In-camera based method of detecting defect eye with high accuracy

Information

  • Patent Grant
  • 8081254
  • Patent Number
    8,081,254
  • Date Filed
    Thursday, August 14, 2008
    16 years ago
  • Date Issued
    Tuesday, December 20, 2011
    13 years ago
Abstract
A portable digital image acquisition device includes multiple lenses and/or multiple flashes. A main digital image and first and second reference images are acquired. The first and second reference images are acquired with different flash-lens combinations that have different flash-lens distances. One or more flash eye defects are detected and corrected in the main image based on analysis of the first and second reference images.
Description
BACKGROUND OF THE INVENTION

It is known to capture non-flash images followed by flash images and by subtracting these images (including some luminance normalizing), one can get a difference image which indicates where red-eye defects (flash-eyes) are located. U.S. Pat. Nos. 7,027,662 and 6,859,565 are incorporated by reference.


In addition, US published patent application 2005/0041121, entitled “Red-eye filter method and apparatus”, which is assigned to the same assignee as the present application and incorporated by reference, describes techniques wherein a reference non-flash and the main flash image may initially be of different sizes, and where the images are sized to the same dimensions and aligned before luminance normalization and/or subtraction.


It is desired to have an improved technique involving capturing two images that are normalized for luminance and then subtracted, indicating the likely eye locations in a main acquired image, followed by acquisition of a main image. The process would be performed quickly (typically less than 1 second) to minimize any misalignment of the reference pair and the main acquired image.


It is also desired to have a technique that overcomes problems associated with the non-flash image tending to be significantly darker than the flash image and, particularly in indoor environments, wherein it is difficult to achieve practical luminance normalization.


SUMMARY OF THE INVENTION

A portable digital image acquisition device is provided. The device includes a lens and a sensor for acquiring a main digital image and first and second reference images. The device also includes first and second light sources disposed at different distances from the lens for illuminating one or more objects within an acquired scene. The main image is stored in a memory. The device also includes one or more processor-readable media having digital code embedded therein for programming a processor to perform a method of determining and correcting a flash eye defect in the main digital image using the first and second reference images. The method includes acquiring the first and second reference images respectively using the first and second light sources. The first and second images are normalized to generate normalized first and second reference images. One or more differences between the first and second normalized reference images are analyzed. The method further includes determining and correcting the flash eye defect within the main image based on the analyzing to generate a corrected main image. The corrected main image or a further processed version is stored, transmitted, communicated, displayed, and/or projected.


Another portable digital image acquisition device is provided. This device includes first and second lenses and at least one sensor for acquiring a main digital image and first and second reference images. The device also includes a light source disposed at different distances from the first and second lenses respectively for illuminating one or more objects within an acquired scene. The main digital image and/or a further processed version is stored in a memory. The device includes one or more processor-readable media having digital code embedded therein for programming a processor to perform a method of determining and correcting a flash eye defect in the main digital image using the first and second reference images. The method includes acquiring the first and second reference images using the light source and the first and second lenses respectively. The first and second images are normalized to generate normalized first and second reference images. One or more differences between the first and second normalized reference images are analyzed. The method further includes determining and correcting the flash eye defect within the main image based on the analyzing to generate a corrected main image. The corrected main image and/or further processed version is stored, transmitted, communicated, displayed, and/or projected.


In either device, the analyzing may include subtracting the first and second reference images.


The normalizing may include luminance normalizing.


The flash eye defect may include a red eye defect.


The normalizing may include re-sizing one or both of the first and second reference images.


The normalizing may include aligning the first and second reference images. The aligning may include aligning one or more eyes within the first and second images.


The differences may include color differences and/or brightness differences.


The first and second reference images may be each acquired using relatively low-intensity pre-flashes compared with an intensity of a flash used in acquiring the main digital image.


The analyzing may take into account the specific different distances between the first and second light sources and the lens in the first device, or between the first and second lenses and the light source in the second device.


The analyzing may further take into account distance to one or more objects, a gaze angle, an ambient lighting condition, color of an iris and/or a skin tone of a face within the acquired scene.


The first and second preview images may be acquired consecutively prior to acquiring the main digital image.


Methods determining and correcting a flash eye defect in the main digital image using the first and second reference images are also provided. Computer readable media having embedded code for programming a processor to perform the methods are also provided.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A illustrates a camera with a flash close to an optical lens for acquiring an image.



FIG. 1B illustrates a camera with a flash farther from an optical lens than the flash illustrated in FIG. 1A.



FIGS. 2A, 3A and 4A illustrate flash eye defects in digital images acquired with the camera of FIG. 1A.



FIGS. 2B, 3B and 4B illustrate flash eye defects in digital images acquired with the camera of FIG. 1B.



FIG. 5 illustrates a camera with two flashes separated at different distances from the camera's lens.



FIG. 6 illustrates a camera with two optical lenses separated at different distances from the camera's flash.



FIG. 7 is a block diagram illustrating a method in accordance with certain embodiments.



