1. Field of the Invention
This invention relates to lighting fixtures and more particularly to in-grade lighting fixtures.
2. Description of the Related Art
Conventional in-ground or in-grade lighting fixtures are typically buried all or partially below ground level and include a light emitter that illuminates up from below ground level. They can be buried in the earth or covered by hardscape such as concrete, asphalt, wood, pavers, tile, etc. The fixtures are typically used to illuminate walls, columns, flags, trees, signs or a pathway.
One type of in-grade lighting fixture generally comprises a housing and lens made of glass or other rigid and transparent material that is attached to an opening in the top of a housing. The housing contains various components including the light emitter that is arranged to emit light through the lens and electrical components that are used to power and operate the light emitter. When the light fixture is installed in-grade, the housing is typically below ground level and the lens is left uncovered so light can shine up through it. The electrical components can include a power supply, power converters, transformers, and mounting hardware for the light emitter. To hold all of these components, the housing can extend relatively deep into the ground (i.e. 14 to 16 inches).
During installation of these types of light fixtures, a hole is typically dug for the housing, the housing is placed in the hole and the hole is back filled around the housing. Any hardscape is then installed around the lens, leaving the lens uncovered.
In-grade light fixtures can have an optical chamber that contains the light emitter (lamp), with the optical chamber arranged in the housing so that light from the lamp emits through an upper housing opening. One disadvantage of conventional optical chambers is that condensation can develop inside the chamber through the heating and cooling of the lamp. These types of fixtures also have ballasts that contain electronic components such as transformers and capacitors. These ballasts can also develop condensation during heating and cooling that can cause failure or reduced life of the components.
The most common problems resulting from water inside the housing include corrosion, electrical shorts, shortened life of the ballast (power converter) or transformer and shortened lamp life. In addition, water entry into the electrically sensitive areas can create risk of electrocution for those working on the housing.
In other conventional light fixtures one or more enclosures can be included inside the housing to hold electrical components, which can increase the overall size of the light fixture. Conventional light fixtures also do not provide flexibility in the placement of enclosures to allow the light fixture to be configured to meet space constraints during installation.
The present invention seeks to provide an improved in-grade light fixture. One embodiment of an in-grade light fixture according to the present invention comprises a light fixture housing arranged to be buried substantially below grade level. The light fixture housing has a light opening substantially at grade level and an optical chamber having a light source arranged within the chamber and the chamber arranged within the housing with light from the light source passing through the light opening. The fixture further comprises a plurality of housing openings and one or more enclosures, each of which is removably mounted to a respective one of the housing openings. The enclosures accept external power and generate power to energize the light source causing it to emit light.
These and other further features and advantages of the invention would be apparent to those skilled in the art from the following detailed description, taking together with the accompanying drawings, in which:
The present invention provides an improved light fixture, and although the features are described with reference to in-grade embodiments it is understood that the features can also be used in many other light fixtures pursuant to the present invention. It is also understood that the features and components of the light fixture embodiments described herein can be arranged in many different ways pursuant to the present invention.
The lamp fixture 10 also comprises the inventive features of the lamp fixture in U.S. patent application Ser. No. 10/799,393, entitled “In-Grade Light Fixture With Leveling and Alignment Mechanisms, Installation Features and Anti-Condensation Valve,” the contents of which are incorporated herein by reference. Some of these features include a faceplate mechanism for adjusting the level and angle of the faceplate and for adjusting the orientation of the faceplate screw holes. Others include an optical chamber anti-condensation valve.
Others include a mechanism for holding the light fixture at a desired level in a hole during installation. For example the fixture 10 comprises a generally cylindrical housing 12 having an axial mounting shelf 2 located approximately at the housing's mid-section, that is used for conveniently and accurately mounting the lighting fixture 10 in a hole so that it is level and at the appropriate height. The shelf 2 is generally horizontal and has a plurality of holes 4. It is understood that the shelf can be arranged with many different numbers of holes spaced in different ways, with fixture 10 having four holes 4 equally spaced around the shelf. Each hole has one of four upwardly extending hole sleeve 5. The shelf 2 extends around the housing 12, although it is understood that the shelf can have interruptions.
The holes 4 and sleeves 5 have the same diameter and are sized to accept elongated stilts, such as standard PVC pipe. Alternative holes and sleeves can have different diameters to accept different sizes of PVC pipe or different elongated stilts, and the hole and sleeve cross-section can have different shapes such as square, rectangle, oval, etc. For example, the holes and sleeves could have a square cross-section to accept standard commercially available sizes of wood.
