The present invention relates to systems and methods for improving the printed output produced by a digital printing system that uses an intermediate transfer medium comprising a flexible belt. In particular, the present invention is suitable for reducing leading-edge margins of images transferred to substrate in such printing systems.
Printing devices can use an indirect inkjet printing process in which an inkjet print head is used to deposit ink droplets forming an ink image onto the surface of an intermediate transfer member, which is then used to transfer the image onto a substrate. The intermediate transfer member (ITM) may be a flexible belt. To reduce the possibility of damage or excessive wear to the ITM as it traverses an image transfer station, or impression station, the grippers of an impression cylinder may be recessed. Operating with grippers recessed within an impression cylinder gap may require a change in the geometry of the surface of the impression cylinder in order to avoid creasing or wrinkling of substrate, and this change may result in an undesirable expansion of a leading-edge unprinted margin of ink images transferred to substrate.
The present disclosure relates to digital printing systems. In embodiments, a printing system comprises an intermediate transfer member (ITM) comprising a flexible belt operable to have ink images formed thereupon by droplet deposition at an image-forming station; and an impression station configured for transfer of the ink images to substrate after they are conveyed to the impression station by the ITM, the impression station comprising: (i) a rotatable impression cylinder having an impression cylinder gap housing a plurality of grippers substantially recessed therein, and a (ii) pressure cylinder assembly comprising: (A) a pressure cylinder having a pressure cylinder gap and operative to rotate synchronously with the impression cylinder and in an opposing direction thereto, the pressure cylinder comprising an angle portion joining a trailing edge of the pressure cylinder gap and an outer circumferential surface of the pressure cylinder, (B) a compressible blanket disposed around at least a majority of the circumference of the pressure cylinder, and (C) a margin insert interposed between the pressure cylinder and the compressible blanket at least at the angle portion, such that a local external geometry of the pressure cylinder assembly at the angle portion is changed by the presence of the margin insert, wherein the change in the local external geometry of the pressure cylinder assembly due to the presence of the margin insert is effective to reduce a dimension of an unprinted margin on a leading edge of the substrate.
In some embodiments, the pressure cylinder assembly can additionally comprise (D) a packing sheet disposed around at least a majority of the circumference of the pressure cylinder, interposed between the pressure cylinder and the compressible blanket, such that the margin insert is interposed between the packing sheet and the compressible blanket.
In some embodiments, the pressure cylinder assembly can additionally comprise (D) a packing sheet disposed around at least a majority of the circumference of the pressure cylinder, interposed between the pressure cylinder and the compressible blanket, such that the margin insert is interposed between the pressure cylinder and the packing sheet.
In some embodiments, it can be that (i) a surface of the impression cylinder comprises a deflected portion displaced circumferentially from the grippers, and (ii) during each rotation of the impression cylinder, transfer of an ink image from the ITM to the substrate starts at a first transfer point on the surface of the impression cylinder located between the grippers and the deflected portion.
In some embodiments, the local external geometry of the pressure cylinder assembly at the angle portion can be determined at least in part by the thickness and location of the margin insert.
In some embodiments, the distance between the grippers and the first transfer point can be determined at least in part by the thickness and location of the margin insert.
In some embodiments, the deflected portion can include a deflection in the surface of the impression cylinder, the deflection having an angle selected so as to cause the portion of said surface between the deflected portion and the grippers to be substantially lined up with an upper surface of a gripper anvil.
In some embodiments, the margin insert can be disposed around no more than 10% of the circumference of the pressure cylinder.
In some embodiments, the margin insert can be disposed around no more than 5% of the circumference of the pressure cylinder.
In embodiments, a printing system comprises an impression station configured for transfer of ink images from an intermediate transfer member (ITM) to substrate, the ITM comprising a flexible belt, the impression station comprising: (i) a rotatable impression cylinder having an impression cylinder gap housing a plurality of grippers substantially recessed therein, a surface of the impression cylinder comprising a deflected portion displaced circumferentially from the grippers, such that during the transferring, a leading edge of the ink image is aligned with a first transfer point on the surface of the impression cylinder between the grippers and the deflected portion, and (ii) a pressure cylinder assembly comprising (A) a pressure cylinder having a pressure cylinder gap and operative to rotate synchronously with the impression cylinder and in an opposing direction thereto, (B) a compressible blanket disposed around at least a majority of the circumference of the pressure cylinder, and (C) a margin insert interposed between the impression cylinder and the compressible blanket, the presence of the margin insert being effective to reduce the distance between the grippers and the first transfer point.
