The present disclosure is related to in-ear optical sensors for use in virtual reality and augmented reality environments and devices. More specifically, the present disclosure is related to optical sensors configured to monitor the volume and walls in the ear canal for health assessment of users of in-ear devices for immersive reality applications.
Current in-ear devices (e.g., hearing aids, hearables, headphones, earbuds, and the like) for mobile and immersive applications are typically bulky and uncomfortable for the user. Accordingly, adding optical sensors to in-ear devices is hindered by the small form factors desirable in such devices and the complex data processing and analysis involved, in addition to the processing and memory capabilities desired in such devices.
In a first embodiment, a device includes an in-ear fixture configured to fit in an ear canal of a user, an emitter mounted on the in-ear fixture and configured to emit a first electromagnetic radiation onto the ear canal of the user, a detector configured to provide a signal indicative of a second electromagnetic radiation from the ear canal of the user, and a processor that is coupled to an augmented reality headset, the processor configured to identify a health condition of the user based on the signal, wherein the second electromagnetic radiation includes at least a portion of the first electromagnetic radiation reflected from a tissue in the ear canal of the user.
In a second embodiment, a system includes a memory storing multiple instructions, and one or more processors configured to execute the instructions and cause the system to perform operations. The operations include to transmit, into an ear canal of a user of an in-ear device, a first electromagnetic radiation, to receive, from an electromagnetic detector, a signal indicative of a second electromagnetic radiation responsive to the first electromagnetic radiation, and to identify a health condition of the user based on a difference between the first electromagnetic radiation and the second electromagnetic radiation. In addition to the above bio-sensing operations, other common audio signal processing operations such as signal processing instruction for performing active noise cancelation, transparent hear-through audio filter, occlusion mitigation, and the like are also part of the system operations.
In a third embodiment, a computer-implemented method includes transmitting, into an ear canal of a user of an in-ear device, a first electromagnetic radiation, receiving, from an electromagnetic detector, a signal indicative of a second electromagnetic radiation responsive to the first electromagnetic radiation, and identifying a health condition of the user based on a difference between the first electromagnetic radiation and the second electromagnetic radiation.
In other embodiments, a non-transitory, computer-readable medium stores instructions which, when executed by a processor, cause a computer to perform a method. The method includes transmitting, into an ear canal of a user of an in-ear device, a first electromagnetic radiation, receiving, from an electromagnetic detector, a signal indicative of a second electromagnetic radiation responsive to the first electromagnetic radiation, and identifying a health condition of the user based on a difference between the first electromagnetic radiation and the second electromagnetic radiation.
In yet other embodiments, a system includes a first means to store instructions, and a second means to execute the instructions to cause the system to perform a method. The method includes transmitting, into an ear canal of a user of an in-ear device, a first electromagnetic radiation, receiving, from an electromagnetic detector, a signal indicative of a second electromagnetic radiation responsive to the first electromagnetic radiation, and identifying a health condition of the user based on a difference between the first electromagnetic radiation and the second electromagnetic radiation.
These and other embodiments will become clear to one of ordinary skills, in view of the following.
In the figures, elements having the same or similar reference numeral have the same or similar features and attributes, unless explicitly stated otherwise.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one ordinarily skilled in the art, that the embodiments of the present disclosure may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the disclosure.
General Overview
Head-worn devices (e.g., devices worn on head including but not limited to hearables, glasses, AR/VR headsets and smart glasses, etc.) offer opportunities to access valuable health information.
The ear (e.g., the ear canal and ear concha and pinna) has close proximity to the brain, to body chemistry, and blood vessels indicative of brain activity and cardio-respiratory activity, and inner body temperature. More specifically, sensors including electrodes, inertial motion units (IMUs), accelerometers, and microphones can be placed inside the ear canal or around the ear (in the case of AR/VR headsets or smart glasses) to sense brain, heart, and electrophysiological activities (e.g., electro-encephalography EEG, electro-cardiography ECG, electro-oculography, EOG, electrodermal activity, EDA, and the like); or to sense vital signs (heart rate, breathing rates, blood pressure, body temperature, and the like); or to sense the body chemistry (e.g., blood alcohol level, blood glucose estimation, and the like).