The PVC pipe can be mounted within each of the holes 4 using many different mounting methods, including but not limited to gluing, welding, clamping, or crimping. In a preferred mounting method each pipe is held in the sleeve hole 4 and sleeve 5 by a sleeve mounting screw. Each sleeve 5 can have a longitudinal crease on its outside surface to assist in turning a screw into the sleeve 5 and fix the sleeve 5 to PVC pipe inserted therein. The crease is designed to accept a standard “TEK screw”, although other screws can also be used. The screw can be turned partially through a respective sleeve 5 at the crease, which causes the sleeve 5 to bulge toward the PVC pipe and hold it in place. Alternatively, the screw can be turned through the sleeve 5 and into the PVC pipe to hold it in place.
In one method of using the mounting shelf 2 and PVC pipe according to the invention, the light fixture 10 is placed in a hole. Separate pieces of PVC pipe are then inserted into the holes 4 and sleeves, with each of the pipes being long enough that their lower end rests on the surface of the ground at the base of the housing 12 and their upper end extends through and above the top of its respective sleeve 104. The lower end of each of the PVC pipes is then forced into the ground, preferably by hammering on each pipe's upper end. The pipes should be pounded in far enough so that they can support the weight of the lighting fixture 10. The lighting fixture can then be slid up and down on the PVC pipes until it is at the desired height and angle. Tech screws can then be inserted into the sleeve creases to hold the light fixture 10 at its location so that the light fixture 10 is then held above the ground on the PVC pipes. The hole can then be backfilled and leveled around the protective cover and any desired hardscape can be installed.
It is understood that the mounting holes can be located in many different places on the fixture 10 beyond the shelf and can be arranged in many different ways with many different mounting features. The bottom surface of the shelf 2 can also comprise rebar clips that can be arranged to rest on rebar in those installations where rebar is used to reinforce the hardscape.
The shelf 2 also serves to stabilize the fixture 10 after the light is installed in its hole. After the hole is backfilled with an installation substrate (such as with soil, concrete, stone or other materials) the shelf 2 projects into the installation substrate. By projecting into to the installation substrate, the shelf helps anchor the fixture 10 in it installed position. This is particularly useful in “drive-over” installations where the fixture is installed in a location where pedestrians or vehicles travel over the fixture. The weight of pedestrian and vehicles can force the fixture down over time, such that its level is lower than desired and originally installed. The shelf 2 helps prevent this movement down by providing an axial anchor projecting into the substrate. In some situations the fixture 10 can also be forced up after installation, such as by earth movement, flooding, etc. The shelf 2 can also help to anchor the fixture 10 to prevent this upward movement.
The cylindrical housing 12 is divided into upper, middle, and lower sections 14, 16, and 18. The section can be made of many materials and composite materials, with a preferred material being rugged, watertight, and corrosion resistant. One suitable material is a high strength, thermo-formed polyester compound that is formed into the sections 14, 16, and 18 using known methods. The lower section 18 preferably comprises slots in its bottom surface to enable any water that enters the housing to drain out.
The fixture 10 also comprises an optical chamber 20 that is arranged within the housing by the optical chamber's axial lip 22 resting on the top surface of the upper section 14 such that essentially all the chamber 20 is within the housing 12. The optical chamber can be made of many different materials, with a suitable material being a metal.
The optical chamber 20 can be arranged in many different ways and can have many different shapes, but is preferably closed at bottom 21 and has an opening at its top 23 (best shown in
The lighting fixture 10 also comprises a junction box 24 attached at the exterior of the housing 12, and although it can be mounted in many different ways and in many different locations, in the embodiment shown it is mounted with the junction box 24 being substantially outside the housing at opening 25 of the housing's middle section 16. Power is supplied to the junction box 24 from an outside power source along known electrical conductors (not shown), and as is also known in the art, the electrical power for operating the lamps and light fixture components is typically brought to the lighting fixture 10 by wiring contained in an outer protective conduit line that attaches to the housing at a junction box 24. The wiring can be connected to the junction box using a quick disconnect connector having an anti-siphon valve. The junction box 24 provides a wiring compartment for electrically connecting the light fixture to the external supply of power provided by the electrical conductors.
The fixture 10 further comprises first and second exterior electrical enclosures 26, 28 that preferably hold the ballast electrical components, although in other embodiments they can hold other components. The enclosures are preferably mounted to the exterior of the housing's middle section 16 in much the same way as the junction box 24, with the enclosures substantially outside the middle section 16. The middle section 16 has three upper enclosure openings 30a, 30b, 30c each of which is sized such that one of the enclosures 26, 28 can be mounted to the outside of the housing at a respective one of the openings 30a, 30b, 30c. When less than three enclosures are used, such as in the embodiment shown having two enclosure 26, 28, one or more of the openings do not have an enclosure. For those, opening side blanking plate 32 can be inserted to cover the opening.