FIG. 8 is a block diagram illustrating a method in accordance with further embodiments.





DETAILED DESCRIPTION OF THE EMBODIMENTS

It is recognized herein that if a light source is located at a different spatial distance from an imaging lens, the color and brightness of eye regions in the image can vary significantly. At the same time, the remainder of the image will not vary as much in color and brightness.



FIGS. 1A and 1B illustrate two cameras each having a single flash and a single lens. However, the flash-lens distance is greater for the camera of FIG. 1B than for that of FIG. 1A. FIGS. 2A, 3A and 4A are pictures taken of at least the eyes of three people with the camera of FIG. 1A. FIGS. 2B, 2C and 2D are pictures taken of at least the eye of the same three people with the camera of FIG. 1B. FIG. 2A clearly shows a lighter red than the eyes of the same person captured in FIG. 2B. The eyes also appear to be brighter n FIG. 2A than in FIG. 2B. FIG. 3A clearly shows a lighter red than the eyes of the same person captured in FIG. 3B. The eyes also appear to be brighter n FIG. 3A than in FIG. 3B. The right eye in FIG. 4A taken with the camera of FIG. 1A appears as a lighter red than the right eye of the same person in FIG. 4B taken with the camera if FIG. 1B. The left eye in FIG. 4A appears golden and very bright, while the left eye in FIG. 4B appears red and not nearly as bright as the left eye of FIG. 4A. The differences between the eyes captured in FIGS. 2A, 3A and 4A and those of FIGS. 2B, 3B and 4B is the different distances between the flashes and the optical lenses of the respective cameras used as illustrated at FIGS. 1A and 1B. Other features of the partial faces shown in FIGS. 2A and 2B do not appear to differ significantly, and same for FIGS. 3A-3B and 4A-4B.


In accordance with certain embodiments, FIG. 5 schematically illustrates a camera with two distinct light sources 2a and 2b at different distances from a main lens 4. Two reference images, which may be preview, post-view and/or concurrent view images, are acquired using a low-intensity pre-flash from the two distinct flash units 2a, 2b. The camera illustrated schematically at FIG. 5 also includes a photosensor 6 such as a CMOS sensor aligned with lens 4 for digitally-capturing images including the preview images and main images intended to be stored, transmitted, displayed, projected, communicated and/or further processed. The camera also includes a processor 8 and one or more digital media 10 having program code stored therein. These media 10 and/or other media may be used to store image data as well. The camera can have other features such as one or more ports for connecting to another device such as a printer, PC, display device, another camera, phone, etc., with a cable or wirelessly, and/or for plugging in a flash card or other mountable device.


With the camera 1A illustrated schematically at FIG. 5, methods of detecting and corrected all kinds of defect eyes with high accuracy are provided on a digital flash camera. Certain embodiments take into greater account a red eye flash defect by concentrating on differences in color between the two preview or other reference images, while other embodiments take into greater account other defects such as golden eye, white eye, and/or zombie eye. The method is based on the effect of reflection from the eyes of the flash light to the CCD and/or CMOS of the camera. Such is a function of few parameters. That is, a defect eye distribution is a function of flash-lens positioning, distance to the subject, gaze angle, ambient lighting conditions, color of the iris, race, among other factors. The method of certain embodiments exploits variations of the defect eye distribution with the distance between the lens and the main light source of the camera (flash lamp, focusing LED, or any other source light).


The distribution of defects changes with the distance between the flash lamp and the lens, as does the character of the defects. The frequency of getting other than red defect eyes decreases with the increasing of the distance between the flash and lens. In addition, the intensity of the defect eyes decreases with the increasing of the distance between the flash and lens. For example, a distance between the first flash and the lens may be 2 cm, while the distance between the second flash and lens may be 5 cm. An optimal positioning of the two light sources 2a, 2b would provide a maximum difference between the distribution of the defect eyes on the two preview or other reference images, and a minimum difference between the rest of the preview images.


The two flash light sources may be identical light sources 2a, 2b, e.g., flash lamps, or two focusing lamps, or LEDs, on a same camera 1A at two different positions relative to the lens 4. The light sources may differ and the camera 1A would have software that would take the differences into account. However, the two identical light sources, except as to position relative to lens 4, provide two almost identical preview or other reference images. In this way, it is possible and optimal to get the difference map of the two previews.


The camera 1A is able to take two consecutive preview pictures, just before the final flash picture, or two post-view pictures, or one of each. The first preview or other reference image is taken with the first light source 2a of the camera 1A, and the second preview or other reference image is taken with the second light source 2b.


A difference map of the two preview or other reference images is generated. The differences could be determined in various ways, e.g., on the red channel only for detecting red eye defects, starting from the closer source light preview, or on the luminance channel only for white eye defects or golden eye defects.