Microphones as disclosed herein may include contact microphones to detect motion, internal microphones and external microphones, acoustic microphones, and the like. In addition to microphones, in-ear devices as disclosed herein may also include speakers to generate and provide sound signals to the user of the in-ear device.
Electrodes in embodiments as disclosed herein may be used in EOG, ECG, and EEG measurements, e.g., for determining auditory attention, heart rate estimation, breathing rate, and the like, Auditory Steady State Response—ASSR—, auditory brainstem response—ABR—. In some embodiments, in-ear electrodes as disclosed herein may be useful to measure resting state electric oscillations (alpha waves in an EEG) that can track relaxation/activity. With the combination of other measurements (e.g., photoplethysmography, PPG), a new branch of diagnostic possibilities is open. In-ear EEG measurements can be applied to track user attention (e.g., distinguishing between attention focus from eye gaze direction).
Methods and devices disclosed herein include optical, acoustical, motion sensors, chemical sensors, and temperature sensors, in and around the ears of AR/VR headset users, in combination with software correlation of the signals provided by the above sensors to generate comprehensive diagnostics and health evaluation of the user.
Some of the features disclosed herein include in-ear or head-worn body temperature sensing using infrared sensing and spectroscopy techniques. In some embodiments, the contact area for sensors as disclosed herein include the in-ear canal (like an in-ear earbud) and within the conchal bowl (in human pinna), areas on top of the human ear (where the glasses sit), and areas in the nose-pad of a headset or smart glasses (where glasses sit on the nose). Some measurements may include in-ear or around the ear sensing of glucose level, alcohol sensing, body temperature, blood pressure, and the like. Some embodiments include pulse transit time (PTT) methodology to estimate blood pressure for a glasses/headset device using a combination of optical and electrical signals (e.g., PPG+ECG sensors respectively). Some embodiments obtain user's blood pressure using an optical sensing technique (PPG) in combination with a deep neural network to train a network based using both PPG information and a corresponding ground-truth blood pressure information. Some embodiments obtain user's blood pressure using an optical sensing technique with multiple distinct optical wavelengths and using a technique called multi-wavelength pulse transit time photoplethysmography (MWPTT PPG) in combination with a deep neural network to train a network based using both PPG information and a corresponding ground-truth blood pressure information. Some embodiments include motion-based pulse transit time (PTT) methodology to estimate blood pressure for a glass/headset device using a combination of motion sensor and electrical signals (e.g., IMU+ECG sensors respectively). Once fully trained, the neural network can then quantify and predict the user's blood pressure using just the PPG information and leveraging this pre-trained network. To further improve the accuracy, some subjective calibrations may be desirable. In some embodiments, PPG signals collected in IEM devices as disclosed herein may be able to estimate the cognitive load on the user with analysis of oxygenated and deoxygenated blood flow (oxy- and deoxy-hemoglobin) to the brain. Some embodiments include sensing alcohol levels through emissions around the ear. Some embodiments incorporate chemical sensing intake around the contact points of the ear. In some embodiments, IEM devices may perform alcohol monitoring and fat burning during user exercise.
In some embodiments, at least one of the steps in methods as disclosed herein are performed by processor 112, providing dataset 103-1 to mobile device 110-2. Mobile device 110-2 may further process the signals and provide dataset 103-2 to database 152 via network 150. Remote server 130 may collect dataset 103-2 from multiple AR headsets 110-1 and mobile devices 110-2 in the form and perform further calculations. In addition, having aggregated data from a population of individuals, the remote server may perform meaningful statistics. This data cycle may be established provided each of the users involved have consented for the use of de-personalized, or anonymized data. In some embodiments, remote server 130 and database 152 may be hosted by a healthcare network, or a healthcare facility or institution (e.g., hospital, university, government institution, clinic, health insurance network, and the like). Mobile device 110-2, AR headset 110-1, in-ear device 100, and applications therein may be hosted by a different service provider (e.g., a network carrier, an application developer, and the like). Moreover, AR headset 110-1 and mobile devices 110-2 and in-ear device 100 may proceed from different manufacturers. User 101 is ultimately the sole owner of dataset 103-1 and all data derived therefrom (e.g., datasets 103), and so all the data flows (e.g., datasets 103), while provided, handled, or regulated by different entities, are authorized by user 101, and protected by network 150, server 130, database 152, and mobile device 110-2 for privacy and security.