Each of the enclosures 26, 28 can be mounted to its respective one of the openings 30a, 30b, 30c in many different ways such as by screws, clamps, or bonding materials. In the embodiment shown, each of the enclosures 26, 28 has a ridge 31 sized to fit within a slot 33 in the openings to hold the particular enclosure in its opening. When the upper section 14 is mounted on the middle section 16, the enclosures 26, 28 and blanking plate 32 are fixed in their openings. Screws, clamps or bonding materials can also be used with the slot and lip arrangement to more securely mount the particular one of the enclosures 26, 28 within its opening and sealants or gaskets can be included at the openings to provide a watertight seal.
The housing's lower section 18 can also have first and second bottom enclosure openings 34a, 34b that are also sized to hold the first and second enclosures 26, 28. By including three middle section openings 30a, 30b, 30c and two bottom section openings 34a, 34b, the fixture 10 provides for flexibility in the arrangement of the enclosures to match the confines of an installation location. The fixture is provided with five openings each of which can have an enclosure, which allows for up to five enclosures to be used with the fixture 10, and when less than five are used, allows for the enclosures to be placed in different openings. It is understood that other embodiments of the fixture according to the invention can have more or fewer openings and the openings can be in many different locations. In one embodiment, for example, the fixture does not have bottom enclosure openings.
Referring to
Referring now to
Referring now to
The lighting fixture 10 is generally arranged with two enclosures 26, 28 in those embodiments using magnetic light ignition known in the art. The first enclosure 26 can hold the starting circuit and a capacitor, while the second enclosure 28 holds the transformer. By separating the electronic components in this way heat from the transformer in the second enclosure 28 is less likely to impact the more heat sensitive components in the first enclosure 26.
In those embodiments utilizing electronic light ignition known in the art, the type/size of the electrical components is such that heat transferring from the transformer to the other electrical components is not as much of a concern. All the electronic components can be housed in a single enclosure that can be mounted in any one of the middle section openings 30a, 30b, 30c and bottom section openings 34a, 34b. Blanking plates would then be included in each of the other openings. In each of the embodiments described herein, the enclosures can include a potting material to help seal the components and to facilitate heat dissipation.
Referring again to the embodiment of
Referring now to
The optical chamber 20 comprises a valve 42 (shown in
When the fixture 10 is not operating, the air within the chamber 20 and enclosure 28 cools, but no air is allowed to pass back into the chamber 20 (or enclosure 28) through the valve 42. This results in the formation of a negative air pressure, or vacuum, within the chamber 20 and enclosure 28. This negative air pressure has the benefit of preventing condensation within the chamber 20 and enclosure 28 while not requiring the enclosure to have its own valve. It is understood that additional tubes can be included between the optical chamber 20 and the first enclosure 26, or the junction box 24. The enclosures 26, 28 and junction box 24 can also have their own anti condensation valve and air tight tubes can also run between them.
The upper portion 76 also comprises a cap 84 that is mounted to the legs 82 by screws 86, with the legs 82 providing separation between the base 80 and the cap 84. This separation provides four enclosure openings 88a-d with each of the openings defined by the base 80, adjacent legs 82 and the cap 84. Each of openings 88a-d can serve as a mounting location for a junction box 90 or electronic enclosure 91. In the openings not being used by a junction box 90 or electrical enclosures 91, blanking plates can be inserted in the unused ones of the openings 88a-d. The junction box 90 and electrical enclosures can then be electrically connected to an external source of power, to each other, and/or the remainder of the fixture 70 as described above.
The fixture 70 has a mounting arrangement similar to the mounting shelf 2 shown and described above. The fixture 70 has mounting holes 92 at the end of the legs and the holes 82 can have different shapes and sizes, but are preferably sized to accept standard sizes of PVC pipe. Each of the holes 92 also has a sleeve 94 similar to the sleeve 5 described above, and a PVC pipe can be mounted within the sleeve 94 by the different methods described above, including by a screw. When the fixture 70 is assembled, the holes 92, surrounding portions of the legs 82 and the edge of the cap 84 form a structure similar to the shelf 2 described above.
The fixture 70 also comprises rebar clips 96 that can be arranged to rest on rebar in those installations where rebar is used to reinforce the hardscape. The rebar clips 96 in this embodiment are arranged on the base 80, preferably on the bottom surface of the base 80 in the vicinity of the legs 82. By being on the bottom surface 80, the clips 96 can rest on rebar and be affixed to the rebar without interference from the junction box 90 or electronic enclosures.
The upper portion 74, and in particular the base 80, in combination with the cap 84 serves as a stability flange for the fixture 70. That is, the base 80 projects into the installation substrate to reinforce housing stability. As described above, this is particularly useful in fixtures subjected to pedestrian or vehicle traffic where downward force is applied to the fixture 70. The base 80, working as a stability flange, helps reduce downward movement of the housing under this force.