In some embodiments, the pressure cylinder assembly can additionally comprise (D) a packing sheet disposed around at least a majority of the circumference of the pressure cylinder, interposed between the pressure cylinder and the compressible blanket, such that the margin insert is interposed between the packing sheet and the compressible blanket.
In some embodiments, the pressure cylinder assembly can additionally comprise (D) a packing sheet disposed around at least a majority of the circumference of the pressure cylinder, interposed between the pressure cylinder and the compressible blanket, such that the margin insert is interposed between the pressure cylinder and the packing sheet and the compressible blanket.
In some embodiments, it can be that (i) the pressure cylinder comprises an angle portion joining a trailing edge of the pressure cylinder gap and an outer circumferential surface of the pressure cylinder, and (ii) the local external geometry of the pressure cylinder assembly at the angle portion is determined at least in part by the thickness and location of the margin insert.
In some embodiments, the distance between the grippers and the first transfer point can be determined at least in part by the thickness and location of the margin insert.
In some embodiments, the deflected portion can include a deflection in the surface of the impression cylinder, the deflection having an angle selected so as to cause the portion of said surface between the deflected portion and the grippers to be substantially lined up with an upper surface of a gripper anvil.
In some embodiments, the margin insert can be disposed around no more than 10% of the circumference of the pressure cylinder. In some embodiments, the margin insert can be disposed around no more than 5% of the circumference of the pressure cylinder.
In embodiments, a printing system comprises (a) an impression cylinder for use in transferring ink images to substrate from a rotating intermediate transfer member (ITM) comprising a flexible belt, the impression cylinder having an impression cylinder gap housing a plurality of grippers substantially recessed therein, such that during the transferring, a leading edge of the ink image is aligned with a first transfer point displaced circumferentially from the grippers on the surface of the impression cylinder, the location of the first transfer point corresponding to a dimension of an unprinted margin at the leading edge of the substrate; and (b) a pressure cylinder assembly comprising a pressure cylinder and a plurality of pressure cylinder coverings, the plurality of pressure cylinder coverings having in combination a differential thickness with respect to location on the circumference of the pressure cylinder, the differential thickness being effective to cause a change in the location of the first transfer point and thereby reduce the dimension of the unprinted margin.
In some embodiments, the plurality of pressure cylinder coverings can include a first pressure cylinder covering disposed around at least a majority of the circumference of the pressure cylinder and a second pressure cylinder covering disposed around no more than 10% of the circumference of the pressure cylinder. In some embodiments, the second pressure cylinder covering can be disposed around no more than 5% of the circumference of the pressure cylinder.
In some embodiments, the distance between the grippers and the first transfer point is determined at least in part by the thickness and location of the second pressure cylinder covering.
In some embodiments, the recessing of the grippers impression cylinder gap is effective to reduce a force on the ITM caused by the ITM's traversal of the grippers.
In some embodiments, it can be that (i) a surface of the impression cylinder comprises a deflected portion displaced circumferentially from the grippers, and (ii) the deflected portion includes a deflection in the surface of the impression cylinder, the deflection having an angle selected so as to cause the portion of said surface between the deflected portion and the grippers to be substantially lined up with an upper surface of a gripper anvil.
In some embodiments, the plurality of pressure cylinder coverings can additionally comprise a third cylinder covering, disposed around at least a majority of the circumference of the pressure cylinder and interposed between the pressure cylinder and the second cylinder covering.
In some embodiments, the plurality of pressure cylinder coverings can additionally comprise a third cylinder covering, disposed around at least a majority of the circumference of the pressure cylinder and interposed between the second cylinder covering and the first pressure cylinder covering.
In embodiments, a pressure cylinder assembly for use in a printing system for in transferring ink images to substrate from a rotating intermediate transfer member (ITM) comprising a flexible belt, the pressure cylinder assembly comprising: (a) a pressure cylinder; (b) first cylinder covering, disposed around at least a majority of the circumference of the pressure cylinder; and (c) a second cylinder covering, interposed between the pressure cylinder and first cylinder covering, and disposed around less than 5% of the circumference of the pressure cylinder, wherein a change in the local external geometry of the pressure cylinder assembly due to the presence of the second cylinder covering is effective to reduce a dimension of an unprinted margin on a leading edge of the substrate.