A first source light 2a is preferably located very close to the lens 4 of camera 1A. For example, the light 2a may be 1 cm or 2 cm on the right or left side of the lens as illustrated at FIG. 1a. The second light source 2b may be on the right or left side of the lens 4 a longer distance such as 4 cm or 5 cm from the lens 4 such as illustrated at FIG. 2b. A first preview image may be captured using flash 2a, while a second preview image may be captured using flash 2b. Then the main image may be captured. As indicated, postview images may be captured instead. A difference map of the preview or postview images is calculated. The difference map is filtered to eliminate small differences, shadows, etc, and the significant differences that remain will be analyzed as probably or at least possible defect eyes subject to flash eye defect correction algorithm. The sources 2a, 2b may be in the simplest form two focusing lamps (e.g., LEDs) or in a complex form two flash lamps.


In accordance with further embodiments, FIG. 6 schematically illustrates a camera with a light source 12 and two distinct optical systems/lenses 14a and 14b at different distances from the flash 12. Two preview images may be acquired using a low-intensity pre-flash from the flash unit 12. The camera illustrated schematically at FIG. 6 also includes at least one photosensor 6 aligned with lenses 14a, 14b, e.g., two separate photosensors one for each lens 14a, 14b or a single sensor, for digitally-capturing images including the preview images and main images intended to be stored, transmitted, displayed, projected, communicated and/or further processed. The camera also includes a processor 18 and one or more digital media 20 having program code stored therein. These media 20 and/or other media may be used to store image data as well. The camera can have other features such as one or more ports for connecting to another device such as a printer, PC, display device, another camera, phone, etc., with a cable or wirelessly, and/or for plugging in a flash card or other mountable device.


In the embodiment of FIG. 6, a camera 1B has a single flash unit 12 and two imaging lenses 14a, 14b. A full dual imaging pipeline may be provided as well. In this embodiment, a first preview image is acquired using one of the imaging lenses 14a with a pre-flash illumination. At or near the same time, a second preview image is acquired using the second imaging lens 14b with illumination from the same weak pre-flash. The result is a pair of simultaneous preview images each being a different distance from the flash source. Any alignment errors will be solely due to geometrical factors rather than due to subject or camera movement and a compensation algorithm can be pre-calibrated.


The reference images captured using the different flashes 2a, 2b of the camera of FIG. 5, or with the two sensors 14a, 14b with the camera of FIG. 6, may then be compared, subtracted (with or without luminance normalizing) and/or otherwise analyzed. As only the eye regions will have very different characteristics, the locations of eye regions may be determined in this way. A third flash image may then be obtained using a full strength flash. This may be achieved by applying greater power to one of the flash units 2a, 2b, 12 or by combining the two flash units 2a, 2b together in the camera of FIG. 5, or otherwise such as by including a third flash.



FIG. 7 illustrates a method involving the camera 1A of FIG. 5. First and second reference images are respectively acquired at 62 using the first and second light sources and optical system 4 of camera 1A of FIG. 5. The first and second images are normalized to generate normalized first and second reference images at 64. One or more differences between the first and second normalized reference images are analyzed at 66. A flash eye defect is determined and corrected within a main image based on the analyzing to generate a corrected main image at 68. The corrected main image and/or a further processed version is/are stored, transmitted, communicated, displayed, and/or projected at 69.



FIG. 8 illustrates a method involving the camera 1B of FIG. 6. First and second reference images are acquired at 72 using a light source 12 and first and second lenses 14a, 14b of camera 1B of FIG. 6. First and second images are normalized at 74 to generate normalized first and second reference images. One or more differences between the first and second normalized reference images are analyzed at 76. A flash eye defect within the main image is determined and corrected based on the analysis to generate a corrected main image at 78. The corrected main image and/or a further processed version is/are stored, transmitted, communicated, displayed, and/or projected at 79.


While an exemplary drawings and specific embodiments of the present invention have been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed. Thus, the embodiments shall be regarded as illustrative rather than restrictive, and it should be understood that variations may be made in those embodiments by workers skilled in the arts without departing from the scope of the present invention as set forth in the appended claims, and structural and functional equivalents thereof.


In addition, in methods that may be performed according to preferred embodiments herein and that may have been described above, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations, except for those where a particular order may be expressly set forth or where those of ordinary skill in the art may deem a particular order to be necessary.


In addition, all references cited above herein, as well as the background, invention summary, abstract and brief description of the drawings, are all incorporated by reference into the detailed description of the preferred embodiments as disclosing alternative embodiments. In addition, the following are incorporated by reference:


U.S. Pat. Nos. 6,407,777, 7,042,505, 7,352,394, 7,362,368, 7,269,292, 7,369,712, 6,035,072, 7,336,821, 7,315,631, and 7,295,233,


United States published patent applications 2004/0223063, 2005/0041121, 2005/0140801, 2006/0120599, 2006/0093213, 2007/0116379, 2006/0039690, 2007/0116380, and 2007/0201724


U.S. patent applications Ser. Nos. 11/573,713, 11/462,035, 12/421,335, 11/761,647, 11/753,098, 12/038,777, 12/043,025, 11/752,925, 11/836,773, 11/767,412, 11/624,683, 60/945,558, 60/892,884, 11/861,257, 61/024,551, 11/937,377, and 61/023,855.