In some embodiments, electrodes 305 include a contact electrode configured to transmit a current from the skin in the ear canal of the user. In some embodiments, an electrode 305 is coated with at least one of a gold layer, a silver layer, a silver chloride layer, or a combination thereof. In some embodiments, electrodes 305 include a capacitive coupling electrode disposed sufficiently close, but not in contact, with the user's skin. In some embodiments, IEMs 300 further include at least a second electrode 305 mounted on in-ear fixture 340, the second electrode 305 configured to receive a second electronic signal from the skin in ear canal 361. In some embodiments, processor 312 is configured to select the first electronic signal when a quality of the first electronic signal is higher than a pre-selected threshold. In some embodiments, processor 312 is configured to reduce a noise background from the first electronic signal with the second electronic signal. In some embodiments, processor 312 is configured to determine a heart rate of the user from the first electronic signal. In some embodiments, processor 312 is configured to determine a brain activity from the first electronic signal that corresponds to an acoustic stimulus received in the external microphone.
In some embodiments, emitter 321 is configured to emit a first electromagnetic radiation onto ear canal 361. Accordingly, detector 323 is configured to provide a signal indicative of a second electromagnetic radiation from the ear canal of the user, wherein the second electromagnetic radiation includes at least a portion of the first electromagnetic radiation reflected from a tissue in ear canal 361. In some embodiments, the first electromagnetic radiation includes one of a near-infrared or red or green light (or any other optical wavelength within visible and near infrared or infrared range), and the health condition of the user includes a cardio-respiratory condition. In some embodiments, a difference between the first electromagnetic radiation and the second electromagnetic radiation is indicative of a trace amount of a selected molecule in the air filling ear canal 361. For example, in some embodiments (e.g., absorption spectroscopy), the difference between the first electromagnetic radiation and the second electromagnetic radiation is a portion of the first electromagnetic radiation absorbed by the selected molecule. Accordingly, the selected molecule may have a strong absorption spectrum within the spectral bandwidth of the first electromagnetic radiation. In some embodiments, the second electromagnetic radiation may include a portion of the first electromagnetic radiation that is scattered back to the detector by the skin, or the blood in a blood vessel in the ear canal of the user. Accordingly, the difference between the first and second electromagnetic radiation may be inversely related to the amount of blood or volume of a blood vessel (e.g., a larger amount of second electronic radiation being associated with a bigger blood vessel containing more blood in a systolic period of a heart cycle, as in PPG). In some embodiments, the first electromagnetic radiation is a stimulating radiation to generate the second electromagnetic radiation, such as a Raman radiation or fluorescence radiation. Accordingly, in some embodiments, an optical sensor as disclosed herein may include at least one filter to block a selected portion of the spectral bandwidth of the first or second electromagnetic radiation. In some embodiments, detector 323 may be an intensity-based detector; in some other embodiments, detector 323 may be a spectrometer-based detector. For example, an array of detectors 323 with variable spectral sensitivity can be used to detect the spectral contents of the reflected second electromagnetic radiation.
In some embodiments, the first electromagnetic radiation may be directed to different areas of the ear, and the second electromagnetic radiation may be selected to provide the best signal-to-noise ratio. Accordingly, in some embodiments, emitter 321, detector 323, or both, may be directed to different areas of the user's ear to find areas with the highest signal-to-noise ratio. To achieve this, a mirror (e.g., micro-electromechanical system—MEMS), a pancake lens or pancake wedge lens. or a liquid lens with an adjustable prism may selectively adjust the orientation of light generated by, or received in, emitter 321 or detector 323.