Although the present invention has been described in considerable detail with reference to certain preferred configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the preferred versions in the specification.
This application is a continuation-in-part from and claims the benefit of U.S. patent application Ser. No. 11/266,843 filed Nov. 4, 2005 now U.S. Pat. No. 7,553,042, which claims the benefit of provisional application Ser. No. 60/625,472 to Hagen, filed on Nov. 4, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1240452 | Hotchkin | Sep 1917 | A |
2806080 | Corey | Sep 1957 | A |
3192379 | De Garmo | Jun 1965 | A |
3339066 | Hart | Aug 1967 | A |
3635808 | Elevitch | Jan 1972 | A |
3770878 | Doxier | Nov 1973 | A |
3845435 | Georgopulos | Oct 1974 | A |
3869563 | Ocken, Jr. | Mar 1975 | A |
3949213 | Paitchell | Apr 1976 | A |
4000406 | Bhavsar | Dec 1976 | A |
4131331 | Kendall, Jr. | Dec 1978 | A |
4143508 | Ohno | Mar 1979 | A |
4343033 | Suzuki | Aug 1982 | A |
4344118 | Rundquist et al. | Aug 1982 | A |
4430944 | Theurer | Feb 1984 | A |
4433366 | Wade | Feb 1984 | A |
4460944 | Gordbegli et al. | Jul 1984 | A |
4539629 | Poppenheimer | Sep 1985 | A |
4574337 | Poppenheimer | Mar 1986 | A |
4617616 | Juell et al. | Oct 1986 | A |
4674187 | Poppenheimer | Jun 1987 | A |
4694119 | Groenewegen | Sep 1987 | A |
4695930 | Wierzbicki et al. | Sep 1987 | A |
4768139 | Poppenheimer | Aug 1988 | A |
4931915 | Quiogue | Jun 1990 | A |
4956561 | Tamer | Sep 1990 | A |
4999757 | Poppenheimer | Mar 1991 | A |
5011950 | Fukuoka et al. | Apr 1991 | A |
5041950 | Tyson | Aug 1991 | A |
5050052 | Wade | Sep 1991 | A |
5195962 | Martin et al. | Mar 1993 | A |
5198962 | Tyson | Mar 1993 | A |
5207499 | Vajda et al. | May 1993 | A |
5276583 | Tyson | Jan 1994 | A |
RE34709 | Tyson | Aug 1994 | E |
5349505 | Poppenheimer | Sep 1994 | A |
5408397 | Tyson | Apr 1995 | A |
5481443 | Wagner et al. | Jan 1996 | A |
5483428 | Poppenheimer | Jan 1996 | A |
5486988 | Tyson | Jan 1996 | A |
5556188 | Poppenheimer | Sep 1996 | A |
5727873 | Tyson | Mar 1998 | A |
5743622 | Ibbetson et al. | Apr 1998 | A |
5842771 | Thrasher et al. | Dec 1998 | A |
5887966 | Eissner et al. | Mar 1999 | A |
5908236 | Leuken et al. | Jun 1999 | A |
D461267 | Arumugasaamy | Aug 2002 | S |
6481867 | Ewing | Nov 2002 | B2 |
D467676 | Packer et al. | Dec 2002 | S |
D467677 | Reis et al. | Dec 2002 | S |
D468046 | Bernard et al. | Dec 2002 | S |
D468049 | Reis et al. | Dec 2002 | S |
6492590 | Cheng | Dec 2002 | B1 |
6499227 | Jacobson | Dec 2002 | B1 |
6499866 | Logan et al. | Dec 2002 | B1 |
6530681 | Sieczkowski | Mar 2003 | B2 |
D472665 | Herst et al. | Apr 2003 | S |
D472666 | Herst et al. | Apr 2003 | S |
D472667 | Herst et al. | Apr 2003 | S |
D472668 | Herst et al. | Apr 2003 | S |
D473007 | Herst et al. | Apr 2003 | S |
D473335 | Brohard et al. | Apr 2003 | S |
D473672 | Lay et al. | Apr 2003 | S |
6540374 | Kira et al. | Apr 2003 | B2 |
6577136 | Marques | Jun 2003 | B1 |
D476771 | Herst et al. | Jul 2003 | S |
D477105 | Herst et al. | Jul 2003 | S |
7156226 | Van Sickle | Jan 2007 | B1 |
20010017775 | Reinert, Sr. | Aug 2001 | A1 |
20020044443 | Kira et al. | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
3635808 | May 1988 | DE |
Number | Date | Country | |
---|---|---|---|
20060198129 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60625472 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11266843 | Nov 2005 | US |
Child | 11395639 | US |