Claims
  • 1. A portable digital image acquisition device, comprising: (a) a lens and a sensor for acquiring a main digital image and first and second reference images;(b) first and second light sources disposed at different distances from the lens for illuminating one or more objects within an acquired scene;(c) a memory for storing the main digital image;(d) one or more non-transitory processor-readable media having digital code embedded therein for programming a processor to perform a method of determining and correcting a flash eye defect in the main digital image using the first and second reference images, wherein the method comprises: (i) acquiring the first and second reference images respectively using the first and second light sources;(ii) normalizing the first and second reference images to generate normalized first and second reference images;(iii) analyzing one or more differences between the first and second normalized reference images;(iv) determining and correcting the flash eye defect within the main image based on the analyzing to generate a corrected main image; and(v) storing, transmitting, communicating, displaying, or projecting the corrected main image or a further processed version, or combinations thereof.
  • 2. The device of claim 1, wherein the analyzing comprises subtracting the first and second reference images.
  • 3. The device of claim 1, wherein the normalizing comprises luminance normalizing.
  • 4. The device of claim 1, wherein the flash eye defect comprises a red eye defect.
  • 5. The device of claim 1, wherein the normalizing comprises re-sizing one or both of the first and second reference images.
  • 6. The device of claim 1, wherein the normalizing comprises aligning the first and second reference images.
  • 7. The device of claim 6, wherein the aligning comprises aligning one or more eyes within the first and second images.
  • 8. The device of claim 1, wherein the differences comprise color differences.
  • 9. The device of claim 1, wherein the differences comprise brightness differences.
  • 10. The device of claim 1, wherein the first and second reference images are each acquired using relatively low-intensity pre-flashes compared with an intensity of a flash used in acquiring the main digital image.
  • 11. The device of claim 1, wherein the analyzing takes into account the specific different distances from the lens of the first and second light sources.
  • 12. The device of claim 11, wherein the analyzing further takes into account distance to one or more objects, a gaze angle, an ambient lighting condition, color of an iris or a skin tone of a face within the acquired scene, or combinations thereof.
  • 13. The device of claim 1, wherein the first and second preview images are acquired consecutively prior to acquiring the main digital image.
  • 14. A method of determining and correcting a flash eye defect in a main digital image using first and second reference images, wherein the method comprises using a processor-based digital image acquisition device to perform the following: acquiring first and second reference images respectively using first and second light sources disposed at different distances from a camera lens;normalizing the first and second reference images to generate normalized first and second reference images;analyzing one or more differences between the first and second normalized reference images;determining and correcting a flash eye defect within the main image based on the analyzing to generate a corrected main image; andstoring, transmitting, communicating, displaying, or projecting the corrected main image or a further processed version, or combinations thereof.
  • 15. The method of claim 14, wherein the analyzing comprises subtracting the first and second reference images.
  • 16. The method of claim 14, wherein the normalizing comprises luminance normalizing.
  • 17. The method of claim 14, wherein the flash eye defect comprises a red eye defect.
