Ground vehicle passengers are sometimes subject to blast pulses from explosion devices buried in the ground or at ground level. Since they are often seated during missions, the seats must be designed to withstand or minimize the impact of these blasts. The seats must be tested for blast resistance. To date the only method used to simulate a blast pulse, for blast resistant seat testing, is to conduct drop testing. This testing consists of lifting a seat to a predetermined height. Once the seat reaches the required height, the seat and supporting test structure is dropped.
There are a number of limitations using this method. As the severity of the explosive devices increase, due to increased amounts of propellant or the use of more reactive explosives, the blast pulse is increased, and thus the height must be increased. The drop height, and therefore simulated pulse, is limited to the height of the drop tower. The majority of drop towers are located outside; therefore, heir use is limited by weather conditions. When using a drop tower, the fall imparts a no load case on the seat due to free fall. Additionally, the effects of free fall must be accounted when determining the effectiveness of the seat.
Therefore, there is a need for an explosive device test fixture that can simulate a test blast upon a seat or other piece of equipment.
The present invention is directed to an explosive device test fixture that meets the needs enumerated above and below.
The present invention is directed to an explosive device test fixture which includes a horizontal accelerator having a track, a main sled, and a mini-sled. The main sled is able to be travel on the track, and has main sled rails. The mini-sled is smaller than the main sled such that the mini-sled can travel along the main sled rails. When the horizontal accelerator is actuated it fires a pulse. The pulse causes the main sled to travel along the track, while the mini-sled remains stationary causing the main sled to hit the mini-sled and simulate acceleration forces on the mini-sled similar to acceleration forces in an actual explosion
It is a feature of the present invention to provide an explosive device test fixture that, unlike currently used drop testing, there are no free fall effects that need to be accounted for.
It is a feature of the present invention to provide an explosive device test fixture that can accurately simulate the majority of all blast events currently seen in theatre, and any potential different types of blast events.
It is a feature of the present invention to provide an explosive device test fixture that can be quickly configured to accept one or two seats.
It is a feature of the present invention to provide an explosive device test fixture that can be utilized for different seat designs.
It is a feature of the present invention to provide an explosive device test fixture that is not limited by height, other size restraints, or weather considerations.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims, and accompanying drawings wherein:
The preferred embodiments of the present invention are illustrated by way of example below and in
In the description of the present invention, the invention will be discussed in a military environment; however, this invention can be utilized for any type of application that requires use of a explosive device test fixture.
A horizontal accelerator 100 may be defined, but without limitation, as an apparatus that can make an object move along a track at various speeds and can be used to create acceleration forces and pulse shapes typically seen in crashes and other types of accelerated environments. The horizontal accelerator 100 includes a track 101 (which includes two substantially parallel rails) and a hydraulically controlled linear actuator to move and/or accelerate the objects along the track. The preferred horizontal accelerator 300 operates at a 50 G maximum acceleration, with a 5,000 pound maximum payload at 20 G's.
The mini-sled 300 further includes sliders 350, the sliders 350 are slidably attached to the mini-sled 300 and the main sled rails 210 such that the mini-sled 300 will stay attached to the main sled rails 210 and still slide along the main sled rails 210.
The main sled 200 may further includes main sled supports 230. In the preferred embodiment, the main sled supports are triangularly shaped, However, they may he beams or any other type of support practicable. In the preferred embodiment, as shown in
In the preferred embodiment, first mini-sled contact plate 310 may be communicating with an accelerometer, which is communicating with an A/D board and a computer that analyzes the acceleration on the first mini-sled contact plate 310. Data can be collected utilizing a computer driven Data Acquisition System with sensors placed on the seat to be tested, or on any of the contact plates, or anywhere else desired.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a,” “an,” “the,” and “said” are intended to mean there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiment(s) contained herein.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.