1. Field of the Invention
This invention relates to lighting fixtures and more particularly to in-grade lighting fixtures.
2. Description of the Related Art
Conventional in-ground or in-grade lighting fixtures are typically buried all or partially below ground level and include a light emitter that illuminates up from below ground level. They can be buried in the earth or covered by hardscape such as concrete, asphalt, wood, pavers, tile, etc. The fixtures are typically used to illuminate walls, columns, flags, trees, signs or a pathway.
One type of in-grade lighting fixture generally comprises a housing and lens made of glass or other rigid and transparent material that is attached to an opening in the top of a housing. The housing contains various components including the light emitter that is arranged to emit light through the lens and electrical components that are used to power and operate the light emitter. When the light fixture is installed in-grade, the housing is typically below ground level and the lens is left uncovered so light can shine up through it. The electrical components can include a power supply, power converters, transformers, and mounting hardware for the light emitter. To hold all of these components, the housing can extend relatively deep into the ground (i.e. 14 to 16 inches).
During installation of these types of light fixtures, a hole is typically dug for the housing, the housing is placed in the hole and the hole is back filled around the housing. Any hardscape is then installed around the lens, leaving the lens uncovered.
In-grade light fixtures can have an optical chamber that contains the light emitter (lamp), with the optical chamber arranged in the housing so that light from the lamp emits through an upper housing opening. One disadvantage of conventional optical chambers is that condensation can develop inside the chamber through the heating and cooling of the lamp. These types of fixtures also have ballasts that contain electronic components such as transformers and capacitors. These ballasts can also develop condensation during heating and cooling that can cause failure or reduced life of the components.
The most common problems resulting from water inside the housing include corrosion, electrical shorts, shortened life of the ballast (power converter) or transformer and shortened lamp life. In addition, water entry into the electrically sensitive areas can create risk of electrocution for those working on the housing.
In other conventional light fixtures one or more enclosures can be included inside the housing to hold electrical components, which can increase the overall size of the light fixture. Conventional light fixtures also do not provide flexibility in the placement of enclosures to allow the light fixture to be configured to meet space constraints during installation.
The present invention seeks to provide an improved in-grade light fixture. One embodiment of an in-grade light fixture according to the present invention comprises a light fixture housing arranged to be buried substantially below grade level. The light fixture housing has a light opening substantially at grade level and an optical chamber having a light source arranged within the chamber and the chamber arranged within the housing with light from the light source passing through the light opening. The fixture further comprises a plurality of housing openings and one or more enclosures, each of which is removably mounted to a respective one of the housing openings. The enclosures accept external power and generate power to energize the light source causing it to emit light.
Another embodiment of an in-grade light fixture according to the present invention comprises a light fixture housing arranged to be buried substantially below grade level with the light fixture housing having a light opening substantially at grade level. A junction box mounted to the housing and the housing comprises a plurality of housing openings. The fixture further comprises one or more enclosures, each of the enclosures capable of being removably mounted in a respective one of each of the openings. The enclosures interconnected to accept an external power supply and generate an electrical signal to energize a light source.
Another embodiment of an in-grade light fixture according to the present invention comprises a light fixture housing arranged to be buried substantially below grade level. The light fixture housing has a light opening substantially at grade level, with a groove around the opening having an L-shaped cross-section. A light source is arranged within the light fixture housing and generates light that passes through the light opening. A faceplate mechanism is arranged over the light opening and held in place by mounting screws with the faceplate mechanism at least partially within the groove.
Still another embodiment of an in-grade light fixture according to the present invention comprises a light fixture housing arranged to be buried substantially below grade level with the light fixture housing having a light opening substantially at grade level. One or more enclosures mounted to the housing and an optical chamber is within the housing having an anti-condensation valve. The fixture including an air passageway between the optical chamber and at least one of the enclosures. The air passageway causing a vacuum to form in the one of said enclosures when a vacuum forms in the optical chamber.
These and other further features and advantages of the invention would be apparent to those skilled in the art from the following detailed description, taking together with the accompanying drawings, in which:
The present invention provides an improved light fixture, and although the features are described with reference to in-grade embodiments it is understood that the features can also be used in many other light fixtures pursuant to the present invention. It is also understood that the features and components of the light fixture embodiments described herein can be arranged in many different ways pursuant to the present invention.
The lamp fixture 10 also comprises the inventive features of the lamp fixture in U.S. patent application Ser. No. 10/799,393, entitled “In-Grade Light Fixture With Leveling and Alignment Mechanisms, Installation Features and Anti-Condensation Valve,” the contents of which are incorporated herein by reference. Some of these features include a faceplate mechanism for adjusting the level and angle of the faceplate and for adjusting the orientation of the faceplate screw holes. Others include a mechanism for holding the light fixture at a desired level in a hole during installation, and an optical chamber anti-condensation valve.
The fixture 10 comprises a generally cylindrical housing 12 divided into upper, middle and lower sections 14, 16 and 18. The section can be made of many materials and composite materials, with a preferred material being rugged, watertight and corrosion resistant. One suitable material is a high strength, thermo-formed polyester compound that is formed into the sections 14, 16 and 18 using known methods. The lower section 16 preferably comprises slots in its bottom surface to any water that enters the housing to drain out.
