2013 | A1 |
20130127416 | Karner et al. | May 2013 | A1 |
20130127417 | Karner et al. | May 2013 | A1 |
20130131900 | Yu et al. | May 2013 | A1 |
20130138542 | Sirton, IV | May 2013 | A1 |
20130141042 | Kilb | Jun 2013 | A1 |
20130141043 | Rossi | Jun 2013 | A1 |
20130141044 | Solomon et al. | Jun 2013 | A1 |
20130151293 | Karner et al. | Jun 2013 | A1 |
20130159956 | Verghese et al. | Jun 2013 | A1 |
20130175083 | Bonwit et al. | Jul 2013 | A1 |
20130175874 | Lou et al. | Jul 2013 | A1 |
20130175983 | Partovi et al. | Jul 2013 | A1 |
20130175989 | Bonwit et al. | Jul 2013 | A1 |
20130179061 | Gadh et al. | Jul 2013 | A1 |
20130181670 | Bonwit et al. | Jul 2013 | A1 |
20130184886 | Pollack et al. | Jul 2013 | A1 |
20130187474 | De Boodt | Jul 2013 | A1 |
20130193918 | Sarkar et al. | Aug 2013 | A1 |
20130193919 | Hill et al. | Aug 2013 | A1 |
20130200721 | Kurs et al. | Aug 2013 | A1 |
20130201641 | Soden et al. | Aug 2013 | A1 |
20130207607 | Sugiyama et al. | Aug 2013 | A1 |
20130214706 | Flomenhoft | Aug 2013 | A1 |
20130217409 | Bridges et al. | Aug 2013 | A1 |
20130218402 | Hoshihara et al. | Aug 2013 | A1 |
20130221744 | Hall et al. | Aug 2013 | A1 |
20130221918 | Hill et al. | Aug 2013 | A1 |
20130221920 | Sugiyama et al. | Aug 2013 | A1 |
20130221921 | Ang | Aug 2013 | A1 |
20130234532 | Fells et al. | Sep 2013 | A1 |
20130241483 | Karch et al. | Sep 2013 | A1 |
20130241485 | Snyder | Sep 2013 | A1 |
20130245870 | Mineta | Sep 2013 | A1 |
20130245873 | Basir | Sep 2013 | A1 |
20130249480 | Paparo et al. | Sep 2013 | A1 |
20130253745 | Booth et al. | Sep 2013 | A1 |
20130257370 | Ichikawa | Oct 2013 | A1 |
20130257375 | Ang et al. | Oct 2013 | A1 |
20130265004 | Iizuka et al. | Oct 2013 | A1 |
20130265007 | Leary | Oct 2013 | A1 |
20130271072 | Lee et al. | Oct 2013 | A1 |
20130278201 | Retti | Oct 2013 | A1 |
20130278210 | Cook et al. | Oct 2013 | A1 |
20130285603 | Zeinstra et al. | Oct 2013 | A1 |
20130300353 | Kurs et al. | Nov 2013 | A1 |
20130300358 | Kirby et al. | Nov 2013 | A1 |
20130300362 | Turner | Nov 2013 | A1 |
20130307349 | Hall et al. | Nov 2013 | A1 |
20130310999 | Baxter et al. | Nov 2013 | A1 |
20130311247 | Wass et al. | Nov 2013 | A1 |
20130314040 | Tanaka | Nov 2013 | A1 |
20130325323 | Breed | Dec 2013 | A1 |
20130334892 | Hall et al. | Dec 2013 | A1 |
20140012431 | Breed | Jan 2014 | A1 |
20140015487 | Brown et al. | Jan 2014 | A1 |
20140039726 | Profitt-Brown et al. | Feb 2014 | A1 |
20140042824 | Fells et al. | Feb 2014 | A1 |
20140044281 | Ganem et al. | Feb 2014 | A1 |
20140045405 | Baarman et al. | Feb 2014 | A1 |
20140070767 | Morris et al. | Mar 2014 | A1 |
20140077615 | Stevens et al. | Mar 2014 | A1 |
20140084703 | Hall et al. | Mar 2014 | A1 |
20140084859 | Hall et al. | Mar 2014 | A1 |
20140097795 | Turner et al. | Apr 2014 | A1 |
20140103867 | Baarman | Apr 2014 | A1 |
20140103873 | Partovi et al. | Apr 2014 | A1 |
