This invention relates to electrical components, and particularly to attenuators. It is disclosed in the context of a microstrip, stripline, or the like, attenuator. However, it is believed to be useful in other applications as well.
1. Background of the Invention
Various types of attenuators are known. There are, for example, the attenuators illustrated in PCT/US01/43204, assigned to the same assignee as this application. The disclosure of PCT/US01/43204 is hereby incorporated herein by reference. There are also the various types of attenuators illustrated and described at http://www.metcladinternational.com/reference/Microstrip%20Lines/Microstrip.htm, the disclosure of which is hereby incorporated herein by reference. No representation is intended by this listing that a thorough search of all material prior art has been conducted, or that no better art than that listed is available, or that the listed items are material to patentability. Nor should any such representation be inferred.
2. Disclosure of the Invention
According to the invention, an attenuator includes a substrate having first and second surfaces and a plurality of discrete circuit elements. The first surface includes a first electrically conductive pattern providing circuit contacts providing electrical connections among the discrete circuit elements, and circuit contacts providing electrical connections to components external to the attenuator. The second surface includes a second electrically conductive pattern.
Illustratively according to an aspect of the invention, the apparatus further includes a housing for the attenuator. The circuit contacts providing electrical connections to components external to the attenuator include connectors for coupling electrically to complementary connectors provided on the housing.
Illustratively, according to an aspect of the invention, the housing includes a BNC connector and the circuit contacts include connectors for coupling electrically to respective terminals of the BNC connector.
Illustratively according to an aspect of the invention, the housing includes an SMA connector and the circuit contacts include connectors for coupling electrically to respective terminals of the SMA connector.
Illustratively according to an aspect of the invention, the substrate includes a third surface between the first and second surfaces. The third surface includes an electrically conductive portion coupled to at least one of the first and second electrically conductive patterns. The apparatus further includes a connector for coupling the electrically conductive portion of the third surface to the housing.
Illustratively according to an aspect of the invention, the attenuator comprises a microstrip attenuator.
Illustratively according to an aspect of the invention, the substrate comprises fiber-reinforced resin.
The invention may best be understood by referring to the following detailed descriptions and accompanying drawings which illustrate the invention. In the drawings:
a-b illustrate plan views of details constructed according to the invention;
a-b illustrate plan views of details constructed according to the invention;
a-b illustrate plan views of details constructed according to the invention;
a-b illustrate plan views of details of devices constructed according to the invention;
a-b illustrate plan views of details of device constructed according to the invention;
a-d through 18a-d illustrate performance characteristics of various devices constructed according to the invention.
Referring now to
In other embodiments, the film on edges 15, 17 and the conductive film traces 20 and patterned ground plane 22 may be applied by painting or printing of conductive material, selective application of conductive tape, or any other suitable technique. This eliminates the step(s) associated with removing the film from areas where it is not desired.
The resistors 18 are soldered or otherwise electrically coupled to conductive pads of the circuit traces 20 of the front surface 14. The resistors 18 are coupled to the traces 20 to create an attenuator 10 for attenuating electrical signals in an electrical circuit into which the attenuator 10 is subsequently coupled.
The circuit traces 20 of the front surface 14 include connector pin interface pads 30-1 and 30-2 and resistor pads 32-1, 32-2, 32-3 and, in the embodiment of
As best illustrated in
In an attenuator 10, the circuit traces 20 of the front surface 14 are generally as illustrated in
Each back surface 16 includes ground plane pattern 22 and pin connector pads 30-1 and 30-2 corresponding in location to pin connector pads 30-1 and 30-2, respectively, on front surface 14. The ground plane pattern 22-1, 22-3, 22-6, 22-10, 22-20 varies according to the amount of attenuation, 1 or 2 dB, 3 dB, 6 dB, 10 dB and 20 dB, respectively, which the attenuator 10 is constructed to provide. The ground plane pattern 22-1, −1, 22-3, 22-6, 22-10, 22-20 accounts for the effects of these parasite circuit parameters of the attenuator 10-1, 10-2, 10-3, 01-6, 10-10, 10-20 at the frequencies at which the attenuator 10-1, 10-2, 10-3, 10-6, 10-10, 10-20 is to operate, providing the desired accuracy to attenuator 10-1, 10-2, 10-3, 10-6, 10-10, 10-20. Locating the pin pads 30-1, 30-2 generally along a center line of the substrate 12 promotes a reasonably stable mounting geometry for attenuation 10. As illustrated, the pin connector pads 30-1 and 30-2 on surface 16 are electrically isolated from the respective ground plane pattern 22.