In some embodiments, emitter 321 and detector 323 may be part of a self-mixing interferometer (SMI). An SMI is a compact, low power, inexpensive and sensitive optical device configured to measure reflectivity, including back scatter, as well as displacement of the skin. In some embodiments, a displacement of the skin obtained with an SMI is combined with heart rate measurements (e.g., from PPG sensors, motion sensors or ECG electrodes) to measure blood pressure and heart rate, or even vibration of the eardrum to also act as an internal microphone.
IEMs 300 in the AR headset or smart glasses may include an in-ear fixture 340 configured to hermetically seal an ear canal of a user, a first electrode 305 mounted on in-ear fixture 340 and configured to receive a first electronic signal from a skin in ear canal 361, and an internal microphone 325-1 coupled to receive an internal acoustic signal, propagating through ear canal 361. An acoustic front end includes internal microphone 325-1 configured to detect acoustic waves (xBC(t)) propagated through ear canal 361 and generated by the inner body (e.g., heart rate at about ≤100 Hz, breathing rate at about 50-1000 Hz, and other sounds in the laryngeal cavity). An external microphone 325-2 is coupled to receive an external acoustic signal x(t), propagating through an environment of the user. In some embodiments, the internal signal xBC(t) in conjunction with the external signal x(t) may be used in acoustic procedures such as audio streaming, hear-through, active noise cancelation (ANC), hearing corrections, virtual presence and spatial audio, call services, and the like. In some embodiments, at least some of the above processes are performed in conjunction between left-ear and right-ear IEM monitors 300.
IEM 300B includes a sealing gasket 341 that separates the inner portion of ear canal 361 from the environment, leaving a back-volume vent including an acoustically resistive mesh 344 for a pressure equalizer (PEQ) tube 342 to vent into resistive mesh 344 (also shown in IEM 300C). The sealed cavity may enable breathing and heart rate monitoring (e.g., isolating the signal from internal acoustic microphone 325-1) at low power usage and with a small form factor.
IEM 300C illustrates processor circuit 312 to identify a cardiovascular condition or a neurologic condition of the user, based on at least one of a first electronic signal, an internal acoustic signal, and an external acoustic signal (e.g., from microphones 325). Some embodiments may include a down cable 345 to electrically couple the IEM with the VR headset or smart glasses, including a strain relief 343.
IEM 300D illustrates a flexible, printed circuit board (FPCB) 342 that provides internal electrical connectivity to the different components and sensors 321, 323, 325, 327, and 329.
PPG sensor 451A is a contact sensor, wherein emitter 421 and detector 423 are placed adjacent to one another and facing a side of in-ear fixture 440, which is in close proximity or in contact with the skin inside the ear canal (cf. ear canal 161 or 361). Accordingly, a first electromagnetic radiation from emitter 421 interacts with blood vessels in the skin and is scattered into a second electromagnetic radiation, back to detector 423. The higher the amount of blood and volume of the blood vessel, the larger the amount of second electromagnetic radiation expected at detector 423. Emitter 421 may generate light at one or more than one distinct wavelengths. In some embodiments, emitter 421 may generate three (3) distinct wavelengths or colors (e.g., red, blue, and infrared) that may further be either synchronously or asynchronously turned ‘on,’ to enable different health sensing capabilities.
PPG sensor 451B is a remote sensor, wherein emitter 421 projects a beam onto a remote spot 470 within ear canal 461. In some embodiments, spot 470 may be selected within the eardrum 462. The reflected signal is collected by sensor 423. Emitter 421 may include a monochromatic infrared, red, green, or blue light, or a combination thereof. Sensor 423 measures the reflectivity of the skin on spot 470, which is modulated according to a heart rate of the user. Sensor 423 may include a single photodetector, a linear array, or a 2D array of, for example, CMOS or CCD elements. The detectors in sensor 423 may include broadband sensors, or different sensors configured to measure different wavelengths of light from emitter 421 (e.g., to measure blood oxygenation, and the like). A 2D array may provide an RGB image of spot 470, so that an accurate HR determination can be made. During each heartbeat, changes in blood volume cause regulated light transmission and reflection, contributing to subtle skin color changes that are invisible to the naked eye but can be captured by a 2D sensor array 423. In practical scenarios, in-ear channel 361 may be spotted by sensor 423 as the region-of-interest because the skin is relatively thin and close to blood vessels, thus possessing positive measuring performance. The same is true for eardrum 462.