  • 18. The method of claim 14, wherein the normalizing comprises re-sizing one or both of the first and second reference images.
  • 19. The method of claim 14, wherein the normalizing comprises aligning the first and second reference images.
  • 20. The method of claim 19, wherein the aligning comprises aligning one or more eyes within the first and second images.
  • 21. The method of claim 14, wherein the differences comprise color differences.
  • 22. The method of claim 14, wherein the differences comprise brightness differences.
  • 23. The method of claim 14, wherein the first and second reference images are each acquired using relatively low-intensity pre-flashes compared with an intensity of a flash used in acquiring the main digital image.
  • 24. The method of claim 14, wherein the analyzing takes into account the specific different distances from the lens of the first and second light sources.
  • 25. The method of claim 24, wherein the analyzing further takes into account distance to one or more objects, a gaze angle, an ambient lighting condition, color of an iris or a skin tone of a face within the acquired scene, or combinations thereof.
  • 26. The method of claim 14, wherein the first and second preview images are acquired consecutively prior to acquiring the main digital image.
  • 27. One or more non-transitory processor-readable media having digital code embedded therein for programming a processor to perform a method of determining and correcting a flash eye defect in a main digital image using first and second reference images acquired with first and second light sources respectively disposed different distances from a camera lens, wherein the method comprises: normalizing the first and second reference images to generate normalized first and second reference images;analyzing one or more differences between the first and second normalized reference images;determining and correcting the flash eye defect within the main image based on the analyzing to generate a corrected main image; andstoring, transmitting, communicating, displaying, or projecting the corrected main image or a further processed version, or combinations thereof.
  • 28. The one or more media of claim 27, wherein the analyzing comprises subtracting the first and second reference images.
  • 29. The one or more media of claim 27, wherein the normalizing comprises luminance normalizing.
  • 30. The one or more media of claim 27, wherein the flash eye defect comprises a red eye defect.
  • 31. The one or more media of claim 27, wherein the normalizing comprises re-sizing one or both of the first and second reference images.
  • 32. The one or more media of claim 27, wherein the normalizing comprises aligning the first and second reference images.
  • 33. The one or more media of claim 32, wherein the aligning comprises aligning one or more eyes within the first and second images.
  • 34. The one or more media of claim 27, wherein the differences comprise color differences.
  • 35. The one or more media of claim 27, wherein the differences comprise brightness differences.
  • 36. The one or more media of claim 27, wherein the first and second reference images are each acquired using relatively low-intensity pre-flashes compared with an intensity of a flash used in acquiring the main digital image.
  • 37. The one or more media of claim 27, wherein the analyzing takes into account the specific different distances from the lens of the first and second light sources.
  • 38. The one or more media of claim 37, wherein the analyzing further takes into account distance to one or more objects, a gaze angle, an ambient lighting condition, color of an iris or a skin tone of a face within the acquired scene, or combinations thereof.
  • 39. The one or more media of claim 27, wherein the first and second preview images are acquired consecutively prior to acquiring the main digital image.
US Referenced Citations (326)
Number Name Date Kind
4285588 Mir Aug 1981 A
4577219 Klie et al. Mar 1986 A
4646134 Komatsu et al. Feb 1987 A
4777620 Shimoni et al. Oct 1988 A