In some embodiments, the printing system can additionally comprise an impression cylinder having an impression cylinder gap housing a plurality of grippers substantially recessed therein.
In some embodiments, the pressure cylinder can have a pressure cylinder gap, the pressure cylinder can comprise an angle portion joining a trailing edge of the pressure cylinder gap and an outer circumferential surface of the pressure cylinder, and the second cylinder covering can overlay the angle portion.
In some embodiments, the second cylinder covering can overlay a portion of the circumference of the pressure cylinder that is operative to benefit the transfer to substrate of the leading edge of each ink image.
In some embodiments, the pressure cylinder assembly can additionally comprise a third cylinder covering, disposed around at least a majority of the circumference of the pressure cylinder and interposed between the pressure cylinder and the second cylinder covering.
In some embodiments, the pressure cylinder assembly can additionally comprise a third cylinder covering, disposed around at least a majority of the circumference of the pressure cylinder and interposed between the second cylinder covering and the first pressure cylinder covering.
In some embodiments, a printing system can comprise the pressure cylinder assembly.
A method is disclosed according to embodiments, of operating a printing system wherein ink images are formed by droplet deposition upon a rotating intermediate transfer member (ITM) and are subsequently transported by the ITM to an impression station where they are transferred to substrate, the impression station comprising (a) a rotatable impression cylinder having an impression cylinder gap housing a plurality of grippers substantially recessed therein, and (b) a pressure cylinder operative to rotate in the direction opposite that of the impression cylinder. The method comprises: at the impression station, applying a pressuring force between the pressure cylinder and the impression cylinder so as to transfer an ink image from the ITM to the substrate, such that during the transferring, a leading edge of the ink image is aligned with a first transfer point on a surface of the impression cylinder, wherein the portion of the circumference of the pressure cylinder opposing the first transfer point during each rotation of the impression cylinder is characterized by the presence of a margin insert interposed between the pressure cylinder and a compressible blanket disposed therearound, such that the presence of the margin insert is effective to reduce a dimension of an unprinted margin on a leading edge of the substrate.
In some embodiments, it can be that (i) the size and location of the margin insert at least partially determines a local external geometry of the pressure cylinder assembly, and (ii) the local external geometry of the pressure cylinder assembly at least partially determines the location of the first transfer point.
In some embodiments, it can be that (i) the pressure cylinder has a pressure cylinder gap, and (ii) the portion of the circumference of the pressure cylinder assembly opposing the first transfer point during each rotation of the impression cylinder is additionally characterized by an angle portion joining a trailing edge of the pressure cylinder gap and an outer circumferential surface of the pressure cylinder.
In some embodiments, the first transfer point can be located between the grippers and a deflected portion circumferentially displaced therefrom.
In some embodiments, the deflected portion can include a deflection in the surface of the impression cylinder, the deflection having an angle selected so as to cause the portion of said surface between the deflected portion and the grippers to be substantially lined up with an upper surface of a gripper anvil.
In some embodiments, a margin insert as disclosed herein can include a material with high frictional properties such that a frictional force between the underside of the margin insert and either a packing sheet or an outer circumferential surface of the pressure cylinder is effective to substantially prevent the margin insert from slipping circumferentially.
In some embodiments, a margin insert as disclosed herein can have a thickness between 50 microns and 1,000 microns.
In some embodiments, a margin insert as disclosed herein can have a thickness between 300 and 650 microns.
In some embodiments, a margin insert as disclosed herein can be at least 10% compressible.
In some embodiments, a margin insert as disclosed herein can be at least 20% compressible.
The invention will now be described further, by way of example, with reference to the accompanying drawings, in which the dimensions of components and features shown in the figures are chosen for convenience and clarity of presentation and not necessarily to scale. Also, in some drawings the relative sizes of objects, and the relative distances between objects, may be exaggeratedly large or small for the sake of convenience and clarity of presentation. In the drawings:
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. Throughout the drawings, like-referenced characters are generally used to designate like elements.
For convenience, in the context of the description herein, various terms are presented here. To the extent that definitions are provided, explicitly or implicitly, here or elsewhere in this application, such definitions are understood to be consistent with the usage of the defined terms by those of skill in the pertinent art(s). Furthermore, such definitions are to be construed in the broadest possible sense consistent with such usage.