In some embodiments, spectral power decomposition 520 of PPG waveform 510 identifies and disentangles different components in the PPG signal. Spectral power decomposition 520 may be obtained by a processor in the IEM (cf. processor 312), or by a processor in a mobile device or in a remotely coupled server (e.g., processor 112, client devices 110, and server 130), in real time or asynchronously. A profile of the low frequency components 525 follows closely the heartbeats in waveform 510.
In some embodiments, the IEM may include a chip 732 having a metallic layer configured to form a plasmon resonance in response to an electromagnetic radiation provided by an emitter 721. Emitter 721 may be a broadband source such as an incandescent light, a gas light, the sun, a laser (or an array of lasers with different central frequencies so to cover a broad spectrum), or a light emitting diode (LED). The metallic layer may further include a chemically sensitive layer (e.g., including or coated with molecules 737) that changes the plasmon resonance to a second electromagnetic resonance in the presence of target analyte 735. In some embodiments, chip 732 includes a layer of nanometallic particles configured to change a plasmon resonance to the electromagnetic radiation localized within the size of the nanometallic particles, in the presence of target analyte 735. In some embodiments, chip 732 includes a functional layer or chemically sensitive layer that may include an immunoassay, an RNA or DNA assay, or a nucleotide string selected to match the ribonucleic string of a pathogen (e.g., target analyte 735).
Step 902 includes transmitting, into an ear canal of a user of an in-ear device, a first electromagnetic radiation.
Step 904 includes receiving, from an electromagnetic detector, a signal indicative of a second electromagnetic radiation responsive to the first electromagnetic radiation. In some embodiments, the second electromagnetic radiation is indicative of a change in an optical property of a functional layer in a chip embedded in the in-ear device, and step 904 includes determining a presence of a pre-selected target substance based on the change in the optical property of the functional layer, wherein the health condition is correlated with the presence of the pre-selected target substance. In some embodiments, the first electromagnetic radiation includes a time-multiplex code, and step 904 includes decoding the signal according to the time-multiplex code.
Step 906 includes identifying a health condition of the user based on a difference between the first electromagnetic radiation and the second electromagnetic radiation. In some embodiments, the difference between the first electromagnetic radiation and the second electromagnetic radiation is a coherent phase difference, and step 906 includes interfering the first electromagnetic radiation with the second electromagnetic radiation. In some embodiments, step 906 includes determining a tissue displacement, density, or composition based on the coherent phase difference between the first and second electromagnetic radiation. In some embodiments, the second electromagnetic radiation includes a backscattered portion of the first electromagnetic radiation and step 906 includes identifying a cardio-respiratory condition based on a waveform of the backscattered portion of the first electromagnetic radiation. In some embodiments, a difference between the first electromagnetic radiation and the second electromagnetic radiation is indicative of a trace amount of a selected molecule in the ear canal of the user and step 906 includes determining that a concentration of the selected molecule is higher than a healthy threshold value. In some embodiments, the first electromagnetic radiation is in resonance with a plasmon mode of a metallic layer disposed in the in-ear device, and step 906 includes determining a presence of a pre-selected target substance based on a change of plasmon resonance to the second electromagnetic radiation.
Computer system 1000 includes a bus 1008 or other communication mechanism for communicating information, and a processor 1002 (e.g., processors 112) coupled with bus 1008 for processing information. By way of example, the computer system 1000 may be implemented with one or more processors 1002. Processor 1002 may be a general-purpose microprocessor, a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Programmable Logic Device (PLD), a controller, a state machine, gated logic, discrete hardware components, or any other suitable entity that can perform calculations or other manipulations of information.
Computer system 1000 can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them stored in an included memory 1004 (e.g., memory 120), such as a Random Access Memory (RAM), a flash memory, a Read-Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device, coupled with bus 1008 for storing information and instructions to be executed by processor 1002. The processor 1002 and the memory 1004 can be supplemented by, or incorporated in, special purpose logic circuitry.