There are numerous applications for attenuator 10. For example, and as illustrated in
Another application for attenuator 10 is the integration of attenuator 10 into a typical BNC connector 80, as illustrated in
Illustrative resistor values for resistors 18-1, 18-2 and 18-3 for attenuators 10-1, 10-2, 10-3, 10-6 and 10-10 follow.
Attenuator 10-20 illustrated in
The performance of attenuator 10 of the type described, in microstrip configurations, and housed in SMA-type connectors 50 is illustrated in
b illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-1 configured as a microstrip attenuator and designed to provide attenuation of 1 dB. S12 is the reverse gain of the attenuator 10-1. At 30 KHz, S12=−0.9968 dB. At 1 GHz, S12=−0.982 dB. At 2GHz, S12=−1.0289 dB. At 3 GHz, S12=−1.0833 dB. Finally, at 4 GHz, S12=−1.1142 dB.
c illustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-1 configured as a microstrip attenuator and designed to provide attenuation of 1 dB. S11 is the input reflection coefficient of the attenuator 10-1. At 30 KHz, S11=−50.356 dB. At 1 GHz, S11=−27.443 dB. At 2 GHz, S11=−25.384 dB. At 3 GHz, S11=−31.125 dB. Finally, at 4 GHz, S11=−26.655 dB.
d illustrates a plot of S22 (in dB) versus log10(frequency) of an attenuator 10-1 configured as a microstrip attenuator and designed to provide attenuation of 1 dB. S22 is the output reflection coefficient of the attenuator 10-1. At 30 KHz, S22=<45.390 dB. At 1 GHz, S22=−28.493 dB. At 2 GHz, S22=−26.044 dB. At 3 GHz, S22=−25.271 dB. Finally, at 4 GHz, S22=−23.982 dB.
a illustrates a plot of S21 (in dB) versus log10(frequency) of an attenuator 10-2 configured as a microstrip attenuator and designed to provide attenuation of 2 dB. S21 is the forward gain of the attenuator 10-2, which it is desired be constant at −2 dB over the frequency of interest. At 30 KHz, S21=−2.1361 dB. At 1 GHz, S21=−2.0143 dB. At 2 GHz, S21=−2.0728 dB. At 3GHz, S21=−2.1286 dB. Finally, at 4 GHz, S21=−2.0475 dB.
b illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-2 configured as a microstrip attenuator and designed to provide attenuation of 2 dB. At 30 KHz, S12=−2.0409 dB. At 1 GHz, S12=−1.9974 dB. At 2 GHz, S12=−2.0416 dB. At 3 GHz, S12=−2.0913 dB. Finally, at 4 GHz, S12=−2.0968 dB.
cillustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-2 configured as a microstrip attenuator and designed to provide attenuation of 2 dB. At 30 KHz, S11=−45.915 dB. At 1 GHz, S11=−24.657 dB. At 2 GHz, S11=−22.368 dB. At 3 GHz, S11=−28.841 dB. Finally, at 4 GHz, S11=−23.143 dB.
d illustrates a plot of S22 (in dB) versus log10(frequency) of an attenuator 10-2 configured as a microstrip attenuator and designed to provide attenuation of 2 dB. At 30 KHz, S22=−42.066 dB. At 1 GHz, S22=−24.799 dB. At 2 GHz, S22=−21.652 dB. At 3 GHz, S22=−22.309 dB. Finally, at 4 GHz, S22=−25.987 dB.