In various embodiments, an ink image is first deposited on a surface of an intermediate transfer member (ITM), and transferred from the surface of the intermediate transfer member to a substrate (i.e. sheet substrate or web substrate). The location in the printing system at which the ink is deposited on the ITM is referred to as the “image forming station”. In many embodiments, the ITM comprises a flexible or endless “belt” and the terms “belt” and “ITM” are used interchangeably.
The area or region of the printing press at which the ink image is transferred to substrate is an “impression station”. It is appreciated that for some printing systems, there may be a plurality of impression stations. In some embodiments of the invention, the intermediate transfer member is formed as a belt comprising a reinforcement or support layer coated with a release layer.
Referring now to the figures,
The printing system 100 can further comprise:
(a) an image forming station 212 comprising print bars 222A-222D (each designated one of C, M Y and K). The image forming station 212 is configured to form ink images 50 (shown in
(b) a drying station 214 for drying the ink images;
(c) an impression station 216 where the ink images are transferred from the surface of the ITM 210 to substrate 231. The substrate 231 is shown as sheet-fed substrate, such as paper or carton product, but it can alternatively be a continuous-feed (web) substrate. In the particular non-limiting example of
The skilled artisan will appreciate that not every component illustrated in
Referring now to
That the portion is noted as being in the bottom run is also relevant to the status of the ink image 50. The ink image 50 is formed at the image-forming station 212 by deposition of ink droplets on the surface of the ITM 210; during transport to the impression station by the ITM 210, the ink image 50 subsequently undergoes a drying process at drying station 214. When the ink image 50 arrives in the bottom run of the printing system 100 and approaches the impression station 216, it can comprise a mostly dried film of ink components such as colorants. This residual film on the surface of the ITM 210, referred to as ink image 50, is substantially transferred to substrate 231 from the surface of the ITM 210 when the ITM 210 passes between the pressure cylinder 218 and the impression cylinder 220. A pressure is applied between the two cylinders 218, 220, either by urging the pressure cylinder towards the impression cylinder 220, or by urging the impression cylinder 220 towards the pressure cylinder 218.
We refer now to
Referring now to
In the prior art design of
In the non-limiting example of
It will be obvious to the skilled artisan that, as the angle of the deflected portion 325 causes the surface of the impression cylinder between the grippers and the deflected portion 325 to be further displaced inwards and away from the external cylindrical circumference (dashed-line 310), it becomes more difficult for the leading edge 60 of the ink image 50 to be transferred to substrate at a point that is as close to the grippers as may be desired.
Referring now to
In order to increase utilization of substrate or to allow a larger image, it can be desirable to reduce width w of the unprinted margin 235 by causing the first transfer point 340 to be closer to the grippers 350. This can be accomplished, for example, by modifying the external geometry of the pressure cylinder assembly 318 in the area of the cylinder surface that is opposite the first transfer point 340 during each rotation—i.e., the angle portion 335.
We refer now to
The length of the margin insert 375, or, alternatively, the proportion of the circumference of the pressure cylinder 218 around which the margin insert 375 is disposed, can be selected so as to maximize the reduction of the width w (shown in
As shown in
We now refer to
We now refer to
According to an alternative embodiment (not shown), a packing sheet can integrally include a margin insert, e.g., together forming a single unit of cylinder covering, such that the resulting packing sheet is thicker around the angle portion 335 than around the remainder of the pressure cylinder 218. Such a packing sheet could be produced, for example, by using 3-D printing methods or any other suitable method. According to this embodiment, the combined pressure cylinder coverings, i.e., the differentially thicker packing sheet and the compressible blanket 219 would have, in combination, a differential thickness with respect to location on the circumference of the pressure cylinder 218, similar to the compressible blanket 219 in combination with the margin insert 375, with or without a ‘regular’ packing sheet 315.
“Differential thickness” as used throughout this disclosure refers to deliberately differential thickness, i.e., that is not slight or accidental or resulting, for example, from variations in manufacturing processes. For example, ‘differential thickness’ can mean at least a ratio of 1.5:1, or at least a ratio of 3:1, or at least a ratio of 3:1, between thicker and less thick sections.
In some embodiments, it can be advantageous for a margin insert 375 to have specific physical characteristics. For example, it can be desirable for a margin insert 375 to include, on its underside (i.e., when installed in a pressure cylinder assembly 318, a material with high frictional properties such that a frictional force between the underside of the margin insert 375 and either a packing sheet 315 or an outer circumferential surface 332 of the pressure cylinder 218 is effective to substantially prevent the margin insert 375 from slipping circumferentially. As another example, it can be desirable for a margin insert 375 to have a thickness between 50 microns and 1,000 microns or between 300 and 650 microns. As yet another example, it can be desirable for a margin insert to be least 10% or at least 20% compressible in the vertical (i.e., radially inward when installed in a pressure cylinder assembly 318) direction.