The instructions may be stored in the memory 1004 and implemented in one or more computer program products, e.g., one or more modules of computer program instructions encoded on a computer-readable medium for execution by, or to control the operation of, the computer system 1000, and according to any method well known to those of skill in the art, including, but not limited to, computer languages such as data-oriented languages (e.g., SQL, dBase), system languages (e.g., C, Objective-C, C++, Assembly), architectural languages (e.g., Java, .NET), and application languages (e.g., PHP, Ruby, Perl, Python). Instructions may also be implemented in computer languages such as array languages, aspect-oriented languages, assembly languages, authoring languages, command line interface languages, compiled languages, concurrent languages, curly-bracket languages, dataflow languages, data-structured languages, declarative languages, esoteric languages, extension languages, fourth-generation languages, functional languages, interactive mode languages, interpreted languages, iterative languages, list-based languages, little languages, logic-based languages, machine languages, macro languages, metaprogramming languages, multiparadigm languages, numerical analysis, non-English-based languages, object-oriented class-based languages, object-oriented prototype-based languages, off-side rule languages, procedural languages, reflective languages, rule-based languages, scripting languages, stack-based languages, synchronous languages, syntax handling languages, visual languages, wirth languages, and xml-based languages. Memory 1004 may also be used for storing temporary variable or other intermediate information during execution of instructions to be executed by processor 1002.
A computer program as discussed herein does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, subprograms, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
Computer system 1000 further includes a data storage device 1006 such as a magnetic disk or optical disk, coupled with bus 1008 for storing information and instructions. Computer system 1000 may be coupled via input/output module 1010 to various devices. Input/output module 1010 can be any input/output module. Exemplary input/output modules 1010 include data ports such as USB ports. The input/output module 1010 is configured to connect to a communications module 1012. Exemplary communications modules 1012 include networking interface cards, such as Ethernet cards and modems. In certain aspects, input/output module 1010 is configured to connect to a plurality of devices, such as an input device 1014 and/or an output device 1016. Exemplary input devices 1014 include a keyboard and a pointing device, e.g., a mouse or a trackball, by which a consumer can provide input to the computer system 1000. Other kinds of input devices 1014 can be used to provide for interaction with a consumer as well, such as a tactile input device, visual input device, audio input device, or brain-computer interface device. For example, feedback provided to the consumer can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the consumer can be received in any form, including acoustic, speech, tactile, or brain wave input. Exemplary output devices 1016 include display devices, such as an LCD (liquid crystal display) monitor, for displaying information to the consumer.
According to one aspect of the present disclosure, headsets and client devices 110 can be implemented, at least partially, using a computer system 1000 in response to processor 1002 executing one or more sequences of one or more instructions contained in memory 1004. Such instructions may be read into memory 1004 from another machine-readable medium, such as data storage device 1006. Execution of the sequences of instructions contained in main memory 1004 causes processor 1002 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in memory 1004. In alternative aspects, hard-wired circuitry may be used in place of or in combination with software instructions to implement various aspects of the present disclosure. Thus, aspects of the present disclosure are not limited to any specific combination of hardware circuitry and software.
Various aspects of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical consumer interface or a Web browser through which a consumer can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. The communication network can include, for example, any one or more of a LAN, a WAN, the Internet, and the like. Further, the communication network can include, but is not limited to, for example, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star-bus network, tree or hierarchical network, or the like. The communications modules can be, for example, modems or Ethernet cards.
Computer system 1000 can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. Computer system 1000 can be, for example, and without limitation, a desktop computer, laptop computer, or tablet computer. Computer system 1000 can also be embedded in another device, for example, and without limitation, a mobile telephone, a PDA, a mobile audio player, a Global Positioning System (GPS) receiver, a video game console, and/or a television set top box.