4881067 Watanabe et al. Nov 1989 A
4978989 Nakano et al. Dec 1990 A
5016107 Sasson et al. May 1991 A
5070355 Inoue et al. Dec 1991 A
5130789 Dobbs et al. Jul 1992 A
5164831 Kuchta et al. Nov 1992 A
5164833 Aoki Nov 1992 A
5202720 Fujino et al. Apr 1993 A
5231674 Cleveland et al. Jul 1993 A
5249053 Jain Sep 1993 A
5274457 Kobayashi et al. Dec 1993 A
5301026 Lee Apr 1994 A
5303049 Ejima et al. Apr 1994 A
5335072 Tanaka et al. Aug 1994 A
5384601 Yamashita et al. Jan 1995 A
5400113 Sosa et al. Mar 1995 A
5432863 Benati et al. Jul 1995 A
5432866 Sakamoto Jul 1995 A
5452048 Edgar Sep 1995 A
5455606 Keeling et al. Oct 1995 A
5537516 Sherman et al. Jul 1996 A
5568187 Okino Oct 1996 A
5568194 Abe Oct 1996 A
5649238 Wakabayashi et al. Jul 1997 A
5671013 Nakao Sep 1997 A
5678073 Stephenson, III et al. Oct 1997 A
5694926 DeVries et al. Dec 1997 A
5708866 Leonard Jan 1998 A
5719639 Imamura Feb 1998 A
5719951 Shackleton et al. Feb 1998 A
5724456 Boyack et al. Mar 1998 A
5734425 Takizawa et al. Mar 1998 A
5748764 Benati et al. May 1998 A
5748784 Sugiyama May 1998 A
5751836 Wildes et al. May 1998 A
5761550 Kancigor Jun 1998 A
5781650 Lobo et al. Jul 1998 A
5805720 Suenaga et al. Sep 1998 A
5805727 Nakano Sep 1998 A
5805745 Graf Sep 1998 A
5815749 Tsukahara et al. Sep 1998 A
5818975 Goodwin et al. Oct 1998 A
5847714 Naqvi et al. Dec 1998 A
5850470 Kung et al. Dec 1998 A
5862217 Steinberg et al. Jan 1999 A
5862218 Steinberg Jan 1999 A
5892837 Luo et al. Apr 1999 A
5949904 Delp Sep 1999 A
5974189 Nicponski Oct 1999 A
5990973 Sakamoto Nov 1999 A
5991456 Rahman et al. Nov 1999 A
5991549 Tsuchida Nov 1999 A
5991594 Froeber et al. Nov 1999 A
5999160 Kitamura et al. Dec 1999 A
6006039 Steinberg et al. Dec 1999 A
6009209 Acker et al. Dec 1999 A
6011547 Shiota et al. Jan 2000 A
6016354 Lin et al. Jan 2000 A
6028611 Anderson et al. Feb 2000 A
6035072 Read Mar 2000 A
6035074 Fujimoto et al. Mar 2000 A
6036072 Lee Mar 2000 A
6101271 Yamashita et al. Aug 2000 A
6104839 Cok et al. Aug 2000 A
6118485 Hinoue et al. Sep 2000 A
6134339 Luo Oct 2000 A
6151403 Luo Nov 2000 A
6172706 Tatsumi Jan 2001 B1
6192149 Eschbach et al. Feb 2001 B1
6195127 Sugimoto Feb 2001 B1
6201571 Ota Mar 2001 B1
6204858 Gupta Mar 2001 B1
6233364 Krainiouk et al. May 2001 B1
6249315 Holm Jun 2001 B1
6252976 Schildkraut et al. Jun 2001 B1
6266054 Lawton et al. Jul 2001 B1
6268939 Klassen et al. Jul 2001 B1
6275614 Krishnamurthy et al. Aug 2001 B1
6278491 Wang et al. Aug 2001 B1
6285410 Marni Sep 2001 B1
6292574 Schildkraut et al. Sep 2001 B1
6295378 Kitakado et al. Sep 2001 B1
6298166 Ratnakar et al. Oct 2001 B1
6300935 Sobel et al. Oct 2001 B1
6381345 Swain Apr 2002 B1
6393148 Bhaskar May 2002 B1
6396963 Shaffer et al. May 2002 B2
6407777 DeLuca Jun 2002 B1
6421468 Ratnakar et al. Jul 2002 B1
6426775 Kurokawa Jul 2002 B1
6429924 Milch Aug 2002 B1
6433818 Steinberg et al. Aug 2002 B1
6438264 Gallagher et al. Aug 2002 B1
6441854 Fellegara et al. Aug 2002 B2
6459436 Kumada et al. Oct 2002 B1
6473199 Gilman et al. Oct 2002 B1
6496655 Malloy Desormeaux Dec 2002 B1
6501911 Malloy Desormeaux Dec 2002 B1
6505003 Malloy Desormeaux Jan 2003 B1
6510520 Steinberg Jan 2003 B1
6516154 Parulski et al. Feb 2003 B1
6614471 Ott Sep 2003 B1
6614995 Tseng Sep 2003 B2
6621867 Sazzad et al. Sep 2003 B1
6628833 Horie Sep 2003 B1
6700614 Hata Mar 2004 B1
6707950 Burns et al. Mar 2004 B1
6714665 Hanna et al. Mar 2004 B1
6718051 Eschbach Apr 2004 B1
6724941 Aoyama Apr 2004 B1
6728401 Hardeberg Apr 2004 B1
6734911 Lyons May 2004 B1
6765686 Maruoka Jul 2004 B2
6786655 Cook et al. Sep 2004 B2
6792161 Imaizumi et al. Sep 2004 B1
6798913 Toriyama Sep 2004 B2
6859565 Baron Feb 2005 B2
6873743 Steinberg Mar 2005 B2
6885766 Held et al. Apr 2005 B2
6895112 Chen et al. May 2005 B2
6900882 Iida May 2005 B2
6912298 Wilensky Jun 2005 B1
6937997 Parulski Aug 2005 B1
6967680 Kagle et al. Nov 2005 B1
6980691 Nesterov et al. Dec 2005 B2
6984039 Agostinelli Jan 2006 B2
7024051 Miller et al. Apr 2006 B2
7027662 Baron Apr 2006 B2
7030927 Sasaki Apr 2006 B2
7035461 Luo et al. Apr 2006 B2