20140117760 | Baarman et al. | May 2014 | A1 |
20140152256 | Lowenthal et al. | Jun 2014 | A1 |
20140159652 | Hall et al. | Jun 2014 | A1 |
20140159658 | Kiceniuk, Jr. et al. | Jun 2014 | A1 |
20140184156 | Sutardja | Jul 2014 | A1 |
20140201018 | Chassin | Jul 2014 | A1 |
20140203777 | Flack | Jul 2014 | A1 |
20140207319 | King et al. | Jul 2014 | A1 |
20140210412 | Lowenthal et al. | Jul 2014 | A1 |
20140214516 | Genschel et al. | Jul 2014 | A1 |
20140217968 | Takahashi et al. | Aug 2014 | A1 |
20140225449 | Kurs | Aug 2014 | A1 |
20140225559 | Sugano | Aug 2014 | A1 |
20140225566 | Scheucher | Aug 2014 | A1 |
20140229050 | Ishibashi | Aug 2014 | A1 |
20140265555 | Hall et al. | Sep 2014 | A1 |
20140266046 | Baxter et al. | Sep 2014 | A1 |
20140292264 | Boys et al. | Oct 2014 | A1 |
20140312707 | Fiorello et al. | Oct 2014 | A1 |
20140312845 | Scheucher | Oct 2014 | A1 |
20140324260 | Ichikawa | Oct 2014 | A1 |
20140327301 | Iizuka et al. | Nov 2014 | A1 |
20140330468 | Oyobe et al. | Nov 2014 | A1 |
20140333146 | Dibben et al. | Nov 2014 | A1 |
20140336868 | Breed | Nov 2014 | A1 |
20140340040 | Hill et al. | Nov 2014 | A1 |
20140358361 | Breed | Dec 2014 | A1 |
20140358362 | Breed | Dec 2014 | A1 |
20150002094 | Haddad et al. | Jan 2015 | A1 |
20150028807 | Mashinsky | Jan 2015 | A1 |
20150028812 | Muller et al. | Jan 2015 | A1 |
20150035484 | Mashinsky | Feb 2015 | A1 |
20150048784 | Fung | Feb 2015 | A1 |
20150061590 | Widmer et al. | Mar 2015 | A1 |
20150069831 | Kesler et al. | Mar 2015 | A1 |
20150069967 | Baarman et al. | Mar 2015 | A1 |
20150077056 | Bridges et al. | Mar 2015 | A1 |
20150108947 | Heuer et al. | Apr 2015 | A1 |
20150115890 | Dickinson et al. | Apr 2015 | A1 |
20150123484 | Kurs et al. | May 2015 | A1 |
20150130412 | Partovi | May 2015 | A1 |
20150142193 | Golden et al. | May 2015 | A1 |
20150145475 | Partovi et al. | May 2015 | A1 |
20150160672 | Hakim et al. | Jun 2015 | A1 |
20150162764 | Lowenthal et al. | Jun 2015 | A1 |
20150191097 | Jones et al. | Jul 2015 | A1 |
20150202976 | Bridges et al. | Jul 2015 | A1 |
20150207319 | Miller | Jul 2015 | A1 |
20150208331 | Bridges et al. | Jul 2015 | A1 |
20150210170 | Oyobe et al. | Jul 2015 | A1 |
20150231983 | Ishibashi | Aug 2015 | A1 |
20150236546 | Kesler et al. | Aug 2015 | A1 |
20150255994 | Kesler et al. | Sep 2015 | A1 |
20150266391 | Hostyn et al. | Sep 2015 | A1 |
20150270719 | Kurs et al. | Sep 2015 | A1 |
20150328998 | Mashinsky et al. | Nov 2015 | A1 |
20150367742 | Soden et al. | Dec 2015 | A1 |
20160005118 | Mashinsky et al. | Jan 2016 | A1 |
20160031335 | Soden et al. | Feb 2016 | A1 |
20160039294 | Steigerwald et al. | Feb 2016 | A1 |
20160039305 | Yamamoto et al. | Feb 2016 | A1 |
20160043571 | Kesler et al. | Feb 2016 | A1 |
20160059729 | Ishibashi | Mar 2016 | A1 |
20160082856 | Baxter et al. | Mar 2016 | A1 |
20160087687 | Kesler et al. | Mar 2016 | A1 |
20160129798 | Sirton, IV | May 2016 | A9 |
