The invention relates to an impulse wrench in which an impulse unit comprises a motor driven inertia drive member, and an angle sensing device is arranged to detect the angular movement of the drive member.
A certain type of angle sensing devices used in impulse wrenches is based on detection of magnetic poles of a rotating element passing a Hall-element type sensor. A problem concerned with this type of angle sensing device is that it is easily disturbed by external magnetic fields caused by for instance magnetic bits attached to the output shaft of the wrench.
An impulse wrench of a similar type is described in WO 02/083366.
The object of the invention is to provide an impulse wrench including an angle sensing device of the magnetically activated Hall-element type where the Hall-elements are arranged so as to prevent the delivered signals from being influenced by external magnetic fields.
A preferred embodiment of the invention is described below in further detail with reference to the accompanying drawings.
The power tool system illustrated in
The sensing device 19 comprises a connector board 20 carrying four Hall-element sensors 120a,b,c,d each delivering a sinusoidal signal when activated by the magnetic poles of the rim portion 18. The Hall-elements are disposed in two pairs 120a,c and 120b,d, wherein the sensors in each pair 120a,c are disposed in such a way as to deliver signals with a phase lag of 180 degrees relative to each other. The Hall-elements 120b,d of the other pair deliver signals with a phase lag of 90 degrees relative to the Hall-elements 120a,c of the first pair.
The diagram shown in
By arranging the Hall-elements of one of the pairs such that a signal phase lag of 90 degrees is accomplished relative to the signals of the other pair there is obtained information about the direction of rotation of the inertia drive member 14. By providing a 180 degree phase lag between the Hall-element signals in each pair there is obtained a kind of protection for occurring external disturbing magnetic fields in that a difference in value between the signals from the Hall-elements in each pair is calculated.
The Hall-elements 120a-d and connector board 20 is coupled to a circuit board 21 which carries a number of electronic components (not shown) for treating the angle signals delivered by the Hall-elements as described above and sending secondary signals to a stationary programmable control unit 22 via a multi-core cable 24. Pressure air is supplied to the impulse wrench via a hose 25 and a flow regulating valve 26 which communicates with a pressure air source and which is connected to the control unit 22 for receiving operating signals. The flow regulating valve 26 is of the type that is able to adjust the air flow magnitude successively in the range between zero and full power flow as determined by the signals delivered by the control unit 22.
The signals delivered by the movement detecting device 16 correspond to the rotational movement of the drive member 14 and are used for calculating not only the speed and retardation of the drive member 14 but also the installed torque, because with the knowledge of the total inertia of the rotating parts, i.e. the drive member 14 and the connected motor rotor 12, the energy and hence the installed torque magnitude of each delivered torque impulse may be calculated. This method of torque calculation is previously described per se in the above mentioned WO 02/083366.
Based on this previously described torque determination method the operation of the impulse wrench is governed by controlling the pressure air supply to the impulse wrench motor via the flow regulating valve 26. As a set target torque level is reached the flow regulating valve 26 is instructed to reduce the air supply flow so as to interrupt the tightening process either by stopping the impulse wrench completely or by maintaining the installed torque magnitude via a continued impulse delivery at a further reduced torque magnitude in each impulse.
It is to be understood that the embodiments of the invention is not limited to the above described example but may be freely varied within the scope of the claims. Accordingly, the invention is as well applicable on electrically powered impulse wrenches where the rotational movement of the inertia drive member is detected the same way, i.e. via four Hall-elements arranged according to the claims.
Number | Date | Country | Kind |
---|---|---|---|
0303212-5 | Dec 2003 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE04/01767 | 11/30/2004 | WO | 5/31/2006 |