The present invention relates to the diagnostic imaging arts. It finds particular application in conjunction with the oncological studies and will be described with particular reference thereto. However, it is to be appreciated that the present invention is applicable to a wide range of diagnostic imaging modalities and to the study of a variety of organs for a variety of reasons.
In oncological planning, the oncologist typically generates a CT image or a plurality of x-ray, projection images of a region to be treated. One of the priorities in oncological procedures is to accurately, and with a reliable repeatability, align an energetic x-ray photon beam with the internal tumor. If the selected trajectory is not accurately located, the x-ray beam will treat most of the tumor, but leave a segment un-irradiated while damaging healthy tissue. Conversely, some tissue is easily damaged by radiation and dense tissue, e.g. bone absorbs a significant portion of the radiation altering the dose. The trajectories are selected to miss these tissues, but often need to come close to them to reach the target with specified margins. If the trajectory is slightly off, these tissues could be damaged or the dose unknowingly altered.
It is critical to position a patient with respect to the radiation apparatus such that the center of the zone to be irradiated coincides with the isocenter of the radiation apparatus. The CT simulators from Philips Medical Systems typically use absolute patient marking. In absolute marking, a CT scan is performed and the center of the treatment region is determined while the patient remains on the couch. The couch is moved to position the tumor outside of the bore at a point of intersection of three lasers which are also positioned outside of the bore. A sagittal laser line is projected from the top and crosshair laser lines are projected from either side of the patient couch. The position of the crosshairs and the intersection of the side and top lasers on the patient are marked to identify the location of the tumor.
Because a physician needs to have an access to the patient, the three lasers are installed a set distance from the front of the gantry. In this approach, the side lasers, transverse and coronal, are co-planer and are typically mounted to the floor in stanchions or on the wall. A sagittal assembly is mounted to the ceiling or on the wall opposite the foot end of the patient support.
However, the mounting of the marking lasers in front of the gantry is often difficult in terms of exact placement in relation to the gantry due to obstructions within the room. Additionally, the side lasers are mounted at a fixed distance of 500-700 mm from the scan plane. The marking accuracy due to variations in the patient support (differential sag between the marking plane and the scan plane) is changed as a function of the distance between the scan plane and marking plane. The side lasers, which are mounted in front of the gantry, are often struck by the patient carts and wheelchairs, which can result in misalignment of the lasers and a delay for calibration.
The present application contemplates a new method and apparatus, which overcomes the above-referenced problems and others.
In accordance with one aspect of the present invention, a diagnostic imaging system is disclosed. The diagnostic imaging system comprises a stationary gantry; a subject-receiving bore defined in the stationary gantry; an imaging isocenter being defined centrally in the bore; first and second lasers mounted to the stationary gantry; a cover shroud covering the stationary gantry and the lasers, the shroud defining windows through which light from the lasers passes into the bore; and a couch for moving a region of interest of a subject into the bore.
In accordance with another aspect of the present invention, a method of diagnostic imaging is disclosed. A stationary gantry is provided. A subject-receiving bore is defined in the stationary gantry. An imaging isocenter is defined as being central in the bore. First and second lasers are mounted to the stationary gantry. The stationary gantry and the lasers are covered with a cover shroud. Windows in the shroud are defined, through which light from the lasers passes into the bore. A region of interest of a subject is moved into the bore.
One advantage of the present invention resides in mounting at least transverse and coronal marking lasers integrally with the scanner.
Another advantage resides in setting up the marking lasers prior to the system shipment.
Another advantage resides in reducing the mounting vulnerability of the marking lasers and thus reducing a need for re-calibration.
Another advantage resides in maintaining the marking accuracy.
Another advantage resides in reduced installation time, since the side lasers are delivered installed and calibrated in the scanner.
Yet another advantage resides in improved shielding of the lasers.
Still further advantages and benefits of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description of the preferred embodiments.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
With reference to
Typically, the imaging technician performs a scan using the workstation 12. A couch moving means 34, such as a motor and a drive, moves a couch 36 with a subject to position the couch in the examination region 28, where an image of a region of interest of the subject is taken. The couch 36 includes drive mechanisms (not shown) which are used to move the couch 36 to a higher and lower positions with respect to the floor. Electronic data is reconstructed by a reconstruction processor 38 into 3D electronic image representations which are stored in a diagnostic image memory 40. The reconstruction processor 38 may be incorporated into the workstation 12, the scanner 18, or may be a shared resource among a plurality of scanners and workstations. The diagnostic image memory 40 preferably stores a three-dimensional image representation of an examined region of the subject. A video processor 42 converts selected portions of the three-dimensional image representation into appropriate format for display on one or more video monitors 44. The operator provides input to the workstation 12 by using an operator input device 46, such as a mouse, touch screen, touch pad, keyboard, or other device.
With continuing reference to
Second and third or side lasers 66, 68 are mounted firmly to the stationary gantry 20 via associated second and third mounting means 70, 72 which move the lasers 66, 68 vertically in a common plane. The side lasers 66, 68 generate laser lines 74, 76 in a horizontal transverse plane 78 and a vertical transverse plane 80, both perpendicular to and intersecting the saggital vertical plane 60 to define crosshairs on the sides of the subject. The vertical plane 78 intersects the vertical, longitudinal saggital plane 60 on an upper surface of the subject. The shroud 32 has a vertical window 82 for each side laser 66, 68. Preferably, the side lasers 66, 68 are disposed in a close proximity to a front 84 of the gantry 20 such that the distance D between a scanning plane 86 and the horizontal plane 78 generated by the lines of lasers 66, 68 is approximately 50-200 mm. Because the side lasers 66, 68 are positioned at a minimal distance to the scanning plane 86, the marking accuracy is maintained with fewer requirements for the positioning of the patient support in terms of repeatability and accuracy.
In one embodiment, the side lasers 66, 68 are mounted close to a rear 88 of the bore 26 or a second set of lasers is mounted close to the rear.
With continuing reference to
After the scanning operation is completed, the isocenter coordinates x, y, z, which have been determined by the isocenter determining means 92, are used by the operator or a software routine at the workstation 12 to move the couch 36 and/or the lasers 48, 66, 68 accordingly up and down, and/or in and out. More specifically, the moving means 34 positions the couch 36 and the side lasers 66, 68 are moved up or down as necessary such that the side lasers 66, 68 project their crosshairs on the side of the subject directly in line with the center of mass 94 of the tumor. The laser mounting means 52 moves the saggital laser 48 left or right such that the saggital laser's line 58 intersects the center of mass 94. The laser projections provide three crossing points: one on each side of the subject and a third one on the top of the subject where the crosshairs of the side lasers 66, 68 intersect the longitudinal line 58 of the saggital laser 48. While the laser lines are projected onto the subject in accordance with the determined isocenter 94 of the tumor, the small dots are placed on each of the crossing points to mark the isocenter 94 and provide for reproducible positioning of the subject with respect to the isocenter of the x-ray source 22 during the radiotherapy sessions.
Rather than positioning the second and third lasers 66, 68 at 3 and 9 o'clock, the second and third lasers 66, 68 can be positioned at other angles.
The invention has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/54059 | 12/5/2005 | WO | 00 | 6/5/2007 |
Number | Date | Country | |
---|---|---|---|
60634581 | Dec 2004 | US |