a illustrates a plot of S21 (in dB) versus log10(frequency) of an attenuator 10-3 configured as a microstrip attenuator and designed to provide attenuation of 3 dB. S21 is the forward gain of the attenuator 10-3, which is desired be constant at −3 dB over the frequency of interest. At 30 KHz, S21=−3.0803 dB. At 1 GHz, S21=−3.0121 dB. At 2 GHz, S21=−3.047 dB. At 3 GHz, S21=−3.0517 dB. Finally, at 4GHz, S21=−2.9244 dB.
b illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-3 configured as a microstrip attenuator and designed to provide attenuation of 3 dB. At 30 KHz, S12=−3.0707 dB. At 1 GHz, S12=−2.9875 dB. At 2 GHz, S12=−3.0131 dB. At 3 GHz, S12=−3.0224 dB. Finally, at 4GHz, S12=−2.9451 dB.
c illustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-3 configured as a microstrip attenuator and designed to provide attenuation of 3 dB. At 30 KHz, S11=−42.671 dB. At 1 GHz, S11=−23.601 dB. At 2 GHz, S11=−21 dB. At 3 GHz, S11=−25.147 dB. Finally, at 4 GHz, S11=−27.713 dB.
d illustrates a plot of S22 (in dB) versus log10(frequency) of an attenuator 10-3 configured as a microstrip attenuator and designed to provide attenuation of 3 dB. At 30 GHz, S22=−39.628 dB. At 1 GHz, S22=−24.398 dB. At 2 GHz, S22=−22.320 dB. At 3 GHz, S22=−26.147 dB. Finally, at 4 GHz, S22=−23.213 dB.
a illustrates a plot of S21 (in dB) versus log10(frequency) of an attenuator 10-6 configured as a microstrip attenuator designed to provide attenuation of 6 dB. S21 is the forward gain of the attenuator 10-6, which it is desired be constant at −6 dB over the frequency of interest. At 30 KHz, S21=−6.0879 dB. At 1 GHz, S21 =−5.981 dB. At 2 GHz, S21=−6.049 dB. At 3 GHz, S21=−6.1303 dB. Finally, at 4 GHz, S21=−6.0615 dB.
b illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-6 configured as a microstrip attenuator and designed to provide attenuation of 6 dB. At 30KHz, S12=−6.0747 dB. At 1GHz, S12=−5.9462 dB. At 2 GHz, S12=−6.0136 dB. At 3 GHz, S12=−6.1061 dB. Finally, at 4 GHz, S12=−6.0883 dB.
c illustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-6 configured as a microstrip attenuator and designed to provide attenuation of 6 dB. At 30 KHz, S11=−45.340 dB. At 1GHz, S11=−26.116 dB. At 2 GHz, S11=−23.422 dB. At 3GHz, S11=−26.823 dB. Finally, at 4GHz, S11=−27.080 dB.
d illustrates a plot of S22 (in dB) versus log10(frequency) of an attenuator 10-6 configured as a microstrip attenuator and designed to provide attenuation of 6 dB. At 30 KHz, S22=−42.377 dB. At 1 GHz, S22=−25.656 dB. At 2 GHz, S22=−22.797 dB. At 3 GHz, S22=−25.085 dB. Finally, at 4 GHz, S22=−26.811 dB.
a illustrates a plot of S21 (in dB) versus log10(frequency) of an attenuator 10-10 configured as a microstrip attenuator and designed to provide attenuation of 10 dB. S21 is the forward gain of the attenuator 10-10, which it is desired to be constant at −10 dB over the frequency of interest. At 30 KHz, S21=−10.184 dB. At 1 GHz, S21=−9.9918 dB. At 2 GHz, S21=−9.9729 dB. At 3 GHz, S21=−10.003 dB. Finally, at 4 GHz, S21=−9.9386 dB.
d illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-10 configured as a microstrip attenuator and designed to provide attenuation of 10 dB. At 30 KHz, S12=−10.172 dB. At 1 GHz, S12=−9.9506 dB. At 2 GHz, S12=−9.9415 dB. At 3 GHz, S12=−9.9895 dB. Finally, at 4 GHz, S12=−9.966 dB.
c illustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-10 configured as a microstrip attenuator and designed to provide attenuation of 10 dB. At 30KHz, S11=−49.642 dB. At 1 GHz, S11=−33.254 dB. At 2 GHz, S11=−30.684 dB. At 3 GHz, S11=−36.066 dB. Finally, at 4 GHz, S11=−33.742 db.
d illustrates a plot of S22 (in dB) versus log10(frequency)of an attenuator 10-10 configured as a microstrip attenuator and designed to provide attenuation of 10 dB. At 30KHz, S22=−46.615 dB. At 1GHz, S22=−31.574 dB. At 2 GHz, S22=−29.108 dB. At 3 GHz, S22=−33.744 dB. Finally, at 4 GHz, S22=−36.513 dB.
a illustrates a plot of S21 (in dB) versus log10(frequency) of an attenuator 10-20 configured as a microstrip attenuator and designed to provide attenuation of 20 dB. S21 is the forward gain of the attenuator 10-20, which it is desired be constant at −20 dB over the frequency of interest. At 30 KHz, S21=−20.48 dB. At 1 GHz, S21=−20.041 dB. At 2 GHz, S21=−19.988 dB. At 3 GHz, S21=−19.966 dB. Finally, at 4 GHz, S21=−19.832 dB.
b illustrates a plot of S12 (in dB) versus log10(frequency) of an attenuator 10-20 configured as a microstrip attenuator and designed to provide attenuation of 20 dB. At 30 KHz, S12=−20.265 dB. At 1 GHz, S12=−19.996 dB. At 2 GHz, S12=−19.953 dB. At 3 GHz, S12=−19.945 dB. Finally, at 4GHz, S12=−19.864 dB.
c illustrates a plot of S11 (in dB) versus log10(frequency) of an attenuator 10-20 configured as a microstrip attenuator and designed to provide attenuation of 20 dB. At 30 KHz, S11=−48.33 dB. At 1GHz, S11=−28.27 dB. At 2 GHz, S11=−25.756 dB. At 3GHz, S11=−28.999 dB. Finally, at 4 GHz, S11=−36.378 dB.
d illustrates a plot of S22 (in dB) versus log10(frequency) of an attenuator 10-20 configured as a microstrip attenuator and designed to provide attenuation of 20 dB. At 30 KHz, S22=−47.129 dB. At 1 GHz, S22=−28.377 dB. At 2 GHz, S22=−25.855 dB. At 3 GHz, S22=−29.264 dB. Finally, at 4 GHz, S22=−36.111 dB.
In the illustrated embodiments, the substrates 12 are constructed from, for example, hot air solder leveling (hereinafter sometimes HASL) plated GML 2000 laminate 0.031 inch (about 0.79 mm) thick, coated with copper to a uniform thickness providing 1 oz. (about 28.4 g) of copper on each side of an 18 inch (about 45.7 cm) by 24 inch (about 61 cm) sheet (about 102 g/m2) of GML 2000 laminate. GML 2000 laminate is available form GIL Technologies, 175 Commerce Rd. Collierville, Tenn. 38017. The substrate 12 may also be constructed from, for example, HASL plated 25N laminate 0.030 inch (about 0.76 mm) thick, coated with copper to a uniform thickness providing 1 oz. (about 28.4 g) of copper on each side of an 18 inch (about 45.7 cm) by 24 inch (about 61 cm) sheet (about 102 g/m2) of 25N laminate. 25N laminate is available from Arlon Corporation, 199 Amaral Street, East Providence, R.I. 02915
Number | Name | Date | Kind |
---|---|---|---|
4383227 | de Ronde | May 1983 | A |
5317663 | Beard et al. | May 1994 | A |
5450046 | Kosugi et al. | Sep 1995 | A |
6373348 | Hagerup | Apr 2002 | B1 |
6472948 | Kyriakos et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040233011 A1 | Nov 2004 | US |