20160129801 | Gale et al. | May 2016 | A1 |
20160181860 | Partovi et al. | Jun 2016 | A1 |
20160197489 | Kurs et al. | Jul 2016 | A1 |
20160221441 | Hall et al. | Aug 2016 | A1 |
20160221453 | Bridges et al. | Aug 2016 | A1 |
20160247240 | Mashinsky et al. | Aug 2016 | A1 |
20160268843 | Baarman | Sep 2016 | A1 |
20160347195 | Bridges et al. | Dec 2016 | A1 |
20170043676 | Littrell | Feb 2017 | A1 |
20170050530 | Lowenthal et al. | Feb 2017 | A1 |
20170053736 | Hall et al. | Feb 2017 | A9 |
20170053737 | Kurs | Feb 2017 | A1 |
20170062124 | Hall et al. | Mar 2017 | A9 |
20170074918 | Stewart et al. | Mar 2017 | A1 |
20170186107 | Golden et al. | Jun 2017 | A1 |
20170232857 | Heuer et al. | Aug 2017 | A1 |
20170232858 | Heuer et al. | Aug 2017 | A1 |
20170263374 | Schatz et al. | Sep 2017 | A1 |
20170302092 | Bonwit et al. | Oct 2017 | A1 |
20180004239 | Golden et al. | Jan 2018 | A1 |
20180029481 | Mashinsky et al. | Feb 2018 | A1 |
20180097136 | Retti | Apr 2018 | A1 |
20180098271 | Bridges et al. | Apr 2018 | A1 |
20180122567 | Hall et al. | May 2018 | A1 |
20180215276 | Lowenthal et al. | Aug 2018 | A1 |
20180244166 | Flack | Aug 2018 | A1 |
20180351215 | Austin | Dec 2018 | A1 |
20190061535 | Bridges et al. | Feb 2019 | A1 |
20190089153 | Miller | Mar 2019 | A1 |
20190148785 | Austin | May 2019 | A1 |
20190148786 | Austin | May 2019 | A1 |
20190148787 | Austin | May 2019 | A1 |
20190148788 | Austin | May 2019 | A1 |
20190148789 | Austin | May 2019 | A1 |
20190148790 | Austin | May 2019 | A1 |
20190148791 | Austin | May 2019 | A1 |
20190148792 | Austin | May 2019 | A1 |
20190148793 | Austin | May 2019 | A1 |
20190148794 | Austin | May 2019 | A1 |
20190239144 | Bridges et al. | Aug 2019 | A1 |
20190250649 | Pollack et al. | Aug 2019 | A9 |
20190275901 | Widmer et al. | Sep 2019 | A1 |
20200034939 | Golden et al. | Jan 2020 | A1 |
20200055415 | Littrell | Feb 2020 | A1 |
20200122592 | Heuer et al. | Apr 2020 | A1 |
20200150705 | Golden et al. | May 2020 | A1 |
20200298714 | Widmer et al. | Sep 2020 | A1 |
20200307398 | Shelton et al. | Oct 2020 | A1 |
20200391595 | Sarkar et al. | Dec 2020 | A1 |
20210036522 | Solomon et al. | Feb 2021 | A1 |
20210078424 | Haddad et al. | Mar 2021 | A1 |
20210111587 | Lowenthal et al. | Apr 2021 | A1 |
20210162881 | Baxter et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
19824290 | Dec 1999 | DE |
1038830 | Sep 2000 | EP |
2295282 | Mar 2011 | EP |
2001008380 | Jan 2001 | JP |
2008042985 | Feb 2008 | JP |
1993019435 | Sep 1993 | WO |
1999030412 | Jun 1999 | WO |
2001025056 | Apr 2001 | WO |
2001028017 | Apr 2001 | WO |
2001071882 | Sep 2001 | WO |
2004009397 | Jan 2004 | WO |
2004062959 | Jul 2004 | WO |
2005015766 | Feb 2005 | WO |
2007108586 | Sep 2007 | WO |
2009014543 | Jan 2009 | WO |
Entry |
---|
Brooks et al., “Integration of Electric Drive Vehicles with the Electric Power Grid—a New Value Stream,” from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.6658&rep=rep1&type=pdf, 2001, 15 pages. |
