An auditory device is any device used for listening and/or communicating sound. All auditory devices include a receiver, which converts electrical signals to acoustic signals or sound. Examples of auditory devices, include, without limitation, hearing aids; the receiver-end of a telephone handset mobile telephone or two-way radio; earphones; in-ear headphones, such as those commonly used with portable radios and digital audio players such as the iPod® or other MP3 players; over-the-ear headphones of assistive listening devices which enable the wearers to hear persons speaking despite noisy environments (e.g., the headphones worn by the flight-deck crew on aircraft carriers); and the like.
For two-way voice communication devices such as telephones (wired or wireless) and two-way radios, it is necessary to pair the receiver with a transducer/microphone, which converts sound or acoustic signals to electrical signals. Thus, for example, in a conventional land-line telephone handset, the user speaks into the end of the handset with the transducer/microphone. The sound of the speaker's voice is converted to electrical signals by the transducer/microphone. These transduced electrical signals are transmitted via wires or fiber-optics until reaching the receiver of the remote telephone handset of the other party where the electrical signals are then converted back into acoustic signals representative of the sound of the speakers voice. The same basic components and principles are the same for wireless or cellular telephone handsets and two-way radio handsets except that the signals are transmitted via radio waves instead of wires or fiber-optics.
Headsets or headphones for conventional telephones, cell phones and two-way radios have the same basic structure—the headset earpiece contains the receiver and the headset boom contains the microphone/transducer. Headsets are desirable over handsets because they are “hands-free,” enabling the user to do other things with his/her hands while communicating with others.
Consumers generally desire headsets that are comfortable to wear and unobtrusive. As a result headset manufacturers have begun producing headsets with shorter and shorter boom microphones. However, the shorter the boom-microphone is made, the closer the transducer/microphone comes to the receiver. If the microphone is placed too close to the receiver, unwanted feedback can occur because the microphone can detect vibrations from the receiver due to the close proximity between the two components.
Additionally, it should be appreciated that because the transducer/microphone within the handset or headset of the two-way communication device is generally open to the environment, the transducer/microphone will not only detect the voice of the speaker, but also any other external noises in the environment surrounding the speaker. As a result, depending on the noise level of the environment in which the user is speaking, the other party may not be able to clearly hear the speaker's voice. Accordingly, it is desirable to provide a hands-free, two-way communication device that is non-obtrusive, comfortable to wear, avoids unwanted feedback, and which minimizes external environmental noise that can interfere with clarity of the speakers voice.
It is known that when a person speaks, the person's skull, jaw, throat, ear canal and other surrounding bony and cartilaginous tissue vibrate as sound is produced. Communication devices have been developed that can detect the vibrations of the bony or cartilaginous tissue (hereinafter “bone conduction sensors”) and that can then convert these detected vibrations into electrical signals representative of the speaker's voice. However, external environmental noise may still be detected by bone conduction sensors depending on the type, configuration and location of the sensor being used, thereby interfering with clear communication of the speaker's voice.
In addition to being able to have voice communication between remote persons, it may also prove desirable to be able to remotely monitor certain physiologic conditions of a person. One particular application where remote physiologic monitoring is currently being used is in the medical field. In some hospitals and nursing home facilities, certain physiologic conditions of multiple patients can be monitored from a centralized nursing station. In addition to the medical and health care fields, other areas where remote monitoring of physiologic conditions of others may prove useful is in the military to know if a soldier is alive or seriously wounded. A similar application would be applicable in the police or firefighting profession. Another application, for example, might be in the sports field, such as football or other physically demanding sport, whereby a trainer will be able to monitor if a player's body temperature or heart rate, for example, are approaching dangerous levels.
For the foregoing reasons, it is desirable to provide a single auditory device that can cooperate with auxiliary devices to perform as a hearing aid or an assisted listening device, while at the same time being capable of performing as a communication device that is non-obtrusive, does not experience feedback, minimizes external environmental noise that can effect clarity of voice communication from the user, and, may be used to monitor one or more physiologic conditions of the wearer.
The present invention is directed toward an in-ear auditory device and methods of using the same. The in-ear auditory device has a receiver and a transducer preferably sized to fit within an ear canal of a user. An isolator is disposed to substantially acoustically isolate the transducer from the receiver. In a preferred embodiment, the in-ear auditory device includes a bone vibration sensor acoustically or mechanically coupled to the transducer to detect the user's speech. The in-ear auditory device may include a physiologic sensor to sense physiologic signals of the user.
In use, the in-ear auditory device is coupled to an auxiliary device having circuitry to process signals to and from the in-ear auditory device. The auxiliary device may include wireless communication circuitry to transmit the processed signals to remote communication and/or monitoring devices.