The term “machine-readable storage medium” or “computer-readable medium” as used herein refers to any medium or media that participates in providing instructions to processor 1002 for execution. Such a medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as data storage device 1006. Volatile media include dynamic memory, such as memory 1004. Transmission media include coaxial cables, copper wire, and fiber optics, including the wires forming bus 1008. Common forms of machine-readable media include, for example, floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH EPROM, any other memory chip or cartridge, or any other medium from which a computer can read. The machine-readable storage medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter affecting a machine-readable propagated signal, or a combination of one or more of them.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (e.g., each item). The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Phrases such as an aspect, the aspect, another aspect, some aspects, one or more aspects, an implementation, the implementation, another implementation, some implementations, one or more implementations, an embodiment, the embodiment, another embodiment, some embodiments, one or more embodiments, a configuration, the configuration, another configuration, some configurations, one or more configurations, the subject technology, the disclosure, the present disclosure, other variations thereof and alike are for convenience and do not imply that a disclosure relating to such phrase(s) is essential to the subject technology or that such disclosure applies to all configurations of the subject technology. A disclosure relating to such phrase(s) may apply to all configurations, or one or more configurations. A disclosure relating to such phrase(s) may provide one or more examples. A phrase such as an aspect or some aspects may refer to one or more aspects and vice versa, and this applies similarly to other foregoing phrases.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. Relational terms such as first and second and the like may be used to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public, regardless of whether such disclosure is explicitly recited in the above description. No claim element is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
While this specification contains many specifics, these should not be construed as limitations on the scope of what may be described, but rather as descriptions of particular implementations of the subject matter. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially described as such, one or more features from a described combination can in some cases be excised from the combination, and the described combination may be directed to a subcombination or variation of a subcombination.
The subject matter of this specification has been described in terms of particular aspects, but other aspects can be implemented and are within the scope of the following claims. For example, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. The actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described above should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
The title, background, brief description of the drawings, abstract, and drawings are hereby incorporated into the disclosure and are provided as illustrative examples of the disclosure, not as restrictive descriptions. It is submitted with the understanding that they will not be used to limit the scope or meaning of the claims. In addition, in the detailed description, it can be seen that the description provides illustrative examples and the various features are grouped together in various implementations for the purpose of streamlining the disclosure. The method of disclosure is not to be interpreted as reflecting an intention that the described subject matter requires more features than are expressly recited in each claim. Rather, as the claims reflect, inventive subject matter lies in less than all features of a single disclosed configuration or operation. The claims are hereby incorporated into the detailed description, with each claim standing on its own as a separately described subject matter.
The claims are not intended to be limited to the aspects described herein but are to be accorded the full scope consistent with the language claims and to encompass all legal equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirements of the applicable patent law, nor should they be interpreted in such a way.
The present disclosure is related and claims priority under 35 U.S.C. § 119(e) to U.S. Prov. Appln. No. 63/305,932, entitled IN-EAR BIO-SENSING FOR AR/VR APPLICATIONS AND DEVICES, filed on Feb. 2, 2022, to U.S. Prov. Appln. No. 63/356,851, entitled IN-EAR ELECTRODES FOR AR/VR APPLICATIONS AND DEVICES, to U.S. Prov. Appln. No. 63/356,860, entitled IN-EAR OPTICAL SENSORS FOR AR/VR APPLICATIONS AND DEVICES, to U.S. Prov. Appln. No. 63/356,864, entitled IN-EAR MOTION SENSORS FOR AR/VR APPLICATIONS AND DEVICES, to U.S. Prov. Appln. No. 63/356,872, entitled IN-EAR TEMPERATURE SENSORS FOR AR/VR APPLICATIONS AND DEVICES, to U.S. Prov. Appln. No. 63/356,877, entitled IN-EAR MICROPHONES FOR AR/VR APPLICATIONS AND DEVICES, to U.S. Prov. Appln. No. 63/356,883, entitled IN-EAR SENSORS AND METHODS OF USE THEREOF FOR AR/VR APPLICATIONS AND DEVICES, all filed on Jun. 29, 2022, to Morteza KHALEGHIMEYBODI, et al., the contents of which applications are hereby incorporated by reference in their entirety, for all purposes.
Number | Date | Country | |
---|---|---|---|
63305932 | Feb 2022 | US | |
63356851 | Jun 2022 | US | |
63356860 | Jun 2022 | US | |
63356864 | Jun 2022 | US | |
63356872 | Jun 2022 | US | |
63356877 | Jun 2022 | US | |
63356883 | Jun 2022 | US |