Brooks, Alec, “Electric Drive Vehicles: A Huge New Distributed Energy Resource,” from http://www.udel.edu/V2G/resources/A-Brooks-ETI-conf.pdf, 2001, 25 pages. |
Brooks, Alec, “Vehicle-to-Grid Demonstration Project Grid Regulation Ancillary Service with a Battery Electric Vehicle,” from http://www.udel.edu/V2G/docs/V2G-Demo-Brooks-02-R5.pdf, Dec. 10, 2002, 61 pages. |
Gage, Thomas, “Development and Evaluation of a Plug-in HEV with Vehicle-to-Grid Power Flow,” from http://www.udel.edu/V2G/docs/ICAT%2001-2-V2G-Plug-Hybrid.pdf, Dec. 17, 2003, 52 pages. |
Hawkins, David, “Vehicle to Grid—A Control Area Operators Perspective,” from http://www.udel.edu/V2G/resources/Hawkins_ETI.pdf, Dec. 13, 2001, 15 pages. |
ISL6296 Datasheet, Intersil, Mar. 21, 2008, 19 pages. |
ISL6296A Datasheet, Intersil, Apr. 15, 2010, 20 pages. |
Kempton et al., “Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California,” from http://www.udel.edu/V2G/docs/V2G-Cal-2001.pdf, Jun. 2001, 94 pages. |
Qian, Jinrong, “Battery authentication improves battery security,” from http://www.embedded.com/print/4011596, Oct. 24, 2005, 7 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 13/015,986, dated Mar. 28, 2014. |
U.S. Notice of Allowance, U.S. Appl. No. 13/016,017, dated Mar. 14, 2014. |
U.S. Notice of Allowance, U.S. Appl. No. 13/016,017, dated Nov. 12, 2013. |
U.S. Office Action, U.S. Appl. No. 13/015,957, dated Apr. 2, 2012. |
U.S. Office Action, U.S. Appl. No. 13/015,957, dated Nov. 21, 2012. |
U.S. Office Action, U.S. Appl. No. 13/015,986, dated Jun. 7, 2013. |
U.S. Office Action, U.S. Appl. No. 13/015,986, dated Sep. 17, 2013. |
U.S. Office Action, U.S. Appl. No. 13/016,017, dated Jul. 9, 2013. |
U.S. Office Action, U.S. Appl. No. 13/016,017, dated May 8, 2013. |
U.S. Advisory Action, U.S. Appl. No. 13/015,957, dated Sep. 10, 2015. |
U.S. Notice of Allowance, U.S. Appl. No. 13/015,986, dated Jul. 3, 2014. |
U.S. Notice of Allowance, U.S. Appl. No. 14/275,871, dated Feb. 19, 2015. |
U.S. Notice of Allowance, U.S. Appl. No. 14/275,871, dated Jun. 8, 2015. |
U.S. Notice of Allowance, U.S. Appl. No. 14/494,583, dated Mar. 11, 2016. |
U.S. Notice of Allowance, U.S. Appl. No. 14/494,583, dated Sep. 22, 2015. |
U.S. Notice of Allowance, U.S. Appl. No. 14/494,586, dated Nov. 14, 2017. |
U.S. Office Action, U.S. Appl. No. 13/015,957, dated Jun. 3, 2015. |
U.S. Office Action, U.S. Appl. No. 13/015,957, dated Oct. 22, 2014. |
U.S. Office Action, U.S. Appl. No. 14/275,871, dated Oct. 14, 2014. |
U.S. Office Action, U.S. Appl. No. 14/494,583, dated Apr. 24, 2015. |
U.S. Office Action, U.S. Appl. No. 14/494,586, dated Jul. 18, 2017. |
U.S. Notice of Allowance, U.S. Appl. No. 14/494,586, dated Jul. 3, 2018. |
Number | Date | Country | |
---|---|---|---|
61350771 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13015986 | Jan 2011 | US |
Child | 14493345 | US |