7035462 White et al. Apr 2006 B2
7042501 Matama May 2006 B1
7042505 DeLuca May 2006 B1
7062086 Chen et al. Jun 2006 B2
7116820 Luo et al. Oct 2006 B2
7133070 Wheeler et al. Nov 2006 B2
7155058 Gaubatz et al. Dec 2006 B2
7171044 Chen et al. Jan 2007 B2
7216289 Kagle et al. May 2007 B2
7224850 Zhang et al. May 2007 B2
7269292 Steinberg Sep 2007 B2
7289664 Enomoto Oct 2007 B2
7295233 Steinberg et al. Nov 2007 B2
7310443 Kris et al. Dec 2007 B1
7315631 Corcoran et al. Jan 2008 B1
7336821 Ciuc et al. Feb 2008 B2
7352394 DeLuca et al. Apr 2008 B1
7362368 Steinberg et al. Apr 2008 B2
7369712 Steinberg et al. May 2008 B2
7403643 Ianculescu et al. Jul 2008 B2
7436998 Steinberg et al. Oct 2008 B2
7454040 Luo et al. Nov 2008 B2
7515740 Corcoran et al. Apr 2009 B2
7819525 Connell, II Oct 2010 B2
20010015760 Fellegara et al. Aug 2001 A1
20010031142 Whiteside Oct 2001 A1
20010052937 Suzuki Dec 2001 A1
20020019859 Watanabe Feb 2002 A1
20020041329 Steinberg Apr 2002 A1
20020051571 Jackway et al. May 2002 A1
20020054224 Wasula et al. May 2002 A1
20020085088 Eubanks Jul 2002 A1
20020090133 Kim et al. Jul 2002 A1
20020093577 Kitawaki et al. Jul 2002 A1
20020093633 Milch Jul 2002 A1
20020105662 Patton et al. Aug 2002 A1
20020114513 Hirao Aug 2002 A1
20020126893 Held et al. Sep 2002 A1
20020131770 Meier et al. Sep 2002 A1
20020136450 Chen et al. Sep 2002 A1
20020141661 Steinberg Oct 2002 A1
20020150306 Baron Oct 2002 A1
20020159630 Buzuloiu et al. Oct 2002 A1
20020172419 Lin et al. Nov 2002 A1
20020176623 Steinberg Nov 2002 A1
20030007687 Nesterov et al. Jan 2003 A1
20030021478 Yoshida Jan 2003 A1
20030025808 Parulski et al. Feb 2003 A1
20030025811 Keelan et al. Feb 2003 A1
20030044063 Meckes et al. Mar 2003 A1
20030044070 Fuersich et al. Mar 2003 A1
20030044176 Saitoh Mar 2003 A1
20030044177 Oberhardt et al. Mar 2003 A1
20030044178 Oberhardt et al. Mar 2003 A1
20030052991 Stavely et al. Mar 2003 A1
20030058343 Katayama Mar 2003 A1
20030058349 Takemoto Mar 2003 A1
20030095197 Wheeler et al. May 2003 A1
20030107649 Flickner et al. Jun 2003 A1
20030113035 Cahill et al. Jun 2003 A1
20030118216 Goldberg Jun 2003 A1
20030118217 Kondo et al. Jun 2003 A1
20030137597 Sakamoto et al. Jul 2003 A1
20030142285 Enomoto Jul 2003 A1
20030161506 Velazquez et al. Aug 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030194143 Iida Oct 2003 A1
20030202715 Kinjo Oct 2003 A1
20040017481 Takasumi et al. Jan 2004 A1
20040027593 Wilkins Feb 2004 A1
20040032512 Silverbrook Feb 2004 A1
20040032526 Silverbrook Feb 2004 A1
20040033071 Kubo Feb 2004 A1
20040037460 Luo et al. Feb 2004 A1
20040046878 Jarman Mar 2004 A1
20040047491 Rydbeck Mar 2004 A1
20040056975 Hata Mar 2004 A1
20040057622 Bradski Mar 2004 A1
20040057623 Schuhrke et al. Mar 2004 A1
20040057705 Kohno Mar 2004 A1
20040057715 Tsuchida et al. Mar 2004 A1
20040090461 Adams May 2004 A1
20040093432 Luo et al. May 2004 A1
20040114796 Kaku Jun 2004 A1
20040114797 Meckes Jun 2004 A1
20040114829 LeFeuvre et al. Jun 2004 A1
20040114904 Sun et al. Jun 2004 A1
20040119851 Kaku Jun 2004 A1
20040120598 Feng Jun 2004 A1
20040125387 Nagao et al. Jul 2004 A1
20040126086 Nakamura et al. Jul 2004 A1
20040141657 Jarman Jul 2004 A1
20040150743 Schinner Aug 2004 A1
20040160517 Iida Aug 2004 A1
20040165215 Raguet et al. Aug 2004 A1
20040170304 Haven et al. Sep 2004 A1
20040184044 Kolb et al. Sep 2004 A1
20040184670 Jarman et al. Sep 2004 A1
20040196292 Okamura Oct 2004 A1
20040196503 Kurtenbach et al. Oct 2004 A1
20040213476 Luo et al. Oct 2004 A1
20040223063 DeLuca et al. Nov 2004 A1
20040227978 Enomoto Nov 2004 A1
20040228542 Zhang et al. Nov 2004 A1
20040233299 Ioffe et al. Nov 2004 A1
20040233301 Nakata et al. Nov 2004 A1
20040234156 Watanabe et al. Nov 2004 A1
20040239779 Washisu Dec 2004 A1
20040240747 Jarman et al. Dec 2004 A1
20040258308 Sadovsky et al. Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050013602 Ogawa Jan 2005 A1
20050013603 Ichimasa Jan 2005 A1
20050024498 Iida et al. Feb 2005 A1
20050031224 Prilutsky et al. Feb 2005 A1
20050041121 Steinberg et al. Feb 2005 A1