The fixture 10 also comprises an optical chamber 20 that is arranged within the housing by the optical chamber's axial lip 22 resting on the top surface of the upper section 14 such that essentially all the chamber 20 is within the housing 12. The optical chamber can be made of many different materials, with a suitable material being a metal.
The optical chamber 20 can be arranged in many different ways and can have many different shapes, but is preferably closed at bottom 21 and has an opening at its top 23 (best shown in
The lighting fixture 10 also comprises a junction box 24 attached at the exterior of the housing 12, and although it can be mounted in many different ways and in many different locations, in the embodiment shown it is mounted with the junction box 24 being substantially outside the housing at opening 25 of the housing's middle section 16. Power is supplied to the junction box 24 from an outside power source along known electrical conductors (not shown) and as is also known in the art, the electrical power for operating the lamps and light fixture components is typically brought to the lighting fixture 10 by wiring contained in an outer protective conduit line that attaches to the housing at a junction box 24. The wiring can be connected to the junction box using a quick disconnect connector having a anti-siphon valve. The junction box 24 provides a wiring compartment for electrically connecting the light fixture to the supply of external supply of power provided by the electrical conductors.
The fixture 10 further comprises first and second exterior electrical enclosures 26, 28 that preferably hold the ballast electrical components, although in other embodiments they can hold other components. The enclosures are preferably mounted to the exterior of the housing's middle section 16 in much the same way as the junction box 24, with the enclosures substantially outside the middle section 16. The middle section 16 has three upper enclosure openings 30a, 30b, 30c each of which is sized such that one of the enclosures 26, 28 can be mounted to the outside of the housing at a respective one of the openings 30a, 30b, 30c. When less than three enclosures are used, such as in the embodiment shown having two enclosure 26, 28, one or more of the openings do not have an enclosure. For those, opening side blanking plate 32 can be inserted to cover the opening.
Each of the enclosures 26, 28 can be mounted to its respective one of the openings 30a, 30b, 30 in many different ways such as by screws, clamps, or bonding materials. In the embodiment shown, each of the enclosures 26, 28 has a ridge 31 sized to fit within a slot 33 in the openings to hold the particular enclosure in its opening. When the upper section 14 is mounted on the middle section 16, the enclosures 26, 28 and blanking plate 32 are fixed in their openings. Screws, clamps or bonding materials can also be used with the slot and lip arrangement to more securely mount the particular one of the enclosures 26, 28 within its opening and sealants or gaskets can be included at the openings to provide a watertight seal.
The housing's lower section 18 can also have first and second bottom enclosure openings 34a, 34b that are also sized to hold the first and second enclosures 26, 28. By including three middle section openings 30a, 30b, 30c and two bottom section openings 34a, 34b, the fixture 10 provides for flexibility in the arrangement of the enclosures to match the confines of an installation location. The fixture is provided with five openings each of which can have an enclosure, which allows for up to five enclosures to be used with the fixture 10, and when less than five are used, allows for the enclosures to be placed in different openings. It is understood that other embodiments of the fixture according to the invention can have more or fewer openings and the openings can be in many different locations. In one embodiment, for example, the fixture does not have bottom enclosure openings.
Referring to
Referring now to
Referring now to
The lighting fixture 10 is generally arranged with two enclosures 26, 28 in those embodiments using magnetic light ignition known in the art. The first enclosure 26 can hold the starting circuit and a capacitor, while the second enclosure 28 holds the transformer. By separating the electronic components in this way heat from the transformer in the second enclosure 28 is less likely to impact the more heat sensitive components in the first enclosure 26.
In those embodiments utilizing electronic light ignition known in the art, the type/size of the electrical components is such that heat transferring from the transformer to the other electrical components is not as much of a concern. All the electronic components can be housed in a single enclosure that can be mounted in any one of the middle section openings 30a, 30b, 30c and bottom section openings 34a, 34b. Blanking plates would then be included in each of the other openings. In each of the embodiments described herein, the enclosures can include a potting material to help seal the components and to facilitate heat dissipation.
Referring again to the embodiment of
Referring now to
The optical chamber 20 comprises a valve 42 (shown in
When the fixture 10 is not operating, the air within the chamber 20 and enclosure 28 cools, but no air is allowed to pass back into the chamber 20 (or enclosure 28) through the valve 42. This results in the formation of a negative air pressure, or vacuum, within the chamber 20 and enclosure 28. This negative air pressure has the benefit of preventing condensation within the chamber 20 and enclosure 28 while not requiring the enclosure to have its own valve. It is understood that additional tubes can be included between the optical chamber 20 and the first enclosure 26, or the junction box 24. The enclosures 26, 28 and junction box 24 can also have their own anti condensation valve and air tight tubes can also run between them.
Although the present invention has been described in considerable detail with reference to certain preferred configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the preferred versions in the specification.
This application claims the benefit of provisional application Ser. No. 60/625,472 to Hagen, which was filed on Nov. 4, 2004.
Number | Date | Country | |
---|---|---|---|
60625472 | Nov 2004 | US |