In an example, a printing system comprises a rotating ITM and an impression station as described herein. The impression station comprises a pressure cylinder assembly which includes a pressure cylinder having a pressure cylinder gap, a packing sheet and a compressible blanket. The impression station additionally comprises an impression cylinder comprising an impression cylinder gap that houses that are recessed so as to avoid damaging the ITM from frequent and intensive mechanical contact with the grippers on each rotation of the impression cylinder. The surface of the impression cylinder includes a deflection portion such that a section of the surface of the cylinder between the deflection portion and the grippers is ‘inside’ and displaced inwards from the cylindrical circumference of the impression cylinder. The angle portion is aligned so that during each rotation it is opposite the first transfer point of the impression cylinder, i.e., the point on the cylinder between the deflection portion and grippers that corresponds to (aligned with) the point on the substrate where the leading edge of the ink image is transferred. Following a representative sample of normal print runs, an average unprinted margin of about 20 mm is measured at the leading edges of sheets of printed substrate.
A first margin insert with dimensions of 30 mm length, 150 microns thickness, and a width of 1,000 mm, substantially equal to the width compressible blanket across the length of the cylinder) is attached to the trailing edge of the pressure cylinder gap (i.e., trailing in the direction of rotation) and wrapped around the angle portion of the cylinder, i.e., the angle portion that joins the trailing edge of the pressure cylinder gap and the outer circumferential surface of the pressure cylinder. The angle portion is aligned so that during each rotation it is opposite the first transfer point of the impression cylinder. Following a normal print run, an unprinted margin of 14 mm is measured at the leading edge of each sheet of printed substrate.
The first margin insert is replaced by a second margin insert with dimensions of 30 mm length, 550 microns thickness, and a width of 1000 mm, the same width that is substantially equal to the width compressible blanket across the length of the cylinder. Following a normal print run, an unprinted margin of 10 mm is measured at the leading edge of each sheet of printed substrate.
The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons skilled in the art to which the invention pertains.
In the description and claims of the present disclosure, each of the verbs, “comprise”, “include” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements or parts of the subject or subjects of the verb. As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a marking” or “at least one marking” may include a plurality of markings.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/768,941 filed on Nov. 18, 2018, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/059420 | 11/2/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/199976 | 5/22/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5019860 | Matsuo | May 1991 | A |
5408297 | Matsuo | Apr 1995 | A |
5473407 | Fuchioka | Dec 1995 | A |
9290016 | Landa et al. | Mar 2016 | B2 |
20050150408 | Hesterman | Jul 2005 | A1 |
20060042486 | Forch et al. | Mar 2006 | A1 |
20100282101 | Masuda | Nov 2010 | A1 |
20150022602 | Landa | Jan 2015 | A1 |
20170160677 | Portnoy et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
0495320 | Jul 1992 | EP |
2012058633 | Mar 2012 | JP |
2013226654 | Nov 2013 | JP |
2015514606 | May 2015 | JP |
2015524756 | Aug 2015 | JP |
2016155369 | Sep 2016 | JP |
2019217664 | Dec 2019 | JP |
2004013704 | Feb 2004 | WO |
2018029085 | Feb 2018 | WO |
Entry |
---|
JP2012058633A Machine Translation (by EPO and Google)—published Mar. 22, 2012; Seiko Epson Corp. |
JP2013226654A Machine Translation (by EPO and Google)—published Nov. 7, 2013; Komori Corp. |
WO2004013704A1 Machine Translation (by EPO and Google)—published Feb. 12, 2004; Hesterman Ebe. |
WO2018029085A1 Machine Translation (by EPO and Google)—published Feb. 15, 2018; Koenig & Bauer AG. |
JP2015524756A Machine Translation (by EPO and Google)—published Aug. 27, 2015; Heidelberger Druckmaschinen AG. |
JP2016155369A Machine Translation (by EPO and Google)—published Sep. 1, 2016; Xerox Corp. |
JP2019217664A Machine Translation (by EPO and Google)—published Dec. 26, 2019; Canon KK. |
Number | Date | Country | |
---|---|---|---|
20210370667 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62768941 | Nov 2018 | US |