Referring now to the drawings wherein like reference numerals identify corresponding or like parts throughout the several views,
Referring to
As illustrated in
Referring to
In the preferred embodiment, the transducer 110 is a microphone-transducer. However, a piezo-electric transducer may also be used with the present invention. The preferred microphone-transducer 110 for use in the in-ear device 100 is an FG Series available from Knowles Electronics, Itasca, Ill. A preferred receiver 106 for use in the in-ear device 100 is an FK Series also available from Knowles Electronics. It should be understood that other receivers and transducers than those specifically identified above may be equally or better suited for use in the in-ear auditory device 100 depending on its intended use or application. Thus, the present invention should not be construed as being limited to any particular type of transducer or receiver.
As best illustrated in
In the preferred embodiment, the microphone-transducer 110 has an input port 112 that is received within a bore 114 (
As previously identified, when a person speaks, the bony or cartilaginous portion of his/her ear canal 904 vibrates. The bone conduction sensor 300 cooperates with the microphone-transducer 110 to detect these vibrations.
Referring to
The bone conduction sensor 300 also preferably includes a rigid base 304, preferably fabricated from Acrylonitrile butadiene styrene (ABS) or other suitable thermoplastic material. The rigid base 304 has an upper surface area 306 (
In use, when the wearer of the device 100 speaks, the vibration of the bony/cartilaginous portion of the ear canal 904 is transferred to the domed pad 302. As the pad 302 is compressed toward the base 304 by the vibrations, air is pushed out the acoustic port 310. It should be appreciated that by concentrating small amplitude vibrations over the entire area of the pad 302 into the relatively small acoustic port 310, the acoustic vibrations are amplified. As such, the flexible domed pad 302, rigid base 304, and acoustic port 310 cooperate to amplify sound much like a stethoscope. The amplified sound is routed to the microphone-transducer 110 via the acoustic port 310. The microphone-transducer 110 converts the amplified vibrations to electrical signals. These electrical signals are carried from the electrically conductive conduit 108 to the auxiliary auditory device 1000 to which it is coupled, such as, for example, the BTE device positioned behind the wearer's ear 900 (
In an alternative embodiment, rather than micro-phone transducer, a piezo-electric transducer may be provided. The substantially same configuration of the bone-conduction sensor may be utilized as described above with respect to the microphone-transducer, but instead of the transducer and bone-conduction sensor being acoustically coupled through the chamber 116, the piezo-electric transducer may be mechanically coupled with the pad 302. Vibrations may be physically transferred from the pad 302 to the piezo-electric transducer to generate electrical signals representative of the user's speech.
Referring to
An exploded perspective view of a preferred tip assembly 200 is shown in
If the user desires a closed-ear tip configuration as opposed to an open-ear tip configuration, a belled nose may be selected. If the user desires to only partially occlude the ear canal 904, he/she may select a belled nose 222 having a wall 224 with one or more apertures 226. If the user desires to completely occlude the ear canal 904, the user could select a belled nose 228 having a wall 224 with no apertures. Obviously many tip configurations are possible, and therefore the present invention should not be construed as being limited to any particular type of tip assembly.
The sensors 500 are preferably electrically coupled via wires to the auxiliary device 1000 for processing of the physiologic signals sensed. For example, the auxiliary device 1000 may include a microprocessor and other circuitry along with software or firmware for processing the physiologic data received to determine, for example, body temperature of the user, the user's heart rate, blood pressure, pulse oximetry, etc. The auxiliary device 1000 may be programmed to trigger an audible alarm or provide other means of notifying the user if his/her body temperature rises above a predefined temperature, indicating that he/she has a fever, and/or to alert the wearer if his/her heart rate is irregular and/or above a certain maximum preselected heart rate, for example. In addition to the specific sensor applications identified above, it should be appreciated that are numerous other medical applications for the foregoing in-ear device 100 incorporating physiologic sensors 500.
Furthermore, in addition to providing information to the wearer of the device 100, by incorporating Bluetooth® or other wireless communication technology into the auxiliary device to which the in-ear device 100 is coupled, the physiologic data about the user may be communicated to a separate or remote communication device, such as, for example, a computer or other data collection device.
The foregoing description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modification to the preferred embodiment of the apparatus and its method of use and the general principles and features described herein will be readily apparent to those of skill in the art. Thus, the present invention is not to be limited to the embodiments of the apparatus and methods described above and illustrated in the drawing figures, but is to be accorded the widest scope consistent with the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
11184604 | Jul 2005 | US | national |
This application is a continuation-in-part of U.S. patent application Ser. No. 11/184,604 filed Jul. 18, 2005 and claims priority to Provisional Application No. 60/700,428 filed Jul. 18, 2005.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/27619 | 7/18/2006 | WO | 00 | 1/18/2008 |
Number | Date | Country | |
---|---|---|---|
60700428 | Jul 2005 | US |