20050046730 Li Mar 2005 A1
20050047655 Luo et al. Mar 2005 A1
20050047656 Luo et al. Mar 2005 A1
20050053279 Chen et al. Mar 2005 A1
20050058340 Chen et al. Mar 2005 A1
20050058342 Chen et al. Mar 2005 A1
20050062856 Matsushita Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050068452 Steinberg et al. Mar 2005 A1
20050074164 Yonaha Apr 2005 A1
20050074179 Wilensky Apr 2005 A1
20050078191 Battles Apr 2005 A1
20050117132 Agostinelli Jun 2005 A1
20050129331 Kakiuchi et al. Jun 2005 A1
20050134719 Beck Jun 2005 A1
20050140801 Prilutsky et al. Jun 2005 A1
20050147278 Rui et al. Jul 2005 A1
20050151943 Iida Jul 2005 A1
20050163498 Battles et al. Jul 2005 A1
20050168965 Yoshida Aug 2005 A1
20050196067 Gallagher et al. Sep 2005 A1
20050199783 Wenstrand et al. Sep 2005 A1
20050200736 Ito Sep 2005 A1
20050207649 Enomoto et al. Sep 2005 A1
20050212955 Craig et al. Sep 2005 A1
20050219385 Terakawa Oct 2005 A1
20050219608 Wada Oct 2005 A1
20050220346 Akahori Oct 2005 A1
20050220347 Enomoto et al. Oct 2005 A1
20050226499 Terakawa Oct 2005 A1
20050232490 Itagaki et al. Oct 2005 A1
20050238230 Yoshida Oct 2005 A1
20050243348 Yonaha Nov 2005 A1
20050275734 Ikeda Dec 2005 A1
20050276481 Enomoto Dec 2005 A1
20050280717 Sugimoto Dec 2005 A1
20050286766 Ferman Dec 2005 A1
20060008171 Petschnigg et al. Jan 2006 A1
20060017825 Thakur Jan 2006 A1
20060038916 Knoedgen et al. Feb 2006 A1
20060039690 Steinberg et al. Feb 2006 A1
20060045352 Gallagher Mar 2006 A1
20060050300 Mitani et al. Mar 2006 A1
20060066628 Brodie et al. Mar 2006 A1
20060082847 Sugimoto Apr 2006 A1
20060093212 Steinberg et al. May 2006 A1
20060093213 Steinberg et al. May 2006 A1
20060093238 Steinberg et al. May 2006 A1
20060098867 Gallagher May 2006 A1
20060098875 Sugimoto May 2006 A1
20060119832 Iida Jun 2006 A1
20060120599 Steinberg et al. Jun 2006 A1
20060140455 Costache et al. Jun 2006 A1
20060150089 Jensen et al. Jul 2006 A1
20060203108 Steinberg et al. Sep 2006 A1
20060204052 Yokouchi Sep 2006 A1
20060204110 Steinberg et al. Sep 2006 A1
20060221408 Fukuda Oct 2006 A1
20060285754 Steinberg et al. Dec 2006 A1
20070110305 Corcoran et al. May 2007 A1
20070116379 Corcoran et al. May 2007 A1
20070116380 Ciuc et al. May 2007 A1
20070133863 Sakai et al. Jun 2007 A1
20070154189 Harradine et al. Jul 2007 A1
20070201724 Steinberg et al. Aug 2007 A1
20070263104 DeLuca et al. Nov 2007 A1
20070263928 Akahori Nov 2007 A1
20080002060 DeLuca et al. Jan 2008 A1
20080013798 Ionita et al. Jan 2008 A1
20080043121 Prilutsky et al. Feb 2008 A1
20080112599 Nanu et al. May 2008 A1
20080144965 Steinberg et al. Jun 2008 A1
20080186389 DeLuca et al. Aug 2008 A1
20080211937 Steinberg et al. Sep 2008 A1
20080232711 Prilutsky et al. Sep 2008 A1
20080240555 Nanu et al. Oct 2008 A1
Foreign Referenced Citations (51)
Number Date Country
884694 Dec 1998 EP
911759 Apr 1999 EP
911759 Jun 2000 EP
1199672 Apr 2002 EP
1229486 Aug 2002 EP
1288858 Mar 2003 EP
1288859 Mar 2003 EP
1288860 Mar 2003 EP
1293933 Mar 2003 EP
1296510 Mar 2003 EP
1429290 Jun 2004 EP
1478169 Nov 2004 EP
1528509 May 2005 EP
979487 Mar 2006 EP
1429290 Jul 2008 EP
841609 Jul 1960 GB
4192681 Jul 1992 JP
5224271 Sep 1993 JP
9214839 Aug 1997 JP
20134486 May 2000 JP
22247596 Aug 2002 JP
22271808 Sep 2002 JP
2003-030647 Jan 2003 JP
WO-9802844 Jan 1998 WO
WO-9917254 Apr 1999 WO
WO-9933684 Jul 1999 WO
WO-0171421 Sep 2001 WO
WO-0192614 Dec 2001 WO
WO-0245003 Jun 2002 WO
WO-03026278 Mar 2003 WO
WO-03071484 Aug 2003 WO
WO-2004034696 Apr 2004 WO
WO-2005015896 Feb 2005 WO
WO-2005041558 May 2005 WO
WO-2005076217 Aug 2005 WO
WO-2005076217 Aug 2005 WO
WO-2005087994 Sep 2005 WO
WO-2005109853 Nov 2005 WO
WO-2006011635 Feb 2006 WO
WO-2006018056 Feb 2006 WO
WO-2006045441 May 2006 WO
WO-2007057063 May 2007 WO
WO-2007057064 May 2007 WO
WO-2007093199 Aug 2007 WO
WO-2007093199 Aug 2007 WO
WO-2007095553 Aug 2007 WO
WO-2007095553 Aug 2007 WO
WO-2007142621 Dec 2007 WO
WO-2008023280 Feb 2008 WO
WO-2008109644 Sep 2008 WO
WO-2008109644 Sep 2008 WO
Related Publications (1)
Number Date Country
20100039520 A1 Feb 2010 US